Computer
Sciences
Department

Relational Transfer in Reinforcement Learning

Lisa Torrey (Thesis)

Technical Report #1657

May 2009

RELATIONAL TRANSFER IN REINFORCEMENT LEARNING

by

Lisa Torrey

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN-MADISON

May 2009

ACKNOWLEDGMENTS

This research was partially supported by DARPA grant HRO0411-0007, United States
Naval Research Laboratory grant NO0173-06-1-G002, and PA&ant FA8650-06-C-7606.

Special thanks to my advisor, Jude Shavlik, to my collalmysaflrevor Walker and Rich
Maclin, to my committee members, and to the Machine Learr@angup at the University of
Wisconsin-Madison.

We offer a public distribution of our RoboCup players and sewcode. They are available at

http://www.biostat.wisc.edu/ml-group/RoboCup.

DISCARD THIS PAGE

TABLE OF CONTENTS
Page
LISTOF TABLES s e e e e e e %
LISTOFFIGURES e e e e e iX
ABSTRACT . . . XV
1 Introduction e 1
1.1 ThesisSTOpIC o e e e e e e e 2
1.2 Thesis Statement 3
1.3 Thesis Contributions o 3
2 Background e e 5
2.1 ReinforcementLearning 5
2.1.1 Implementing RL with Support Vector Regression i e ... 8
2.1.2 RoboCup: A Challenging Reinforcement Learning Domain 9
2.2 Learning Curves and Statistical Comparisons e e 12
2.3 Inductive Logic Programming 16
231 WhatlLPLearns 16
23.2 HowlLPLearns 17
2.4 Markov Logic Networks 19
3 Survey of Research on Transfer Learning 22
3.1 TransferinGeneral 22
3.2 TransferinInductive Learning 24
3.2.1 Inductive Transfer 26
3.2.2 BayesianTransfer 27
3.2.3 Hierarchical Transfer 28
3.2.4 Transfer with Missing DataorClassLabels 29
3.3 Transferin ReinforcementLearning 0. 30
3.3.1 Starting-PointMethods 31

Page

3.3.2 Imitation Methods 33

3.3.3 HierarchicalMethods 34

3.3.4 AlterationMethods 35
3.35 NewRLAIlgorithms 36

3.4 Avoiding Negative Transfer e 37

3.4.1 Rejecting Bad Information 38
3.4.2 ChoosingaSourceTask 9 3

3.4.3 Modeling Task Similarity 40

3.5 Automatically MappingTasks, 41

3.5.1 Equalizing Task Representations oo ... 42

3.5.2 Trying Multiple Mappings e 43

3.53 Mappingby Analogy 34

3.6 Theoryof TransferLearning 44
3.7 RecapofContributions e 46
Advice-Based Transfer Methods. a7
4.1 AdviceTaking. 47
4.2 Policy Transfervia Advice e 49
4.2.1 Translating Q-Functions 50
4.2.2 Generating Advice 53
4.2.3 Experimental Results for Policy Transfer 53
4.3 Skill Transfervia Advice e 54
43.1 LearningSkills 56
4.3.2 Translating Skills and Adding Human-Provided Advice. 59
4.3.3 Experimental Results for Skill Transfer 60

4.4 Testing the Boundaries of Skill Transfer 62

4.5 Summary of Advice-Based Transfer 64
Macro-Operator Transfer e 66
5.1 Relational Macro-Operators and Demonstration 67
5.2 Single-Macro Transfer via Demonstration 69
5.2.1 Single-Macro Structure Learning e 69
5.2.2 Single-Macro RulesetLearning, 74
5.2.3 Experimental Results for Single-Macro Transfer 76
5.3 Multiple-Macro Transfer via Demonstration 79
5.3.1 Multiple-Macro Structure and Ruleset Learning 80
5.3.2 Experimental Results for Multiple-Macro Transfer 84
5.4 Testing the Boundaries of Macro Transfer 87

Page
5,5 Summaryof Macro Transfer 93
Transfer via Markov Logic Networks, 94
6.1 MLN Relational Q-Function Transfer 95
6.1.1 Learning an MLN Q-function froma Source Task 97
6.1.2 Applying an MLN Q-functionina TargetTask 98
6.1.3 Experimental Results for MLN Q-function Transfer. 100
6.2 MLN Relational Policy Transfer uu.... 102
6.2.1 LearningandUsingan MLN Policy 104
6.2.2 Experimental Results for MLN Policy Transfer 105
6.3 Testing the Boundaries of MLN Policy Transfer 107
6.4 Summaryof MLN Transfer 112
Conclusionsand Future Work 114
7.1 Algorithm Comparison e 116
7.2 Potential Extensionsof MyResearch, 117
7.3 The Future of TransferLearning iuu. ... 122
LISTOF REFERENCES e e e e e, 124
NOMENCLATURE e e e e e e s e e 132
APPENDIX A. RoboCup Feature and Action Spaces. 137
APPENDIX B. Propositional Mappings o 139
APPENDIX C.ObjectMappings« i 145

APPENDIX D. Conditional Independence Proof 147

DISCARD THIS PAGE

LIST OF TABLES

Table

11

2.1

2.2

4.1

4.2

4.3

4.4

5.1

5.2

5.3

A list of major algorithms contributed by thisthesis. 4

A randomization test to judge whether one group of nusesignificantly higher
than another, based on Cohen [13].. 14

A randomization test to estimate a 95% confidence intévéhe difference between
two groups of numbers, basedon Cohen [13]. 15

Transfer Algorithm 1: Policy Transfervia Advice 51

Results of statistical tests on the differences betveeeas under the curve in policy
transfer vs. RL-SVR for several source/target pairs. Fot 0.05, the difference

is significant and the winning algorithm is shown; otherwidee difference is not
statistically significant. e e 54

Transfer Algorithm 2: Skill Transfer via Advice 57

Results of statistical tests on the differences betvegeas under the curve in skill
transfer vs. policy transfer for several source/targetgpdtorp < 0.05, the difference
is significant and the winning algorithm is shown; otherwidee difference is not

statistically significant. e 62
Transfer Algorithm 3: Single-Macro Transfer via Demwwason 70
Algorithm for learning one or more macro structuresggiggames- from the source

task. e 70
Algorithm for learning rules to control the transitioatveen a pair of nodes;, n;

in a macroM acro, given games- from the source task. Data for this task can come
from any game that contains the sequence representdddayo or some prefix or
suffix of that sequence. For example, in a macro with nddesn,, ns, ny), prefixes
include games matching,, n,) and suffixes include games matchifig, ns, ny). . . 71

Vi

Table Page

5.4 Algorithm for learning rules to control the action cheim a noden of a macro that
represents the actioAction with the variable argumemction Arg, given gamesr
from the source task. Data for this task can come from any gamd most comes
from those that contain the sequence representetd byro or some prefix or suffix
of that sequence. For example, in a macro with nddesn,, n3, ny), prefixes include
games matchingn;, ns) and suffixes include games matchipng, ns, ny4). 71

5.5 Algorithm for selecting and scoring the final rulesetdoe transition or action. Rules
are added to the final set if they increase the overalld) measure. 77

5.6 Results of statistical tests on the differences betvaeeas under the curve in single-
macro transfer vs. skill transfer for several source/tapggrs. Forp < 0.05, the
difference is significant and the winning algorithm is showtiherwise, the difference
is not statistically significant. 79

5.7 Transfer Algorithm 4: Multiple-Macro Transfer via Demsiration 81

5.8 Algorithm for learning rules to control the entry arc ohaden of a macro, given
gameds from the source task. Data for this task can come from any ganmstmost
comes from those that contain the sequence representéflibyo or some prefix of
that sequence. For example, in a macro with nqagsn,, n3, ny), prefixes include
games matchin@ny, ma). . .« o o o o o o e e 82

5.9 Algorithm for learning rules to control the loop arc of aden of a macro, given
games’ from the source task. Data for this task can come from any game®most
comes from those that contain the sequence representéflibyo or some prefix of
that sequence. For example, in a macro with nqagsn,, ns, ny), prefixes include
games matchingni, na). 82

5.10 Results of statistical tests on the differences beataesas under the curve in multiple-
macro transfer vs. single-macro transfer for several sstamet pairs. Fop <
0.05, the difference is significant and the winning algorithmhswn; otherwise, the
difference is not statistically significant., 87

5.11 Results of statistical tests on the differences batvaeeas under the curve in single-
macro transfer with MLNs vs. regular single-macro tran$éerseveral source/target
pairs. Forp < 0.05, the difference is significant and the winning algorithmhswn;
otherwise, the difference is not statistically significant. 92

6.1 Transfer Algorithm 5: MLN RelationdD-Function Transfer 96

Table
6.2

6.3

6.4

6.5

6.6

6.7

6.8

Al

A.2

B.1

B.2

B.3

Vii

Page

Algorithm for dividing theQ-values of an action into bins, given training data from
games and a parameterdetermining distance betweenbins.

Algorithm for estimating thé)-value of actior: in target-task state using the MLN
Q-function. This is a weighted sum of bin expected values,reitiee expected value
of a bin is estimated from the training data forthatbin. 99

Results of statistical tests on the differences betveeeas under the curve in MLN
Q-function transfer vs. multiple-macro transfer for seVesaurce/target pairs. For

p < 0.05, the difference is significant and the winning algorithmhswn; otherwise,

the difference is not statistically significant. 102

Transfer Algorithm 6: MLN Relational Policy Transfer 103

Results of statistical tests on the differences betveeeas under the curve in MLN
policy transfer vs. MLNQ-function transfer for several source/target pairs. Fot

0.05, the difference is significant and the winning algorithmhewn; otherwise, the
difference is not statistically significant. 107

Results of statistical tests on the differences betvaeeas under the curve in ruleset
policy transfer vs. regular MLN policy transfer for seveslurce/target pairs. For

p < 0.05, the difference is significant and the winning algorithmhswn; otherwise,

the difference is not statistically significant. 109

Results of statistical tests on the differences betveeeas under the curve in multi-
step MLN policy transfer vs. regular MLN policy transfer feeveral source/target
pairs. Forp < 0.05, the difference is significant and the winning algorithmhewsn;

otherwise, the difference is not statistically significant. 110
RoboCuptask actionspaces. e 138
RoboCup task feature spaces. e 138

Propositional mappings from 2-on-1 BreakAway to 3-oBr@akAway, used in policy
transfer. L e 140

Propositional mappings from 3-on-2 MoveDownfield to+MoveDownfield, used
inpolicy transfer. e 141

Propositional mappings from 3-on-2 KeepAway to 4-oneepAway, used in policy
transfer. 142

viii

Table Page

B.4 Propositional mappings from 3-on-2 MoveDownfield torgdBreakAway, used in

policy transfer.
Propositional mappings from 3-on-2 KeepAway to 3-onr@dkAway, used in policy

B.5
transfer

DISCARD THIS PAGE

LIST OF FIGURES

Figure

Page

1.1 Transfer learning is machine learning with an additi@uaurce of information apart
from the standard training data: knowledge from one or melated tasks.

2.1

2.2

2.3

2.4

2.5

3.1

A reinforcement learning agent interacts with its eoniment: it receives information

about its state (s), chooses an action to take (a), recensgaad
learns from that information, andsoon.

(r) and a new state,

Snapshots of RoboCup soccer tasks. In KeepAway, one @ssapthe ball to prevent
the other team from taking possession of it. In BreakAwawp @mam attempts to score
a goal against another team. In Movedownfield, one team ptssimmaneuver across

a line while another team attempts to take possession ofathe.

b.

lllustrations of the statistical tests in Tables 2.1 arl (a) The dots represent ran-
domizedt-statistics for algorithmsi and B, and thep-value captures how many are
more extreme than the actualb) The dots represent resampled differences between
areas under curved and B, and the 95% confidence interval encompasses 95% of

thesevalues.

An illustration of a top-down ILP search for a clause tpress

the concept using

10

16

candidate literalg, , s, The body of the clause starts empty. The first step consid-
ers each literal and chooses the best (h¢te add. It then considers adding another

and chooses the best (hepge and so on. Literals are shown here without arguments
for simplicity, but in a real ILP search literals might haveth grounded and variable

arguments. L e e e e e e e e

The ground Markov network produced by the MLN describethis section. This
example and this image come from Richardson and Domingds F&ch clique in
this network has a weight (not shown) derived from the fomnweéights.

A standard learning curve displays increased perfocmas train

ing progresses. With

transfer, the curve may start higher, increase faster,amtr@ higher asymptote. Any

of these properties could be desired outcomes of transdemileg

Figure Page
3.2 As | define transfer learning, the information flows in ahesction only, from the
source task to the target task. In multi-task learning, rimiation can flow freely
amongalltasks. 25
3.3 Inductive learning can be viewed as a directed searclgfwra hypothesis space [57].
Inductive transfer uses source-task knowledge to adjiestiriiuctive bias, which
could involve changing the hypothesis space or the seagpisst. 26
3.4 Bayesian learning uses a prior distribution to smoottestimates from training data.
Bayesian transfer may provide a more informative prior freoarce-task knowledge. . 28
3.5 An example of a concept hierarchy that could be used feralghical transfer, in

3.6

3.7

3.8

3.9

which solutions from simple tasks are used to help learnatisol to a more complex
task. Here the simple tasks involve recognizing lines amdesuin images, and the
more complex tasks involve recognizing surfaces, cirdes, finally pipe shapes. . . . 29

Starting-point methods for RL transfer set the init@lgion based on the source task,
starting at a higher performance level than the typicalahgolution would. In this
example, a Q-function table is initialized to a source-tedhe, and the target-task
performance begins at a level that is only reached after $mmeng when beginning

with a typical all-zerotable. e 32

Imitation methods for RL transfer follow the sourcekigslicy during some steps of
the target task. The imitation steps may all occur at therimeqg of the target task (a),
or they may be interspersed with steps that follow the deetptarget-task policy (b). 33

(a) An example of a task hierarchy that could be used to &gents to play soccer
via hierarchical RL. Lower-level abilities like kicking aalh and running are needed
for higher-level abilities like passing and shooting, whaould then be combined to
learn to play soccer. (b) The mid-level abilities represdrds options alongside the
low-level actions. e 35

A representation of how the degree of relatedness battieesource and target tasks
translates to target-task performance when conductimgfiea from the source task.

With aggressive approaches, there can be higher benefitgratiagrees of related-

ness, but there can also be negative transfer at low levafer 8pproaches may limit
negative transfer at the lower end, but may also have fewesfiie at the higherend. . 37

Xi

Figure Page

3.10

3.11

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

(a) One way to avoid negative transfer is to choose a goorte task from which to
transfer. In this example, Task 2 is selected as being thémslased. (b) Another way

to avoid negative transfer is to model the way source tasksedaited to the target task
and combine knowledge from them with those relationshipsimd. 39

A mapping generally translates source-task prosariie target-task properties. The
numbers of properties may not be equal in the two tasks, anthdpping may not be
one-to-one. Properties include entries in a feature veghgects in a relational world,
RLACtiONS, €tC. e e e e e e e e 42

Probability of scoring a goal in 3-on-2 BreakAway with f8lVR and policy transfer
from 2-on-1 BreakAway (BA), 3-on-2 MoveDownfield (MD) anddd+2 KeepAway
(KA). 55

Average total reward in 4-on-3 MoveDownfield with RL-S\A4Rd policy transfer
from 3-on-2 MoveDownfield. e 55

Average game length in 4-on-3 KeepAway with RL-SVR anticgdransfer from
3-0n-2 KeepAway. e 55

Left: Probability of scoring a goal 3-on-2 BreakAway WRL-SVR and skill transfer
from 2-on-1 BreakAway (BA), 3-on-2 MoveDownfield (MD) anddd-2 KeepAway
(KA). Right: Figure 4.1 reproduced to show the correspogdialicy-transfer results. 61

Left: Average total reward in 4-on-3 MoveDownfield with fSVR and skill transfer
from 3-on-2 MoveDownfield. Right: Figure 4.2 reproduced bow the correspond-
ing policy-transferresults. L e 61

Left: Average game length in 4-on-3 KeepAway with RL-S& skill transfer from
3-on-2 KeepAway. Right: Figure 4.3 reproduced to show threesponding policy-
transferresults. 61

A plot showing how area under the learning curve in thgahtask correlates with
area under the learning curve in the source task. The dasieedHows a 45-degree
angle forvisual reference. e 63

Probability of scoring a goal 3-on-2 BreakAway, with BMR and with skill trans-
fer from 3-on-2 KeepAway, using the original human-proddelvice and using two
variants described above. e 64

Xii

Figure Page
4.9 Probability of scoring a goal in 3-on-2 BreakAway, with-8VR and with skill trans-

fer from 3-on-2 MoveDownfield, with and without human-prded advice. 65
5.1 A macro for the RoboCup game BreakAway, in which the agt#atgpts to score a

goal. Each node and arc has an attached ruleset (not showst)dosing actions and

deciding transitions. 68
5.2 A visual depiction of the first three steps of the singleero transfer algorithm in

Table 5.1. 27
5.3 The node structure corresponding to the sample maaiselbelow. 73
5.4 Training examples (states circled) frass(Teammatedles in the second node of the

5.5

5.6

5.7

5.8

5.9

pictured macro. The pass states in Games 1 and 2 are posiimepées. The pass
state in Game 3 is a negative example; the pass action lettlgite a negative game
outcome. The pass state in Game 4 is ambiguous becauserastefhmay have been
responsible for the bad outcome; the algorithm does nottasesdike these. 75

Training examples (states circled) for the transitimmfmoveto passin the pictured

macro. The pass state in Game 1 is a positive example. The stateein Game 2 is

a negative example; the game follows the macro but remaitieimovenode in the

state circled. The pass state in Game 3 is ambiguous becaogeastep may have

been responsible for the bad outcome; the algorithm doess®ostates like these. . . 75

Probability of scoring a goal in 3-on-2 BreakAway with VR, skill transfer from
2-on-1 BreakAway, and single-macro transfer from 2-on-édkAway. The thin ver-
tical line marks the end of the demonstration period. 78

Probability of scoring a goal in 4-on-3 BreakAway with f8lVR, skill transfer from
2-on-1 BreakAway, and single-macro transfer from 2-on-édkAway. The thin ver-
tical line marks the end of the demonstration period. 78

A structural diagram of the knowledge captured by thetiplelmacro transfer method.

An agent starts in a default node using ®dunction, and it can choose to enter any
macro. At any point in that macro, it can choose to abandorretudn to the default

node. There it can choose to enter a new macro, or if none sppro@iate, it can

fall back on theQ-function to choose anaction. 83

The actual list of macros learned for one source run in xpgements with multiple-
macro transfer. Only the nodes, and not the rulesets, asesho 85

Xiii

Figure Page

5.10

5.11

5.12

5.13

5.14

6.1

6.2

6.3

Probability of scoring a goal in 3-on-2 BreakAway with-8VR, skill transfer from
2-on-1 BreakAway, single-macro transfer from 2-on-1 Briaaly, and multiple-macro
transfer from 2-on-1 BreakAway. The thin vertical line matke end of the demon-
stration period. e 86

Probability of scoring a goal in 4-on-3 BreakAway with-BVR, skill transfer from
2-on-1 BreakAway, single-macro transfer from 2-on-1 Brsaly, and multiple-macro
transfer from 2-on-1 BreakAway. The thin vertical line matke end of the demon-
stration period. L 86

A small ruleset (with rule weights not shown) and theugi Markov network it
would produce. Each grounded literal becomes a node in the.NMhen literals ap-
pear together in clauses, their nodes are linked. Groupsk#d nodes form cliques,
which have potential functions (not shown) describingrtfent probabilities. To use
this MLN to choose betwegpass(alandpass(a2)an agent infers their conditional

probabilities and takes the higherone. oL 88
Probability of scoring a goal in 3-on-2 BreakAway with-8VR, single-macro trans-
fer from 2-on-1 BreakAway, and single-macro transfer withiN& from 2-on-1 Break-
Away. The thin vertical line marks the end of the demonstraperiod. 91
Probability of scoring a goal in 4-on-3 BreakAway with-8VR, single-macro trans-

fer from 2-on-1 BreakAway, and single-macro transfer withWN& from 2-on-1 Break-
Away. The thin vertical line marks the end of the demonstraperiod. 91

Examples of probability distributions ové€)-value of an action that an MLND-
function might produce. On the left, the MLN has high confickethat theQ-value

falls into a certain bin, and the action will get a hi@avalue. In the center, the MLN

is undecided between several neighboring bins, and theraewiil still get a highQ-

value. On the right, there is a high likelihood of a high birt blso a non-negligible
likelihood of a low bin, and the action will get a low&-value. 100

Probability of scoring a goal in 3-on-2 BreakAway with f8VR, macro transfer from
2-on-1 BreakAway, and MLNQ-function transfer from 2-on-1 BreakAway. The thin
vertical line marks the end of the demonstration period.101

Probability of scoring a goal in 4-on-3 BreakAway with+8lVR, macro transfer from
2-on-1 BreakAway, and MLNQ-function transfer from 2-on-1 BreakAway. The thin
vertical line marks the end of the demonstration period.101

Xiv

Figure Page

6.4 Probability of scoring a goal in 3-on-2 BreakAway with VR, multiple-macro
transfer from 2-on-1 BreakAway, MLIQ-function transfer from 2-on-1 BreakAway,
and MLN policy transfer from 2-on-1 BreakAway. The thin veal line marks the
end of the demonstrationperiod. 106

6.5 Probability of scoring a goal in 4-on-3 BreakAway with f8lVR, multiple-macro
transfer from 2-on-1 BreakAway, MLID-function transfer from 2-on-1 BreakAway,
and MLN policy transfer from 2-on-1 BreakAway. The thin ved line marks the
end of the demonstration period. L 106

6.6 Probability of scoring a goal in 3-on-2 BreakAway with f8lVR, regular MLN pol-
icy transfer from 2-on-1 BreakAway, and ruleset MLN policarisfer from 2-on-1
BreakAway. The thin vertical line marks the end of the demi@ti®n period. 108

6.7 Probability of scoring a goal in 4-on-3 BreakAway with VR, regular MLN pol-
icy transfer from 2-on-1 BreakAway, and ruleset MLN policgnsfer from 2-on-1
BreakAway. The thin vertical line marks the end of the demi@t®n period. 108

6.8 Probability of scoring a goal in 3-on-2 BreakAway withf8IVR, regular MLN policy
transfer from 2-on-1 BreakAway, and multi-step MLN poliayansfer from 2-on-1
BreakAway. The thin vertical line marks the end of the demt@t®n period. 111

6.9 Probability of scoring a goal in 4-on-3 BreakAway withfSIVR, regular MLN policy
transfer from 2-on-1 BreakAway, and multi-step MLN poliaanisfer from 2-on-1
BreakAway. The thin vertical line marks the end of the demi@ti®n period. 111

7.1 Self-transfer results: the percent of games in whicha igoscored in 2-on-1 Break-
Away at the asymptote of standard RL, and during demonstrati several relational
models learned from 2-on-1 BreakAway. e ... 115

7.2 Arecommended ordering of my transfer algorithms inelbansfer scenarios. Demonstration-

based algorithms will likely perform better than advicesbd ones. Within each type,
the more strongly relational and general algorithms wiiely perform better. 116

7.3 Arecommended ordering of my transfer algorithms inadistransfer scenarios. Advice-
based algorithms will likely perform better than demonstra-based ones. As before,
however, within each type the more strongly relational ardegal algorithms will
likely perform better. e 117

XV

ABSTRACT

Transfer learning is an inherent aspect of human learningeMfumans learn to perform a
task, we rarely start from scratch. Instead, we recall eéknowledge from previous learning
experiences and apply that knowledge to help us master th¢éas& more quickly.

This principle can be applied to machine learning as well.cMae learning often addresses
single learning tasks in isolation. Even though multiplated tasks may exist in a domain, many
algorithms for machine learning have no way to utilize thosationships. Algorithms that al-
low successful transfer from one task (the source) to amdési (the target) are necessary steps
towards making machine learning as adaptable as humanrgarn

This thesis investigates transfer methods for reinforagn@arning (RL), where an agent takes
series of actions in an environment. RL often requires suttistt amounts of nearly random explo-
ration, particularly in the early stages of learning. Thdigkto transfer knowledge from previous
tasks can therefore be an important asset for RL agents.sferafiom related source tasks can
improve the low initial performance that is common in chadieng target tasks.

| focus on transferring relational knowledge that guidetsomcchoices. Relational knowledge
typically uses first-order logic to express information abeelationships among objects. First-
order logic, unlike propositional logic, can use variabileat generalize over classes of objects.
This greater generalization makes first-order logic mofecgiive for transfer.

This thesis contributes six transfer algorithms in thretlegaries: advice-based transfer, macro
transfer, and MLN transfer. Advice-based transfer usescestask knowledge to provide advice

for a target-task learner, which can follow, refine, or igndhe advice according to its value.

XVi

Macro-transfer and MLN-transfer methods use source-taplergence to demonstrate good be-
havior for a target-task learner.

| evaluate these transfer algorithms experimentally incin@plex reinforcement-learning do-
main of RoboCup simulated soccer. All of my algorithms preveinpirical benefits compared to
non-transfer approaches, either by increasing initialggerance or by enabling faster learning in

the target task.

Chapter 1

Introduction

Transfer learnings an inherent aspect of human learning. When humans learertorm a
task, we rarely start from scratch. Instead, we recall @iéknowledge from previous learning
experiences and apply that knowledge to help us master theéas& more quickly [27].

Human transfer learning is often studied in the context afcation, where transfer could be
seen as the ultimate goal. The hierarchical curricularcstine of schools is based upon the belief
that learning tasks can share common stimulus-responseerts [99]. The focus on abstract
problem-solving methods is based on the idea that lear@iskstcan share general underlying
principles [9, 30].

Another area of human activity in which transfer learningften studied is that of language,
or more precisely, multilingualism. Knowledge of one laaga can affect learning in a second
language, and vice versa [61, 111]. In both of these aremssfer can be a powerful method of
facilitating human learning.

This principle can be applied tmachine learningas well. Machine learning often addresses
single learning tasks in isolation. Even though multiplated tasks may exist in a domain, many
algorithms for machine learning have no way to utilize thadationships. Algorithms that allow
successful transfer are steps towards making machinaieggais adaptable as human learning.

In human learning, the goal of transfer research is typydalldetermine what conditions facil-
itate transfer. Educators hope to activate and maximizetaexisting mechanisms for transfer
learning in students’ brains. In machine learning, howger goal of transfer research is to design
effective mechanisms for transfer. This thesis contribseveral transfer mechanisms for one type

of machine learning.

Given Learn

Data °

[]
> \ Target Task
Source-Task /

Knowledge

Figure 1.1: Transfer learning is machine learning with an additionalrse of information apart from the
standard training data: knowledge from one or more relaskist

1.1 Thesis Topic

Transfer in machine learning can be illustrated by Figurk 1A typical machine-learning

problem can be characterized as:

GIVEN Training data for task’

DO Learn taskl’

A typical transfer-learning problem can be characterized a

GIVEN Training data for task” AND knowledge from related task(s)

DO Learn taskrl’

Here S represents one or mosource taskshat were previously learned, and represents
a new and relatetharget task The goal of transfer is to improve learning in a target tasing
knowledge acquired in source tasks.

Transfer is desirable in many types of machine learning. Mykwfocuses on transfer in
reinforcement learningRL), where an agent takes series of actions in an envirohf8&h RL
often requires substantial amounts of nearly random eaptor, particularly in the early stages of
learning. The ability to transfer knowledge from previoasks can therefore be an important asset
for RL agents. Transfer can reduce the long initial periodbaf performance that is common in
challenging tasks.

Many types of knowledge can be transferred between RL talgkswork focuses on trans-
ferring relational knowledgéehat guides action choices. Relational knowledge typraadlesfirst-

order logic to express information about relationships between objgg8]. First-order logic,

unlike propositional logic, can use variables that genegabver classes of objects. This greater

generalization makes first-order logic more effective fansfer.

1.2 Thesis Statement
This thesis investigates the following claims:

Transfer learning can improve learning in reinforcemeatiéng tasks. Source-task
knowledge can guide learners’ action choices in relategetaasks to produce better
performance than random exploration. This guidance canvdkarners to perform
better while learning the target task than they would othesw Relational learning

can provide effective and interpretable transfer knowéefly reinforcement learners.

1.3 Thesis Contributions

This thesis presents researchretational transfer in reinforcement learningdt contributes six
major RL transfer algorithms, which are listed in Table 1.1.

The material is organized as follows. Background informatheeded for later chapters is in
Chapter 2. Chapter 3 gives a survey of transfer learning on a sddle, covering both inductive
learning and reinforcement learning. Chapters 4, 5, and $emtemy original research. Conclu-
sions and suggestions for future research are in Chapter @. Appendices contain additional
information set aside from the chapters for the purposesadability.

The first chapter of original research, Chapter 4, presentsalgorithms foradvice-based
transfer They express source-task knowledge as advice for thettegle learner, which uses an
advice-taking RL algorithm. This approach can produceefdsiarning in the target task.

The second chapter of original research, Chapter 5, presemtigorithms fomacro-operator
transfer They express source-task knowledge with relational fisigde machines, which the
target-task learner uses to demonstrate good behaviors agproach can produce high initial

performance in the target task.

Table 1.1: A list of major algorithms contributed by this thesis.

Transfer Algorithm 1.
Transfer Algorithm 2:
Transfer Algorithm 3:
Transfer Algorithm 4:
Transfer Algorithm 5:
Transfer Algorithm 6:

Policy Transfer via Advice Table 4.1
Skill Transfer via Advice Table 4.3
Single-Macro Transfer via Demonstat Table 5.1
Multiple-Macro Transfer via Demoreion Table 5.7
MLNQ-Function Transfer Table 6.1
MLN Policy Transfer Table 6.5

The third chapter of original research, Chapter 6, presemtsalgorithms fortransfer via
Markov Logic NetworksThey express source-task knowledge with a statistidatiomal model,
which the target-task learner uses to evaluate actions dpproach also can produce high initial

performance in the target task. | also show that Markov Loggtworks can improve performance

in the source task from which they are learned.

| evaluate all of these transfer algorithms experimentallg complex reinforcement-learning
domain: RoboCup simulated soccer [59]. RoboCup is a much n@mmplex domain than many
typical testbeds for RL, which include maze worlds, games] simple control problems such
as balancing poles and accelerating cars up hills. Ston&atidn [81] introduced RoboCup as a
challenging RL domain due to its large, continuous statespad nondeterministic action effects.

This complexity also makes it a challenging domain for tfansvhich is important for realistic

evaluation of my proposed methods.

Chapter 2

Background

This chapter provides background information that laysftamework for the rest of the dis-
sertation. Section 2.1 reviews reinforcement learning)(&hd introduces the RL domain and the
RL algorithm | use in experiments. Section 2.2 explains thg Weport results and the statistical
methods | use to compare algorithms. Section 2.3 reviewscing logic programming, a method
of learning relational concepts that | use extensively &ational transfer. Section 2.4 reviews
Markov Logic Networks, which | use in several transfer agmioes as a more detailed way to

represent relational concepts.

2.1 Reinforcement Learning

In reinforcement learning [87], an agent operates in ancejissequential-control environ-
ment. It senses th&tateof the environment and perfornactionsthat change the state and also
trigger rewards Its objective is to learn @olicy for acting in order to maximize its cumulative
reward during an episode. This involves solving a temparadiit-assignment problem, since an
entire sequence of actions may be responsible for a singfeeofiate reward.

A typical RL agent behaves according to the diagram in FiQuie At time step, it observes
the current state; and consults its current policy to choose an actiom(s;) = a,. After taking
the action, it receives a rewarg and observes the new statg ;, and it uses that information to
update its policy before repeating the cycle. Often RL csissdf a sequence efpisodeswhich

end whenever the agent reaches one of a set of ending states.

‘ Environment ‘
ot It _
S 8 fo - S a I time ,
‘ Agent ‘

Figure 2.1: A reinforcement learning agent interacts with its envir@amt it receives information about its
state (s), chooses an action to take (a), receives a rewaaddra new state, learns from that
information, and so on.

Formally, a reinforcement learning domain has two undagyunctions that determine imme-
diate rewards and state transitions. The reward funetien) gives the reward for taking action
a in states, and the transition function(s, a) gives the next state the agent enters after taking
actiona in states. If these functions are known, the optimal policy can be calculated directly
by maximizing thevalue functionat every state. The value functidf}(s) gives the discounted

cumulative reward achieved by polieystarting in state:

Vi(se) =1 +yre + 727”t+2 + ... (2.1)

The discount factofy € [0, 1]. Settingy < 1 gives later rewards less impact on the value function
than earlier rewards, which may be desirable for tasks witffigzed lengths.

During learning, the agent must balance betwegploitingthe current policy (acting in areas
that it knows to have high rewards) aeg@ploringnew areas to find higher rewards. A common
solution is thee-greedy method, in which the agent takes random exploradotipns a small
fraction of the time € << 1), but usually takes the action recommended by the currdittypo

Often the reward and transition functions are not known, Hretefore the optimal policy
cannot be calculated directly. In this situation, one appate RL technique iQ-learning [110],
which involves learning &-function instead of a value function. TkfunctionQ(s, a) estimates
the discounted cumulative reward starting in statand taking actior and following the current
policy thereafter. Given the optim&-function, the optimal policy is to take the highest-valued

action,argmaz,Q(s, a), at each step.

RL agents in deterministic worlds can begin with an inaceu@function and recursively

update it after each step:

Q(s¢,ar) «— 1 + v max, Q(si41,a) (2.2)

Thus the current estimate ofavalue on the right is used to produce a new estimate on the lef
Under certain conditiongQ-learning is guaranteed to converge to an accugafanction [110].
Even when these conditions are violated, the method capsiduce successful learning in prac-
tice.

In the SARSA variant oQ-learning, the new estimate uses the aciial instead of the: with
the highest)-value; this takes exploration steps into account durirgpigs. In non-deterministic
worlds, a learning rate € (0, 1] is used to form a weighted average between the old estimdte an
the new one; this allows th@-function to converge despite non-deterministic effe@¥tsth these

two changes, the update equation becomes:

Q(st,ar) «— (1 —) Qs ar) + v (re + 7 Q(St41, A1) (2.3)

While these equations give update rules that look just oneadtead, ta,, 1, it is also possible
to perform updates over multiple steps. In temporal-déffexe learning [86], agents can combine
estimates over multiple lookahead distances.

When there are small finite numbers of states and actiontumction can be represented
in tabular form. However, some RL domains have states tleatlescribed by very large feature
spaces, or even infinite ones due to continuous-valuedréesatmaking a tabular representation
infeasible. A solution is to use a function approximatordgpresent th€-function (e.g., a neural
network). Function approximation has the additional beéra#fproviding generalization across
states; that is, changes to tQevalue of one state affect th@-values of similar states, which can

speed up learning.

2.1.1 Implementing RL with Support Vector Regression

For experiments in this thesis, | use a form @flearning called SARSAY), which is the
SARSA form of temporal-difference learning. The algorithmse is RL via support-vector re-
gression [48] (RL-SVR). It represents the state with a setuwheric features and approximates
the Q-function for each action with a weighted linear sum of thésstures. It finds the feature

weights by solving a linear optimization problem, mininmgithe following quantity:
ModelSize+ C' x DataMisfit

HereModelSizas the sum of the absolute values of the feature weights DatdMisfitis the
disagreement between the learned function’s outputs amdréiming-example outputs (i.e., the
sum of the absolute values of the differences for all exag)plBhe numeric parametér specifies
the relative importance of minimizing disagreement witl tlata versus finding a simple model.

Most Q-learning algorithms make incremental updates to@inctions after each step the
agent takes. However, completely re-solving the aboveropdition problem after each data point
would be too computationally intensive. Instead, agent®opa batches of 25 full episodes at a
time and re-solve the optimization problem after each batch

Formally, for each action, the RL-SVR algorithm finds an oyati weight vectorw that has
one weight for each feature in the feature veatomlhe expecte®-value of taking an action from
the state described by vectorns wz + b, whereb is a scalar offset. Agents follow thegreedy
exploration method, taking the highest-valued action libbatl a small set of random steps.

To compute the weight vector for an action, the RL-SVR aldponi finds the subset of training
examples in which that action was taken and places thosaéaatctors into rows of a data matrix
A. When A becomes too large for efficient solving, it begins to disogpiésodes randomly; the
probability of discarding an episode increases with theadglee episode. Using the current model
and the actual rewards received in the examples, it comirnesue estimates and places them

into an output vectoy. The optimal weight vector is then described by Equation 2.4

Aw+be =y (2.4)

Here@ denotes a vector of ones. The matdxcontains 75% exploitation examples, in which
the action is the one recommended by the current policy, &6 &ploration examples, in which
the action is chosen randomly. The purpose of including Kpmogation examples is to ensure
that bad moves are not forgotten. When there are not enoudbraipn examples, the RL-SVR
algorithm creates synthetic ones by randomly choosingoggpion steps and using the current
model to score random actions for those steps.

In practice, it is preferable to have non-zero weights fdy@few important features in order
to keep the model simple and avoid overfitting the trainingmegles. Furthermore, an exact linear
solution may not exist for any given training set. The RL-S&Borithm therefore includeslack
variabless that allow inaccuracies on some examples, and a penaltyneéeaC for trading off

these inaccuracies with the complexity of the solution. fdgilting minimization problem is

min ||w|[s + v[b] + C|]s]|s
(w,b,s) (2.5)
st. —s<Aw+be —y<s.

where| - | denotes an absolute valyg; ||; denotes the one-norm (a sum of absolute values), and
v is a penalty on the offset term. By solving this problem, tHe &R/R algorithm produces a
weight vectorw for each action that compromises between accuracy andisitypllhe tradeoff
parametelC' decays exponentially over time so that solutions may be rooneplex later in the
learning process.

Several other parameters also decay exponentially over. tihre temporal-difference param-
eter)\, so that earlier episodes combine more lookahead distaheeslater ones; the learning
rate a,, so that earlier episodes tend to produce laQeralue updates than later ones; and the

exploration rate, so that agents explore less later in the learning process.

2.1.2 RoboCup: A Challenging Reinforcement Learning Domai

One motivating domain for transfer in reinforcement leagnis RoboCup simulated soccer.
The RoboCup project [59] has the overall goal of producingtimsoccer teams that compete on

the human level, but it also has a software simulator foraesepurposes. Stone and Sutton [81]

10

(e © Q Q
c) E) o
@& ° 3 [
29 3
(¢ o ()
KeepAway BreakAway MoveDownfield

Figure 2.2: Snapshots of RoboCup soccer tasks. In KeepAway, one teaesgthsdall to prevent the other
team from taking possession of it. In BreakAway, one teamnats to score a goal against
another team. In Movedownfield, one team attempts to maneuvess a line while another
team attempts to take possession of the ball.

introduced RoboCup as an RL domain that is challenging becaligs large, continuous state
space and nondeterministic action effects.

Since the full game of soccer is quite complex, researchave ldeveloped several smaller
games in the RoboCup domain (see Figure 2.2). These are mlyengulti-agent games, but a
standard simplification is to have only one agent (the on@gsession of the soccer ball) learning
at a time using a model built with data combined from all theypks on its team.

The first RoboCup task i8/-on-N KeepAway [81], in which the objective of the reinforce-
ment learners callelleeperss to keep the ball away fronV hand-coded players callg¢dkers
The keeper with the ball may choose either to hold it or to jtatssa teammate. Keepers without
the ball follow a hand-coded strategy to receive passes.géhee ends when an opponent takes
the ball or when the ball goes out of bounds. The learnersveee+1 reward for each time step
their team keeps the ball. | have also developed a versioreepKway in which move actions are
allowed [103], but | use the standard version in this thesis.

The KeepAway state representation was designed by Ston8u#twh [81]. Appendix A lists
all the features and actions. The keepers are ordered hycilmeent distance to the learnkd, as
are the takers.

A second RoboCup task i#/-on-N MoveDownfield, where the objective of thé reinforce-
ment learners callegtackerds to move across a line on the opposing team'’s side of theikile

maintaining possession of the ball. The attacker with tHienbiay choose to pass to a teammate or

11

to move ahead, away, left, or right with respect to the opptsgoal. Attackers without the ball
follow a hand-coded strategy to receive passes. The gansevemeh they cross the line, when an
opponent takes the ball, when the ball goes out of bounddteratime limit of 25 seconds. The
learners receive symmetrical positive and negative resvlodhorizontal movement forward and
backward.

The MoveDownfield features and actions are also listed inefplx A. The attackers are
ordered by their current distance to the leara@ras are the defenders.

A third RoboCup task is\/-on-N BreakAway, where the objective of the attackers is to
score a goal again$t — 1 hand-codedlefendersand a hand-codegoalie The attacker with the
ball may choose to pass to a teammate, to move ahead, awagrleight with respect to the
opponent’s goal, or to shoot at the left, right, or centet pathe goal. Attackers without the ball
follow a hand-coded strategy to receive passes. The gansevemeh they score a goal, when an
opponent takes the ball, when the ball goes out of bounddteratime limit of 10 seconds. The
learners receive a +1 reward if they score a goal, and zerarceatherwise.

The BreakAway features and actions are also listed in AppehdThe attackers are ordered
by their current distance to the learrad), as are the non-goalie defenders.

Stone and Sutton [81] found that learning in KeepAway is \hffjcult with only the continu-
ous features listed. They propaseng to overcome this difficulty. Tiling discretizes each featur
into intervals, each of which is associated with a Booleatuee. For example, the tile denoted
by distBetween(a0, ag) o takes value whenalis between 10 and 20 units away fraf and
0 otherwise. | follow this approach and add to the feature s&ittiles per continuous feature in
all of the RoboCup tasks.

Some parameters in RL-SVR, including many that decay exuaily, need to be set appro-
priately for the domain. | use the following settings for R@p tasks. The temporal-difference
parameten\ = exp(—age/100) where theange of an episode is the number of episodes the learner
trained on before that episode. The learning rat®s an initial value 0f.5 and a half-life of 1000

episodes, and the exploration rateas an initial value 06.025 and a half-life of 2500 episodes.

12

The offset penalty = 100, and the complexity penalty has an initial value of000 with a half-
life of 2500 games. | tuned these values for RL-SVR, and | heduned settings for the transfer
algorithms in this thesis.

The three RoboCup games have substantial differences urésatctions, and rewards. The
goal, goalie, and shoot actions exist in BreakAway but nthé@wother two tasks. The move actions
do not exist in KeepAway but do in the other two tasks. Rewar#d®epAway and MoveDownfield
occur for incremental progress, but in BreakAway the rewarthore sparse. These differences
mean the solutions to the tasks may be quite different. Heweome knowledge should clearly
be transferable between them, since they share many feantesome actions, such as pass
action. Furthermore, since these are difficult RL tasksedpgy up learning through transfer would

be desirable.

2.2 Learning Curves and Statistical Comparisons

The performance of a reinforcement learner is typicallystrated with dearning curve A
reasonable learning curve displays increased performgmcéhey-axis) as training progresses
(on thez-axis). In this thesis, the figures for experimental rescdstain several learning curves:
one for RL-SVR, and one for each transfer algorithm being garad.

| use a consistent methodology to display these curves. Becthe RoboCup domain has
high variance across RL runs, each curve is an average offizgbate runs. Furthermore, because
RoboCup games have high variance across batches withineacimpoint on a curve is an average
over the last ten batches (250 games). These two kinds adgiwersmooth the curves to facilitate
visual and statistical comparisons.

For transfer experiments, there is an additional sourceaoBxce: the source run used for
transfer. To account for differences across source runselfive independent source-task runs,
and from each of these, | do five target-task runs, produdiegdtal of 25 runs. RL-SVR curves
are simply 25 independent runs.

For all experiments, the-axis shows the number of training games in the target tabiGw

starts at 0 and ends at 3000 for RoboCup games; 3000 games Isrjgsenough for all the

13

RoboCup games to reach an asymptote. JHagis shows an appropriate measure of performance
in the target task, which depends on the game. In BreakAwaythe probability that the agents
will score a goal in a game. In MoveDownfield, it is the averagedistance traveled towards the
right edge during a game. In KeepAway, it is the average lenfia game before the opponents
take possession of the ball.

| do not show any information about source-task learningmieporting experimental results
for transfer algorithms. Source tasks are always learngld RL-SVR for 3000 games. | re-use
source runs for all transfer algorithms; for example, ineadpberiments that involve transfer from
2-on-1 BreakAway, | use the same five 2-on-1 BreakAway somus.

The learning-curve figures can give visual insight into thegtion of whether one transfer al-
gorithm is better than another. Qualitatively speakinguifve A is above curve3, then algorithm
A is better. However, there are some cases where cdingeabove curveB at the beginning but
below it further down the:-axis. Qualitative conclusions may still be possible inesd#ke these if
one has a preference for earlier or later performance. Ifastngle performance measure is use-
ful to make a quantitative comparison between algorithmankf curve A is consistently above
curve B, a quantitative comparison is needed to evaluate whetleedifference is statistically
significant.

The measure | use to express the total performance of a rbwe igrea under its curve, which

is approximated by a sum of columns:

area = i 25 X y; (2.6)
=1
where each column height is they-value at batchi, the column width 25 is the constant size of
each batch, and there are 120 batches for a total of 3000 games
To determine whether the area for runs in grotis significantly different from the area for

runs in groupB, | use a randomization test [13] (see Table 2.1). The tesisdtg calculating
the actual-statistic for the group of runs id versus the group of runs if8. Then it shuffles all
the runs together, chooses two new groups from them randertityreplacement, and measures a

newt-statistic. It repeats this randomization step many tinhesé¢r = 100, 000) to produce a list

14

Table 2.1: A randomization test to judge whether one group of numbesigisficantly higher than another,
based on Cohen [13].

Input: array of numbersl = (aq, as, ..., a,) // In my experiments, these are areas under curves in group A
array of numbers3 = (b1, bo, ..., b,) [/ In my experiments, these are areas under curves in group B

Let A = averagefs, as, ..., a,) ando? = varianceg, as, ..., a,)

Let B = averagefy, bs, ..., b,) ando% = varianceky, bo, ..., by,)

Lett = —A-B Il The actuak-statistic

Ve [ohtoh
LetT =0 /l The eventual set of randomized-statistics
Fori=0tor

Shuffle A and B randomly intoA; and B;
Calculated;, B;, 03 , 0%
Calculatet; with thet-statistic equation above
T—TUt
If ¢ < 0letp be the fraction of; € T more negative than
If ¢ > 0 letp be the fraction of; € T"more positive thamn
If p < 0.05 then the difference betweehand B is significant

of randomized-statistics. Finally it estimatesmvalue: the proportion of randomizédebstatistics
that have larger magnitude than the actual one. This igndted in Figure 2.3.

The idea behind this test is as follows. Tt&tatistic is a measure of how different two groups
are. If A and B are truly different, mixing them randomly will not maintathat difference, and
the great majority of the randomizeektatistics will have lower magnitude than the actual one.
On the other hand, iA and B are not very different, mixing them will have less of an effeand
the proportion of randomizetstatistics that exceed the actual one will be higher. Agthalue
becomes higher, one becomes less confidentAletd B are significantly different. Convention
dictates that one can conclude the difference betweand B is significant when < 0.05.

To determine how different the areas fdrand B are, | use another randomization test (see
Table 2.2) that calculates a confidence interval for theedifice between the areas [13]. This
test randomly resamples runs fromwith replacement, and likewis8, calculates the average
areas for the new groups, and finds the new difference. Itatsplis randomization step many

times (I user = 100, 000) to produce a list of resampled differences. Finally itmasties a 95%

15

Table 2.2: A randomization test to estimate a 95% confidence intervalterdifference between two
groups of numbers, based on Cohen [13].

Input: array of numbersl = (aq, as, ..., a,) // In my experiments, these are areas under curves in group A
array of numbers3 = (b1, bo, ..., b,) [/ In my experiments, these are areas under curves in group B
LetD =0 // The eventual set of resampled differenced — B
For:=0tor
Resampled randomly with replacement to get;
ResampleB randomly with replacement to gé;
Let A; = averaged;, as, ..., a,)
Let B; = averagdy;, bs, ..., b,)
Letd; = /L — Bz
D «+— DuUd;
SortD in increasing order
Let lower be the2.5"" percentile ofD
Let upper be the97.5t" percentile ofD
Return intervallower, upper]

confidence interval: the lower bound is t2&'" percentile of the list, and the upper bound is the
97.5t" percentile. This is also illustrated in Figure 2.3.

While a confidence interval is not particularly meaningfuisalation, it can be useful to com-
pare intervals across different experiments. For exanifplee interval between algorithm and
RL-SVR is[5,10] and the interval between algorithm and RL-SVR is[50, 100], then theprac-
tical difference provided byB is greater than that provided by, even if they both provide a
statisticaldifference.

For each comparison between an algoritdnand an algorithmB that | make in this disser-
tation, | report thep-value and the 95% confidence interval for ar®pa{ area3). If p < 0.05,
| indicate that the difference between the algorithms iistteally significant, and | note which

algorithm won the comparison.

16

p interval
'{_A_‘ 0,0 0
...:..::.‘.E. ° e ® ... :‘:0..:....: 0.0.’ e o
T 0 T T
0 t 2.5t 97.5th
percentile percentile
(a) (b)

Figure 2.3: lllustrations of the statistical tests in Tables 2.1 and Z&) The dots represent randomized
t-statistics for algorithms! and B, and thep-value captures how many are more extreme than
the actuat. (b) The dots represent resampled differences between ameas curvesA and B,
and the 95% confidence interval encompasses 95% of thesesvalue

2.3 Inductive Logic Programming

Inductive logic programming (ILP) is a technique for leangclassifiers in first-order logic [68].
Most of my transfer algorithms use ILP to extract knowledgarf the source task. To make these

algorithms understandable, this section provides a briefwew of ILP.

2.3.1 What ILP Learns

An ILP algorithm learns a set of first-order clauses, whichstusually be definite clauses. A
definite clause hasl@ead which is a literal that evaluates toue or falsebased on &ody, which
is a conjunction of other literals. Literals describe relaships between objects in the world,
referring to objects either as constants (lower-case) nabkes (upper-case). In Prolog notation,
the head and body are separated by the symbol :- denotingcatiph, and commas separate the
literals in the body, denoting conjunction.

As an example, consider applying ILP to learn a clause da@sgrivhen an object in an agent’s
world is at the bottom of a stack of objects. The world alwagstains the objedloor, and may
contain any number of additional objects. The configuratitthe world is described by predicates
stackedOn(Obj1, Obj2vhereObjl andObj2 are variables that can be instantiated by the objects,
such as:

stackedOn(chair, floor).

stackedOn(desk, floor).
stackedOn(book, desk).

17

Suppose the ILP algorithm needs to learn a clause with the isBattomOfStack(Objhat is
true whenObj = deskbut false wherObj € {floor, chair, book. Given those positive and negative

examples, it might learn the following clause:

isBottomOfStack(Obj) :-
stackedOn(Obj, floor),
stackedOn(OtherObj, Obj).
That is, an object is at the bottom of the stack if it is on therfland there exists another

object on top of it. On its way to discovering the correct slauthe ILP algorithm would probably

evaluate the following clause:

isBottomOfStack(Obj) :-
stackedOn(Obj, floor).

This clause correctly classifies 3 of the 4 objects in the evdsut incorrectly classifieshair
as positive. In domains with noise, a partially correct skalike this might be optimal, though in
this case the concept can be learned exactly.

Note that the clause must be first-order to describe the @breoectly: it must include the
variablesObj and OtherObj First-order logic can posit the existence of an object dnsoh trefer
to properties of that object. ILP is one of few classificatedgorithms that use this powerful and
natural type of reasoning. Most machine learning algorghuse the equivalent qfropositional
logic, which does not allow variables.

In many domains, the correct concept is disjunctive, meattat multiple clauses are nec-
essary to describe the concept fully. ILP algorithms thameetypically attempt to learn a set of

clauses rather than just one. The entire set of clausedési@atheory.

2.3.2 How ILP Learns

There are several types of algorithms for producing a setrsifdirder clauses. This section
focuses on the Aleph system [80], which | use in my algorithms
Aleph constructs a ruleset through sequential coveringettorms a search for the rule that

best classifies the positive and negative examples (acaptdia user-specified scoring function),

18

adds that rule to the theory, optionally removes the pasiéixamples covered by that rule, and
repeats the process on the remaining examples.

The search for a rule is essentially a search for a good séteddls. Literals may either be
grounded, likestackedOn(chair, floor)or variablized, likestackedOn(Obj, floor) Legal literals
must be defined for Aleph before the search, and are of coasdespecific. Aleph also takes
a parameter limiting the maximum clause length, which inipdee running time of the search.
In my experiments, | use a maximum clause length of severalgewhich | found to produce
reasonable running times given the RoboCup dataset sizetoaaitbw sufficiently expressive
rules.

The default procedure Aleph uses in each iteration is a gtigearch. It randomly chooses a
positive example as treeedor its search for a single rule. Then it lists all the litex& the world
that are true for the seed. This listis called Boétom clausgand it is typically too specific, since it
describes a single example in great detail. Aleph condusésech to find a more general clause (a
subset of the literals in the bottom clause) that maximiaestoring function. The search process
is top-down, meaning that it begins with an empty rule andsdiierals one by one to maximize a
scoring function (see Figure 2.4).

A second Aleph procedure that | also useasdomized rapid restarfl13]. This also uses
a seed example and generates a bottom clause, but it begnasdiymly drawing a legal clause
of length N from the bottom clause. It then makes local moves by addingramoving literals
to maximize a scoring function. It performd local moves for each ok random restarts. This
method often finds better candidate clauses than the hewgsirch does.

The rule-scoring function | use is thé measure, which is based on the two basic measures of
precisionandrecall. The precision of a rule is the fraction of examples it calisifive that are
truly positive, and the recall is the fraction of truly pagit examples that it correctly calls positive.

The FF measure combines the two in a harmonic mean:

(1 + %) x Precision x Recall
(5% x Precision + Recall

F(B) =

19

IF true
THEN p
IF q IF r .
THEN p THEN p
IF r, g IF r,s
THEN p THEN p
7

S

Figure 2.4: An illustration of a top-down ILP search for a clause to expréne concepp using candidate
literalsq, 7, s, The body of the clause starts empty. The first step considersliéa@l and
chooses the best (herpto add. It then considers adding another and chooses thénegsg),
and so on. Literals are shown here without arguments for &ityglbut in a real ILP search
literals might have both grounded and variable arguments.

By default | use3 = 1, in which precision and recall are weighted equally. Howewvesome
algorithms | see fit to weight them unequally;> 1 puts more weight on recall, artd< 5 < 1
puts more weight on precision.

Aleph produces a theory for each concept, but | do not useettie=ories directly in my al-
gorithms. Instead, | use a system called Gleaner [35] tater@a ensemble of clauses. Gleaner
divides the recall range into intervdl$ 0.1], [0.1, 0.2], etc; it examines the clauses that Aleph en-
counters during its search and saves those with the highesispn in each recall interval. This
method produces a greater diversity of potential clausas the Aleph theory does.

When a single rule is needed, | use only the best clause thah&isaves. When multiple rules
are needed, | select a final ruleset from the Gleaner clabs¢sttempts to maximize an overall
F measure. This produces a higher-quality ruleset for my @egp, and the procedure is further

described in later sections.

2.4 Markov Logic Networks

The Markov Logic Network (MLN) is a model developed by Rictigon and Domingos [70]

that combines first-order logic and probability. It expessoncepts with first-order rules, as ILP

20

does, but unlike ILP it puts weights on the rules to indicade important they are. While ILP
rulesets can only predict a concept to be true or false, an MamNestimate the probability that a
conceptis true, by comparing the total weight of satisfidesto the total weight of violated rules.
This type of probabilistic logic therefore conveys moreoimhation than pure logic. It is also less
brittle, since world states that violate some rules are mpiossible, just less probable.

Formally, a Markov Logic Network is a set of first-order logmrmulas £, with associated
real-valued weight$V, that provides a template for a Markov network. The netwarktains a
binary node for each possible grounding of each predicagach formula inF’, with groundings
determined by a set of constaiits Edges exist between nodes if they appear together in ag@ssi
grounding of a formula. Thus the graph contains a clique &ahepossible grounding of each
formulain F.

The classic example from Richardson and Domingos [70] WsloSuppose the formulas are:

Yy Smokesy() = Cancer()
Yy, z Friendsf, z) = (Smokesy() < Smokest))

These rules assert that smoking leads to cancer and thatl$rigave similar smoking habits.
These are both good examples of MLN formulas because theyft@me true, but not always; thus
they will have finite weights (not shown). Given constafitiaandBobthat may be substituted
for the variableg; andz, this MLN produces the ground Markov network in Figure 2Sofe that
the convention for capitalization is opposite here fromliR; variables here are lower-case and
constants are upper-case.)

Let X represent all the nodes in this example, andXlet z indicate that among the possible
worlds (the true/false settings of those nodes)s the actual one. The probability distribution

represented by the Markov network is:

P(X =2)= % epowmi(x) (2.7)

ieF
Here 7 is a normalizing constanty; is the weight of formula € F', andn;(z) is the number

of true groundings of formula in the world z. Based on this equation, one can calculate the

21

Friends(Anna,Bob)

Friends(Anna,Anna) Smokes(Anna) '. Smokes(Bob) Friends(Bob,Bob)

Cancer(Anna) Cancer(Bob)
Friends(Bob,Anna)

Figure 2.5: The ground Markov network produced by the MLN described in #astion. This example
and this image come from Richardson and Domingos [70]. Edghesin this network has a
weight (not shown) derived from the formula weights.

probability of any node in the network givavidenceabout the truth values of some other nodes.
This network inference problem is typically solved by an@xmmate-inference algorithm called
MC-SAT [21] because solving it exactly is usually computaélly intractable. However, in my
experiments, the arrangement of the evidence makes an sxation feasible, which | explain
later.

Given a set of positive and negative examples of worlds, ohedla weights can be learned
rather than specified manually. There are several algosttamweight learning; the current state-
of-the-art is a method callegreconditioned scaled conjugate gradiga6]. This is the default
algorithm in the Alchemy software package [40], which | userhy experiments. Alchemy also
provides an algorithm for structure learning (i.e. leagiihe formulas), which | do not use since |

already have methods for learning rulesets via ILP.

22

Chapter 3

Survey of Research on Transfer Learning

This chapter provides an introduction to the goals, sedtiagd challenges of transfer learning.
It surveys current research in this area, giving an ovenoétie state of the art and outlining the
open problems. The survey covers transfer in both indudsiaening and reinforcement learning,
and discusses the issues of negative transfer and task mgajpdepth. There are no original
research contributions in this chapter, but my categddnadf transfer methods is novel. This

chapter is based on published work [101].

3.1 Transfer in General

The transfer of knowledge from one task to another is a delgiggroperty in machine learning.
Our ability as humans to transfer knowledge allows us taleaw tasks quickly by taking advan-
tage of relationships between tasks. While many machingilegalgorithms learn each new task
from scratch, there are als@ansfer-learningalgorithms that can improve learning inarget task
using knowledge from a previously learnsdurce task

A typical machine-learning problem can be characterized as

GIVEN Training data for task”

DO Learn taskrl’

A typical transfer-learning problem can be characterized a

GIVEN Training data for task” AND knowledge from related task(s)

DO Learn taskl’

23

Here S is one or more source tasks, S>,...). This broad definition of transfer learning
allows any type of machine-learning algorithm for learnihg target task’. It also allows for
the knowledge from the source taskgo take any form. Figure 1.1 has already illustrated this
problem formulation.

Transfer methods tend to be highly dependent on the algoritbed to learn the target task,
and many transfer algorithms are simply extensions of ti@thl learning algorithms. Others are
entirely new algorithms based on enabling transfer legnin

Some work in transfer learning is in the context of inductarning, and involves extending
well-known classification and inference algorithms sucmesral networks, Bayesian networks,
and Markov Logic Networks. Another major area is transfathi@ context of reinforcement learn-
ing, which involves extending algorithms such as Q-leagrand policy search. This chapter sur-
veys these areas separately in Sections 3.2 and 3.3.

The goal of transfer learning is to improve learning in thegyéd task by leveraging knowledge
from the source task. There are three common measures bip warsfer might improve learning.
First is the initial performance achievable in the targsktasing only the transferred knowledge,
before any further learning is done, compared to the inpiatformance of an ignorant agent.
Second is the amount of time it takes to fully learn the tatgsk given the transferred knowledge
compared to the amount of time to learn it from scratch. Thérdhe final performance level
achievable in the target task compared to the final levelawithransfer. Figure 3.1 illustrates
these three measures.

If a transfer method actually decreases performance,ikgative transfehas occurred. One
of the major challenges in developing transfer methods igréaluce positive transfer between
appropriately related tasks while avoiding negative ti@nbetween tasks that are less related.
Section 3.4 discusses approaches for avoiding negatnsféna

When an agent applies knowledge from one task in anotherpites necessary to map the
characteristics of one task onto those of the other to speoifespondences. In much of the work
on transfer learning, a human provides timapping but some work investigates ways to perform

mapping automatically. Section 3.5 discusses work in tlga.a

24

higher slope higher asymptote

...................... with transfer from source task
""" without transfer

Performance
in target task

higher start

Training
in target task

Figure 3.1: A standard learning curve displays increased performastegning progresses. With transfer,
the curve may start higher, increase faster, or reach a hagyenptote. Any of these properties
could be desired outcomes of transfer learning.

Finally, a small set of theoretical studies about trangfaring is presented in Section 3.6. This
work addresses problems like defining task relatednessedtidgsbounds on transfer performance
and efficiency.

| make a distinction between transfer learning amalti-task learning[11], in which several
tasks are learned simultaneously (see Figure 3.2). Magl-tearning is closely related to transfer,
but it does not involve designated source and target tasgtead the learning agent receives infor-
mation about several tasks at once. In transfer learniegagient knows nothing about a target task
(or even that there will be a target task) when it learns actask. This is my own definition, not
a universally accepted one, but it is a useful distinctiotelnse multi-task learning approaches are

not always applicable to transfer learning.

3.2 Transfer in Inductive Learning

In an inductive learning task, the objective is to induceedptive model from a set of training
examples [57]. Often the goal is classification, i.e. agamgulass labels to examples. Examples of
classification systems are artificial neural networks [#8] aymbolic rule-learners [68]. Another
type of inductive learning involves modeling probabilitisilibutions over interrelated variables,
usually with graphical models. Examples of these systemBayesian networks [38] and Markov

Logic Networks [70].

25

Transfer Learning Multi-task Learning
Task |_, | Task
S T t = 3
ource ,| Targe
Task Task ' ke '
Task |, | Task
2 4

Figure 3.2: As | define transfer learning, the information flows in one di@t only, from the source task
to the target task. In multi-task learning, information ¢lanv freely among all tasks.

The predictive model constructed by an inductive learnitggprithm should make accurate
predictions not just on the training examples, but also dureuexamples that come from the same
distribution. In order to produce a model with this genezatiion capability, a learning algorithm
must have amnductive biag57] — a set of assumptions about the training data and thetiam
that produced it.

The bias of an algorithm determines tingpothesis spacef possible models that it considers.
For example, the hypothesis space of the Naive Bayes modiatited by the assumption that
example characteristics are conditionally independemtrgihe class of an example. The bias also
determines the algorithm’s search process through thethgpis space, which controls the order in
which hypotheses are considered. For example, rule-legualgorithms typically construct rules
one constraint at a time, which reflects the assumption thastcaints contribute significantly to
example coverage by themselves rather than in pairs or more.

Transfer in inductive learning typically works by allowirsgurce-task knowledge to affect the
target task’s inductive bias. It is usually concerned witiproving the speed with which a model
is learned, or with improving its generalization capakilithe next subsection discusses inductive
transfer in general, and the following ones elaborate oeetlspecific and popular settings.

There is some related work that is not discussed here bedasfsecifically addresses multi-
task learning. For example, Niculescu-Mizil and Caruang [&&n Bayesian networks simultane-
ously for multiple related tasks by biasing learning towsirdilar structures for each task. While
this is clearly related to transfer learning, it is not ditg@pplicable to the scenario in which a

target task is encountered after one or more source tasksdhi@ady been learned.

26

Inductive Learning Inductive Transfer

Allowed Hypotheses

Allowed Hypotheses

All Hypotheses All Hypotheses

Figure 3.3: Inductive learning can be viewed as a directed search thratnypothesis space [57]. Inductive
transfer uses source-task knowledge to adjust the indubtas, which could involve changing
the hypothesis space or the search steps.

3.2.1 Inductive Transfer

In inductive transfemethods, the target-task inductive bias is chosen or ajusised on the
source-task knowledge (see Figure 3.3). The way this is danes depending on which inductive
learning algorithm is used to learn the source and targksteSome transfer methods narrow the
hypothesis space, limiting the possible models, or remeagch steps from consideration. Other
methods broaden the space, allowing the search to discomex complex models, or add new
search steps.

Baxter [5] frames the transfer problem as that of choosirglyypothesis space from a family
of spaces. By solving a set of related source tasks in eacbtiggis space of the family and
determining which one produces the best overall genetadizarror, he selects the most promising
space in the family for a target task.

Thrun and Mitchell [100] look at solving Boolean classificat tasks in a lifelong-learning
framework, where an agent encounters a collection of reélateblems over its lifetime. They learn
each new task with a neural network, but they enhance thdatdgradient-descent algorithm with
slope information acquired from previous tasks. This spegxthe search for network parameters
in a target task and biases it towards the parameters forquetasks.

Silver at al. [77] use a single neural network to learn migtifasks, using context inputs to

specify which task an example belongs to. This causes knigeleansfer between tasks through

27

shared parameters in the network. They show that this apprisaeffective for neural-network
learners but not for some other learners, such as decisen &ind suppor-vector machines.

Mihalkova and Mooney [56] perform transfer between Markaglc Network models. Given
a learned MLN for a source task, they learn an MLN for a reldggdet task by starting with the
source-task one and diagnosing each formula, adjusting thia¢ are too general or too specific in
the target domain. The hypothesis space for the target sasierefore defined in relation to the
source-task MLN by the operators that generalize or spdaifyiulas.

Hlynsson [36] phrases transfer learning in classificat®a eninimum description length prob-
lem given source-task hypotheses and target-task datd.is[ithe chosen hypothesis for a new
task can use hypotheses for old tasks but stipulate exosgftio some data points in the new task.
This method aims for a tradeoff between accuracy and comessin the new hypothesis.

Ben-David and Schuller [7] propose a transformation framdwo determine how related
two Boolean classification tasks are. They define two taskelated with respect to a class of
transformations if they are equivalent under that clasat i) if a series of transformations can

make one task look exactly like the other.

3.2.2 Bayesian Transfer

One common scenario for inductive transfer is in Bayesiamieg methods. Bayesian learn-
ing involves modeling probability distributions and tagiadvantage of conditional independence
among variables to simplify the model. An additional aspgbat Bayesian models often have is
aprior distribution, which describes the assumptions one can make about a dbefaie seeing
any training data. Given the data, a Bayesian model makekctions by combining it with the
prior distribution to produce gosterior distribution A strong prior can significantly affect these
results (see Figure 3.4). This serves as a natural way foe®ay learning methods to incorporate
prior knowledge — in the case of transfer learning, souasé-knowledge.

Marx et al. [53] use a Bayesian transfer method for tasksesbby a logistic regression clas-
sifier. The usual prior for this classifier is a Gaussian diatron with a mean and variance set

through cross-validation. To perform transfer, they iastestimate the mean and variance by

28

Bayesian Learning Bayesian Transfer
Prior
distribution
+
[] []
o ° [] []
Data o . o .

Posterior /\/\
Distribution
Figure 3.4: Bayesian learning uses a prior distribution to smooth thiexases from training data. Bayesian
transfer may provide a more informative prior from souraskt knowledge.

averaging over several source tasks. Raina et al. [69] useilaisapproach for multi-class classi-
fication by learning a multivariate Gaussian prior from salsource tasks.

Dai et al. [15] apply a Bayesian transfer method to a NaivedBaslassifier. They set the
initial probability parameters based on a single sourde tsd revise them using target-task data.
They also provide some theoretical bounds on the predi@roor and convergence rate of their

algorithm.

3.2.3 Hierarchical Transfer

Another popular setting for transfer in inductive learniagierarchical transfer In this setting,
solutions to simple tasks are combined or provided as togisdduce a solution to a more complex
task (see Figure 3.5). This can involve many tasks of vargomgplexity, rather than just a single
source and target. The target task might use entire soastesblutions as parts of its own, or it
might use them in a more subtle way to improve learning.

Sutton and McCallum [84] begin with a sequential approachrevtiee prediction for each task
is used as a feature when learning the next task. They there@doto turn the problem into a
multi-task learning problem by combining all the models apglying them jointly, which brings
their method outside our definition of transfer learningt the initial sequential approach is an

example of hierarchical transfer.

29

Figure 3.5: An example of a concept hierarchy that could be used for rgbreal transfer, in which so-
lutions from simple tasks are used to help learn a solutiom meore complex task. Here the
simple tasks involve recognizing lines and curves in imagesl the more complex tasks in-
volve recognizing surfaces, circles, and finally pipe shapes

Stracuzzi [82] looks at the problem of choosing relevantrsedask Boolean concepts from
a knowledge base to use while learning more complex concéf#dearns rules to express con-
cepts from a stream of examples, allowing existing conceple used if they help to classify the
examples, and adds and removes dependencies betweentsantap knowledge base.

Taylor et al. [93] propose a transfer hierarchy that ordasks by difficulty, so that an agent
can learn them in sequence via inductive transfer. By pyitaisks in order of increasing difficulty,
they aim to make transfer more effective. This approach neasnbre applicable to the multi-task
learning scenario, since by our definition of transfer l@agrthe agent may not be able to choose
the order in which it learns tasks, but it could be applied étplchoose from an existing set of

source tasks.

3.2.4 Transfer with Missing Data or Class Labels

Inductive transfer can be viewed not only as a way to impreaering in a standard supervised-
learning task, but also as a way to offset the difficultiessodsy tasks that involve semi-supervised
learning [115] or small datasets. That is, if there are smadbunts of data or class labels for a
task, treating it as a target task and performing inductigadfer from a related source task can
lead to more accurate models. These approaches theretosource-task data to enhance target-
task data, despite the fact that the two datasets are assontedne from different probability

distributions.

30

The Bayesian transfer methods of Dai et al. [15] and Rain& 8% are intended to compen-
sate for small amounts of target-task data. One of the berdfiBayesian learning is the stability
that a prior distribution can provide in the absence of ladgtasets. By estimating a prior from
related source tasks, these approaches can reduce thdtiogethat would tend to occur with
limited data.

Dai et al. [16] address transfer learning in a boosting aflgor using large amounts of data
from a previous task to supplement small amounts of new @adasting is a technique for learn-
ing several weak classifiers and combining them to form angto classifier [31]. After each
classifier is learned, the examples are reweighted so tteatdissifiers focus more on examples
the previous ones misclassified. Dai et al. extend this jpi@dy also weighting source-task ex-
amples according to their similarity to target-task exaesplIThis allows the algorithm to leverage
source-task data that is applicable to the target task ywhyeng less attention to data that appears
less useful.

Shi et al. [76] look at transfer learning in unsupervised aethi-supervised settings. They
assume that a reasonably-sized dataset exists in the tasgebut it is largely unlabeled due to the
expense of having an expert assign labels. To address thtepn they propose an active learning
approach, in which the target-task learner requests ldbeéxamples only when necessary. They
construct a classifier with labeled examples, including tigaurce-task ones, and estimate the
confidence with which this classifer can label the unknowemnegles. When the confidence is too

low, they request an expert label.

3.3 Transfer in Reinforcement Learning

There are several categories of reinforcement learningriiigns, and transfer learning ap-
proaches vary between these categories. Some types of asedin® only applicable when the
agent knows its environment model (the reward function dmlstate transition function). In

this case, dynamic programming can solve directly for thenogl policy without requiring any

31

interaction with the environment. In most RL problems, hegrethe model is unknowrModel-
learning approaches use interaction with the environment to builégproximation of the true
model.Model-freeapproaches learn to act without ever explicitly modeling énvironment.

Temporal-differencenethods [86] operate by maintaining and iteratively upaatialue func-
tionsto predict the rewards earned by actions. They begin witmaodurate function and update
it based on interaction with the environment, propagatevgard information back along action se-
guences. One popular methodlddearning [110], which involves learning a functioi(s, a) that
estimates the cumulative reward starting in statnd taking actiorn and following the current
policy thereafter. Given the optim@-function, the optimal policy is to take the action corresgo
ing toargmax,Q (s, a). When there are small finite numbers of states and action§-foection
can be represented explicitly as a table. In domains that lzage or infinite state spaces, a func-
tion approximator such as a neural network or support-ventichine can be used to represent the
Q-function.

Policy-searchmethods, instead of maintaining a function upon which agyga based, main-
tain and update a policy directly. They begin with an inaateipolicy and update it based on
interaction with the environment. Heuristic search androgation through gradient descent are
among the approaches that can be used in policy search.

Transfer in RL is typically concerned with speeding up therteng process, since RL agents
can spend many episodes doing random exploration beforgraga reasonabl®-function. |
divide RL transfer into five categories that represent peegively larger changes to existing RL
algorithms. The subsections below describe those catsgand present examples from published

research.

3.3.1 Starting-Point Methods

Since all RL methods begin with an initial solution and thgrdate it through experience,
one straightforward type of transfer in RL is to set the alisolution in a target task based on
knowledge from a source task (see Figure 3.6). Compared tratitom or zero setting that RL

algorithms usually use at first, thestarting-point methodsan begin the RL process at a point

32

Initial Q-table
- transfer

ABAE
no transfer
9|1|7]2
5(9|1]4 \.
0|0

oo
o\

0|0 target-task training

Figure 3.6: Starting-point methods for RL transfer set the initial smintbased on the source task, starting
at a higher performance level than the typical initial sidotwould. In this example, a Q-
function table is initialized to a source-task table, anal trget-task performance begins at a
level that is only reached after some training when begigmiith a typical all-zero table.

much closer to a good target-task solution. There are vanisiton how to use the source-task
knowledge to set the initial solution, but in general the Rjoathm in the target task is unchanged.

Taylor et al. [96] use a starting-point method for transfetemporal-difference RL. To perform
transfer, they copy the final value function of the sourcé taisd use it as the initial one for
the target task. As many transfer approaches do, this rgj@imapping of features and actions
between the tasks, and they provide a mapping based on tmaid knowledge.

Tanaka and Yamamura [89] use a similar approach in temuliffakence learning without
function approximation, where value functions are simmpresented by tables. This greater
simplicity allows them to combine knowledge from severalrse tasks: they initialize the value
table of the target task to the average of tables from sepei@l tasks. Furthermore, they use the
standard deviations from prior tasks to determine priesitbetween temporal-difference backups.

Approaching temporal-difference RL as a batch problenemdtof an incremental one allows
for different kinds of starting-point transfer methods. datch RL, the agent interacts with the
environment for more than one step or episode at a time befodating its solution. Lazaric et
al. [44] perform transfer in this setting by finding souresk samples that are similar to the target
task and adding them to the normal target-task samples lesich, thus increasing the available
data early on. The early solutions are almost entirely basedource-task knowledge, but the

impact decreases in later batches as more target-task eatenles available.

33

source source

policy policy
used target used target

training time training time

(@) (b)

Figure 3.7: Imitation methods for RL transfer follow the source-taski@oduring some steps of the target
task. The imitation steps may all occur at the beginning ofténget task (a), or they may be
interspersed with steps that follow the developing tatgek policy (b).

Moving away from temporal-difference RL, starting-poinéthods can take even more forms.
In a model-learning Bayesian RL algorithm, Wilson et al.Z]Lperform transfer by treating the
distribution of previous MDPs as a prior for the current MD#®.a policy-search genetic algo-
rithm, Taylor et al. [97] transfer a population of policieeiin a source task to serve as the initial

population for a target task.

3.3.2 Imitation Methods

Another class of RL transfer methods involves applying these-task policy to choose some
actions while learning the target task. While they make neafichanges to the target-task solu-
tion the way that starting-point methods do, thes#ation methodsffect the developing solution
by producing different function or policy updates. Compatedhe random exploration that RL
algorithms typically do, decisions based on a source-tadikypcan lead the agent more quickly
to promising areas of the environment. There are variatioh®w the source-task policy is repre-
sented and in how heavily it is used in the target-task RLrélyn (see Figure 3.7).

One method is to follow a source-task policy only during exation steps of the target task,
when the agent would otherwise be taking a random action. delaénd Howley [51] use this
approach in tabula®-learning. They represent a source-task policy as a seted nupropositional
logic and choose actions based on those rules during exiploisteps.

Fernandez and Veloso [29] instead give the agent a threecthvaige between exploiting the

current target-task policy, exploiting a past policy, angblering randomly. They introduce a

34

second parameter, in addition to theof e-greedy exploration, to determine the probability of
making each choice.

| developed an imitation method calle@monstrationin which the target-task agent follows
a source-task policy for a fixed number of initial episodes] then reverts to normal RL [104].
In the early steps of the target task, the current policy carsdill-formed that exploiting it is
no different than exploring randomly. This approach aimavoid that initial uncertainty and to
generate enough data to create a reasonable target-taskipothe time the demonstration period

ends. My original research in Chapters 5 and 6 uses the derabostmethod.

3.3.3 Hierarchical Methods

A third class of RL transfer includdserarchical methodsThese view the source as a subtask
of the target, and use the solution to the source as a buildouk for learning the target. Methods
in this class have strong connections to the area of higeaicRL, in which a complex task is
learned in pieces through division into a hierarchy of sskégsee Figure 3.8).

An early approach of this type is to compose several sowaskegolutions to form a target-task
solution, as is done by Singh [78]. He addresses a scenawbich complex tasks are temporal
concatenations of simple ones, so that a target task canlbedsoy a composition of several
smaller solutions.

Mehta et al. [54] have a transfer method that works direcithiw the hierarchical RL frame-
work. They learn a task hierarchy by observing successfuhbier in a source task, and then use
it to apply the MaxQ hierarchical RL algorithm [18] in thedet task. This uses transfer to remove
the burden of designing a task hierarchy.

Other approaches operate within the frameworlopfions which is a term for temporally-
extended actions in RL [65]. An option typically consistsadg§tarting condition, an ending condi-
tion, and an internal policy for choosing lower-level aoto An RL agent treats each option as an
additional action along with the original lower-level or(sse Figure 3.8).

In some scenarios it may be useful to have the entire soastegolicy as an option in the

target task, as Croonenborghs et al. [14] do. They learn Har# decision tree to represent the

35

(a) (b)

Figure 3.8: (a) An example of a task hierarchy that could be used to trgénts to play soccer via hier-
archical RL. Lower-level abilities like kicking a ball and ming are needed for higher-level
abilities like passing and shooting, which could then be loioied to learn to play soccer.

(b) The mid-level abilities represented as options aloregthe low-level actions.

source-task policy and allow the target-task learner t@eteeit as an option. Another possibility
is to learn smaller options, either during or after the psscef learning the source task, and offer
them to the target. Asadi and Huber [3] do this by finding frexrafly-visited states in the source

task to serve as ending conditions for options.

3.3.4 Alteration Methods

The next class of RL transfer methods involves altering taespace, action space, or reward
function of the target task based on source-task knowle@igesealteration methodfiave some
overlap with option-based transfer, which also changeattien space in the target task, but they
include a wide range of other approaches as well.

One way to alter the target-task state space is to simplify@ugh state abstraction. Walsh et
al. [107] do this by aggregating over comparable sourck-$tates. They then use the aggregate
states to learn the target task, which reduces the complexghificantly.

There are also approaches that expand the target-taslsptate instead of reducing it. Taylor
and Stone [94] do this by adding a new state variable in tlgetdaask. They learn a decision list

that represents the source-task policy and use its outpgheasew state variable.

36

While option-based transfer methods add to the target-tes&raspace, there is also some
work in decreasing the action space. Sherstov and Stonalfr8jis by evaluating in the source
task which of a large set of actions are most useful. They tiwersider only a smaller action
set in the target task, which decreases the complexity ofdhee function significantly and also
decreases the amount of exploration needed.

Reward shaping is a design technique in RL that aims to speéeluning by providing im-
mediate rewards that are more indicative of cumulative rdaiaUsually it requires human effort,
as many aspects of RL task design do. Konidaris and Bartodd t¢ward shaping automatically
through transfer. They learn to predict rewards in the setask and use this information to create

a shaped reward function in the target task.

3.3.5 New RL Algorithms

A final class of RL transfer methods consists of entirely ndwalRjorithms. Rather than mak-
ing small additions to an existing algorithm or making chestp the target task, these approaches
address transfer as an inherent part of RL. They incorpgride knowledge as an intrinsic part of
the algorithm.

Price and Boutilier [67] propose a temporal-differenceoaltpm in which value functions are
influenced by observations of expert agents. They use antariahe usual value-function update
calculation that includes an expert’s experience, wembiethe agent’s confidence in itself and in
the expert. They also perform extra backups at states therexigits to focus attention on those
areas of the state space.

There are several algorithms for case-based RL that accatmachnsfer. Sharma et al. [74]
propose one in whicl@-functions are estimated using a Gaussian kernel overdstases in a
library. Cases are added to the library from both the sourcktarget tasks when their distance
to their nearest neighbor is above a threshold. Taylor §94l. use source-task examples more
selectively in their case-based RL algorithm. They useetatgsk cases to make decisions when

there are enough, and only use source-task examples whehament target examples exist.

37

transfer / aggressive
performance /

/ ~ safe
/
/ task
/ relatedness
/

/
/

Figure 3.9: A representation of how the degree of relatedness betweesoilrce and target tasks translates
to target-task performance when conducting transfer froendource task. With aggressive
approaches, there can be higher benefits at high degreesatddeéss, but there can also be
negative transfer at low levels. Safer approaches may lipgative transfer at the lower end,
but may also have fewer benefits at the higher end.

My original research in Chapter 4 uses an algorithm for adiakeng in RL that also falls into

this category.

3.4 Avoiding Negative Transfer

Given a target task, the effectiveness of any transfer ntetlepends on the source task and
how it is related to the target. If the relationship is stramgl the transfer method can take advan-
tage of it, the performance in the target task can signiflgamiprove through transfer. However, if
the source task is not sufficiently related or if the relasiop is not well leveraged by the transfer
method, the performance with many approaches may not omhlpfanprove — it may actually de-
crease. This section examines work on preventing transiar hegatively affecting performance.

Ideally, a transfer method would produce positive tranbtween appropriately related tasks
while avoiding negative transfer when the tasks are not algoatch. In practice, these goals
are difficult to achieve simultaneously. Approaches thaehsafeguards to avoid negative transfer
often produce a smaller effect from positive transfer duth&r caution. Conversely, approaches
that transfer aggressively and produce large positivestea effects often have less protection

against negative transfer (see Figure 3.9).

38

For example, consider the imitation methods for RL transf®n one end of the range, an
agent imitates a source-task policy only during infrequexqtioration steps, and on the other end
it demonstrates the source-task policy for a fixed numbemniifal episodes. The exploration
method is very cautious and therefore unlikely to produagatiee transfer, but it is also unlikely
to produce large initial performance increases. The detnaten method is very aggressive; if
the source-task policy is a poor one for the target taskodatg it blindly will produce negative
transfer. However, when the source-task solution is a dem@nfor the target task, it can produce

some of the largest initial performance improvements of raeyhod.

3.4.1 Rejecting Bad Information

One way of approaching negative transfer is to attempt togeize and reject harmful source-
task knowledge while learning the target task. The goalimdpproach is to minimize the impact
of bad information, so that the transfer performance is astl@o worse than learning the target
task without transfer. At the extreme end, an agent mightedard the transferred knowledge
completely, but some methods also allow it to selectivelgateparts and keep other parts.

Option-based transfer in reinforcement learning (e.g. Gemdorghs et al. [14]) is an example
of an approach that naturally incorporates the ability jesebad information. Since options are
treated as additional actions, the agent can choose toeseathnot to use them; iQ-learning, for
example, agents leafprvalues for options just as for native actions. If an optieguiarly produces
poor performance, itQ-values will degrade and the agent will choose it less fratjyeHowever,
if an option regularly leads to good results, @svalues will grow and the agent will choose it
more often. Option-based transfer can therefore providea palance between achieving positive
transfer and avoiding negative transfer.

The advice-taking algorithm that | use for algorithms in Cieag is an approach that incor-
porates the ability to reject bad information. It is basedtmRL-SVR algorithm, which approx-
imates theQ-function with a support-vector machine, and it includesiegl from the source task
as a soft constraint. Since tigefunction trades off between matching the agent’s expedeand

matching the advice, the agent can learn to disregard athvatelisagrees with its experience.

39

™ Task 4
Task 1 Task 1
Task 2 dist, dist,
Target
Task 3 > Task .
dist,
dist, Task 3
Target
Task N Task Task 2
_/
(a) (b)

Figure 3.10: (a) One way to avoid negative transfer is to choose a gooasdask from which to transfer.
In this example, Task 2 is selected as being the most rel@igAnother way to avoid negative
transfer is to model the way source tasks are related to tgetteask and combine knowledge
from them with those relationships in mind.

Rosenstein et al. [71] present an approach for detectingtivegransfer in naive Bayes clas-
sification tasks. They learn a hyperprior for both the sowance target tasks, and the variance of
this hyperprior is proportional to the dissimilarity beterethe tasks. It may be possible to use a

method like this to decide whether to transfer at all, byisgt&n acceptable threshold of similarity.

3.4.2 Choosing a Source Task

There are more possibilities for avoiding negative trangféhere exists not just one source
task, but a set of candidate source tasks. In this case theeprdbecomes choosing the best source
task (see Figure 3.10). Transfer methods without much ptiote against negative transfer may
still be effective in this scenario, as long as the best sotask is at least a decent match.

An example of this approach is the previously-mentioneaisiar hierarchy of Taylor et al. [93],
who order tasks by difficulty. Appropriate source tasks anally less difficult than the target task,
but not so much simpler that they contain little informati@iven a task ordering, it may be pos-
sible to locate the position of the target task in the hidrarand select a source task that is only

moderately less difficult.

40

Talvitie and Singh [88] use a straightforward method of ctitg) a previous Markov decision
process to transfer. They run each candidate MDP in thettéagk for a fixed length of time
and order them by their performance. Then they select thedresand continue with it, only
proceeding down the list if the current MDP begins perforgnaignificantly worse than it origi-
nally appeared. This trial-and-error approach, thoughay e costly in the aggregate number of
training episodes needed, is simple and widely applicable.

Kuhlmann and Stone [42] look at finding similar tasks wherhdask is specified in a formal
language. They construct a graph to represent the elemedtsikes of a task. This allows them
to find identical tasks by checking for graph isomorphisny &g creating minor variants of a
target-task graph, they can also search for similar taskthel find an isomorphic match, they
conduct value-function transfer.

Eaton and DesJardins [25] propose choosing from among datedsolutions to a source task
rather than from among candidate source tasks. Their gagimulti-resolution learning, where
a classification task is solved by an ensemble of models Hrgtim complexity. Low-resolution
models are simple and coarse, while higher-resolution hsoalee more complex and detailed.
They reason that high-resolution models are less trarsgfkrbetween tasks, and select a resolu-

tion below which to share models with a target task.

3.4.3 Modeling Task Similarity

Given multiple candidate source tasks, it may be benefigiake several or all of them rather
than to choose just one (see Figure 3.10). Some approacbasssed in this chapter do this
naively, without evaluating how the source tasks are rdltddhe target. However, there are some
approaches that explicitly model relationships betweskgand include this information in the
transfer method. This can lead to better use of source-tastwledge and decrease the risk of
negative transfer.

Carroll and Seppi [10] develop several similarity measumesréinforcement learning tasks,
comparing policies, value functions, and rewards. Thes®aly measurable while the target task

is being learned, so their practical use in transfer scesas limited. However, they make the

41

relevant point that task similarity is intimately linkedtWia particular transfer method, and cannot
be evaluated independently.

Eaton et al. [26] construct a graph in which nodes represautce tasks and weighted arcs
represent a transferability metric. Given a new inductearhing task, they estimate parameters
by fitting the task into the graph and learning a function thanslates graph locations to task
parameters. This method not only models the relationshepsden tasks explicitly, but also gives
an algorithm for the informed use of several source tasksamsfer learning.

Gao et al. [32] propose that task similarity can be a localsuearather than a global measure.
They estimate similarities in the neighborhood of each éxstmple individually. These local
consistency estimates become weights for the source taséisare used in a weighted ensemble
to classify the test example.

Ruckert and Kramer [72] look at inductive transfer via kémmethods. They learn a meta-
kernel that serves as a similarity function between tasks/erGthis and a set of kernels that
perform well in source tasks, they perform numerical optiation to construct a kernel for a target
task. This approach determines the inductive bias in thgetaask (the kernel) by combining
information from several source tasks whose relationstupke target are known.

Zhang et al. [114] model task relatedness through sharedtlaariables. Each task in their
model includes some task-specific variables and some sharadbles that provide common struc-

ture.

3.5 Automatically Mapping Tasks

An inherent aspect of transfer learning is recognizing tbeespondences between tasks.
Knowledge from one task can only be applied to another if ieXxpressed in a way that the
target-task learner understands. In some cases, the egpaiens of the tasks are assumed to
be identical, or at least one is a subset of the other. Otlserveimappingis needed to translate
between task representations (see Figure 3.11).

Many transfer approaches do not address the mapping protiietily and require that a

human provide this information, including the algorithmghis thesis. However, there are some

42

Source Task Target Task
Property 1 > Property 1
Property 2 Property 2

Property 3
Property N
Property M

Figure 3.11: A mapping generally translates source-task propertiestanget-task properties. The num-
bers of properties may not be equal in the two tasks, and thpgpimg may not be one-to-one.
Properties include entries in a feature vector, objectsralational world, RL actions, etc.

transfer approaches that do address the mapping problens. sé€btion discusses some of this

work.

3.5.1 Equalizing Task Representations

For some transfer scenarios, it may be possible to avoid #ygping problem altogether by
ensuring that the source and target tasks have the sameeagaton. If the language of the
source-task knowledge is identical to (or a subset of) thguage of the target task, it can be
applied directly with no translation. Sometimes a domain loa constructed so that this occurs
naturally, or a common representation that equalizes #iestean be found.

Relational learning is useful for creating domains thaurelty produce common task repre-
sentations. First-order logic represents objects in a doméh symbolic variables, which can
allow abstraction that the more typical propositional featvector cannot. Driessens et al. [24]
show how relational reinforcement learning can simplignisfer in RL.

Another framework for constructing a domain relationalythat of Konidaris and Barto [41],
who express knowledge in two different spaces. agient spacehe representation is constant
across tasks, while iproblem spacat is task-dependent. They transfer agent-space knowledge

only because its common representation makes it straigdfd to transfer.

43

Pan et al. [62, 63] take a mathematical approach to findingvaman representation for two
separate classification tasks. They use kernel methodsdafiow-dimensional feature space
where the distributions of source and target data are sinaited project a source-task model into

this smaller space for transfer.

3.5.2 Trying Multiple Mappings

One straightforward way of solving the mapping problem igémerate several possible map-
pings and allow the target-task agent to try them all. Thelhtie mappings can be an exhaustive
set, or they can be limited by constraints on what elememrtparmissible matches for other ele-
ments. Exhaustive sets may be computationally infeasislafge domains.

Taylor et al. [92] perform an exhaustive search of possibéppings in RL transfer. They
evaluate each candidate using a small number of episodée itatget task, and select the best
one to continue learning. Mihalkova et al. [55] limit thegasch for mappings in MLN transfer,
requiring that mapped predicates have matching arity agnahaent types. Under those constraints,
they conduct an exhaustive search to find the best mappimgebatnetworks.

Soni and Singh [79] not only limit the candidate mappings dayssdering object types, but also
avoid a separate evaluation of each mapping by using opitioR& transfer. They generate a set
of possible mappings by connecting target-task objectdl sparce-task objects of the matching
type. With each mapping, they create an option from a sourd®M he options framework gives
an inherent way to compare multiple mappings while learrangrget MDP without requiring

extra trial periods.

3.5.3 Mapping by Analogy

If the task representations must differ, and the scenatle fta choosing one mapping rather
than trying multiple candidates, then there are some methioat construct a mapping by anal-
ogy. These methods examine the characteristics of the s@umd target tasks and find elements
that correspond. For example, in reinforcement learniegoas that correspond produce similar

rewards and state changes, and objects that correspontieated similarly by actions.

44

Analogical structure mapping [28] is a generic procedurgeldaon cognitive theories of anal-
ogy that finds corresponding elements. It assigns scorescl matches and searches for a
global match that maximizes the scores; permissible matahd scoring functions are domain-
dependent. Several transfer approaches use this frameatwdkthe mapping problem. Klenk and
Forbus [39] apply it to solve physics problems that are emtin a predicate-calculus language
by retrieving and forming analogies from worked solution#ten in the same language. Liu and
Stone [45] apply it in reinforcement learning to find matahfeatures and actions between tasks.

There are also some approaches that rely more on statiagtiedjsis than on logical reasoning
to find matching elements. Taylor and Stone [95] learn maggpfor RL tasks by running a small
number of target-task episodes and then training classtiiecharacterize actions and objects. If
a classifier trained for one action predicts the results aftlzer action well, then those actions
are mapped; likewise, if a classifier trained for one objeetlcts the behavior of another object
well, those objects are mapped. Wang and Mahadevan [10&]&ta datasets to low-dimensional
feature spaces using dimensionality reduction, and thefonoe a statistical shaping technique

called Procrustes analysis to align the feature spaces.

3.6 Theory of Transfer Learning

Most transfer methods are evaluated experimentally rattesn theoretically, including the
algorithms in this thesis. The small amount of work on th&oatevaluation of transfer algorithms
focuses on highly restricted transfer scenarios where élegionships between the source and
target tasks are mathematically well-defined. For more dexfasks, such as reinforcement-
learning tasks, current research does not contain anyetiearanalyses.

Baxter [4] uses the Probably Approximately Correct (PAC) feawark to give bounds on the
number of source tasks and examples to learn an inductigdfdmdransfer between classification
tasks. The PAC framework ensures that with high probabilitg learner will find an inductive
bias that produces a solution with low error in the targek.td$e also evaluates Bayesian transfer
in classification tasks, showing the inverse relationslépveen the amount of target-task data

needed and the number of source tasks and examples.

45

Baxter [5] also shows that transfer learning can improveegaization in classification tasks.
He derives bounds on the generalization capability of aetat@sk solution given the number of
source tasks and examples in each task.

While most of the work cited in this chapter involves experntat evaluation, some also in-
cludes some theoretical analysis. For example, Dai et @].dfiovide some theoretical bounds in
their work on transfer via boosting. They derive bounds angrediction error and convergence
rate of their algorithm.

Abernethy et al. [1] provide some theoretical results in toatext of sequential problem-
solving with expert advice. Their goal is to learn a foreea$dr sequential problems of multiple
tasks that performs well compared to the bestxperts, where the experts are assumed to perform
similarly on related tasks. They prove an exponential baamthe exact solution to this problem,
and they propose a probabilistic algorithm to solve it agprately.

Obozinski et al. [60] provide some theoretical results ia tontext of feature selection in
multitask learning. They use an optimization problem tdgrssveights to each feature in each
task. They show that an exact solution is computationalfficdit, and propose a probabilistic
method to solve it approximately.

Ben-David and Schuller [7], instead of defining task relagsss through statistical distribu-
tions as Baxter does, propose a transformation framewodetermine how related two Boolean
classification tasks are. They define two tasks as relatédresipect to a class of transformations
if they are equivalent under that class; that is, if a serfésansformations can make one task look
exactly like the other. They provide conditions under whiearning related tasks concurrently
requires fewer examples than single-task learning.

Ando and Zhang [2] provide theoretical justification forngimultiple source tasks in transfer
learning. They learn predictors for multiple related s@ut@sks and analyze them to find common
structures, which they then use in a target task. They ptogeusing more source tasks leads to

better estimation of the shared hypothesis space for the.tas

46

3.7 Recap of Contributions

At this point, | recap my contributions to the field of transliearning, and situate them within
the categories provided by this chapter. | focus on trariefeginforcement learning, so my algo-
rithms belong primarily to Section 3.3.

My transfer algorithms 3, 4, 5, and 6 are imitation methoddphbging to Section 3.3.2. They
involve representing the source-task policy in a useful aaythen applying it in the target task via
demonstration: the target-task learner follows the sctas& policy for a fixed number of initial
episodes, and then continues learning with normal RL. Chneptand 6 present these algorithms,
which differ only in their representation of the sourcektaslicy.

My transfer algorithms 1 and 2 use an RL algorithm that inhdye=nables transfer, belonging
to Section 3.3.5. This new algorithm performs advice-tgkaccepting source-task knowledge in
the form of logical rules and combining this advice with &trgask experience. Chapter 4 presents
these algorithms, which only differ in the way they constradvice from the source task.

The techniques from Chapter 4 are also relevant to Sectiobekduse they contain protection
against negative transfer. By treating advice as a softtang they are able to reject informa-
tion that disagrees with target-task experience. Theswitigns therefore also belong in part to

Section 3.4.1.

47

Chapter 4

Advice-Based Transfer Methods

Adviceis a set of instructions about a task solution that may notdraptete or perfectly
correct. Advice-taking algorithms allow advice to be feWled, refined, or ignored according to its
value. Traditionally, advice comes from humans.

| use advice in a novel way to perform transfer. by using sedask knowledge to provide
advice for a target task. In an advice-taking algorithns #dvice is followed if it leads to positive
transfer, but refined or ignored if it leads to negative tfans

The transfer methods in this section are essentially diffeways of producing transfer advice
from source-task knowledge. Some of my transfer methoasallsw human-provided advice in
addition to transfer advice, providing a natural and powenfay for humans to contribute to the
transfer process.

This chapter introduces advice taking and explains howiihfgemented within the RL-SVR
algorithm, and then presents two advice-based transfdnadstfor reinforcement learning. One
of these is the only algorithm in this thesis that does notfiiseorder logic, and the other is the
first of several relational methods. This chapter is basegldaished work [49, 50, 103, 105, 106].

4.1 Advice Taking

Advice taking can be viewed as learning with prior knowledigat may not be complete or
perfectly correct. It focuses on taking advantage of théulsespects of prior knowledge without
depending on it completely. Research in this area typicisumes the knowledge comes from

humans, though in my work it can also be extracted from a sotagk by an algorithm.

48

Algorithms for advice taking exist for both reinforcemeaafning and inductive learning. Paz-
zani and Kibler [64] describe a rule-learning system th&esaexisting background knowledge
into account. Maclin and Shavlik [47] accept rules for actgelection and incorporate them
into a neural-networlQ-function model using the knowledge-based neural netwakéwork.
Driessens and Dzeroski [23] use behavior traces from anretqlearn a partial initiaQ-function
for relational RL. Kuhlmann et al. [43] accept rules thatega small boost to th@-values of
recommended actions.

The advice-taking algorithm | use in this thesis is calledWtedge-Based Kernel Regression
(KBKR). It was designed by Mangasarian et al. [52], and egjlees and | applied it to the RL-SVR
algorithm [48].

In KBKR, advice is treated as a set of soft constraints or(dienction. For example, here is

some advice about passing in soccer:

IF an opponent is near me
AND ateammate is open
THEN passhas a highe@-value tharhold

In this example, there are two conditions describing theestdthe agent’s environment: an
opponent is nearby and an unblocked path to a teammate.ekisse form ther portion of the
rule. TheTHEN portion gives a constraint on tt@@-function that the advice indicates should hold
when the environment matches the conditions.

An agent can follow advice, only follow it approximately (igh is like refining it), or ignore
it altogether. This is accomplished by extending the RL-S3f&mization problem from Equa-
tion 2.5 to include terms for the advice. Each advice rulat@ga new constraint on tfunction
solution in addition to the constraints from the trainingada

In particular, since | use a version of KBKR called Prefeef@BKR [49], my advice rules
give conditions under which one action is preferred overtlagoaction. Advice therefore can be

expressed using two arraysandd that define the conditions on the statas follows:

Br <d = Qp(x) — Qn(z) = F, (4.1)

49

This can be read as:

If the current state satisfies the inequalBy < d, then theQ-value of the preferred
actionp should exceed that of the non-preferred actidoy at least3.

For example, consider the soccer rule above. Suppose thaigponent is near me” is true
when a distance featurf < 5, and that “a teammate is open” is true when an angle feature
fi > 30, and that there are five features in the environment. In tagecEquation 4.1 would

become Equation 4.2 below. Note thigi > 30) is equivalent tq— f, < —30)).

T

1 fi 5

0 £ 0

0 fs | < 0 | = Qpass(2) — Qraa(z) > B, (4.2)
1 i 30

0 3 0

The KBKR system is designed to work with a standard RL algorithat uses a fixed-length
feature vector. As such, it only accepts rules in propaséidogic, not in first-order logic as one of
the algorithms in this chapter generates. Thus first-ordieisrmust currently be grounded before
being provided to KBKR.

There is also a variant of Preference-KBKR called ExtenKBB® that incorporates advice
in a way that allows for faster problem-solving. | will notgsent this variant in detail here, but |

do use it for transfer when there is more advice than Preteré&{BKR can efficiently handle.

4.2 Policy Transfer via Advice

Policy transfer via advice takingny Transfer Algorithm 1, is a transfer method that advises
following the source-task policy in the target task. Thattiadvises the target-task learner to give
the highesiQ-value to the action that a source-task agent would take iongparable situation,
without specifying exactly what th@-values of the actions should be. This section is based on
published work [106].

50

Policy transfer assumes that a human provides a mappingatires and actions between
tasks, so that th@-functions for the source task can be translated to the téagk. One possible
transfer method would be simply to use these transi@ahnctions in the target task. However, if
the target task has a different reward function than thecsotask, theiQ-functions could be quite
different even if the actions they recommend are similarr &le, in both KeepAway and
BreakAway it is often good to pass the ball if an opponentasdiose, bufQ-values in BreakAway
are in the range [0,1] whil&-values in KeepAway are in a larger range flaxGamelLength
Instead of applying potentially inappropriaf@values directly in the target task, policy transfer
compares th&-functions for pairs of actions to produce advice rules Bgywhen one action
should be preferred over the other.

Table 4.1 gives the algorithm for policy transfer. It reggras input the action and feature
spaces of the tasks, a mapping between these spaces, thsofined-taskQ-function for each
action, and average observed values for source-task ésatlirconsists of three steps: translating
the source-task-functions into terms usable in the target task, generaduhgce that compares
each pair of translate@-functions and advises preferring the higher-valued actand learning
the target task with this advice as described above in Sedtib The sections below describe the

first two steps in more detail.

4.2.1 Translating Q-Functions

The first step of the policy-transfer algorithm in Table 4dgins with a set of source-task
Q-functions and ends with a set of translat@dunctions that would be usable in the target task.
These are needed in order to generate advice that is meahiagthe target task.

The key to this translation is the human-provided mappMg.{ions, M features). First consider
the simplest possible type of mapping, in which each sotask-action is mapped to one and
only one target-task action, and each source-task featun@pped to one and only one target-task

feature. This can be expressed as:

For eachu € A, there exists a uniqu€ € A; such thatV, tions(a) =
For eachf € F; there exists a uniqug’ € F; such thatM reqiyres(f1%) = f’

51

Table 4.1: Transfer Algorithm 1: Policy Transfer via Advice
INPUT REQUIRED

Source-task actiond; = (a1, as, ...) and featureg’s = (f1, fo, ...)
Target-task actiond; = (b1, bo, ...) and features, = (g1, g2, -..)
MappingSMactions : As - At andeeatures : Fs|At - Ft

Final source-task-function for each action: @, = wi f1 + wa fs + ...
Average observed valugfor each source-task featufec F,

TRANSLATE Q-FUNCTIONS FROM SOURCE TO TARGET
LetT = ()

/l This will be the set of translate@-functions
For each actiom € A,
For each action such thatV/,.;ons(a) = b // Build a translated-function forb
Start with@, = 0
For each featurg; € F,
If exists g; such thatV/equres (b, fi) = (b, g5)
SetQ), — Qy + w;g;

I/l Here there is a matching feature
Else
SetQ, — Q + w; f; /[Here there is no matching feature
SetT — T UQ,

GENERATE ADVICE

LetV =10 /l This will be the set of advice rules
For each pair of translate@-functions(Qs,, @Qy,) € T

Let advice ruleR be: IF @, — Qp, > A THEN preferb; to b;
SetV — VUR

LEARN TARGET TASK

For all episodes: Perform RL via ExtenKBKR using advice sile

52

The x indicates that the feature mappings hold for all targeit-taions; soon | will discuss
the use of this argument to allow more complex mappings. Ber, mith this simple mapping,
the translation step is a straightforward substitutioneattéires. For example, assume these are the

source-taslQ-functions:

Qa, = w1 f1 +wafo
Qa, = w3 f3 +wafs + wsfs

The translate®-functions would then be:

Qu, = w1 f] +waf)
Qa, = w3 f3 +wafy +ws f3

However, the mappings need not be one-to-ohg,.;..s(a) may have no values, or it may
have several values. In the former case, policy transfeateseno translate@-function for a,
because no corresponding action exists in the target tagkellatter case, policy transfer creates
multiple translated)-functions fora/, a”, and so on, because multiple corresponding actions exist
in the target task. Furthermore, each of these functions msaydifferent feature substitutions.
This is the reason thal/......s is @ function of both a feature and an action; it allows feaguo
be mapped differently under different action mappings.

For example, consider transferring from 2-on-1 BreakAwaliich has a single pass action
passto_al, to 3-on-2 BreakAway, which has two pass actigassto_al and passto_.a2. |If
passto_al could be mapped only once, it could only provide informataiout one of the two
target-task pass actions. By allowing multiple mappingdicy transfer can create translat€d
functions for both target-task pass actions. passto_al, it should use obvious feature mappings
like distBetween(a0,al)- distBetween(a0,al}orpassto_az, it should instead use feature map-
pings likedistBetween(a0,al)- distBetween(a0,a2)

In some cases, a source-task featfiraay have no corresponding. For example, there is a
KeepAway feature distBetween(kO, fieldCenter) that has naningful correspondence with any
feature in BreakAway. In this case, there is no appropriatesstution for f in the translated)-

functions. Simply dropping terms involving this featuraitsbchange th€-functions significantly,

53

since they are linear sums. Instead, policy transfer swibss the average value gfas observed
in the source task, which better maintains the integrityhei@-function.

The algorithm does require that,..;,,s not map multiple source-task actions to the same
target-task action, because this would produce multiglesiatedQ-functions for a single target-

task action, making th@-values for that action ill-defined.

4.2.2 Generating Advice

The second step of the policy-transfer algorithm in Tablke gtarts with the translate@-
functions and generates advice. For each pair of targktaesons(b;,b,), it forms an advice
rule that states when to prefgrto b;. Table 4.1 shows the high-level rule format:

IF Qy, — Qp, > A
THEN preferd; to b;

Suppose the translat€functions are as in the previous section:
Qa’l = wlf{ + w2fé

Quy = w3 f3 +wafy +wsfg

Given these, the final advice format would be:

IF (wifi +waf3) — (wafs +wafy +wsf5) > A
THEN prefera) to af,
This advice says to preféy to b; in states where the translat@dfunctions give a significantly
higher value ta,. Essentially, this means preferring actions that a sotask-agent would take if
it found itself in the target task. | sét to approximately 1% of the target task’s Q-value range so

that the advice does not apply when values are very similar.

4.2.3 Experimental Results for Policy Transfer

To test the policy-transfer approach, | perform transféwieen several RoboCup tasks in both
close transfelanddistant transferscenarios. Close transfer is between closely related taskh,

as KeepAway with different team sizes. | perform closegfanexperiments for all three RoboCup

54

Table 4.2: Results of statistical tests on the differences betweeasanader the curve in policy transfer
vs. RL-SVR for several source/target pairs. pog 0.05, the difference is significant and the
winning algorithm is shown; otherwise, the difference i$ statistically significant.

Source Target p-value| Significance (Winner) 95% interval

2-on-1 BreakAway 3-on-2 BreakAway 0.001 | Yes (Policy transfer) | [38, 160]
3-on-2 MoveDownfield| 3-on-2 BreakAway 0.402 | No [-53, 70]
3-on-2 KeepAway 3-on-2 BreakAway 0.030 | Yes (Policy transfer) | [1, 121]
3-on-2 MoveDownfield| 4-on-3 MoveDownfield| 0.020 | Yes (Policy transfer) | [118, 2510]
3-on-2 KeepAway 4-on-3 KeepAway 0.004 | Yes (Policy transfer) | [90, 510]

tasks. Distant transfer is between less similar tasks, aa¢teepAway and BreakAway. | perform
distant-transfer experiments from the easier RoboCup tdskspAway and MoveDownfield, to
the more difficult task of BreakAway. The mappings | use fasth scenarios are documented in
Appendix B.

Figures 4.1, 4.2, and 4.3 show the performance of policystearcompared to RL-SVR. These
results show that policy transfer can have a small overaitpe impact in both close and distant
transfer scenarios. Policy-transfer curves converge RitFSVR by the end of the learning curve.

The statistical analysis in Table 4.2 indicates that theedihce between policy transfer and
RL-SVR is significant in most cases. However, the figures sthawthe difference is too small to
be practically significant.

Policy transfer produces a large amount of complex advice rgch that it needs to use Ex-
tenKBKR [50], the variant of Preference-KBKR that handleghradvice volumes. Furthermore,
this method relies on the low-level, task-spec@dunctions to perform transfer. Other methods

in this thesis instead transfer relational knowledge, ilgtb larger performance gains.

4.3 Skill Transfer via Advice

Skill transfer via advicemy Transfer Algorithm 2, is a transfer method that providesice
about when to take certain actions. It is designed to cagieneral knowledge from the source

task and filter out specific knowledge. Instead of trangfgran entire policy, this method only

55

0.6 ; . : : :
o5 F S
©
o
O 04
ks
2 03¢}
%
-Q B —
2 02 Standard RL ——
o BA Policy Transfer -------
01 MD Policy Transfer - b
| II<A Policlzy Tranlsfer
0

0 500 1000 1500 2000 2500 3000
Training Games

Figure 4.1: Probability of scoring a goal in 3-on-2 BreakAway with RL-SVRdapolicy transfer from
2-on-1 BreakAway (BA), 3-on-2 MoveDownfield (MD) and 3-on-2é&pAway (KA).

20 T T T T T

Average Total Reward

Standard RL
Policy Traqsfer S

O |
0 500 1000 1500 2000 2500 3000
Training Games

Figure 4.2: Average total reward in 4-on-3 MoveDownfield with RL-SVR andippkransfer from 3-on-2
MoveDownfield.

Average Game Length (sec)

2 - -

1r Standard RL 7]
. Pollicy Trapsfer et

0

0 250 500 750 1000 1250 1500
Training Games

Figure 4.3: Average game length in 4-on-3 KeepAway with RL-SVR and poliaps$fer from 3-on-2 Keep-
Away.

56

transfers advice about tekills that the source and target tasks have in common. This sastion
based on published work [103, 105].

Skills are rules in first-order logic that describe good dtinds under which to take an action.
| use first-order logic for these rules because variablesvatlhem to be more general than propo-
sitional rules. For example, the ruimss(Teammate$ likely to capture the essential elements of
the passing skill better than rules for passing to specifimteates. These common skill elements
can transfer better to new tasks.

Table 4.3 gives the algorithm for skill transfer. It requras input the states encountered
during source-task learning, the final source-t&stunction for each action, a mapping between
objects in the two tasks, a list of skills that should be tfamed, the desired outcomes of actions,
and (optionally) an extra set of human-provided advice otisists of three steps: learning skills,
translating them into advice usable in the target task, aaching the target task with this advice

as described above in Section 4.1. The sections below dedte first two steps in more detail.

4.3.1 Learning Skills

The first step of the skill-transfer algorithm in Table 4.ares skills that describe when one
action is preferable to other actions based on source-tesk@es. Skills may represent both
grounded actions, likpass(al)and variablized actions, likeass(Teammate)

To learn skills, the algorithm requires positive and nagaéxamples of action preferences. In
some source-task states no action is strongly preferrdtkrdbecause multiple actions are good
or because no actions are good. The algorithm prevents #tass from being used as examples
because of their ambiguity.

In positive examples for actionm, of coursea must be the action taken. The algorithm also
requires that. was strongly preferred, by enforcing reasona@lwalue thresholds as shown in
Table 4.3. Furthermore, it requires that the outcome ofoacii was the desired outcome, as
defined in the source task. For example, the desired outcoip@ss(al)n BreakAway is that the

playeral gains possession of the ball.

Table 4.3: Transfer Algorithm 2: Skill Transfer via Advice

INPUT REQUIRED
StatesS from the source-task learning process

Actions A for which skills should be transferred and the fiGa] for eacha € A
The desired source-task outcomesired(a) for each actiom € A

Mapping M from source-task objects to target-task objects

Optional human-provided advice rulés

LEARN SKILLS

LetK =0 /I This will be the set of rules describing skills
For each actiom € A
LetP, = Il These will be positive examples far
Let N, =

/I These will be negative examples for
Let avg(a) be the average value 6f,(s) over all states ix € S

Let tenth(a) be the tenth percentile @}, (s) over all states iz € S
For each state € S

If the actiond taken ins is equal toa
If the outcome ob wasdesired(a)
If Qa(s) > tenth(a) andVe # a Qq(s) > 1.05 x Q.(s)
SetP, — P, Us I/l Positive example
Else rejects for ambiguity
Else setV, «— N, U s /l Negative example type 1
Else if Qp(s) > tenth(b) andQ,(s) < 0.95 x Qp(s) andQ,(s) < avg(a)

SetN, «+— N, Us /I Negative example type 2
Else rejects for ambiguity

Learn rules with Aleph and Gleaner to distinguiBhfrom N,
Let R be the rule with highesF'(1) score
SetK — KUR

TRANSLATE SKILLS
For each skillR € K
For each source-task objegt appearing ink
Replacen; with the mapped target-task objekf(o;)
For each human-provided advice rdlee H /I Add human-provided advice
If arule R € K represents the same skill &s
Add the literals in/ to the ruleR
Elsesetk — KUI
LetV =0
For each skillR € K
Let a be the action represented Byand letL be the literals in the body aR
For each target-task actidnZ a

Let advice rulel’ be: IF L THEN prefera to b
SetV « VuUT

/I Map objects

/I This will be the set of advice rules

LEARN TARGET TASK
For all episodes: Perform RL via Pref-KBKR using advice sule

58

Negative examples for actianhave two types. The first are states in whictvas the action
taken but the desired outcome did not occur (e.g., an oppgaamed possession of the ball instead
of a1). The second are states in which another adiiamas taken and was strongly preferred over
a, again using reasonab{@value thresholds as shown in Table 4.3.

The skill-transfer algorithm uses Aleph [80] to search fastfiorder logical rules that approxi-
mately separate positive examples from negative examipleses Gleaner [35] to record a variety
of rules encountered during the search, and in the end selaetrule with the highegt(1) score.
These methods are described in Section 2.3, with only thessacy additional details provided
here.

Each legal literal for this search specifies a constraint @owce-task feature. In order to
ensure that the rules are applicable in the target task,itdr@ls may only give constraints on
features that also exist in the target task. For examplayiineeDownfield task has a feature dist-
ToRightEdge(Attacker). This feature can be used in rulegrémsfer from 3-on-2 MoveDownfield
to 4-on-3 MoveDownfield, but not for transfer from MoveDoveifl to BreakAway, since Break-
Away has no such feature.

Note that for real-valued, continuous features, the ptssibnstraints must be limited to a
finite set through discretization. | approach this problgnalbowing constraints that say a feature
is greater than or less than one of a set of threshold valedRRéboCup tasks, | set thresholds for
distance features at every 3 yards and thresholds for aagteres at every 5 degrees. Thus, for

example, possible literals involving distToRightEdgeékker) are:

distToRightEdge(Attackerx 3
distToRightEdge(a0) 6
distToRightEdge(alx 9
distToRightEdge(a2)} 12

Here is an example of skill learning in practice. For trangfem 3-on-2 MoveDownfield to
4-on-3 MoveDownfield, the skill-transfer algorithm leaths following rule for thepass(Teammate)
skill:

59

IF distBetween(a0, Teammate)15
AND distBetween(a0, Teammatg)27
AND distToRightEdge(Teammate) 10
AND angleDefinedBy(Teammate, a0, minAngleDefender(Teaminatei
AND distBetween(a0, Opponent) 4
THEN pass(Teammate)
This rule states that passing to a teammate is preferald¢ thé teammate is between 15 and
27 yards away, (2) the teammate is within 10 yards of the filn&h (3) the teammate has an open

passing angle of at least 24 degrees, and (4) no opponeonsirthan 4 yards away.

4.3.2 Translating Skills and Adding Human-Provided Advice

The second step of the skill-transfer algorithm in TabletdaBslates skills into advice for the
target task. Just as in policy transfer, this requires a mipravided mapping//. However, the
nature of the mapping is different than in policy transfenc® only shared actions are transferred
and only shared features are used to describe skills, theedaments that require mapping are
logical objects, such as the player objects in RoboCup. Fameke, kO in KeepAway should
map toa0 in BreakAway, and a variable representiigeperobjects should map to a variable
representingittackerobjects.

Thus a human teacher provides a mapping to facilitate tmslaion of source-task skills for
use in the target task. However, note that there is impoitdotmation that such a mapping
lacks: knowledge about new skills in the target task. It @sots knowledge about how shared
skills might differ between the tasks. A human teacher migive these types of knowledge, and
the advice-taking system provides a way to accommodatehié. skill-transfer method therefore
accepts optional human-provided advice to be combinedtiwélskills it transfers automatically.

For example, consider transferring from KeepAway to Brea&®, where the only shared skill
is pass(TeammateAs learned in KeepAway, this skill will make no distinctibetween passing
toward the goal and away from the goal. Since the new obg@ito score goals, players should
prefer passing toward the goal. A human could provide thislapnce by adding an additional

constraint to th@ass(Teammatesill:

60

distBetween(a0, goal) - distBetween(Teammate, godl)

Even more importantly, there are several actions in thissfier scenario that are new in the
target task, such ahootandmoveAheadA human could write simple rules to approximate these:
IF distBetween(a0, GoalPar) 10

AND angleDefinedBy(GoalPart, a0, goalie40
THEN prefer shoot(GoalPart) over all actions

IF distBetween(a0, goalCentes) 10
THEN prefer moveAhead over moveAway and the shoot actions

Given a combined set of learned and provided skills, therdtga in Table 4.3 forms final

advice rules. Each skill generates advice rules saying wihprefer one action over all the others.

4.3.3 Experimental Results for Skill Transfer

To test the skill-transfer approach, | perform transfemzsn several RoboCup tasks. | present
results from the same close and distant transfer scenasifsr golicy transfer in Section 4.2.3.
The mappings | use for these scenarios are documented imApPPE.

| use appropriate subsets of the user-advice examples tioBekc3.2 for all of these experi-
ments. That is, from KeepAway to BreakAway | use all of it,fréloveDownfield to BreakAway
| use only the parts advisirghoot and for close-transfer experiments | use none.

Figures 4.4, 4.5, and 4.6 show the performance of skill feansompared to RL-SVR and
policy transfer. These graphs show that skill transfer careta substantial positive impact in both
close-transfer and distant-transfer scenarios.

The statistical analysis in Table 4.4 indicates that théedihce between skill transfer and
policy transfer is significant in some cases. The figures stiawthis difference also has more
practical significance.

Skill transfer has several advantages over policy trandfgeroduces fewer items of advice,
allowing the use of standard Preference-KBKR instead oéEXBKR, the high-volume version.
The advice it transfers is human-readable, and therefeceadlows users to edit and add to it with

ease. Finally, it produces significantly higher performeagains than policy transfer. This result is

Probability of Goal

0.6

0.5

0.4

0.3

0.2

0.1

Standard RL
BA Skill Transfer -------
MD Skill Transfer e

. KA Skli|| Tranlsfer

500 1000 1500 2000 2500 3000
Training Games

Probability of Goal

0.6

0.5

0.4

0.3

0.2

0.1

Standard RL
BA Policy Transfer -------
MD Policy Transfer -
h(A Poli(l*,y Tranlsfer

500 1000 1500 2000 2500 3000
Training Games

61

Figure 4.4: Left: Probability of scoring a goal 3-on-2 BreakAway with RL-BVand skill transfer from
2-on-1 BreakAway (BA), 3-on-2 MoveDownfield (MD) and 3-on-2&pAway (KA). Right:
Figure 4.1 reproduced to show the corresponding policysterrresults.

Average Total Reward

20

Standard RL
SlkiII Traqsfer B

0

500 1000 1500 2000 2500 3000
Training Games

Average Total Reward

20

Standard RL
Policy Traqsfer S

0

500 1000 1500 2000 2500 3000
Training Games

Figure 4.5: Left: Average total reward in 4-on-3 MoveDownfield with RL-SVRdaskill transfer from 3-
on-2 MoveDownfield. Right: Figure 4.2 reproduced to show theesponding policy-transfer
results.

Average Game Length (sec)

Standard RL —— |
| Slkill Trapsfer S

250 500 750 1000 1250 1500
Training Games

Average Game Length (sec)

Standard RL ——]
Pollicy Tralnsfer S

250 500 750
Training Games

1000 1250 1500

Figure 4.6: Left: Average game length in 4-on-3 KeepAway with RL-SVR andl siansfer from 3-on-2
KeepAway. Right: Figure 4.3 reproduced to show the corredmgnpolicy-transfer results.

62

Table 4.4: Results of statistical tests on the differences betweesmsarader the curve in skill transfer vs.
policy transfer for several source/target pairs. paet 0.05, the difference is significant and the
winning algorithm is shown; otherwise, the difference i$ statistically significant.

Source Target p-value | Significance (Winner) 95% interval

2-on-1 BreakAway 3-on-2 BreakAway 0.134| No [-25, 91]
3-on-2 MoveDownfield 3-on-2 BreakAway < 0.001| Yes (Skill transfer) [155, 258]
3-on-2 KeepAway 3-on-2 BreakAway < 0.001| Yes (Skill transfer) [128, 225]
3-on-2 MoveDownfield 4-on-3 MoveDownfieldl < 0.001| Yes (Skill transfer) [2250, 5230]
3-on-2 KeepAway 4-on-3 KeepAway 0.118| No [-421, 95]

the primary basis for my claim that relational transfer isidg&ble for RL. The rest of the transfer

methods in this thesis are also relational.

4.4 Testing the Boundaries of Skill Transfer

In this section | consider the impact of two factors on theetif/eness of skill transfer: quality
of learning in the source task, and quality of human-prodiddvice.

So far | have performed transfer without paying any attentamthe source-task learning curve.
However, it might be interesting to know if some types of sedtask learning curves produce
better or worse transfer. If one had a choice of source rushdose from, one could then choose
a run with high expected target-task performance.

Figure 4.7 plots the normalized average area under the qutiie target task with skill transfer
against the normalized area under the curve in the sourkdrtam which transfer was performed.
The correlation coefficient is 0.21, which indicates a snoalrelation between source-task and
target-task area. Therefore it may be only slightly helpéduthoose source runs with higher area
under the curve.

The second factor | consider is how the quality of human-joled advice affects skill transfer.
So far | have simply given reasonable, non-optimized adfacaew skills in skill-transfer experi-
ments. Now | investigate the results produced using reddemnariants that another person could

easily have chosen instead.

63

o o ©
~ o ©

Target-Task Area

o
(V)

0 0.2 0.4 0.6 0.8 1

Source-Task Area

Figure 4.7: A plot showing how area under the learning curve in the tatagk correlates with area under
the learning curve in the source task. The dashed line shovwsdedree angle for visual

reference.

To look at one example, | examine skill transfer from Keeppw@ BreakAway with several
variants on the original human-provided advice. Varianntairages the players to shoot more

often by increasing the maximum distance and decreasingihienum angle:

IF distBetween(a0, GoalPar) 15

AND angleDefinedBy(GoalPart, a0, goalie)35
THEN prefer shoot(GoalPart) over all actions

IF distBetween(a0, goalCentes) 15

THEN prefer moveAhead over moveAway and shoot

Add to pass(Teammate): diffGoalDistance(Teammate, YalWsue> 1
Variant 2 prevents the players from shooting as often byeksing the maximum distance and

increasing the minimum angle:

IF distBetween(a0, GoalPar) 5

AND angleDefinedBy(GoalPart, a0, goalie45
THEN prefer shoot(GoalPart) over all actions

IF distBetween(a0, goalCenter) 5

THEN prefer moveAhead over moveAway and shoot

Add to pass(Teammate): diffGoalDistance(Teammate, YaWsdue> 1

64

0.6
05 - ’ A o O]
C—U o '
o
O 04 F 1
q6 ..:’.:
2 03 i
'_g
O |
= 02 Standard RL
o ' Skill Transfer -------
01 r Advice Variant 1 - .
P | | Advicle Varialnt 2
0

0 500 1000 1500 2000 2500 3000
Training Games

Figure 4.8: Probability of scoring a goal 3-on-2 BreakAway, with RL-SVRdawith skill transfer from
3-on-2 KeepAway, using the original human-provided adwnd using two variants described
above.

Figure 4.8 indicates that these changes in the human-@dwadvice do affect the performance
of skill transfer, but that reasonable variants still dolw&his robustness means that users need not
worry about providing perfect advice in order for the skiinsfer method to work. Furthermore,
even approximate advice can significantly improve the perémce.

One might also wonder about the effect of having no humanigea advice at all. To look
at one example, | examine transfer from MoveDownfield to BAseay without any extra advice.
Figure 4.9 shows that skill transfer still performs sigrafitly better than RL-SVR even without
human-provided advice, although the gain is smaller. Thditiath of human-provided advice
produces another significant gain. This means that whiteribt necessary to provide extra advice

in order for the skill-transfer method to work, doing so cawmmrthwhile.

4.5 Summary of Advice-Based Transfer

Transfer via advice can produce performance gains in regefaent learning. In my exper-

iments, giving a few pieces of relational advice producetieogerformance than giving many

65

0.6 T I I I I

05 o

04 r

02F /¢

Probability of Goal
o
w
[

Standard RL
Skill Transfer -------
II\Io Hunlwan Adyice o

0.1 r

0 500 1000 1500 2000 2500 3000
Training Games

Figure 4.9: Probability of scoring a goal in 3-on-2 BreakAway, with RL-S\ARd with skill transfer from
3-on-2 MoveDownfield, with and without human-provided a@vic

pieces of propositional advice. | also found simple humeswiped advice to produce additional
benefits.

Advice-based transfer has both advantages and disadesrtagpared to other transfer meth-
ods described in Chapter 3. The most notable advantage isiitsroprotection against negative
transfer, which allows it to be applied to a wide range of $fan scenarios. The most notable
disadvantage is that the performance gains do not appeagdmaitely and are relatively modest.
Later methods in this thesis will sacrifice protection agamegative transfer in order to produce
larger performance gains in certain transfer scenarios.

The methods in this chapter are limited to transferring imfation about individual decisions
in a task. That is, they provide knowledge about the relatalaes of actions at single moments
in time. The next chapter presents methods that go a stdpefusind transfer information about

sequencesf decisions.

66

Chapter 5

Macro-Operator Transfer

Reinforcement learning is often described as solving a B\adecision process [6]. Typically
it is a first-order decision process, meaning that decisamesmade with respect to the current
environment, without reference to previous actions or joes environments. However, if one
observes successful RL agents after they have learnedliiesiBreakAway, one can see common
action sequences that they have learned to execute. Thgsenses are emergent behavior; the
agents do not intentionally execute patterns of actionsjrbmany tasks patterns spontaneously
appear.

This observation begs the question of whether transfemeavledge could contain more struc-
ture than the rules in Chapter 4. Perhaps transferring irdtion about action sequences rather
than about individual actions could produce faster sucteadarget task. The transfer of struc-
tured knowledge could be a powerful method, though it woulthe with a price: it would be
less applicable to distant-transfer scenarios, sincemstquences are likely to be common only
among closely related tasks.

In the planning field, action sequences are knowmasro-operator$8, 12]. Learning action
sequences is an examplestfuctured learninga branch of machine learning in which the goal is
prediction of complex structured outputs rather than nuenealues. The structures represent sets
of output variables that have mutual dependencies or ainttr Other examples of structured
learning include learning parse trees for natural-languatterances [37] and learning alignments
for gene or protein sequences [90].

| use macro-operators to perform transfer by providingacsequence knowledge from a

source task to a target task. Because | have already ebidblise value of relational knowledge

67

by comparing skill transfer to policy transfer in Chapter 4jdsign these structures to capture
relational information. I refer to them in shorthandraktional macrosor justmacros

A relational macro describes a strategy that is succegsfild source task. There are several
ways | could use this information to improve learning in aated target task. One possibility is
to treat it as advice, as in Chapter 4, or as an option with its Qavalue, as in some methods
reviewed in Chapter 3. The primary benefit of these approastasir protection against negative
transfer.

Instead, | introduce a method callédémonstrationin which the target-task agent executes
the transferred strategy for an initial period before comitng with RL-SVR. The benefit of this
approach is that it can achieve good target-task performaary quickly. The disadvantage is that
it is more aggressive, carrying more risk for negative tfansHowever, if the tasks are closely
related, the potential benefits can outweigh that risk.

This chapter introduces relational macros and the dematimtrmethod, and then presents two
methods for macro transfer. One method transfers a singteanand the other transfers multiple

macros. This chapter is based in part on published work [104]

5.1 Relational Macro-Operators and Demonstration

This section describes the structure of a relational maedoits use, via demonstration, in the
target task. The following sections describe the probletaarining a macro from source-task data.

The purpose of a macro is to serve as a decision-control meshaor a demonstration of
good behavior. Therefore, macros are based on finite-statdimes [34]. A finite-state machine
(FSM) models a control process in the form of a directed grapte nodes of the graph represent
states of the system, and in this case they represent ihtdatas of the agent in which different
policies apply.

The policy of a node can be to take a single action, suam@ge(aheadpr shoot(goallLeft)
or to choose from a class of actions, suclpass(Teammate)n the latter case, a node has first-

order logical clauses to decide which grounded action tasbdin this case, whicfieammate

68

pass(Teammate) o move(Direction) shoot(goallLeft)

P shoot(goalRight)

Figure 5.1: A macro for the RoboCup game BreakAway, in which the ageetgits to score a goal. Each
node and arc has an attached ruleset (not shown) for choasiitgs and deciding transitions.

argument). An FSM begins in a start node and has conditiartsdositioning between nodes. In
a relational macro, these conditions are also sets of fidgrdogical clauses.

Formally, a macro consists of:

e Alinear set of node$V = (nq,ns, ...) with associated rulesefs, ;io. (n;)
e Arcs between adjacent nodes with associated rulégets;(n;, n;1)

e Arcs that form self-loops for each node

The nodes form a linear structure, as shown in Figure 5.1. gemtexecuting a macro begins
in noden,, which in the figure is th@ass(Teammataode. In the first state of an episode, it uses
the rulesetR,.;.,(n1) to choose an action. In the second state of the episode,stthseauleset
Ryrans(n1,ny) to decide whether to transition to nodg or default to the self-arc to remain in
ny; then it uses the appropriate,.;,,, ruleset to choose an action. This continues until either the
episode ends or afl,..;,, ruleset fails to choose an action, in which case the agemtdaive the
macro and uses its curre@tfunction to choose actions instead.

Since a ruleset for a node or arc can contain an arbitrary eamirules, there are disjunctive
conditions for decisions in a macro. When multiple rules rhatibe agent obeys the rule that has
the highest score. In my design, the score of a rule is thegiibty that following it will lead to a
successful game, as estimated from the source-task data.

Target-task agents use macros this way for an indeinonstration period The length of
this period is a task-dependent design decision. For Rob¢&aks, | found 100 games to be an
appropriate length.

During the demonstration, reinforcement learning doesugagith normal updates to th@-

functions. In RL-SVR, this means re-learni@gfunctions as usual after each batch of 25 games.

69

However, theQ-functions only start being used after the demonstratiosiogeends, at which point
the target-task agent reverts to standard RL-SVR. If temisfeffective, its performance level at

that point is much higher than it would have been after 108aj®s of nearly random exploration.

5.2 Single-Macro Transfer via Demonstration

Single-macro transfer via demonstratiomy Transfer Algorithm 3, is a transfer method that
learns one relational macro from a source task, and allorgetdask agents to follow the macro
for an initial demonstration period. This allows the tartgegk agents to avoid the slow process
of random exploration that traditionally occurs at the Inegng of RL. This section is based on
published work [104].

The macro-transfer algorithm uses Aleph [80] and Gleangf{@construct a relational macro
from source-task data. Furthermore, it separates the g@molf learning a macro into several
independent ILP problems. One is to learn the structurer{titee sequence), while others learn
rulesets to govern transitions between nodes and actgun¥ent choices.

This is not the only possible approach; some or all of thesblpms could be combined,
requiring a joint solution. However, doing so would sigrdgintly increase the run time required
for ILP to produce accurate solutions. For this practicasan, | treat each decision problem
independently.

Table 5.1 gives the algorithm for single-macro transferetjuires as input the games played
during source-task learning, a definition of which games‘go®d” and which are “bad,” and the
length of the demonstration period. It consists of four stégarning the structure, learning rulesets
to govern transitions between nodes, learning ruleseteverg actions taken in variablized nodes,
and learning the target task as described above in Sectiobe sections below describe the first

three steps in more detail, and they are also illustratedgarg 5.2.

5.2.1 Single-Macro Structure Learning

The first step of the macro-transfer algorithm in Table 5.thésstructure-learning phase. The

objective is to find a sequence of actions that distinguisiiesessful games from unsuccessful

70

Table 5.1: Transfer Algorithm 3: Single-Macro Transfer via Demonstat

INPUT REQUIRED
Gamed= from the source-task learning process

A definition of high-reward and low-reward games in the seuask
A demonstration-period length

LEARN STRUCTURE
Learn rulesk according to Table 5.2
Let L be the set of Gleaner rules with the maximal number of literal
Let S be the rule inL with the highestF'(1) score // This is the chosen macro structure
Let Macro =0 I/ This will consist of nodes and rulesets
For each literal inS representing Action, ActionArg)

Create a node of type Action(ActionArg)

Add noden to Macro

LEARN TRANSITIONS
For each adjacent pair of nodeg n; 1 of Macro

Learn rulesl” according to Table 5.3

Select rulesRy,..,s from T according to Table 5.5

Attach Ry,.q,s t0 Macro as the transition ruleset for nodes, n;;

LEARN ACTIONS

For each node of Macro that represents a variablizéattion(ActionArg)
Learn rulesJ according to Table 5.4
Select rulesR,.;i0n from U according to Table 5.5
Attach R,.:;on 10 Macro as the action ruleset for node

LEARN TARGET TASK
For D episodes: Perform RL but use acro to choose actions
For remaining episodes: Perform RL normally

Table 5.2: Algorithm for learning one or more macro structures, givamgsG from the source task.

LetP =10 /I These will be the positive examples
LetN =0 /I These will be the negative examples
For each gameg € G
If g is a high-reward game in the source task
SetP«+— PUg /I Positive examples are good games
Else if g is a low-reward game in the source task
SetN «— NUg // Negative examples are bad games
Learn rulesk with Aleph and Gleaner to distinguidh from N
ReturnR

71

Table 5.3: Algorithm for learning rules to control the transition begen a pair of nodes;, n; 1 in a macro
Macro, given games from the source task. Data for this task can come from any ghate
contains the sequence representedMbycro or some prefix or suffix of that sequence. For

example, in a macro with nodé¢s, na, n3, n4), prefixes include games matchifw, , n2) and
suffixes include games matchii@s, ns, n4).

LetP =10 I/l These will be the positive examples

LetN =0 /I These will be the negative examples
For each game € G that matched/acro or a prefix or suffix

If g is a high-reward game in the source task
Let x be the state ig after the transitiom; — n;;

SetP «— PUx /I A state that transitions is positive
LetY be any states i after the transitiom;_; — n; but before the transition; — n;;

SetN «— NUY I/ States that loop are negative
Else if g is a low-reward game in the source task
Let z be the state ig after the transitiom; — n;,1
If z ends the game

SetN «— NUz /I A state that ends the game early is negative
Learn rulesk with Aleph and Gleaner to distinguish from N
ReturnR

Table 5.4: Algorithm for learning rules to control the action choiceamoden of a macro that represents
the actionAction with the variable argumemction Arg, given gamess from the source task.
Data for this task can come from any game, and most comes frose that contain the sequence
represented by acro or some prefix or suffix of that sequence. For example, in a maito w

nodes(ni,ng, n3, ny), prefixes include games matchirig;, n2) and suffixes include games
matching(ng, n3, n4).

LetP =0
Let N =)
For each gameg € G

If g is a high-reward game in the source task gndatchesM acro or a prefix or suffix
Let X be theAction Arg choices taken for any states in nadef g
SetP — PUX /I An action taken in a good game is positive
LetY be theAction Arg choicesnottaken for any states in nodeof g
SetN «— NUY /I An action not taken in a good game is negative
Else ifg is a low-reward game in the source task grehds withAction
Let z be theAction Arg choice at the end of
SetN «— NUz /I An action that ends the game early is negative

Learn rulesR with Aleph and Gleaner to distinguish from N
Returnk

/I These will be the positive examples
/I These will be the negative examples

72

First step: learning nodes
Good games
S| Aleph

oo

K4
~
K"Second step: learning rulesets for transitio&

This example: node 2 to node 3
/ Third step: learning rulesets for nodes\ (P)
(This example: node 1) £ |]
xamples o
Examples of going to next state \
correct action \ leoh / Aleph
Alep
Examples of / Examples of not ;
incorrect action ; going to next state

IF condition
IF condition THEN transition
THEN action

Figure 5.2: A visual depiction of the first three steps of the single-matmasfer algorithm in Table 5.1.

games in the source task. The sequence captures only an geti@rn, ignoring properties of
states that control transitions between nodes; these deglal later steps. It performs this learning
task using all the games from the source-task learning peoce

The details of the ILP task for this step are as follows. LetliteralactionTaken(GS1, A, R,
S,) denote that actionl with argumentR was taken in gamé&' at stepS; and repeated until step
S,. The algorithm asks Aleph to construct a clansacroSequence(®&)ith a body that contains
a combination of only these literals. The first literal magragduce two new variablesy; and.S,,
but the rest must use an existing variable $¢while introducing another new variablg. In this
way Aleph finds a connected sequence of actions that trasdiaectly to a linear node structure.

The algorithm provides Aleph with sets of positive and negatxamples, where positives are
games with high overall reward and negatives are games witloverall reward. In BreakAway,
for example, this is a straightforward separation of sapand non-scoring games. For tasks with
more continuous rewards, it requires finding upper and lopescentiles on the overall reward
acquired during a game.

The algorithm uses Gleaner to save the best clauses thah &legounters during its search
that have a minimum of 50% precision and 25% recall. Thesaireaents are high enough

to ensure that the structure it chooses is valuable and nestuah, but low enough to allow it

73

move(ahead) —>—> shoot(GoalPart)

Figure 5.3: The node structure corresponding to the sample macro clalea.b

to consider many structures. After this stage, it will imygdhe precision of the chosen macro
through ruleset-learning.

Given the Gleaner output, the algorithm needs to choosegéesstructure. The problem here is
that the structures with the highgst1) scores tend to be rather short; they classify the sourde-tas
games well, but they do not provide an entire strategy forgetatask game. The objective here
is not just to discriminate between source-task games,dbgeherate a good strategy for future
games. Since the scores will be improved in the rulesetiiegistage, the algorithm compromises
here and chooses the longest macro structure that meetsehads requirements. If there are
multiple longest structures, it takes the one with the higlt&1) score.

To make the structure-learning task more concrete, suppaséhe scoring BreakAway games

consistently look like these examples:

Game 1. move(ahead), pass(al), shoot(goalRight)
Game 2: move(ahead), move(ahead), pass(a2), shoot(gdallef
Assuming that the non-scoring games have different patdran the examples above do,

Aleph might learn the following clause to characterize arisgpgame:

IF actionTaken(Game, StateA, move, ahead, StateB)

AND actionTaken(Game, StateB, pass, Teammate, StateC)
AND actionTaken(Game, StateC, shoot, GoalPart, gameEnd)
THEN macroSequence(Game)

The macro structure corresponding to this sequence is showigure 5.3. The policy in
the first node will be to take a single actianpve(ahead)In the second node the policy will be
to consider multiplgpassactions, and in the third node the policy will be to considarltiple
shootactions. The conditions for choosing an action, and fomtgkransitions between nodes, are

learned next.

74

5.2.2 Single-Macro Ruleset Learning

The second and third steps of the macro-transfer algorithiable 5.1 are for ruleset learning.
The objective is to learn control rules for navigating witlthe macro (i.e. when to transition
between nodes, and which argument to choose in a variahtiadd). Each control decision is
based on the RL agent’s environment when it reaches that jpodine macro.

The details of the ILP tasks for this step are as follows. Hual literals are the same ones
described for skill transfer in Section 4.3.1. To describe ¢tonditions on staté under which a
transition should be taken, Aleph must construct a cldtsssition(S)with a body that contains
a combination of only these literals. To describe the caomast under which an action argument
should be chosen, Aleph must construct a clearseon(S, Action, ActionArgsyith a similarly
constituted body.

Aleph may learn some action rules in which the action argumare grounded, as well as
rules in which the action arguments remain variablizaction(S, move, aheady an example of
the former, whileaction(S, pass, Teammais)an example of the latter. In the case of theve
action in BreakAway the action arguments in a rule are alvgagsinded, since the original state
features do not include useful references to move direstidiote that it is still possible to have
a statemove(Direction)for taking multiple move actions, but the rules for choosangrounded
move action will use only grounded arguments. Rulegpissandshootmay use either grounded
or variable arguments.

The algorithm provides Aleph with sets of positive and negaexamples as described in
Table 5.1. They are selected from both low-reward games aytdreward games. | found that
requiring the complete macro structure to appear in ganesolelata scarcity in the final nodes,
and ruled out many games that appear to contain useful datlao®e nodes. To address this issue,
| allow games that include prefixes and suffixes of the macquesece to contribute examples
as well. For example, in a macro with nodes, n,, n3, ny), prefixes include games matching
(n1,ny) and suffixes include games matchipg, ns, n4).

To make the example selection criteria more concrete, densghe sample macro structure in

Figure 5.3. Figure 5.4 illustrates some hypothetical edamfor the argument choice in tipass

75

e G o)

Game 1 (scored goal)

‘ move(ahead) ------------- »(pass(al)) ————————————— » shoot(goalRight) ‘

Game 2 (scored goal) /\positive

‘ move(ahead) ------------- »(pass(aZ)) ----------- » shoot(goallLeft) ‘
) ——"positive

Game 3 (did not score) P

‘ move(right) -—---oeee- > (pass(al)) ‘

G
Game 4 (did not score) negative
‘ move(ahead) ------------- » pass(@l) ----eeeeee- » shoot(goalRight) ‘

Figure 5.4: Training examples (states circled) foass(Teammateiles in the second node of the pictured
macro. The pass states in Games 1 and 2 are positive exampleqasé state in Game 3 is
a negative example; the pass action led directly to a neggtimme outcome. The pass state in
Game 4 is ambiguous because another step may have beensibpor the bad outcome;

the algorithm does not use states like these.

S8

Game 1 (scores)

pass(Teammate)

7~ N\

shoot(GoalPart)

‘ move(ahead) ----» (pass(al)) ----» shoot(goalRight) ‘

Game 2 (scores) positive

‘ move(ahead) ----- > (move(rightD ----- » pass(al)

T negative

Game 3 (does not score)

‘ move(ahead) ----> pass(al) ----4 » shoot(goalCenter) ‘

Figure 5.5: Training examples (states circled) for the transition frotaveto passin the pictured macro.
The pass state in Game 1 is a positive example. The move staéarie B&is a negative example;
the game follows the macro but remains in thevenode in the state circled. The pass state
in Game 3 is ambiguous because another step may have beensitdp for the bad outcome;

the algorithm does not use states like these.

76

node. Figure 5.5 illustrates some hypothetical examplethfotransition from thenovenode to
the passnode.

Again, the algorithm uses Gleaner to save the best clausé#teph encounters during its
search that have a minimum of 50% precision and 10% recadis& hequirements are high enough
to ensure that the rules it considers are valuable and repias/e, but low enough to allow it to
consider many rules. Instead of selecting a single claugeli@sn the previous phase, it constructs
a final ruleset by selecting from the Gleaner clauses. That fuleset should have a high F score,
meaning that it has both good precision and good recall.

| found that it is more important to weight for recall when stmcting rulesets, so | use the
F(10) score here. Furthermore, since it would be expensivintl the highest-scoring subset
exactly, | use a greedy procedure for maximizing the F(10)escThe algorithm sorts the rules by
decreasing precision and walks through the list, addingsrtd the final ruleset if they increase its
F(10) score. This procedure is summarized in Table 5.5.

Table 5.5 also shows how the algorithm scores rules. Eaethag an associated score that is
used to decide which rule to obey if multiple rules match whakecuting the macro. The score
is an estimate of the probability that following the rule Méad to a successful game. The agent
determines this estimate by collecting training-set gatiatfollowed the rule and calculating the

fraction of these that ended successfully.

5.2.3 Experimental Results for Single-Macro Transfer

To test the single-macro transfer approach, | learn macgms flata acquired while training
2-on-1 BreakAway and transfer them to both 3-on-2 and 4-&8nezkAway. | use the same source
runs of 2-on-1 BreakAway as in our advice-based transfeeexgents. Note that | do not test the
distant-transfer scenarios from that chapter, since theroaansfer method is not designed for
distant transfer. The mappings | use for these scenariocdcatemented in Appendix C.

The macros learned from the five source runs had similar tstres. Three of them were
essentially identical, and their structure is the one iruregh.1, with between 30 and 130 rules in

each ruleset (not shown). In the other two, the first two n@deseplaced by two groundedove

77

Table 5.5: Algorithm for selecting and scoring the final ruleset for oramsition or action. Rules are added
to the final set if they increase the over&l(10) measure.

Let S = Gleaner rules sorted by decreasing precision on the trgisét

LetT =0 /l This will be the final ruleset
Foreachrule € S /I Select rules
LetU =T U {r}
If the F'(10) of U > the F'(10) of T
Thensefl — U
Foreachrulee ¢ T /I Score rules
LetG =10 /l These will be the games that followed

For each source-task game
If any states in ¢ matches the literals in and takes the actionrecommends

SetG — GUg
Let H = the subset of games @ that are high-reward
Setscore(r) = 55\‘—153 Il This is anm-estimate of% with m = 10

ReturnT

nodes. The ordering ahoot(goalRightandshoot(goallLeftplso varied, as would be expected in
the symmetrical BreakAway domain.

The presence of twehootnodes may seem counterintuitive, but it appears that thedebta
uses the first shot as a feint to lure the goalie in one directiounting on a teammate to intercept
the shot before it reaches the goal. When it does, the teammpéessession of the ball becomes
the learning agent and performs the second shot, whichusyintended to score. Thus the first
shot is really a type of pass. This tendency of agents to usenadn creative ways is a positive
aspect of RL, but it can make human interpretation of pdicidficult.

Figures 5.6 and 5.7 show the performance of single-macnsfieain 3-on-2 and 4-on-3 Break-
Away compared to RL-SVR and skill transfer. These resultsasthat macro transfer produces
gualitatively different behavior in the target task thawiad-based transfer. Rather than giving a
gradual and long-lasting performance increase, macrsfieagives a large, immediate advantage
at the beginning. Both methods converge with RL-SVR by the @inthe learning curve, with
macro transfer converging sooner than skill transfer.

The reason for this difference is that skill transfer pr@sda constant subtle influence on the

target-task solution, while macro transfer provides afremémporary solution that is reasonably

78

0.6
0.5 B ’ A ol

T

(@]

O 04+

©

2 03¢}

% SR e

g 0.2 1 'II,'

- ! Standard RL ——
0Ly Skill Transfer -------

o 2 Macro Transfer -

0 500 1000 1500 2000 2500 3000
Training Games

Figure 5.6: Probability of scoring a goal in 3-on-2 BreakAway with RL-SV$Kill transfer from 2-on-1
BreakAway, and single-macro transfer from 2-on-1 Breakpwa&he thin vertical line marks
the end of the demonstration period.

0.4

Probability of Goal
o
N

Standard RL
Skill Transfer -------
Macro Transfer e

0 500 1000 1500 2000 2500 3000
Training Games

o
I\

Figure 5.7: Probability of scoring a goal in 4-on-3 BreakAway with RL-SV$kill transfer from 2-on-1
BreakAway, and single-macro transfer from 2-on-1 Breakpw&he thin vertical line marks
the end of the demonstration period.

79

Table 5.6: Results of statistical tests on the differences betweeasarader the curve in single-macro trans-
fer vs. skill transfer for several source/target pairs. Fot 0.05, the difference is significant
and the winning algorithm is shown; otherwise, the diffeeers not statistically significant.

Source Target p-value| Significance (Winner) 95% CI
2-on-1 BreakAway| 3-on-2 BreakAway| 0.168 | No [-88, 31]
2-on-1 BreakAway| 4-on-3 BreakAway| 0.090 | No [-12, 126]

(but not perfectly) good for the target task. In order to retiee asymptotic solution, the target-task
agent must explore its new environment, and it takes some tinexplore beyond the immediate
neighborhood of the macro due to the bias that the macro giesviThus the macro is both a help
and a hindrance; its bias is quite helpful for early perfone® but in a sense it is a local maximum
that must be unlearned in order to reach the true asymptakeitarget task.

The statistical analysis in Tables 5.6 indicates that tfierénce between single-macro transfer
and skill transfer is not statistically significant in theogal sense, though local differences are
visually evident. Whether one method is better than the afleeends on how much priority is
placed on early performance.

It is also interesting to evaluate the performance of a Z-d@reakAway macro when used in
2-on-1 BreakAway, in what | refer to aelf-transfer This experiment provides some insight on
how well a single macro describes successful behavior istliece task. On average, the macros
in my experiments score in 32% of episodes in 2-on-1 BreakAe@isodes. In comparison, a
random policy scores in less than 1% of episodes, and a fedlsned 2-on-1 BreakAway policy
scores in 56% of episodes. A single macro therefore captutasge portion of the successful

behavior, but does not describe it completely.

5.3 Multiple-Macro Transfer via Demonstration

Multiple-macro transfer via demonstratiomy Transfer Algorithm 4, is a transfer method that

learns multiple macros from a source task, and allows taegt agents to use them for an initial

80

demonstration period. It is similar to single-macro tramsexcept that instead of learning one
overall strategy from the source task, it learns severallemateracting strategies.

My motivation for developing this variant of the macro tréarsmethod is that single macros
do not fully capture the source-task behavior. One reasgnbadhat they have a strict linear form
describing a single plan, which may be brittle in complexyu@terministic RL domains. Multiple
macros can provide information on what to do when the ingtedtegy must be abandoned. This
ability has particular value for transfer, since the enwir@nt in a target task is likely to change in
unexpected ways, violating the source-task assumptiaittsrido the macro.

In the multiple-macro method, an agent can abandon itseisteategy at any point and switch
to a new one. A potential advantage of this structure is greadaptability. A potential disadvan-
tage is more frequent abandonment of macros, which coulegpteteady progress towards game
objectives.

Table 5.7 gives the algorithm for multiple-macro transterequires the same input as single-
macro transfer and consists of similar steps. The sectietmbdescribe the first three steps in

more detail.

5.3.1 Multiple-Macro Structure and Ruleset Learning

The first step of the macro-transfer algorithm in Table 5.%es structure-learning phase. It
performs the same ILP structure search as for single-maansfer (see Section 5.2.1). However,
instead of choosing just one structure, it now includeshedldaction sequences saved by Gleaner.
It still requires these sequences to have a minimum of 50%igom, but it decreases the recall
requirement to 10% to allow for more structures. The set glisaces should vary in length and
in quality at this stage. Overall, the result looks like thiagdam in Figure 5.8.

The second and third steps of the macro-transfer algorithiable 5.7 are for ruleset learning.
The objective is the same as before: to learn control rulesdwigating within each macro based
on the RL agent’s environment when it reaches that point.

However, the control decisions needed are now slightly ghdn In single-macro transfer,

agents automatically entered the macro at the start of eacteg Since there are now multiple

Table 5.7: Transfer Algorithm 4: Multiple-Macro Transfer via Demoregion

INPUT REQUIRED
Gameg from the source-task learning process

A definition of high-reward and low-reward games in the seuask
A demonstration-period length

LEARN STRUCTURE
Learn rulesRk according to Table 5.2
Let Macros =0 I/ This will be a list of macros
ForeachruleS € R /[EachS represents one macro structure
Create an empty mact/ acro = () // This will be a set of nodes and rulesets
For each literal inS representing Action, ActionArg)
Create a node of type Action(ActionArg)
Add noden to Macro
SetMacros «<— Macros U Macro

LEARN ENTRIES
For each macrd/ € Macros
For each node of M
Learn rulesT” according to Table 5.8
Select rulesR.,+, from T" according to Table 5.5
Attach Re,+ry 10 M as the entry ruleset for node

LEARN LOOPS
For each macrd/ € Macros
For each node of M
Learn rulesU according to Table 5.8
Select rulesk;,, from U according to Table 5.5
Attach R;,,, to M as the loop ruleset for node

LEARN TARGET TASK
For D episodes: Perform RL but ugdacros to choose actions
For remaining episodes: Perform RL normally

81

82

Table 5.8: Algorithm for learning rules to control the entry arc of a modof a macro, given games from
the source task. Data for this task can come from any gamemasti comes from those that
contain the sequence representedibycro or some prefix of that sequence. For example, in a
macro with nodesni, na, n3, ny), prefixes include games matchifw;, n2).

LetP =10 /I These will be the positive examples
LetN =0 /I These will be the negative examples
For each game that is high-reward in the source task and matchies a prefix ofS
Let x be the first state in node of ¢
SetP «— PUx // States that enter are positive
If n is the first node of\/
LetY be any states ip that enter other macros

SetN — NUY [/l States that could enter but do not are negative
Else
Let z be any state iy that abandons the macro after node 1
SetN «— NUz /I States that abandon the macro are negative
Learn rulesk with Aleph and Gleaner to distinguish from N
ReturnR

Table 5.9: Algorithm for learning rules to control the loop arc of a nadef a macro, given games from
the source task. Data for this task can come from any gamemasti comes from those that
contain the sequence representedibycro or some prefix of that sequence. For example, in a
macro with nodesny, na, n3, ng), prefixes include games matchifw;, n2).

LetP =10 Il These will be the positive examples

LetN =0 /I These will be the negative examples

For each game that is high-reward in the source task and matchies a prefix ofS
Let X be any states ip that remain in node after entering it in a previous state

SetP — PUX /I States that loop are positive
Lety be any state iy that abandons the macro after node
SetN «— NUy // States that abandon the macro are negative

Learn rulesk with Aleph and Gleaner to distinguisgh from N
ReturnR

83

-, Use
"3 Q-function

Figure 5.8: A structural diagram of the knowledge captured by the midtipacro transfer method. An
agent starts in a default node using dunction, and it can choose to enter any macro. At
any point in that macro, it can choose to abandon and retuttmetdefault node. There it can
choose to enter a new macro, or if none seem appropriatea) fieidback on theQ-function to
choose an action.

structures, agents need to evaluate conditions for egteristructure, so they can determine the
most appropriate macro for their current situation. Fumth@re, at each node, agents need to
decide explicitly whether to continue, loop, or abandonegédecisions are made in the following

order:

1. Should | enter the next node or not?

2. If not, should I loop in the current node or abandon thismmac
This changes my original definition of a macro in Section Bldw, a macro consists of:

e Alinear set of node$V = (nq,na, ...)
¢ Arcs for entering each node from the previous one with asgediruleset.,,;,, (n;)

¢ Arcs that form self-loops for each node with associatedset&?;,,, (1)

The rulesetR,,..,(n;) is used to answer the first question above, and the rulesgi(n;) is
used to answer the second question. Note that there is noasepaleset for choosing actions
within nodes; theR.,,.,, and R;,,, rulesets now incorporate that decision.

The details of the ILP tasks for this step are as follows. Tecdbe the conditions on stafe
under which the agent should enter a node, Aleph must cansdralauseenter(S)for a single-

action node oenter(S, ActionArgdpr a variablized-action node. To describe the conditiamseau

84

which the agent should loop in a node, Aleph must construtaaseloop(S)for a single-action
node oroop(S, ActionArgsfor a variablized-action node. As before, in variablizessandshoot
nodes, some rules leaetionArgsvariablized while other rules apply only to specific arguisen

All the examples in this algorithm are states from high-rehgames. This is another difference
from single-macro transfer, which also gleans some negatamples from low-reward games. It
would also be a reasonable design decision to include suain@es here. However, | found that
doing so complicates the algorithm without providing ne#ible benefits, since the high-reward
games provide enough negative examples already to leachrgtesets.

For an entry ruleset, the positive examples are states thatesl the node, and the negative
examples are states that looped in the previous node or abaddhe macro after the previous
node. An exception is the first node in the macro, in which tiegaexamples are states that
entered a different macro. For a loop ruleset, the positkaargles are states that looped in the
node, and the negative examples are states that abandaeethafnode. The algorithm uses the

same procedures as before for selecting final rulesets ammgaules.

5.3.2 Experimental Results for Multiple-Macro Transfer

To test the multiple-macro transfer approach, | learn sétmacros from the same 2-on-1
BreakAway source runs as for single macros, and transfen tbe3-on-2 and 4-on-3 BreakAway.
Each source run produced a similar set of 8 to 10 macros, mgngilength from one node to four
nodes. Figure 5.9 shows the actual set for one of the sounse ru

Figures 5.10 and 5.11 show the performance of multiple-m&ansfer in 3-on-2 and 4-on-3
BreakAway compared to RL-SVR, skill transfer, and singlaeno transfer. These results show
that multiple-macro transfer produces a learning curvalammn shape to single-macro transfer,
but with an overall improvement in some cases. The improvensenot drastic, which indicates
that the BreakAway task may not have a large number of negessacros, but clearly allowing

more than just one macro can be useful.

85

shoot(GoalPart
shoot(goallLeft) shoot(goalRight

pass(Teammate

move(ahead

shoot(goallLeft) shoot(goalRight
shoot(goalLeft) shoot(goalRight

shoot(goalLeft) shoot(goalRight

Figure 5.9: The actual list of macros learned for one source run in my expaits with multiple-macro
transfer. Only the nodes, and not the rulesets, are shown.

86

0.6

04 1

03

Standard RL
Skill Transfer -------
Slngle Macro

Multiple Macro

Probability of Goal

0.1 ¢

0 - -
0 500 1000 1500 2000 2500 3000

Training Games

Figure 5.10: Probability of scoring a goal in 3-on-2 BreakAway with RL-SV&Kill transfer from 2-on-1
BreakAway, single-macro transfer from 2-on-1 BreakAway] anultiple-macro transfer from
2-on-1 BreakAway. The thin vertical line marks the end of teendnstration period.

0.4

0.2

Standard RL
Skill Transfer -------
Slngle Macro

Multiple Macro

0.1 ¢

Probability of Goal

0 500 1000 1500 2000 2500 3000
Training Games
Figure 5.11: Probability of scoring a goal in 4-on-3 BreakAway with RL-SV$Kill transfer from 2-on-1

BreakAway, single-macro transfer from 2-on-1 BreakAwayd anultiple-macro transfer from
2-on-1 BreakAway. The thin vertical line marks the end of teendnstration period.

87

Table 5.10: Results of statistical tests on the differences betweesssarader the curve in multiple-macro
transfer vs. single-macro transfer for several sourogétapairs. Fop < 0.05, the difference
is significant and the winning algorithm is shown; otherwibe, difference is not statistically

significant.
Source Target p-value | Significance (Winner) 95% CI
2-on-1 BreakAway| 3-on-2 BreakAway| 0.004 | Yes (Multiple) [21, 116]
2-on-1 BreakAway| 4-on-3 BreakAway| 0.452 | No [-56, 48]

The statistical analysis in Table 5.10 indicates that tiferdince between multiple-macro trans-
fer and single-macro transfer is significant in 3-on-2 Braa&ty, though not in 4-on-3 BreakAway.
Multiple macros may provide fewer benefits as the source amget tasks grow further apart.

In a 2-on-1 BreakAway self-transfer test, multiple macroers in 43% of episodes, com-
pared to 32% for single macros and 56% at the asymptote oé#raihg curve. Multiple macros
therefore capture more of the successful behavior tharesmgcros do, though they still do not

describe it completely.

5.4 Testing the Boundaries of Macro Transfer

One shortcoming of relational macros may be their ad-hotatkdf making decisions. Recall
that when multiple rules match, they simply follow the sieglle with the highest score. Thus they
are essentially making decisions based on one rule in thé&eetgent may be able to make better
decisions by taking information from all the rules into agng instead of just the highest-scoring
one. This section describes further experiments with maarwsfer along these lines.

When an agent reaches a decision point in a macro, its cumgimbament will likely satisfy
some of the rules in the relevant ruleset and not satisfyreth@ow wish to employ a classifier that
uses all of that information to make the final decision, arefgrably one that handles relational
features. My solution is to use a Markov Logic Network (MLM)statistical-relational model de-
scribed in Section 2.4, which interprets first-order staata as soft constraints with weights [70].

| describe and test this method in the context of single ngafoosimplicity. For each ruleset

in the macro, | use the rules as formulas for an MLN. Howevather than expressing them

88

pass(Teammate) AND angle(Teammate, a0, d0) > 30

pass(Teammate) AND distance(Teammate, goal) < 12

angle(al, a0, d0) > 30 angle(a2, a0, d0) > 30
distance(al, goal) < 12 @ distance(a2, goal) < 12

Figure 5.12: A small ruleset (with rule weights not shown) and the grounarkév network it would pro-
duce. Each grounded literal becomes a node in the MLN. Whenalbteppear together in
clauses, their nodes are linked. Groups of linked nodes fdigues, which have potential
functions (not shown) describing their joint probabilitielo use this MLN to choose between
pass(alandpass(a2)an agent infers their conditional probabilities and tatkeshigher one.

as implications, | express them as conjuncts, since thisdsmmended by MLN experts [20].
Figure 5.12 shows a simple hypothetical ruleset in thiswoct form instead of the usug... THEN
form. It also shows what the ground Markov network would ldi&k in 3-on-2 BreakAway.

| learn formula weights with the Alchemy MLN software [40king the same data for positive
and negative examples as the original algorithm did whemieg the rulesets. Each ruleset is
therefore replaced by an MLN. Here again, weight learnimgsemultiple rulesets from different
arcs in a macro could be treated as a combined problem reguarjoint solution. However, to
maintain consistency and to avoid large problem sizes, ticoa to treat each ruleset indepen-
dently.

As described in Figure 5.12, a target-task agent uses an NKe\this to make decisions by
inferring the conditional probabilities of the nodes reqaeting its choices and taking the choice
whose node has highest probability. Since the MLN captinedistribution of source-task choices
at one point in a macro, this means taking the action the setask policy would most likely take.

Inference is normally accomplished by an approximatioroidigm. However, the particular
structure of my MLNSs allows for efficient exact inference.dwdescribe this calculation, using

the example of choosing an action in Figure 5.12.

89

Recall that each MLN formuld; € F', with weightw;, has a numbeu;(z) of true groundings
in each possible world:;, and that the probability that the world is the correct one is, from

Equation 2.7 in Section 2.4:

P(X =12)= % epowmi(x) (5.1)
1€EF

The nodes fopass(alandpass(a2)n Figure 5.12 are conditionally independent. Intuitively
the reason is that these decision nodes are only connectddence nodes whose truth values
are known, so they do not affect each other’s values. Formdbproof, see Appendix D. The
result of this conditional independence is that when catiug) the probability fopass(al,) only
two worlds need to be considered: = 1 wherepass(al)s true, andX = 0 wherepass(al)s
false.

Since the formulas are in conjunct form, the only true grangs of formulas fopass(allre

those in whictpass(al)s true. This means tha;(0) = 0, and that:

1

P(X=0)= % e:cprmi(O) = % exp(0) = 7 (5.2)
i€F

Recall thatZ is just a normalizing factor so that the probabilities oftbatorlds sum tal:

P(X=0+PX=1)=1 (5.3)
L + L (1) =1 (5.4)
7 Eemprml)= .
i€EF
The value ofZ is therefore:
Z = emprmi(l) +1 (5.5)
i€EF

SubstitutingZ back into Equation 5.1 gives:

90

epowmi(l)
P(X =1) = er 5.6
(D 1+ epowmi(l) (5:6)

el

This is the solution for the conditional probability of thass(alhode. Note that it is a logistic
function, which confirms the point made by Domingos and Ridban [22] that logistic regression
can be considered a special case of Markov Logic Networks.

To evaluate the use of MLNs for decision-making in macroskktthe macros learned from
2-on-1 BreakAway in single-macro transfer and constructNdlfor them as described above. |
then transfer these enhanced macros to 3-on-2 and 4-onak/Bray.

| found it important to tune one Alchemy parameter in thisraggh. This parameter, called
priorStdDevin Alchemy, governs the width of the Gaussian prior distiid of each formula
weight (centered at zero). | found that the default settihg was too high for some runs, allow-
ing formula weight magnitudes to grow too large, and prodgaverfitting (the untuned MLNs
perform much worse on a tuning set than on the training datjdressed this by choosing from
values of{2, 1, 0.5, 0.1, 0.05, 0.¢1with a validation set of source-task data. The appropriate
setting was 0.05 for most runs.

Figures 5.13 and 5.14 show the performance of this methoeboin-3 and 4-on-3 BreakAway
compared to RL-SVR and the original single-macro transjgreach. These results show that at
best, this method produces no significant difference ingoardnce, and at worst, as the distance
between the source and target task grows, it actually deesgaerformance.

The statistical analysis in Table 5.11 indicates that thHfemince between MLN-enhanced
macros and regular macros is not statistically significant3fon-2 BreakAway, though it is for
4-on-3 BreakAway. This method may become more harmful asolece and target tasks grow
further apart.

In a 2-on-1 BreakAway self-transfer test, MLN-enhanced msscore in 43% of episodes,
compared to 32% for single macros, 43% for multiple macrosl 36% at the asymptote of the

learning curve. The addition of MLNs for decision-makingtéfore does improve the description

91

0.6

04 1

03

0.2 Fr.

Probability of Goal

Standard RL
Regular Macro -------
Macro with MLNS e

0.1 ¢

0 500 1000 1500 2000 2500 3000
Training Games
Figure 5.13: Probability of scoring a goal in 3-on-2 BreakAway with RL-S\&Rgle-macro transfer from

2-on-1 BreakAway, and single-macro transfer with MLNs froror21 BreakAway. The thin
vertical line marks the end of the demonstration period.

0.4

S 03}

O

©

2 02}

S .

© I Memas iy -

Q _~’I

2 0.1k

- R R Standard RL ——

Regular Macro -------
Macro with MLNS e
0 = s ; .

0 500 1000 1500 2000 2500 3000
Training Games
Figure 5.14: Probability of scoring a goal in 4-on-3 BreakAway with RL-S\VEgle-macro transfer from

2-on-1 BreakAway, and single-macro transfer with MLNs froror21 BreakAway. The thin
vertical line marks the end of the demonstration period.

92

Table 5.11:Results of statistical tests on the differences betweeasaneder the curve in single-macro
transfer with MLNs vs. regular single-macro transfer foresg source/target pairs. Fpr<
0.05, the difference is significant and the winning algorithm ie\8h; otherwise, the difference
is not statistically significant.

Source Target p-value | Significance (Winner) 95% CI
2-on-1 BreakAway| 3-on-2 BreakAway| 0.068 | No [[92, 10]
2-on-1 BreakAway| 4-on-3 BreakAway| 0.002 | Yes (Regular) [29, 163]

of successful source-task behavior. However, this sotaskeimprovement does not carry over
into target-task improvement the way that it did for mukiphacros.

The reason for this result appears to be that the MLNs impotassification accuracy, com-
pared to the original rulesets, primarily by decreasingrtmber of false positives. In many sce-
narios, this would be a desirable change. However, in theifspease of macro decision-making,
the result is that the MLNs decide to take fewer transitiomd eonsider fewer action arguments.
This produces over-cautious behavior that misses opptiganparticularly in transfer scenarios
when the environment does not look exactly as it would in thece task.

Macros perform better when they base their decisions onitapbsimilarities between source
and target environments, rather than making a complete adagm. Taking all the rules into ac-
count puts too much focus on the differences between the &stt does not allow the macro to
take advantage of the similarities. Within macro transfiee, seemingly ad-hoc method of fol-
lowing the highest-scoring rule is superior in my experitsaio the theoretically more principled
MLN method.

This result is an example of a phenomenon that is relatededitiing. The traditional sense
of overfitting is that modeling training data too closely sas a learner to treat spurious patterns as
important, which means the model does not generalize wetl & data drawn from the same dis-
tribution. If this traditional kind of overfitting occurreid transfer, then the source-task knowledge
would produce low performance in self-transfer. Howevenrse-task knowledge can produce
high performance in self-transfer while failing to generalwell to target tasks, especially as they

grow more distant from the source. | call this phenomeowgrspecialization

93

5.5 Summary of Macro Transfer

Since standard RL has to act mostly randomly in the earlysstép task, a good macro strategy
can provide a large immediate advantage. The performaneédéthe demonstrated strategy is
unlikely to be as high as the target-task agent can achigbefwiher training, unless the two tasks
have identical strategies. However, through further le@ythe agent can improve its performance
from the level of the demonstration up to its asymptote.

The macro is both a help and a hindrance; its bias is quitefiidlpr early performance, but
in a sense it is a local maximum that must be unlearned in aoderach the true asymptote in the
target task. This is one reason that my demonstration apprstaps using transferred knowledge
abruptly instead of smoothly decaying its use, which wousa e a reasonable design choice.
Extending the use of the transferred knowledge might onlgydéhe unlearning and relearning
process in the target task.

Transferring multiple macros rather than a single macrwidies a more flexible strategy, and
can produce better performance. Macros perform well withgimple method of following the
highest-scoring rule, and more sophisticated methods osid®-making that improve classifi-
cation accuracy actually decrease performance due to aksmleflexibility and overly cautious
behavior. This is an example of overspecialization to as®task, which can hurt performance in
a target task.

Demonstration has both advantages and disadvantages i@@hipaadvice taking. The most
notable disadvantage is its lack of protection againstthegaansfer, which makes it appropriate
only for close-transfer scenarios. A more subtle disachgais the time that it takes to adjust the
macro strategy appropriately to the target task. Howef/ghere is limited time and the target task
cannot be trained to its asymptote, then the immediate aalgarthat macros can provide may be
quite valuable in comparison to advice-taking methods.

Although | found that using Markov Logic Networks in conjdion with macros was not de-
sirable, the MLN remains a powerful relational model in it8roright that could be used as a

structure for knowledge transfer. The next chapter prese@thods for transfer via MLNSs.

94

Chapter 6

Transfer via Markov Logic Networks

Statistical relational learning (SRL) is a type of machiaarhing designed to operate in do-
mains that have both uncertainty and rich relational stmec{33]. It focuses on combining the
two powerful paradigms of first-order logic, which genezab among the objects in a domain, and
probability theory, which handles uncertainty.

An SRL model could therefore capture relational informatabout a task in a more flexible
way than the ILP-based techniques | have discussed so fag. oDthe realistic aspects of the
RoboCup domain is its non-determinism, and ILP techniquésciwonly express that concepts
are true or false, do not capture non-determinism. SRL tigcies can express that concepts are
true with certain probabilities, which makes them potdlytia more powerful type of model for
transfer.

One recent and popular SRL formalism is the Markov Logic Nek(MLN), described in
Section 2.4, which interprets first-order statements ascwfstraints with weights [70]. Where
skill transfer captured single actions, and macro transé@tured common sequences of actions,
MLNs can capture an enti®-function or policy. Like macro transfer, my MLN transfer theds
are appropriate only for close-transfer scenarios bectngesesacrifice protection against negative
transfer in order to produce large initial benefits.

This chapter presents two methods for performing transfér MLNs. One method expresses
the source-task-function with an MLN, and the other expresses the soursk-policy. This

chapter is based in part on published work [102].

95

6.1 MLN Relational Q-Function Transfer

MLN relational Q-function transfemy Transfer Algorithm 5, is a transfer method that learns
an MLN to express the source-ta@kfunction relationally, and allows target-task agentsde u
for an initial demonstration period. Like the macro-trarsinethods, this allows the target-task
agents to avoid the slow process of random exploration thdittonally occurs at the beginning
of RL. This section is based on published work [102].

An MLN Q-function is potentially more expressive than a macro, bseat is not limited to
one action sequence. Furthermore, due to its relational@at provides better generalization to
new tasks than a propositional value-function transfehmetould.

This method uses an MLN to define a probability distribution the Q-value of an action,
conditioned on the state features. It chooses a sourceéstdsk and uses its training data to learn
an MLN Q-function for transfer. The choice of which source-taskchatas an impact, as | will
discuss.

In this scenario, an MLN formula describes some charad¢iten$the RL agent’'s environment
that helps determine th@-value of an action in that state. For example, assume tleat tis a
discrete set oR-values that a RoboCup action can hawglk, mediumandlow). In this simplified
case, one formula in an MLN representing t@eunction for BreakAway could look like the

following:

IF distBetween(a0, GoalPart) 10
AND angleDefinedBy(GoalPart, a0, goalie)30
THEN levelOfQvalue(move(ahead), high)

The MLN could contain multiple formulas like this for eachtiaa. After learning weights
for the formulas from source-task data, one could use thidNt.infer, given a target-task state,
whether actiorQ-values are most likely to be high, medium, or low.

Note thatQ-values in RoboCup are continuous rather than discrete, smbtlactually learn
rules classifying them as high, medium, or low. Instead algerithm discretizes the continuous

Q-values into bins that serve a similar purpose.

96

Table 6.1: Transfer Algorithm 5: MLN Relationa@-Function Transfer

INPUT REQUIRED

A set of batches3 = (by, bs, ...) to consider for transfer

The Q-functionQ® for each batch ¢ B

The set of game&/(b) that trained th&-function for each batch € B
A parametek determining distance between bins

A demonstration-period length

A validation-run length/

CREATE Q-VALUE BINS /[This is a hierarchical clustering procedure
For each batch € B
For each source-task actian
Determinebins(b, a) for actiona in batchb using Table 6.2
(Provide inputs7(b) ande)

LEARN FORMULAS /I This accomplishes MLN structure learning
For each batch € B
For each source-task actian
For eachhin € bins(b, a)
LetP =10 /I These will be the positive examples
LetN =0 Il These will be the negative examples
For each state in a gamey € G(b)
If s used actiom andQ?(s) falls into bin

SetP«— PUgyg /I Examples that fall into the bin are positive
Else if s used actiom andQ® (s) does not fall intchin
SetN «— NUyg /I Examples that fall outside the bin are negative

Learn rules with Aleph and Gleaner to distinguiBHrom N
Let M (b, a, bin) be the ruleset chosen by the algorithm in Table 5.5
Let M (b, a) be the union of\/ (b, a, bin) for all bins

LEARN FORMULA WEIGHTS
For each batch € B
For each source-task actien
Learn MLN weightsi¥ (b, a) for the formulasM (b, a) using Alchemy
Define M LN (b, a) as M (b, a), W (b, a))
Define M LN (b) as the set of MLNSV/ LN (b, a)

CHOOSE A BATCH // Do a validation run in the source task to pick the best batch
For each batch € B
ForV episodes: Us@/ LN (b) as shown in Table 6.3 to choose actions in a hew source-task ru
Let score(b) be the average score in this validation run
Choose the highest-scoring € B = argmaxy, score(b)

LEARN TARGET TASK
For D episodes: Perform RL but usd LN (b*) to choose actions as shown in Table 6.3
For remaining episodes: Perform RL normally

97

Table 6.1 gives the algorithm for MLRD-function transfer. It requires as input a set of batches
from which to attempt transfer, tH@-function learned after each batch and the games usedo trai
it, a parameter determining the number of bins, the lengtthefdemonstration period, and the
length of a validation run that is used to choose a batch.nsists of five steps: creatin@value
bins, learning formulas for the MLNs, learning weights fbetformulas, using a validation run to
choose the best batch, and learning the target task via dgration. The sections below describe

these steps in more detail.

6.1.1 Learning an MLN Q-function from a Source Task

The first step of the MLNQ-function transfer algorithm in Table 6.1 is to divide tQevalues
for an action into bins, according to the procedure in Tabk @he training exampl&-values
could have any arbitrary distribution, so it uses a hiermalhclustering algorithm to find good
bins. Initially every training example is its own clustendait repeatedly joins clusters whose
midpoints are closest until there are no midpoints closanthapart. The final cluster midpoints

serve as the midpoints of the bins.

Table 6.2: Algorithm for dividing theQ-values of an action into bins, given training data from gamés
and a parameterdetermining distance between bins.

For each statéin a gamey € G that takes action
Create cluster; containing only the&)-value of examplé
Let C = sorted list ofc; for all 4
Let m = min distance between two adjaceptc, € C
Whilem < e // Join clusters until too far apart
Join clusters:, andc, into c,,,
C — CUcyy —{ca,cy}
m « min distance between two new adjaceftc; € C
LetB =1 /I These will be the bins for actiom
For each final clustet € C I/l Center one bin on each cluster
Let binb have midpoing, the average of values in
Set the boundaries éfat adjacent midpoints dp-value limits
SetB «— BUb
ReturnB

98

The value ok should be domain-dependent. For BreakAway, whichQraslues ranging from
approximately 0 to 1, use= 0.1. This leads to a maximum of about 11 bins, but there are often
less because training examples tend to be distributed nhesaeross the range. | experimented
with ¢ values ranging from 0.05 to 0.2 and found very minimal défeces in the results; the
approach appears to be robust to the choicevaithin a reasonably wide range.

The second step of the MLIQ-function transfer algorithm in Table 6.1 performs struetu
learning for the MLN. The MLN formulas are rules that assigartiing examples into bins. The
algorithm creates these rulesets with the same ILP techridescribed in previous chapters. Some

examples of bins learned fpassin 2-on-1 BreakAway, and of rules learned for those bins, are

IF distBetween(a0, GoalPart) 42
AND distBetween(a0, Teammate)39
THEN pass(Teammate) hagavalue in the interval [0, 0.11]

IF angleDefinedBy(topRightCorner, goalCenter, g&0j0
AND angleDefinedBy(topRightCorner, goalCenter, a20)5
AND angleDefinedBy(goallLeft, a0, goalig) 20

AND angleDefinedBy(goalCenter, a0, goake0

THEN pass(Teammate) hagavalue in the interval [0.11, 0.27]

IF distBetween(Teammate, goalCentery
AND angleDefinedBy(topRightCorner, goalCenter, &085
THEN pass(Teammate) hagavalue in the interval [0.27, 0.43]
The third step of the algorithm learns weights for the forasulising Alchemy’s conjugate
gradient-descent algorithm, as described in Section Zhé.fdurth step of the algorithm selects the
best batch from among the set of candidates. | found thaethdts can vary widely depending on

the source-task batch from which the algorithm transferselects a good batch using a validation

set of source-task data.

6.1.2 Applying an MLN Q-function in a Target Task

The final step of the MLNQ-function transfer algorithm in Table 6.1 is to learn thegttrtask

with a demonstration approach. During the demonstratioiogethe target-task learner queries

99

Table 6.3: Algorithm for estimating theQ-value of actiona in target-task state using the MLN Q-
function. This is a weighted sum of bin expected values, wiliseeexpected value of a bin
is estimated from the training data for that bin.

Provide state to the MLN as evidence

For each birb € [1,2, ..., n|
Infer the probabilityp, that@,(s) falls into binb
Collect training example$ for which @, falls into binb
Let E[Q,|b] be the average ap,(¢) forallt € T

ReturnQ,(s) = >, (py * E[Qa|b])

the MLN to determine the estimaté&@value of each action, and it takes the highest-valuedmactio
Meanwhile, it learn®-functions after each batch, and after the demonstratide,etbegins using
thoseQ-functions.

The algorithm in Table 6.3 shows how to estima®-aalue for an action in a new state using
an MLN Q-function. It begins by performing inference in the MLN tatiesate the probability,
for each action and bin, thd¢velOfQvalue(action, binis true. As when | used MLNs within
macros, it can do exact inference because the only non+asédeodes are the query nodes (see
Section 5.4).

For each action, the algorithm infers the probability, that theQ-value falls into each bin.

It then uses these probabilities as weights in a weightedtswalculate th&-value ofa:

Qa(s) = > pvE[Qult]

where E[Q,|b] is the expected-value given thab is the correct bin, estimated as the average
Q-value of the training data in that bin.

The probability distribution that an MLN provides over tQevalue of an action could look like
one of the examples in Figure 6.1. This approach has linkaye@Bian reinforcement learning [83],
which also learns distributions over values rather thaglsivalues. By explicitly representing
uncertainty oveQ-values through distributions, Bayesian RL can balancéoggpion and explo-

ration in principled ways rather than using thgreedy heuristic. |1 have not included Bayesian

100

Probability
Probability
Probability

1] “g

Bin Number Bin Number Bin Number

—

Figure 6.1: Examples of probability distributions ov€-value of an action that an MLIQ-function might
produce. On the left, the MLN has high confidence that@healue falls into a certain bin,
and the action will get a higlp-value. In the center, the MLN is undecided between several
neighboring bins, and the action will still get a highvalue. On the right, there is a high
likelihood of a high bin but also a non-negligible likelirdof a low bin, and the action will

get a lowerQ-value.

exploration in MLNQ-function transfer because the short demonstration peniakles it unlikely
to produce noticeable differences. However, | discussrialeuses of an MLNQ-function for

Bayesian exploration in the future-work section.

6.1.3 Experimental Results for MLN Q-function Transfer

To test MLN Q-function transfer, | learn MLNs from the same 2-on-1 Breala4 source tasks
as in previous chapters and transfer them to 3-on-2 and 3-BreakAway. | focus on close-
transfer scenarios for the same reasons as in macro tramsiEmappings | use for these scenarios
are documented in Appendix C. As in Section 5.4, | use a vatidatet of source-task data to tune
the Alchemy parametgriorStdDev

Figures 6.2 and 6.3 show the performance of MQMNunction transfer in 3-on-2 and 4-on-3
BreakAway compared to RL-SVR and multiple-macro transtdrese results show that MLR-
function transfer is less effective than multiple-macmansfer, which was the best macro-transfer
method.

The statistical analysis in Table 6.4 indicates that théedihce between MLNR-function
transfer and multiple-macro transfer is statisticallyrsiigant.

In a 2-on-1 BreakAway self-transfer test, ML@-functions score in 59% of episodes, com-

pared to 43% for multiple macros and 56% at the asymptoteeolg@irning curve. This indicates

Probability of Goal

0.6

05 |
04 |
03}
02|

0.1

Standard RL
Multiple Macro -------
MLN Q-function

500 1000 1500 2000 2500 3000
Training Games

101

Figure 6.2: Probability of scoring a goal in 3-on-2 BreakAway with RL-SViRacro transfer from 2-on-
1 BreakAway, and MLNQ-function transfer from 2-on-1 BreakAway. The thin vertidiale
marks the end of the demonstration period.

Probability of Goall

01 f

Standard RL
Multiple Macro -------
MLN Q-function -

500 1000 1500 2000 2500 3000
Training Games

Figure 6.3: Probability of scoring a goal in 4-on-3 BreakAway with RL-SViRacro transfer from 2-on-
1 BreakAway, and MLNQ-function transfer from 2-on-1 BreakAway. The thin vertidiale
marks the end of the demonstration period.

102

Table 6.4: Results of statistical tests on the differences betweessarader the curve in MLIXD-function
transfer vs. multiple-macro transfer for several sousrgkt pairs. Fop < 0.05, the difference
is significant and the winning algorithm is shown; otherwites difference is not statistically

significant.
Source Target p-value | Significance (Winner) 95% CI
2-on-1 BreakAway| 3-on-2 BreakAway| 0.004 | Yes (Macro) [24, 132]
2-on-1 BreakAway| 4-on-3 BreakAway| 0.001 | Yes (Macro) [41, 154]

that MLN Q-functions capture the source-task behavior more thorlgugan multiple macros do.
However, this source-task improvement does not carry aertarget-task improvement.

One reason that MLNQ-functions are less effective than multiple macros may lad they
transfer information abou®-values rather than about policy. As | discussed in Secti@rimithe
context of advice-based policy transfer, it is likely thia¢ Q-values in the two tasks are different
even in cases where their action choices would be the sanmyiAg that argument here suggests

a different method of MLN transfer, which | address in thetrsaction.

6.2 MLN Relational Policy Transfer

MLN relational policy transfermy Transfer Algorithm 6, is a method that learns an MLN to
express the source-task policy, and allows target-tasiktadge use it for an initial demonstration
period. This approach is closely related to MIQfunction transfer, but it has the potential to
transfer more effectively by focusing on policy rather tif@values.

Instead of needing to create bins for continuQ4galues, MLN policy transfer learns an MLN
that simply predicts the best action to take. This may be ndinectly comparable to macro
transfer. It is also simpler than MLR-function transfer in that it does not need to choose a batch
from which to transfer, which was a significant tuning steghi@ previous method.

Table 6.5 gives the algorithm for MLIQ-function transfer. It requires the same input as the
macro-transfer algorithms. It consists of three stepsrnieg formulas for the MLN, learning
weights for the formulas, and learning the target task viaalgstration. The section below de-

scribes these steps in more detail.

Table 6.5: Transfer Algorithm 6: MLN Relational Policy Transfer

INPUT REQUIRED

Gameg from the source-task learning process

A definition of high-reward and low-reward games in the souask
The demonstration-period lengih
LEARN FORMULAS

Let G be the set of high-reward source-task games
For each source-task actian

LetP = Il These will be the positive examples
LetN =) /I These will be the negative examples
For each state in a gamegy € G

If g is a high-reward game in the source task ansed actior
SetP «— PUs /[States that use the action are positive
Else if g is a high-reward game in the source task ansed actiorb # a
SetN «— NUs

// States that use a different action are negative
Learn rules with Aleph and Gleaner to distinguiBHrom N

Let M be the ruleset chosen by the algorithm in Table 5.5

LEARN FORMULA WEIGHTS

Learn MLN weightsiV for the formulasM using Alchemy
Define M LN by (M, W)

LEARN TARGET TASK

For D episodes: Perform RL but choose the highest-probabiliipa@ccording ta\/ LN
For remaining episodes: Perform RL normally

103

104

6.2.1 Learning and Using an MLN Policy

The first and second steps of the MLN policy-transfer algponiin Table 6.5 perform structure-
learning and weight-learning for the MLN. However, the faias simply predict when an action
is the best action to take, rather than predictinQ-aalue bin for an action as they do in MLN
Q-function transfer.

Examples for this learning task come from high-reward gathesughout the learning curve;
as in multiple-macro transfer, it would be possible to gleaiditional negative examples from
low-reward games, but | found it unnecessary. The positka@rles for an action are states in
high-reward games in which that action was taken. The negakamples are states in high-reward
games in which a different action was taken.

Note that this ILP task is a simplified version of the skilitisfer ILP task in Section 4.3. It
produces similar rules, though instead of just one per actitere are many. Some examples of
rules learned fopassin 2-on-1 BreakAway are:

IF angleDefinedBy(topRightCorner, goalCenter, €030
AND timelLeft> 98

AND distBetween(a0, Teammate)3
THEN pass(Teammate)

IF distBetween(a0, GoalPart) 36

AND distBetween(a0, Teammatg)12

AND timelLeft> 91

AND angleDefinedBy(topRightCorner, goalCenter, &030
THEN pass(Teammate)

IF distBetween(a0, GoalPart) 27

AND angleDefinedBy(topRightCorner, goalCenter, a0j5
AND distBetween(a0, Teammate)9

AND angleDefinedBy(Teammate, a0, goaliep5

THEN pass(Teammate)

The rulesets produced by my usual search and selection e become formulas in the
MLN policy. Weights for the formulas are learned as beforgng Alchemy’s conjugate-gradient

descent algorithm.

105

The final step of the MLN policy-transfer algorithm in Tabléb@earns the target task with
a demonstration approach. During the demonstration petiwtarget-task learner queries the
MLN to determine the probability that each action is best] @&ntakes the highest-probability
action. Meanwhile, it learn®-functions after each batch, and after the demonstratiais,ei

begins using thos@®-functions.

6.2.2 Experimental Results for MLN Policy Transfer

To test MLN policy transfer, | learn MLNs from the same 2-oBfeakAway source tasks as in
MLN Q-function transfer and transfer them to 3-on-2 and 4-on-@RAway. As in Section 5.4, |
use a validation set of source-task data to tune the AlcheamnpetepriorStdDev

Figures 6.4 and 6.5 show the performance of MLN policy transf 3-on-2 and 4-on-3 Break-
Away compared to RL-SVR, multiple-macro transfer, and MQMNunction transfer. These results
show that transferring an MLN policy is more effective thearisferring an MLNQ-function, and
is comparable to multiple-macro transfer. The statisteallysis in Table 6.6 indicates that the area
under the curve for MLN policy transfer is significantly hgghthan for MLNQ-function transfer.

In a 2-on-1 BreakAway self-transfer test, MLN policies sean 65% of episodes, compared
to 43% for multiple macros, 59% for MLKD-functions, and 56% at the asymptote of the learning
curve. This indicates that an MLN policy is a substantial iayement over the source-task pol-
icy from which it was learned, which is an interesting ackm®ent beyond the context of transfer
learning. As | will discuss later, it suggests that MLN p@& could be used to improve reinforce-
ment learning.

As hypothesized, transferring policy information rathieaut Q-value information does lead to
better MLN transfer. However, despite the fact that MLN p@s clearly capture more source-
task knowledge than multiple macros do, they both lead tdlairtransfer results. This does not
appear to be overspecialization, because the closer staskdit is not hurting performance in the
target task. However, it does indicate that transfer care lthminishing returns. After a point,
transferring more accurate detail about the source-talskigo no longer helps in the target task

because the tasks are different.

106

0.6

057

©
o
O 04+¢
©
2 03}
= A
o L
o 0.2 Standard RL
o Multiple Macro

0.1 ¢ MLN Q-function

MLN Policy ——
04 ' : : : :
0 500 1000 1500 2000 2500 3000

Training Games

Figure 6.4: Probability of scoring a goal in 3-on-2 BreakAway with RL-SMRultiple-macro transfer from
2-on-1 BreakAway, MLNQ-function transfer from 2-on-1 BreakAway, and MLN policy s
fer from 2-on-1 BreakAway. The thin vertical line marks thedef the demonstration period.

0.4

03

0.2t

S
~.—

Probability of Goall

Standard RL

Multiple Macro -------
MLN Q-function -
MLN Policy ——

0.1 [

0 500 1000 1500 2000 2500 3000
Training Games

Figure 6.5: Probability of scoring a goal in 4-on-3 BreakAway with RL-SMRultiple-macro transfer from
2-on-1 BreakAway, MLNQ-function transfer from 2-on-1 BreakAway, and MLN policy s
fer from 2-on-1 BreakAway. The thin vertical line marks thalari the demonstration period.

107

Table 6.6: Results of statistical tests on the differences betweeasarader the curve in MLN policy trans-
fer vs. MLN Q-function transfer for several source/target pairs. fot 0.05, the difference
is significant and the winning algorithm is shown; otherwites difference is not statistically

significant.
Source Target p-value| Significance (Winner) 95% CI
2-on-1 BreakAway| 3-on-2 BreakAway| 0.023 | Yes (Policy) [4,105]
2-on-1 BreakAway| 4-on-3 BreakAway| 0.029 | Yes (Policy) [1, 119]

6.3 Testing the Boundaries of MLN Policy Transfer

In this section | evaluate two aspects of MLN policy transféirst, | examine the benefit of
using an MLN at all, when the ILP rulesets alone could prowgmlicy. Second, | test whether it
is useful to include action-sequence information in MLNigpkules, which in a sense enhances
MLNSs with a property of macros, just as the previous chaptiemapted to enhance macros with
MLNSs.

An MLN policy could be viewed as a macro that contains just voée in which every action
is possible. As in a normal macro node, there is a rulesetdoh g@ossible action. In a macro, |
found that allowing the best satisfied rule to choose th@agterformed better than using an MLN
to choose an action based on all the rules. It is thereforasoreable question whether an MLN is
necessary at all in MLN policy transfer; perhaps using tHeseits directly would perform as well
or better.

To answer this question, | score each rule in the MLN polidgsats in the same way that |
score rules in macros, according to Table 5.5. At each steépararget task, | have my agents
check all the rules, and instead of consulting an MLN to deiee actions, they simply take the
action recommended by the highest-scoring satisfied rule.

Figures 6.6 and 6.7 show the performance of this approackoim3 and 4-on-3 BreakAway,
compared with RL-SVR and regular MLN policy transfer. Thessults show that MLN policy

transfer does outperform ruleset policy transfer. Thastteal analysis in Table 6.7 indicates that

Probability of Goal

0.6

0.5

0.4

0.3

0.2

0.1

Standard RL
MLN Transfer

108

Ruleset Transfer e

0 500 1000 1500 2000 2500 3000
Training Games
Figure 6.6: Probability of scoring a goal in 3-on-2 BreakAway with RL-S\MRgular MLN policy transfer

from 2-on-1 BreakAway, and ruleset MLN policy transfer froro@-1 BreakAway. The thin
vertical line marks the end of the demonstration period.

0.4

S 03¢

O

©

2 02¢

=

©

o]

o 01 Meaeen

- O Standard RL ——

MLN Transfer -------
Ruleset Transfer -
0 = : ; .

0 500 1000 1500 2000 2500 3000
Training Games
Figure 6.7: Probability of scoring a goal in 4-on-3 BreakAway with RL-SMegular MLN policy transfer

from 2-on-1 BreakAway, and ruleset MLN policy transfer fromo@-1 BreakAway. The thin
vertical line marks the end of the demonstration period.

109

Table 6.7: Results of statistical tests on the differences betweeasaneder the curve in ruleset policy
transfer vs. regular MLN policy transfer for several soutarget pairs. Fop < 0.05, the
difference is significant and the winning algorithm is showtherwise, the difference is not
statistically significant.

Source Target p-value | Significance (Winner) 95% CI
2-on-1 BreakAway| 3-on-2 BreakAway| 0.014 | Yes (Regular) [8, 94]
2-on-1 BreakAway| 4-on-3 BreakAway| 0.382 | No [-56, 40]

the area under the curve decreases slightly in 3-on-2 Brgai/and remains equivalent in 4-
on-3. In a 2-on-1 BreakAway self-transfer test, the rulgssicy scores in 53% of the episodes,
compared to 65% for the regular MLN policy.

| conclude that MLNs do provide an additional benefit over ihRhe scenario of relational
policy transfer, in both the source and target task. Theoretsey are beneficial in this context but
not in macros is that there is no structure here for them tdérinin both contexts, MLNs produce
higher classification accuracy compared to their rulesgimarily by decreasing the number of
false positives. In macros, this caused too much cautiomagrpssing through the strategy, but
here all actions are possible from the same “node,” so thetfarence does not occur.

This experiment also provides insight on the use of advice demonstration setting. These
rulesets contain clauses that are comparable to the adwvibe Bkill-transfer method of Chapter 4;
the only difference is that there are more of them. Skillsligplpvia demonstration would produce
a target-task learning curve of similar shape. Howeverugéd only one clause per skill as | did
in skill transfer, the initial performance would be loweredio lower coverage.

MLN policy transfer assumes the Markov property, in whick #ction choice depends only
on the current environment and is independent of previous@mments and actions. However, it
need not do so; the MLN formulas for action choices could ws# snformation. | examine the
benefit of doing so by adding predicates to the ILP hypotrgsse that specify previous actions.
| add predicates for one, two, and three steps back in a garke.nhacros, this approach allows

transfer of both relational information and multi-statagening.

110

In these experiments, Aleph only chose to use the predicatenke step back, and never used
the ones for two and three steps. This indicates that it isesiomes informative to know what the
immediately previous action was, but beyond that pointipadnformation is not useful. Aleph
primarily used action predicates in rules fmoveawayand the shoot actions, both of which are
sensible. Moving away can cause agents to go out of boundsrsikes sense to consider that
action only after other actions that bring the players fertmfield. Two consecutive shoot ac-
tions are typical of successful BreakAway games, so it makese that rules for shooting make
reference to previous shoot actions.

Figures 6.8 and 6.9 show the performance of multi-step MLNcpdransfer in 3-on-2 and
4-on-3 BreakAway, compared with RL-SVR and regular MLN pyliransfer. These results show
that adding action-sequence information does not improt®&Molicy transfer. The statistical
analysis in Table 6.8 indicates that the area under the deweeases slightly in 3-on-2 BreakAway
and remains equivalent in 4-on-3. In a 2-on-1 BreakAway-galisfer test, the multi-step MLN
policy scores in 64% of the episodes, compared to 65% fordagelar MLN policy.

This result indicates that the Markov property is a validuaggtion in the BreakAway domain.
While action patterns do exist, and the macro approach takeswage of them, there is apparently
enough information in the current state to make action @wiodependently. A multi-step MLN
policy is therefore unnecessary in this domain, though itl¢doe helpful in different domains

where the Markov property does not hold.

Table 6.8: Results of statistical tests on the differences betweessarader the curve in multi-step MLN
policy transfer vs. regular MLN policy transfer for severalusce/target pairs. Fgr < 0.05,
the difference is significant and the winning algorithm iswshpotherwise, the difference is not
statistically significant.

Source Target p-value | Significance (Winner) 95% CI

2-on-1 BreakAway| 3-on-2 BreakAway| 0.047 | Yes (Regular) [-71, 3]
2-on-1 BreakAway| 4-on-3 BreakAway| 0.158 | No [-82, 25]

111

0.6

057

04

03t

0.2

Probability of Goal

Standard RL
MLN Policy =-------
Multi-step MLN Policy e

0 500 1000 1500 2000 2500 3000
Training Games

0.1

Figure 6.8: Probability of scoring a goal in 3-on-2 BreakAway with RL-SMegular MLN policy transfer
from 2-on-1 BreakAway, and multi-step MLN policy transfeofin 2-on-1 BreakAway. The
thin vertical line marks the end of the demonstration period

0.4
S 03¢}
A
©
2 02t
=
©
-Q &
e 1 _{-s_ _— .:":
o 0 e s Standard RL
MLN Policy -------
Multi-step MLN Poligy
0= . . X .

0 500 1000 1500 2000 2500 3000
Training Games

Figure 6.9: Probability of scoring a goal in 4-on-3 BreakAway with RL-SMegular MLN policy transfer
from 2-on-1 BreakAway, and multi-step MLN policy transfeorfin 2-on-1 BreakAway. The
thin vertical line marks the end of the demonstration period

112
6.4 Summary of MLN Transfer

MLN transfer via demonstration can give the learner a sigaift head start in the target task.
As in macro transfer, the performance level of the demotedratrategy is unlikely to be as high
as the target-task agent can achieve with further trairwg the learner can improve its perfor-
mance from the level of the demonstration up to its asymptagein macro transfer, the demon-
stration method lacks protection against negative transfeich makes it appropriate only for
close-transfer scenarios.

Transferring a policy with an MLN is a more natural and effeetmethod than transferring
a Q-function. Rulesets expressing a policy can be demonstefttectively as well, but using an
MLN to combine the rulesets provides additional benefits. MItN captures complete enough
information about the source task that adding knowledgeiactions previously taken provides
no additional benefit.

The advantage that MLN transfer has over related propositimethods is that it makes use
of relational information present in the domain. It “liftffie transferred information to the level
of first-order logic, even if the source task was learned atael level. This makes the transferred
knowledge more general and thus more easily applicablenmedarget tasks, and may be respon-
sible for the lack of overspecialization seen in these arpants, despite the high level of detail
that MLN models capture in the source task.

A potential reason to choose MLN transfer over relationakno transfer given their compara-
ble performance is that MLNs provide well-defined opportiesi for refinement in the target task.
Existing work on revision of MLNs, such as that of Mihalkovisa¢ [55], could be applied to this
problem.

In my experiments with MLN transfer, | made an unexpectedalisry: an MLN policy can
outperform the source-task policy from which it was learn€dere are two potential explanations
for this surprising result. One is that learning the MLN pglifrom high-reward episodes across
the entire learning curve provides additional trainingnfra wide range of episodes. Another is

that the relational nature of an MLN allows it to pool datacss related actions and symmetrical

113

features, making it an inherently more powerful model thaat get more leverage out of less data.
This result suggests that MLN policies could be used outgidecontext of transfer learning to

improve standard RL, which | will discuss as future work.

114

Chapter 7

Conclusions and Future Work

This thesis presents original research evaluating thieestef relational transfer for reinforce-
ment learning: advice-based transfer, macro transfer,MbN transfer. It contributes the six
transfer algorithms listed in Table 1.1. Each algorithmduees a significant improvement over
standard RL in experiments in the RoboCup simulated soceaadn

Advice-based transfer methods use source-task knowledgevide advice for a target-task
learner, which can follow, refine, or ignore the advice adaug to its value. Relational advice
is preferable to propositional advice because it incregsegrality. Human-provided advice can
produce additional benefits. The most notable advantagew€ebased transfer is its built-in
protection against negative transfer, which allows it taapelied to a wide range of transfer sce-
narios. The most notable disadvantage is that the perfarengains do not appear immediately
and are relatively modest.

Macro-transfer methods use source-task experience todaonacro-operator that demonstrates
good behavior for a target-task learner. Since standarddlitnact mostly randomly in the early
steps of a task, a good macro strategy can provide a largediteeadvantage. Multiple macros
may perform better than a single macro in some domains. Ttst nodable disadvantage of macro
transfer is its lack of protection against negative transfemore subtle disadvantage is the time
that it takes to adjust the macro strategy appropriatehyheotarget task. However, if there is
limited time and the target task cannot be trained to its gdgta, then the immediate advantage

that macros can provide may be worth the risk.

115

MLN-transfer methods use source-task experience to leavagkov Logic Network that
demonstrates good behavior for a target-task learner. AN Nhat represents the source-task pol-
icy is an effective vehicle for transfer. MLN transfer pradis performance comparable to macro
transfer, with similar advantages and disadvantages. Antial reason to prefer MLN transfer is
that it provides well-defined opportunities for refinemeanthe target task.

For the demonstration-based transfer methods, | foundatesting to test the relational model
learned from the source task in a new run of the source taslk {&elf-transfer). Figure 7.1 shows
the self-transfer scores of several macro-transfer and NtaNsfer methods together.

At first self-transfer was merely a debugging tool, but itienl out to highlight several interest-
ing issues. One is the discovery that one of my relationaletsod powerful enough to outperform
the source-task policy from which it is learned, which imegione of the future-work areas later
in this chapter. Another is the phenomenorowérspecializationa transfer-learning issue that is
related to the general machine-learning issue of oveittBource-task knowledge that produces
high performance in self-transfer can be overspecialipemigource task, meaning that it does not

generalize well to target tasks, especially as they gronend@tant from the source.

80 ~
70 A 65
59
°©
o 60 56 53
3
@ 50 43 43
< 40
3 32
= 30 ~
8
T 20 A
o
10 -
O T T T T T T
Standard Single Multiple Macros Rulesets MLN MLN
RL Macro Macros with MLNs Q-function Policy

Figure 7.1: Self-transfer results: the percent of games in which a gost@sed in 2-on-1 BreakAway at
the asymptote of standard RL, and during demonstration adrakvelational models learned
from 2-on-1 BreakAway.

116

7.1 Algorithm Comparison

Given a transfer scenario, which algorithm from Table 1.bwtl be used? Advice-based
methods have the lowest initial performance in the targt, iaut their learning curves are steepest,
and they are robust to negative transfer. Macro-transféMioN-transfer methods can have higher
initial performance, but in doing so they sacrifice protectagainst negative transfer.

In close-transfer scenarios, such as the 2-on-1 BreakAw&ydn-2 BreakAway experiment,
a reasonable goal is to provide the best initial performgpassible. To achieve this goal, the
more aggressive demonstration-based approaches shotdddsed. Figure 7.2 shows the order
in which | would recommend my transfer algorithms in suchesas

In distant-transfer scenarios, such as the KeepAway tolkB«gay experiment or with even
more distinct source and target tasks, a high initial penéomce is unlikely to be possible. Instead,
a reasonable goal is to shorten the period of initial low @a@nance as much as possible, while
avoiding negative transfer. Here the more cautious advaseed approaches should be favored.
Figure 7.3 shows the order in which | would recommend my ti@ralgorithms in such cases.

Some transfer scenarios could fall in between close andrdistansfer, where it is less clear
which algorithm would perform best. Currently, our own detton as human facilitators of trans-
fer is the only way to decide such cases. Better predictich@felative performance of transfer
algorithms is an important area of future work in transfarteng. A related important area is

increasing the autonomy of transfer algorithms; that iduceng the reliance on human input for

Algorithm 1:
Policy Transfer

choosing source tasks and providing mappings.

Algorithm 4: S Algorithm 3: > Algorithm 2: >
Multiple Macro Single Macro - Skill Transfer

Algorithm 6:

MLN Policy

Figure 7.2: Arecommended ordering of my transfer algorithms in clasedfer scenarios. Demonstration-
based algorithms will likely perform better than advicesbd ones. Within each type, the more
strongly relational and general algorithms will likely fpenm better.

Algorithm 5:
MLN Q-Function

117

Algorithm 2: > Algorithm 1: > Algorithm 4: > Algorithm 3:
Skill Transfer Policy Transfer - Multiple Macro Single Macro

Algorithm 6: Algorithm 5:
MLN Policy MLN Q-Function

Figure 7.3: Arecommended ordering of my transfer algorithms in distaamsfer scenarios. Advice-based
algorithms will likely perform better than demonstratibased ones. As before, however,
within each type the more strongly relational and genegdi@hms will likely perform better.

7.2 Potential Extensions of My Research

At this point, | pause the reflection on future directions ti@nsfer learning in general to dis-

cuss some specific extensions to this thesis that could bressit! by future research.

Transfer from Multiple Source Tasks

My experiments have focused on learning a target task watisferred knowledge from a sin-
gle source task. An extension of interest might be to comhkirmviedge from multiple tasks. In
some contexts, such as skill transfer and multiple-maemostier, this could be a straightforward
combination of relational knowledge. In other contextsshsas MLN policy transfer, it is less

clear how to combine knowlege from multiple sources in thesthedfective way.

Negative Transfer and Overspecialization

My macro-transfer and MLN-transfer approaches behavelailypibecause they both use the
demonstration method in a target task. In that sense, thalg ctmth be considered subtypes of
demonstration-basetansfer methods, which stand in contrast to advice-basgtiods. Demon-
stration is an aggressive method that can benefit greathy thee detailed policy knowledge that
both macros and MLNs capture. However, it does not providéggtion against negative transfer.

Macros and MLNs could be used in different ways that wouldvighe such protection. The
options framework [65], in which a macro or MLN would be tredtas an alternative action with its
own -value, is one possibility. Another potential approach leddae interleaving demonstration

with learning and decreasing the amount of demonstrati@n time. This might sacrifice some

118

initial performance, but it could increase learning spesdvall as providing protection against
negative transfer.

Transfer methods that capture detailed knowledge from acediask may be susceptible to
overspecialization Protection against negative transfer in the target tasklioait the negative
effects of overspecialization. However, it could also beradsed more directly earlier in the
transfer process, during the extraction of knowledge fromdource task. Relational learning is
one approach that may help to prevent overspecializatiocest produces more general knowl-

edge. Future work in this area could develop other appraache

Theoretical Results

This thesis evaluates transfer algorithms experimenta¥ile this is an important form of
evaluation, it would also be valuable to determine the tbgoal bounds of their performance, as
some of the work in Section 3.6 does. Bounds of interest delihe following properties of a

target-task learner with transfer (as compared to withiaurtsfer):

e The initial target-task performance
e The rate of improvement over time

e The number of episodes required to reach the asymptote

To answer questions like these, it will first be necessanetmé a precise relationship between
a source task and a target task. Furthermore, a rigorougsanas likely to require a simpl€&-
learning algorithm and a simple domain, just as existin@tégcal results for inductive transfer

require simple Boolean classification tasks.

Joint Learning and Inference in Macros

In Chapter 5, the algorithms for learning macros perform pedelent ILP runs for structure
and ruleset learning. As | note in that chapter, this is netdhly possible approach. Some or all
of these problems could be combined, requiring a joint smut

There are some arguments in favor of a joint method. It stsofayors the development of

a coherent, global plan. The value of joint inference fovsg interdependent problems has

119

been established in other areas, most notably in naturgllsge processing (NLP). Often NLP
tasks are solved by a pipeline of local steps, each one gassiput to the next, but recent work
has shown that joint inference can improve overall perfaoroga For example, Sutton et al. [85]
simultaneously perform the two tasks of tagging parts oéspend chunking noun phrases. Other
applications of joint inference in NLP include DietterichcaBao [19], who jointly infer the topics
of emails and documents given the likely relationships aése by attached documents, and Poon
and Domingos [66], who perform joint inference to make umsuized coreference resolution
competitive with supervised.

In the context of macro learning, there are several leve|siat inference that could be con-
sidered. At one extreme, a single ILP search could be coeduttrough a possible space of
macro clauses. This is probably infeasible, because tbevedl clause length would need to be
much larger, and the ILP search would take an overwhelminguamof time. A more practi-
cal method would be to still learn a macro structure sepbgatat then learn rulesets jointly. In
MLN-enhanced macros, weights could also be learned jointly

There is one important difference between NLP problems hadrtacro problem that affects
joint-inference solutions: the element of time. When perfioig tagging and chunking in a test
example, Sutton et al. [85] receive an entire sentence aieg tvhen executing a macro, a target-
task learner receives information one state at a time. Thuassibns at early states cannot depend

on decisions at later states. In a sense, joint learning trasavould need to be partially ordered.

Refinement of Transferred Knowledge

The demonstration-based algorithms in this thesis cuyrese transferred knowledge for only
a fixed period of time in the target task. After the demongiraperiod, the target-task learners
abruptly ignore their macros or MLNs and conduct standard\Rhile it is certainly worthwhile to
do further learning in the target task, it may be possibled@alinstead by incrementally revising
the source-task knowledge.

In macros, there are three levels of possible revision: thetire, the rulesets, and the rule

scores. In MLNSs, there are two levels: the formulas and thghts. A reasonable approach would

120

be to make frequent revisions of lower-level knowledgee Wkeights and rule scores, and make
less frequent revisions of higher-level knowledge, liketforder logical rules.

There is potentially a difference between revising rulesd setearning them. Performing ILP
searches frequently is quite inefficient, though it may bedytm do occasionally. However, in-
cremental changes to rules can be made efficiently withaogu&P. For example, Mihalkova et
al. [55] propose an algorithm for finding clauses that areg@aeral or too specific and considering
additions and deletions of literals in those clauses.

The speed of learning in the target task, compared to stdridlay would depend on the ef-
fectiveness of these revision strategies. The asymptetiopnance, compared to standard RL,
would depend on the type of transferred knowledge. A singlenmis unlikely to reach asymptotic
performance, no matter how well revised, but an MLN policyyma

Even if refinement of transferred knowlege does not prodacgible benefits in target-task
learning, it may provide interesting information. Diffexees between the original knowledge and

the refined knowledge could essentially define the diffezsriietween the source and target tasks.

Relational Reinforcement Learning

The problem of refining relational knowledge in a target tesklosely related to the more
general problem of relational reinforcement learning. ams like RoboCup could benefit from
relational RL, which would provide substantial generdlima over objects and actions.

At first glance, the most logical candidate to serve as a Basi®lational RL appears to be
the MLN Q-function. An MLN could be used as@-function approximator instead of the more
typical propositional model. It could be employed in a batdorithm similar to RL-SVR, where
agents play batches of games and relearn the MLN after exachb

One interesting difference from RL-SVR is that the MIQdfunction provides a probability
distribution over theQ-values of actions, rather than providing just a single @alss | noted pre-
viously, this property makes it related to Bayesian reioéonent learning [83]. If one used MLN
Q-functions as the basis for relational RL, there would beaspymities for using the distribution

information to conduct exploration in a more sophisticatey than the--greedy method.

121

However, some preliminary experiments indicate that theNMD-function may not be a good
basis for relational RL due to some limitations in its regies accuracy. Consider a training
examples used to learn the MLN for the current batch. lgt(s) be theQ-value in the previous
batch for actior: in states. Let « be the learning-rate parameter, and1&&) be the temporal-
difference value for state, which is a function of the rewards received after stat@he training

output for states in the current batch is:

Ql(s) =(1—a)xQu(s)+axT(s) (7.1)

If @ (s) became more accurate over time, as it does in RL-SVR, thidduoe an effective
algorithm. However, it does not appear to do so, and thisgmsvthe algorithm from learning
effectively. The reason is that tiigvalue estimates of an MLR-function are not precise, because
of the binning and weighted-averaging strategy the algoritises.

In practice, an MLN typically assigns a high probability teetcorrectQ-value bin and low
probabilities to the other bins, as in the example on theiteRigure 6.1. Thus it is performing
good classification of examples inf@value bins, and it ranks actions reliably for the first batch
However, since th@-values are weighted averages, they are strongly biaseatdswhe expected
value of the correct bin. Rather than ranging acros€tvalue space as they naturally would, they
become essentially fixed near one value per bin. Thus the MLibi performing good regression
for Q-values, which prevents effective learning in subsequatdhes.

Increasing the number of bins leads to some smoothin@-wélues, but it also makes the
classification into bins more difficult, and the overall mgrhance does not improve. The number
of bins required to achieve high accuracy@rvalues cannot be supported by the amount of data
available, especially early in the learning curve.

Another inherent modeling issue with bins is that the oVeaalge of possibl€-values shrinks
with each chunk. With its weighted average calculation, diNMannot produce &-value higher
than the expected value of the rightmost bin (or lower thaetkpected value of the leftmost bin).

Thus each model has a smaller poss®iealue range than the last, which is not a natural dynamic

122

for Q-learning. While scaling could keep the range from shrinkithge correct behavior would
actually be for the range to increase by some unknown amount.

RelationalQ-learning therefore appears to require a model that caroperfegression nat-
urally, without losing information via binning. One postity might be the recently proposed
Hybrid MLN [109], which can contain real-valued nodes. Adftatively, moving away fronQ-
learning, relational RL could be approached with a poliegrsh algorithm based on macros from
Section 5.3 or MLN policies from Section 6.2. Regardlesshef inethod, the main challenge to
overcome in performing relational RL in a complex domainthes computational cost of repeated

stages of symbolic learning.

Bootstrapping Reinforcement Learning and Self-Training

The discovery that an MLN policy can outperform the soumsktpolicy from which it was
learned suggests that MLNs could be used to improve reiafoent learning outside the con-
text of transfer. In a bootstrapping approach, one couler@dite standard RL and MLN policy
demonstration to speed up RL within a single task.

There are two conditions that must hold in order for an apghnaaf this type to be effective.
First, an MLN policy must provide benefits near the beginrohthe source-task learning process
and not only near the asymptote. Second, the source-tasiefeaust be able to take advantage
of short demonstrations efficiently.

MLN policies might also be useful in self-training [98], wigean agent improves by playing
games against a version of itself. Learning an MLN policynfran earlier version, rather than

using the earlier version exactly, would give an agent anaaiate advantage.

7.3 The Future of Transfer Learning

The challenges discussed in this thesis will remain relewatuture work on transfer learning
in general. Humans appear to have natural mechanisms fadigigavhen to transfer informa-

tion, for selecting appropriate sources of knowledge, arddetermining the appropriate level

123

of abstraction. It is not always clear how to make these demwssfor a single machine learning
algorithm, much less in general.

One general challenge for future work is to enable transé&wben more diverse tasks. Davis
and Domingos [17] provide a potential direction for this ireir work on MLN transfer. They
perform pattern discovery in the source task to find secadérdormulas, which represent uni-
versal abstract concepts like symmetry and transitivityeWlearning an MLN for the target task,
they allow the search to use the discovered formulas in @adio the original predicates in the
domain. This approach is recognizeable as inductive teanbtit the source-task knowledge is
highly abstract, which allows the source and target taskifter significantly.

Yet another general challenge is to perform transfer in demestbeds. Particularly in rein-
forcement learning, it can become much more difficult to eehitransfer as the source and target
tasks become more complex. Since practical applicationsimfiorcement learning are likely to be
highly complex, it is important not to limit research on Riansfer to simple domains. RoboCup
is an important step toward realistic domains, but it is nfabal step.

Transfer learning has become a sizeable subfield in mackameihg. It has ideological bene-
fits, because it is seen as an important aspect of humanrgaarid also practical benefits, because
it can make machine learning more efficient. As computinggrancreases and researchers apply
machine learning to more and more complex problems, aslitke knowledge transfer can only

become more desirable.

124

LIST OF REFERENCES

[1] J. Abernethy, P. Bartlett, and A. Rakhlin. Multitask teang with expert advice. II€ompu-

tational Learning TheorySan Diego, CA, 2007.

[2] R. Ando and T. Zhang. A framework for learning predictsteuctures from multiple tasks

and unlabeled dataournal of Machine Learning Researd11817-1853, 2005.

[3] M. Asadi and M. Huber. Effective control knowledge tréersthrough learning skill and

[4]

[5]

[6]

[7]

representation hierarchies. limernational Joint Conference on Atrtificial Intelligenddy-
derabad, India, 2007.

J. Baxter. Theoretical models of learning to learn. ITBrun and L. Pratt, editorgearning
to Learn Kluwer, 1997.

J. Baxter. A model of inductive bias learningournal of Artificial Intelligence Research
12:149-198, 2000.

R. Bellman. A Markovian decision processJournal of Mathematics and Mechanjcs
6:679-684, 1957.

S. Ben-David and R. Schuller. Exploiting task relatessér multiple task learning. In
Computational Learning TheorWashington, DC, 2003.

[8] A. Botean, M. Enzenberger, M. Muller, and J. Schaeer. idd€&-: Improving Al planning

with automatically learned macro-operatordournal of Artificial Intelligence Research
24:581-621, 2005.

[9] A. Brown. Knowing when, where, and how to remember: A penb of metacognition.

[10]

[11]

In R. Glaser, editorAdvances in Instructional Psychology Vo].gages 77-166. Lawrence
Erlbaum Associates, 1978.

C. Carroll and K. Seppi. Task similarity measures for sf@nin reinforcement learning task
libraries. INIEEE International Joint Conference on Neural Networkontreal, Canada,
2005.

R. Caruana. Multitask learning/lachine Learning28:41-75, 1997.

125

[12] D. Choi and P. Langley. Learning teleoreactive logicgyeons from problem solving. In
International Conference on Inductive Logic ProgrammiBgnn, Germany, 2005.

[13] P. CohenEmpirical Methods for Artificial IntelligenceMIT Press, 1995.

[14] T. Croonenborghs, K. Driessens, and M. Bruynooghe. riegrrelational skills for induc-
tive transfer in relational reinforcement learning. liiernational Conference on Inductive
Logic ProgrammingCorvallis, OR, 2007.

[15] W. Dai, G. Xue, Q. Yang, and Y. Yu. Transferring Naive Bayclassifiers for text classifi-
cation. InAAAI Conference on Atrtificial Intelligenc®ancouver, BC, 2007.

[16] W. Dai, Q. Yang, G. Xue, and Y. Yu. Boosting for transfeatning. Ininternational
Conference on Machine Learningorvallis, OR, 2007.

[17] J. Davis and P. Domingos. Deep transfer via secondrdddekov logic. INAAAI Workshop
on Transfer Learning for Complex Task3hicago, IL, 2008.

[18] T. Dietterich. Hierarchical reinforcement learningtivthe MAXQ value function decom-
position. Journal of Artificial Intelligence Research3:227-303, 2000.

[19] T. Dietterich and X. Bao. Integrating multiple leargicomponents through Markov logic.
In AAAI Conference on Artificial Intelligenc€hicago, IL, 2008.

[20] P. Domingos. Personal communication, 2008.

[21] P. Domingos, S. Kok, H. Poon, M. Richardson, and P. &inglnifying logical and statistical
Al. In AAAI Conference on Atrtificial Intelligenc8oston, MA, 2006.

[22] P. Domingos and M. Richardson. Markov logic: A unifyifrgmework for statistical rela-
tional learning. INCML Workshop on Statistical Relational Learning and its Cections
to Other Fields Banff, Canada, 2004.

[23] K. Driessens and S. Dzeroski. Integrating experim@maand guidance in relational rein-
forcement learning. Imnternational Conference on Machine Learnjrigydney, Australia,
2002.

[24] K. Driessens, J. Ramon, and T. Croonenborghs. Transéening for reinforcement learn-
ing through goal and policy parametrization. IBML Workshop on Structural Knowledge
Transfer for Machine LearningPittsburgh, PA, 2006.

[25] E. Eaton and M. DesJardins. Knowledge transfer with #iregolution ensemble of clas-
sifiers. InICML Workshop on Structural Knowledge Transfer for Machinarbéng, Pitts-
burgh, PA, 2006.

126

[26] E. Eaton, M. DesJardins, and T. Lane. Modeling transédationships between learn-
ing tasks for improved inductive transfer. European Conference on Machine Learning
Antwerp, Belgium, 2008.

[27] H. Ellis. The Transfer of LearningThe Macmillan Company, 1965.

[28] B. Falkenhainer, K. Forbus, and D. Gentner. The stmgctnapping engine: Algorithm and
examplesAtrtificial Intelligence 41:1-63, 1989.

[29] F. Fernandez and M. Veloso. Probabilistic policy reursa reinforcement learning agent.
In Conference on Autonomous Agents and Multi-Agent Systémkedate, Japan, 2006.

[30] J. Flavell. Metacognitive aspects of problem solvitig.L. Resnick, editorThe Nature of
Intelligence pages 231-236. Lawrence Erlbaum Associates, 1976.

[31] Y. Freund and R. Schapire. A decision-theoretic geliion of on-line learning and an
application to boostingJournal of Computer and System Scien&#s119-139, 1997.

[32] J. Gao, W. Fan, J. Jiang, and J. Han. Knowledge transdenultiple model local structure
mapping. Ininternational Conference on Knowledge Discovery and DataimginLas
Vegas, NV, 2008.

[33] L. Getoor and B. Taskaintroduction to Statistical Relational Learning/IT Press, 2007.
[34] A. Gill. Introduction to the Theory of Finite-State Machin®éécGraw-Hill, 1962.

[35] M. Goadrich, L. Oliphant, and J. Shavlik. Gleaner: Cregitensembles of first-order clauses
to improve recall-precision curvedlachine Learning64:231-262, 2006.

[36] H. Hlynsson. Transfer learning using the minimum dggmon length principle with a de-
cision tree application. Master’s thesis, University of sterdam, Graduate Programme in
Logic, 2007.

[37] H. Daume lll. Practical Structured Learning Techniques for Natural Laage Processing
PhD thesis, University of Southern California, Departmern€omputer Science, 2006.

[38] F. JensenAn Introduction to Neural NetworksSpringer Verlag, 1996.

[39] M.Klenkand K. Forbus. Measuring the level of transésaring by an AP physics problem-
solver. INAAAI Conference on Artificial Intelligeng®ancouver, BC, 2007.

[40] S. Kok, P. Singla, M. Richardson, and P. Domingos. Thehamy system for statistical
relational Al. http://alchemy.cs.washington.edu, 2005.

[41] G. Konidaris and A. Barto. Autonomous shaping: Knowjedransfer in reinforcement
learning. Ininternational Conference on Machine Learnjmjttsburgh, PA, 2006.

127

[42] G. Kuhlmann and P. Stone. Graph-based domain mappingaiesfer learning in general
games. IrEuropean Conference on Machine Learnikigarsaw, Poland, 2007.

[43] G. Kuhlmann, P. Stone, R. Mooney, and J. Shavlik. Ggdirreinforcement learner with
natural language advice: Initial results in RoboCup sockeAAAIl Workshop on Supervi-
sory Control of Learning and Adaptive Systei®an Jose, CA, 2004.

[44] A. Lazaric, M. Restelli, and A. Bonarini. Transfer ofraples in batch reinforcement learn-
ing. InInternational Conference on Machine Learnjigelsinki, Finland, 2008.

[45] Y. Liu and P. Stone. Value-function-based transferranforcement learning using struc-
ture mapping. IMAAAI Conference on Artificial Intelligenc8oston, MA, 2006.

[46] D. Lowd and P. Domingos. Efficient weight learning for Mav logic networks. IrKnowl-
edge Discovery in Databasé&/arsaw, Poland, 2007.

[47] R. Maclin and J. Shavlik. Creating advice-taking rencment learnersMachine Learn-
ing, 22:251-281, 1996.

[48] R. Maclin, J. Shavlik, L. Torrey, and T. Walker. Knowlgelbased support vector regression
for reinforcement learning. IRICAI Workshop on Reasoning, Representation, and Learning
in Computer Game<$dinburgh, Scotland, 2005.

[49] R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wil&iving advice about preferred ac-
tions to reinforcement learners via knowledge-based keegeession. IrAAAI Conference
on Artificial Intelligence Pittsburgh, PA, 2005.

[50] R. Maclin, J. Shavlik, T. Walker, and L. Torrey. A simpdad effective method for incor-
porating advice into kernel methods. AdAI Conference on Artificial IntelligencBoston,
MA, 2006.

[51] M. Madden and T. Howley. Transfer of experience betwesnforcement learning envi-
ronments with progressive difficultyArtificial Intelligence Review21:375-398, 2004.

[52] O. Mangasarian, J. Shavlik, and E. Wild. Knowledgedublsernel approximationJournal
of Machine Learning Research:1127-1141, 2004.

[53] Z.Marx, M. Rosenstein, L. Kaelbling, and T. Diettericfransfer learning with an ensemble
of background tasks. INIPS Workshop on Transfer Learningancouver, BC, 2005.

[54] N. Mehta, S. Ray, P. Tadepalli, and T. Dietterich. Autdit discovery and transfer of
MAXQ hierarchies. Ininternational Conference on Machine Learnjrdelsinki, Finland,
2008.

[55] L. Mihalkova, T. Huynh, and R. Mooney. Mapping and révgsMarkov logic networks for
transfer learning. IMAAI Conference on Atrtificial Intelligenc®ancouver, BC, 2007.

128

[56] L. Mihalkova and R. Mooney. Transfer learning with Marklogic networks. InICML
Workshop on Structural Knowledge Transfer for Machine LewgnPittsburgh, PA, 2006.

[57] T. Mitchell. Machine Learning McGraw-Hill, 1997.

[58] A. Niculescu-Mizil and R. Caruana. Inductive transfer Bayesian network structure learn-
ing. In Conference on Al and StatisticSan Juan, Puerto Rico, 2007.

[59] I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccervee A tool for research on
multiagent systemdsApplied Artificial Intelligence12:233-250, 1998.

[60] G. Obozinski, B. Taskar, and M. Jordan. Joint covarsakection and joint subspace selec-
tion for multiple classification problemstatistics and Computingo appear, 2009.

[61] T. Odlin. Language Transfer: Cross-Linguistic Influence in Languagarhing Cam-
bridge University Press, 1989.

[62] S. Pan, J. Kwok, and Q. Yang. Transfer learning via disn@mality reduction. InAAAI
Conference on Atrtificial Intelligen¢€hicago, IL, 2008.

[63] S.Pan,I. Tsang, J. Kwok, and Q. Yang. Domain adaptaimtransfer component analysis.
In International Joint Conference on Artificial Intelligend@asadena, CA, 2009.

[64] M. Pazzani and D. Kibler. The utility of background knledge in inductive learning.
Machine Learning9:57-94, 1992.

[65] T. Perkins and D. Precup. Using options for knowledg@sfer in reinforcement learning.
Technical Report UM-CS-1999-034, University of Massackisgs@dmbherst, 1999.

[66] H. Poon and P. Domingos. Joint unsupervised coreferezsnlution with Markov logic. In
Conference on Empirical Methods in Natural Language Praogss$ionolulu, HI, 2008.

[67] B. Price and C. Boutilier. Implicit imitation in multiamnt reinforcement learning. limter-
national Conference on Machine Learnirigjed, Slovenia, 1999.

[68] L. De Raedt.Logical and Relational LearningSpringer, 2008.

[69] R. Raina, A. Ng, and D. Koller. Constructing informatipgors using transfer learning. In
International Conference on Machine Learnjmjttsburgh, PA, 2006.

[70] M. Richardson and P. Domingos. Markov logic network&achine Learning62:107-136,
2006.

[71] M. Rosenstein, Z. Marx, L. Kaelbling, and T. Diettericio transfer or not to transfer. In
NIPS Workshop on Inductive Transf&ancouver, BC, 2005.

[72] U. Ruckert and S. Kramer. Kernel-based inductive timnsin European Conference on
Machine LearningAntwerp, Belgium, 2008.

129

[73] D. Rumelhart, B. Widrow, and M. Lehr. The basic ideas @ural networks.Communica-
tions of the ACM37:87-92, 1994.

[74] M. Sharma, M. Holmes, J. Santamaria, A. Irani, C. Iskeslid A. Ram. Transfer learning
in real-time strategy games using hybrid CBR/RL. Iiernational Joint Conference on
Artificial Intelligence Hyderabad, India, 2007.

[75] A. Sherstov and P. Stone. Action-space knowledge teams MDPs: Formalism, subopti-
mality bounds, and algorithms. Domputational Learning TheoyBertinoro, Italy, 2005.

[76] X. Shi, W. Fan, and J. Ren. Actively transfer domain kienige. InEuropean Conference
on Machine LearningAntwerp, Belgium, 2008.

[77] D. Silver, R. Poirier, and D. Currie. Inductive transfgith context-sensitive neural net-
works. Machine Learning73:313-336, 2008.

[78] S. Singh. Transfer of learning by composing solutiohglemental sequential taskMa-
chine Learning8:323-339, 1992.

[79] V. Soni and S. Singh. Using homomorphisms to transfdéioog across continuous rein-
forcement learning domains. KWAAI Conference on Artificial Intelligenc®oston, MA,
2006.

[80] A. Srinivasan. The Aleph manual. http://www.comlabax.uk/activities/machinelearning/
Aleph/aleph.html, 2001.

[81] P. Stone and R. Sutton. Scaling reinforcement leartomgard RoboCup soccer. linter-
national Conference on Machine Learnjngilliamstown, MA, 2001.

[82] D. Stracuzzi. Memory organization and knowledge tfansin ICML Workshop on Struc-
tural Knowledge Transfer for Machine Learningittsburgh, PA, 2006.

[83] M. Strens. A Bayesian framework for reinforcement f@ag. InInternational Conference
on Machine LearningStanford University, CA, 2000.

[84] C. Sutton and A. McCallum. Composition of conditional randfields for transfer learn-
ing. InConference on Empirical Methods in Natural Language Praogs¥ancouver, BC,
2005.

[85] C. Sutton, K. Rohanimanesh, and A. McCallum. Factorizexbabilistic models for la-

beling and segmenting sequence datalnternational Conference on Machine Learnjng
2004.

[86] R. Sutton. Learning to predict by the methods of tempdifferences.Machine Learning
3:9-44, 1988.

[87] R. Sutton and A. BartoReinforcement Learning: An IntroductioMIT Press, 1998.

130

[88] E. Talvitie and S. Singh. An experts algorithm for treerdearning. Ininternational Joint
Conference on Atrtificial Intelligencélyderabad, India, 2007.

[89] F. Tanaka and M. Yamamura. Multitask reinforcementi@gy on the distribution of MDPs.
Transactions of the Institute of Electrical Engineers gbda 123:1004-1011, 2003.

[90] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin.arbég structured prediction
models: A large margin approach. limternational Conference on Machine Learnjra05.

[91] M. Taylor, N. Jong, and P. Stone. Transferring instanfe model-based reinforcement
learning. InEuropean Conference on Machine Learnidgtwerp, Belgium, 2008.

[92] M. Taylor, G. Kuhlmann, and P. Stone. Autonomous tran&ir reinforcement learning. In
Conference on Autonomous Agents and Multi-Agent Syskstyil, Portugal, 2008.

[93] M. Taylor, G. Kuhlmann, and P. Stone. Accelerating skawith transferred heuristics. In
ICAPS Workshop on Al Planning and LearnjiRyovidence, RI, 2007.

[94] M. Taylor and P. Stone. Cross-domain transfer for reicdément learning. ltnternational
Conference on Machine Learningorvallis, OR, 2007.

[95] M. Taylor and P. Stone. Transfer via inter-task mappimng policy search reinforcement
learning. InConference on Autonomous Agents and Multi-Agent Systéarslulu, Hl,
2007.

[96] M. Taylor, P. Stone, and Y. Liu. Value functions for Rladed behavior transfer: A compar-
ative study. IPAAAI Conference on Atrtificial Intelligenc®ittsburgh, PA, 2005.

[97] M. Taylor, S. Whiteson, and P. Stone. Transfer learnorgblicy search methods. ICML
Workshop on Structural Knowledge Transfer for Machine LewgrPittsburgh, PA, 2006.

[98] G. Tesauro. Temporal difference learning and TD-gamn@ommunications of the ACM
38:58-68, 1995.

[99] E. Thorndike.Principles of TeachingMason Henry, 1906.

[100] S. Thrun and T. Mitchell. Learning one more thing. liviernational Joint Conference on
Artificial Intelligence Montreal, Quebec, 1995.

[101] L. Torrey and J. Shavlik. Transfer learning. In E. $oi. Martin, R. Magdalena, M. Mar-
tinez, and A. Serrano, editorslandbook of Research on Machine Learning Applications
IGI Global, 2009.

[102] L. Torrey, J. Shavlik, S. Natarajan, P. Kuppili, andWalker. Transfer in reinforcement
learning via Markov logic networks. IAAAI Workshop on Transfer Learning for Complex
Tasks Chicago, IL, 2008.

131

[103] L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Skiltguisition via transfer learning and
advice taking. IrEuropean Conference on Machine LearniBgrlin, Germany, 2006.

[104] L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Retatal macros for transfer in reinforce-
ment learning. Innternational Conference on Inductive Logic Programmi@prvallis,
OR, 2007.

[105] L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Retatal skill transfer via advice taking.
In ICML Workshop on Structural Knowledge Transfer for Machinarbéng, Pittsburgh,
PA, 2006.

[106] L. Torrey, T. Walker, J. Shavlik, and R. Maclin. Usindwce to transfer knowledge ac-
quired in one reinforcement learning task to anotherElmopean Conference on Machine
Learning Porto, Portugal, 2005.

[107] T. Walsh, L. Li, and M. Littman. Transferring state &lastions between MDPs. IiCML
Workshop on Structural Knowledge Transfer for Machine LewgrPittsburgh, PA, 2006.

[108] C.Wangand S. Mahadevan. Manifold alignment using fisies analysis. limternational
Conference on Machine Learningelsinki, Finland, 2008.

[109] J. Wang and P. Domingos. Hybrid Markov logic networksAAAI Conference on Atrtificial
Intelligence Chicago, IL, 2008.

[110] C. Watkins and P. Dayan. Q-learningachine Learning8:279-292, 1992.
[111] U. Weinreich.Languages in ContactMouton, 1953.

[112] A. Wilson, A. Fern, S. Ray, and P. Tadepalli. Multiftaginforcement learning: A hier-
archical Bayesian approach. Iimternational Conference on Machine Learnjr@orvallis,
OR, 2007.

[113] F. Zelezny, A. Srinivasan, and D. Page. Lattice-deaunatime distributions may be heavy-
tailed. InInternational Conference on Inductive Logic Programmi&ydney, Australia,
1995.

[114] J. Zhang, Z. Ghahramani, and Y. Yang. Flexible latemtable models for multi-task learn-
ing. Machine Learning73:221-242, 2008.

[115] X. Zhu. Semi-supervised learning literature surv@gchnical Report Computer Sciences
TR 1530, University of Wisconsin-Madison, 2005.

DISCARD THIS PAGE

132

NOMENCLATURE

This is a glossary of useful terms. Some terms have spec#isings in the context of this thesis,
and may have other significance elsewhere.

Advice:a set of instructions about a task solution that may not beptete or perfectly correct.

Advice-based transfemy term for a set of transfer algorithms that use source-kasivledge
as advice in a target task.

Alchemy:an implementation of Markov Logic Networks by the group oflReDomingos at the
University of Washington.

Aleph: an implementation of inductive logic programming by Ashv@nnivasan.

Alteration methodsmy term for transfer methods in reinforcement learning ttretnge the state
space, action space, or reward function of a target taslkdo@ssource-task knowledge.

Agent:a term used interchangeably witrarner.

Batch: a set of episodes in the RL-SVR reinforcement-learning ritlym that are performed
sequentially with the same policy; the policy is updateéradtach batch.

Bayesian reinforcement learningt type of reinforcement learning that models distributiohs
values, and to which MLN)-functions are related.

BreakAway:a reinforcement-learning subtask in the RoboCup simulatedes domain.
Classification:a mapping from a feature space to a set of labels.

Clause:a disjunction of literals; in this thesis | use Horn clausekich contain a head implied
by a conjunction of non-negated literals.

Close transfertransfer between closely related tasks.

Demonstrationmy term for transfer methods that use a source-task policgrianitial period in
a target task.

Distant transfer:transfer between less similar tasks.

133

e-greedy:a popular method of balancing exploration and exploitaioreinforcement learning,
where the learner mostly exploits its current policy butlexgs randomly in a small fraction
() of steps.

Episode:a segment of training in reinforcement learning that hasfmele beginning and end.

Exploitation: when a reinforcement learner takes the action recommengl@d burrent policy
in order to maximize its reward.

Exploration: when a reinforcement learner takes an action not recomnadngis current policy
in order to discover new information.

ExtenKBKRa variant of Preference-KBKR that is designed to handle npéeges of advice.
F-measure:a scoring function for clauses that balances recall andgoec

Feature:in this thesis, refers to one of a set of properties that deser state in a reinforcement
learner’s environment.

First-order logic: a system for representing logical statements that, unlik@gsitional logic,
allows the use of quantified variables.

Formula: in this thesis, one of a set of statements in first-order logacMarkov Logic Network.
Gleaner:a system that extracts a wide range of useful clausesereredrduring an Aleph search.
Head: a literal implied by other literals in a Horn clause.

Hierarchical learning: any type of learning that involves simpler tasks combinetk&wn more
complex tasks.

Imitation methodsmy term for transfer methods in reinforcement learning gqatly a source-
task policy to choose some actions while learning the taegit

Inductive bias:ithe set of assumptions that an inductive learner makes #t@abncept it induces.

Inductive learning:a type of machine learning in which a predictive model is retlifrom a set
of training examples.

Inductive logic programming (ILP)a set of methods for learning classifiers in first-order logic

KBKR: knowledge-based kernel regression, a method for solvirggeession problem that in-
cludes advice, upon which my advice-based transfer algnstdepend.

KeepAwaya reinforcement-learning subtask in the RoboCup simulatedes domain.

Learning curve:a plot reporting the performance of a reinforcement leaaver time.

134

Literal: a statement of a property of the world that may be either trifalse.

Macro-operator (macro):a composition of primitive actions into a useful group; imstthesis,
a relational macro is a relational finite-state machine tiecribes a successful action se-
guence in a task.

Macro transfer:my term for a set of transfer algorithms that learn succéssfurce-task action
sequences for use in a target task.

Mapping: a description of the correspondences between source ayed tasks in transfer learn-
ing or analogical reasoning.

Markov Logic Network (MLN)a model that expresses concepts with first-order clausethaut
also indicates probability by putting weights on clauses.

MLN policy transfer:my term for my proposed Transfer Algorithm 6 6.2.
MLN @-function transfer:my term for my proposed Transfer Algorithm 5 6.1.

MLN transfer: my term for a set of transfer algorithms that learn Markov icoyetworks to
express source-task knowledge for use in a target task.

Model-free:a type of reinforcement learning in which the environmentas modeled.
Model-learning:a type of reinforcement learning in which the environmemhisdeled.
MoveDownfield:a reinforcement-learning subtask in the RoboCup simulatedes domain.
Multi-task learning:methods in machine learning that learn multiple tasks dzmalously.
Multiple-macro transfermy term for my proposed Transfer Algorithm 4 5.3.

Negative transfera decrease in learning performance in a target task duertsféalearning.
Node:one of a sequence of internal states in a macro.

Option: a high-level action in reinforcement learning that invaseveral lower-level actions.

Overfitting: when a machine-learning algorithm models its training dateclosely, thus treating
spurious patterns as important and not generalizing welhé¢g data drawn from the same
distribution.

Overspecializationmy term for when a transfer algorithm models a source taskhkogely, thus
not generalizing well to target tasks that differ from theise.

p-value: a statistic that measures how confident one can be that tw@satimbers are signifi-
cantly different.

135

Policy: the mechanism by which a reinforcement-learning agentsf®uwhich action to execute
next.

Policy-search:a type of reinforcement learning in which a policy is dirgciind iteratively up-
dated.

Policy transfer:my term for my proposed Transfer Algorithm 1 4.2.
Precision:the fraction of examples a classifier calls positive thattary positive.

Preference-KBKRan advice-taking system based on KBKR that accepts adwuoegsi prefer
one action over another.

Propositional logic: a system for representing logical statements that, unlisé-drder logic,
does not allow the use of quantified variables.

@-function: a function incrementally learned by a reinforcement leatagredict the expected
long-term reward after taking an action in a state.

(-learning: a popular algorithm for reinforcement learning that invedvuearning a&)-function.

(Q-value: the expected long-term reward for a reinforcement learffter #&aking an action in a
state.

Recall: the fraction of truly positive examples that a classifiereotly calls positive.
Regressiona mapping from a feature space to a real value.

Reinforcement learning (RL& type of machine learning in which an agent learns througie-ex
rience to navigate through an environment, choosing agiioorder to maximize rewards.

Relational knowledgeinformation about relationships between objects, ex@eas first-order
logic.

Relational reinforcement learningt type of reinforcement learning in which states are expgiess
in first-order logic rather than in fixed-length feature st

Reward:a real-valued reinforcement received by a reinforcemearnker when it takes an action.
RoboCup:a simulated soccer domain that has been adapted for regmhenat learning.
RL-SVR:an algorithm used to implement reinforcement learning vigp®rt-vector regression.
SARSAa variant of Q-learning that takes exploration steps intmaat during updates.

Self-transfer:transfer learning when the source and target task are the,saften used in this
thesis as a way to measure the completeness of transferoadddye.

136

Single-macro transfermy term for my proposed Transfer Algorithm 3 5.2.

Skill: a rule in first-order logic that describe good conditionsemdhich to take an action.
Skill transfer:my term for my proposed Transfer Algorithm 2 4.3.

Source taska task that a learner has already learned and from whichmisteas knowledge.

Starting-point methodany term for transfer methods in reinforcement learning gethe initial
solution in the target task based on knowledge from a soaste t

State: in this thesis, refers to one of many possible settings offélatures in a reinforcement
learner’s environment.

Statistical-relational learninga type of machine learning that combines paradigms of logit a
probability.

Support-vector machinea classification approach that constructs a hyperplanep@arate data
into classes by maximizing the margin between the trainatg;calso a regression approach
that fits a hyperplane to the training data by related methods

Target task:a task in which learning is improved through knowledge tfans

Temporal-difference methodatgorithms for reinforcement learning that iterativelydape value
functions.

Theory:a set of clauses learned by inductive logic programming szidlee a concept.

Tiling: discretizing continuous features into intervals and agdimese intervals as additional
Boolean features to enhance the description of a reinfoeogfhearning environment.

Transfer learning:methods in machine learning that improve learning in a tati@gk by trans-
ferring knowledge from one or more related source tasks.

Value function:a function incrementally learned by a reinforcement leatagredict the value
of a state or action.

137

APPENDIX
A. RoboCup Feature and Action Spaces

This appendix provides information that was omitted fromlieachapters for readability: the
features and actions for the RoboCup tasks.

Table A.1 shows the action spaces for KeepAway, MoveDowhfeahd BreakAway, the three
RoboCup tasks used for experiments in this thesis, and TaBlsl#ows the feature spaces.

Player objects are numbered in order of increasing curristeuace to the player with the ball.
The functionsminDistTaker(Keeperand minAngleTaker(Keepe®valuate to the player objects
t0, t1, and so on that are currently closest in distance and angpectively to the given Keeper
object. Similarly, the functionminDistDefender(AttackegndminAngleDefender(Attackeeach
evaluate to one of the player objed d1, etc.

Note that | present these features as predicates in first-dodic. Variables are capitalized
and typed Player, Keeper etc.) and constants are uncapitalized. For simplicitydigate types
by variable names, leaving out implied terms liglayer(Player) keeper(Keeper)etc. Since |
am not using fully relational reinforcement learning, therhls are actually grounded and used as
propositional features during learning. However, sincenlteansferring relational information, |

represent them in a relational form here for convenience.

138

Table A.1: RoboCup task action spaces.

KeepAway actions

pass(Teammate) Teammatgkl, k2, ..}
holdBall

MoveDownfield actions

pass(Teammate) Teammatdal, a2, .}
move(Direction) Directiore {ahead, away, left, right

BreakAway actions

pass(Teammate) Teammat€al, a2, .}
move(Direction) Directiore {ahead, away, left, right
shoot(GoalPart) GoalPart {goalRight, goallLeft, goalCentgr

Table A.2: RoboCup task feature spaces.

KeepAway features

distBetween(k0, Player) Player{k1, k2, ..} U {t0, t1, ..}
distBetween(Keeper, minDistTaker(Keeper)) Keepdkl, k2, ..}
angleDefinedBy(Keeper, kO, minAngleTaker(Keeper)) Keepékl, k2, ..}
distBetween(Player, fieldCenter) Playefko, k1, ..} U {t0, t1, ..}

MoveDownfield features

distBetween(a0, Player) Player{al, a2, .} U {d0, d1, ..}
distBetween(Attacker, minDistDefender(Attacker)) Attere {al, a2, .}
angleDefinedBy(Attacker, a0, minAngleDefender(AttagkerAttackerc {al, a2, .}
distToRightEdge(Attacker) Attacker {a0, a1, .}
timeLeft (in tenths of seconds)

BreakAway features

distBetween(a0, Player) Player{al, a2, .} U {d0O, d1, ..}
distBetween(Attacker, minDistDefender(Attacker)) Atarc {al, a2, .}
angleDefinedBy(Attacker, a0, minAngleDefender(AttagkerAttackerc {al, a2, .}
distBetween(Attacker, GoalPart) Attackerao0, a1, .}
distBetween(Attacker, goalie) Attacker{a0, a1, .}
angleDefinedBy(Attacker, a0, goalie) Attackefal, a2, .}
angleDefinedBy(GoalPart, a0, goalie) GoalRafgoalRight, goalLeft, goalCentpr

angleDefinedBy(topRightCorner, goalCenter, a0)
timelLeft (in tenths of seconds)

139

APPENDIX
B. Propositional Mappings

This appendix provides information that was omitted fromlieachapters for readability: the
mappings | provide for policy transfer between RoboCup tasks

Mappings for policy transfer, as introduced in Section #aich up propositional features and
actions between the source and target. As described indBet.1, actions may have zero, one,
or multiple mappings. For each mapped source-target aptam each source-task feature may
map to a single target-task feature, or it may map to a cotistan

Tables B.1, B.2, and B.3 show the propositional mappingslfas close-transfer scenarios,
where the target task is the same as the source task excdptifférent numbers of players.
In these scenarios, the target-task action space is theestask action space plus an additional
passaction for the new teammate, and the feature space is theestask feature space plus
some additional angles and distances for the new teamméiies dvery source-task action and
feature has at least one mapping, and passaction has multiple mappings in order to provide
information for all of the target-task actions.

Tables B.4 and B.5 show the propositional mappings | useisbawt-transfer scenarios, where
the source and target tasks differ. In these scenariog #rersome actions in the source-task action
space that do not have mappings, and there are some soskciegdures that map to constants
because they have no matching target-task features. Alswotefare features that refer to the
furthest opponentd(l or t1 in the source tasks), which | map to features that refer tduhtbest

opponent in the target taské2(or ¢2).

140

Table B.1: Propositional mappings from 2-on-1 BreakAway to 3-on-2dBway, used in policy transfer.

Source 2-on-1 BreakAway

Target 3-on-2 BreakAway

Actions

move(ahead)
move(away)
move(left)
move(right)
shoot(goalCenter)
shoot(goalLeft)
shoot(goalRight)
pass(al)

Features

distBetween(a0, al)

distBetween(a0, goalie)
distBetween(al, goalie)
angleDefinedBy(al, a0, goalie)
distBetween(a0, goallLeft)
distBetween(a0, goalRight)
distBetween(a0, goalCenter)
angleDefinedBy(goalLeft, a0, goalie)
angleDefinedBy(goalRight, a0, goalie)
angleDefinedBy(goalCenter, a0, goalie)

timeLeft

Mapped actions

move(ahead)

move(away)

move(left)

move(right)

shoot(goalCenter)

shoot(goalLeft)

shoot(goalRight)

pass(al)

Mapped features for the above actions

distBetween(a0, al)

distBetween(a0, goalie)
distBetween(al, goalie)
angleDefinedBy(al, a0, goalie)
distBetween(a0, goalLeft)
distBetween(a0, goalRight)
distBetween(a0, goalCenter)
angleDefinedBy(goalLeft, a0, goalie)
angleDefinedBy(goalRight, a0, goalie)
angleDefinedBy(goalCenter, a0, goalie)

timeLeft

Actions with additional mappings
pass(al)
Features

distBetween(a0, al)

distBetween(a0, goalie)
distBetween(al, goalie)
angleDefinedBy(al, a0, goalie)
distBetween(a0, goallLeft)
distBetween(a0, goalRight)
distBetween(a0, goalCenter)
angleDefinedBy(goalLeft, a0, goalie)
angleDefinedBy(goalRight, a0, goalie)
angleDefinedBy(goalCenter, a0, goalie)

timeLeft

Mapped actions
pass(a2)
Mapped features for the above actions

distBetween(a0, a2)

distBetween(a0, goalie)
distBetween(a2, goalie)
angleDefinedBy(a2, a0, goalie)
distBetween(a0, goalLeft)
distBetween(a0, goalRight)
distBetween(a0, goalCenter)
angleDefinedBy(goalLeft, a0, goalie)
angleDefinedBy(goalRight, a0, goalie)
angleDefinedBy(goalCenter, a0, goalie)

timeLeft

angleDefinedBy(topRightCorner, goalCenter, @a0angleDefinedBy(topRightCorner, goalCenter, 0)

angleDefinedBy(topRightCorner, goalCenter, a0angleDefinedBy(topRightCorner, goalCenter, @0)

141

Table B.2: Propositional mappings from 3-on-2 MoveDownfield to 4-on-8WdDownfield, used in policy

transfer.
3-on-2 MoveDownfield 4-on-3 MoveDownfield
Actions Mapped actions
move(ahead) move(ahead)
move(away) move(away)
move(left) move(left)
move(right) move(right)
pass(al) pass(al)
pass(a2) pass(a2)
Features Mapped features for the above actions
distBetween(a0, al) distBetween(ao, al)
distBetween(a0, a2) distBetween(a0, a2)
distBetween(a0, d0) distBetween(a0, d0)
distBetween(a0, d1) distBetween(a0, d2)
distBetween(al, minDistDefender(al)) distBetween(al, minDistDefender(al))
distBetween(a2, minDistDefender(a2)) distBetween(a2, minDistDefender(a2))

angleDefinedBy(al, a0, minAngleDefender(all)angleDefinedBy(al, a0, minAngleDefender(al))
angleDefinedBy(a2, a0, minAngleDefender(aR) angleDefinedBy(a2, a0, minAngleDefender(ak))

distToRightEdge(a0) distToRightEdge(a0)
distToRightEdge(al) distToRightEdge(al)
distToRightEdge(a2) distToRightEdge(a2)

timeLeft timeLeft

Actions with additional mappings Mapped actions

pass(a2) pass(a3)

Features Mapped features for the above actions
distBetween(a0, al) distBetween(a0, al)

distBetween(a0, a2) distBetween(ao0, a3)

distBetween(a0, d0) distBetween(a0, d0)

distBetween(a0, d1) distBetween(a0, d2)

distBetween(al, minDistDefender(al)) distBetween(al, minDistDefender(al))
distBetween(a2, minDistDefender(a2)) distBetween(a3, minDistDefender(a3))

angleDefinedBy(al, a0, minAngleDefender(all) angleDefinedBy(al, a0, minAngleDefender(al))
angleDefinedBy(a2, a0, minAngleDefender(aR) angleDefinedBy(a3, a0, minAngleDefender(aB))

distToRightEdge(a0) distToRightEdge(a0)
distToRightEdge(al) distToRightEdge(al)
distToRightEdge(a2) distToRightEdge(a3)

timeLeft timeLeft

3-on-2 KeepAway

4-on-3 KeepAway

Actions

holdBall
pass(kl)
pass(k2)
Features

distBetween(kO0, k1)
distBetween(k0, k2)
distBetween(kO, t0)
distBetween(kO, t1)
distBetween(k1, minDistKeeper(k1))
distBetween(k2, minDistKeeper(k2))
angleDefinedBy(k1, kO, minAngleKeeper(kl
angleDefinedBy(k2, kO, minAngleKeeper(k2
distBetween(kO, fieldCenter)
distBetween(k1, fieldCenter)
distBetween(k2, fieldCenter)
distBetween(t0, fieldCenter)
distBetween(t1, fieldCenter)

Mapped actions

holdBall

pass(kl)

pass(k2)

Mapped features for the above actions

distBetween(kO0, k1)
distBetween(k0, k2)
distBetween(kO, t0)
distBetween(kO, t2)
distBetween(k1, minDistKeeper(k1))
distBetween(k2, minDistKeeper(k2))
)) angleDefinedBy(k1, kO, minAngleKeeper(kl
)) angleDefinedBy(k2, kO, minAngleKeeper(k2
distBetween(kO, fieldCenter)
distBetween(k1, fieldCenter)
distBetween(k2, fieldCenter)
distBetween(t0, fieldCenter)
distBetween(t2, fieldCenter)

Actions with additional mappings
pass(k2)
Features

distBetween(kO0, k1)
distBetween(k0, k2)
distBetween(k0, t0)
distBetween(kO, t1)
distBetween(k1, minDistKeeper(kl))
distBetween(k2, minDistKeeper(k2))

angleDefinedBy(k1, kO, minAngleKeeper(kl)) angleDefinedBy(k1, kO, minAngleKeeper(kl
angleDefinedBy(k2, kO, minAngleKeeper(k2)) angleDefinedBy(k3, kO, minAngleKeeper(k3

distBetween(kO, fieldCenter)
distBetween(k1, fieldCenter)
distBetween(k2, fieldCenter)
distBetween(t0, fieldCenter)
distBetween(t1, fieldCenter)

Mapped actions
pass(k3)
Mapped features for the above actions

distBetween(kO0, k1)
distBetween(k0, k3)
distBetween(kO, t0)
distBetween(kO, t2)
distBetween(k1, minDistKeeper(kl))
distBetween(k3, minDistKeeper(k3))

distBetween(kO, fieldCenter)
distBetween(k1, fieldCenter)
distBetween(k3, fieldCenter)
distBetween(t0, fieldCenter)
distBetween(t2, fieldCenter)

)
)

142

Table B.3: Propositional mappings from 3-on-2 KeepAway to 4-on-3 Kiegy, used in policy transfer.

143

Table B.4: Propositional mappings from 3-on-2 MoveDownfield to 3-on-2é&kAway, used in policy

transfer.
3-on-2 MoveDownfield 3-on-2 BreakAway
Actions Mapped actions
move(ahead) move(ahead)
move(away) move(away)
move(left) move(left)
move(right) move(right)
pass(al) pass(al)
pass(a2) pass(a2)
Features Mapped features for the above actions
distBetween(a0, al) distBetween(ao, al)
distBetween(a0, a2) distBetween(a0, a2)
distBetween(a0, d0) distBetween(a0, d0)
distBetween(a0, d1) distBetween(a0, d0)
distBetween(al, minDistDefender(al)) distBetween(al, minDistDefender(al))
distBetween(a2, minDistDefender(a2)) distBetween(a2, minDistDefender(a2))
angleDefinedBy(al, a0, minAngleDefender(all) angleDefinedBy(al, a0, minAngleDefender(al))
angleDefinedBy(a2, a0, minAngleDefender(aR) angleDefinedBy(a2, a0, minAngleDefender(a®))
distToRightEdge(a0) distBetween(a0, goalCenter)
distToRightEdge(al) distBetween(al, goalCenter)
distToRightEdge(a2) distBetween(a2, goalCenter)
timeLeft timeLeft

144

Table B.5: Propositional mappings from 3-on-2 KeepAway to 3-on-2 RAgeay, used in policy transfer.

3-on-2 KeepAway 3-on-2 BreakAway

Actions Mapped actions

holdBall

pass(kl) pass(al)

pass(k2) pass(a2)

Features Mapped features for the above actions
distBetween(kO, k1) distBetween(a0, al)

distBetween(kO0, k2) distBetween(a0, a2)

distBetween(kO, t0) distBetween(a0, d0)

distBetween(t0, t1) distBetween(a0, d0)

distBetween(k1, minDistTaker(k1)) distBetween(al, minDistDefender(al))
distBetween(k2, minDistTaker(k2)) distBetween(a2, minDistDefender(a2))
angleDefinedBy(k1, kO, minAngleTaker(k1)) angleDefinedBy(al, a0, minAngleDefender(all))
angleDefinedBy(k2, kO, minAngleTaker(k2)) angleDefinedBy(a2, a0, minAngleDefender(a))
distBetween(kO, fieldCenter) 15

distBetween(k1, fieldCenter) 15 /I No match in target, so use
distBetween(k2, fieldCenter) 15 /I average value in source
distBetween(t0, fieldCenter) 10

distBetween(t1, fieldCenter) 10

145

APPENDIX
C. Object Mappings

This appendix provides information that was omitted fromlieachapters for readability: the

mappings | provide for relational transfer between RoboGgs.

Mappings for relational transfer, as described in Sectid) match up objects in the source

and target tasks. These mappings also apply to macro trang&apter 5 and to MLN transfer in

Chapter 6. In RoboCup, the objects are players and goal parts.

For 2-on-1 BreakAway to 3-on-2 BreakAway and 4-on-2 Breakgwl map all objects to

objects of the same name:

a0

al

goalie
goallLeft
goalRight
goalCenter

—

a0

al

goalie
goallLeft
goalRight
goalCenter

For 3-on-2 MoveDownfield to 4-on-3 MoveDownfield, | map mobjexts to objects of the

same name, but the furthest teammate and oppoagandd1 in the source) have different names

in the target taskd3 andd2):

a0

al

a2

do

dl
minDistDefender(al)
minDistDefender(a2)
minAngleDefender(al)
minAngleDefender(a2)

—

—

a0

al

a3

do

d2
minDistDefender(al)
minDistDefender(a3)
minAngleDefender(al)
minAngleDefender(a3)

146

For 3-on-2 KeepAway to 4-on-3 KeepAway, the situation isilim

kO — kO
k1 — k1l
k2 — k3
t0 — t0
t1 — t2

minDistTaker(k1) — minDistTaker(k1)
minDistTaker(k2) — minDistTaker(k3)
minAngleTaker(kl) — minAngleTaker(k1)
minAngleTaker(k2) — minAngleTaker(k3)
For 3-on-2 MoveDownfield to 3-on-2 BreakAway, | map most akgeto objects of the same
name, but | map the second opponéntto d0 instead of the goalie because the goalie behaves

quite differently from a mobile defender:

a0 — a0
al — al
a2 — a2
do — do
di — do

minDistDefender(al) @ —— minDistDefender(al)
minDistDefender(a2) @ —— minDistDefender(a2)
minAngleDefender(al) — minAngleDefender(al)
minAngleDefender(a2) — minAngleDefender(a2)

For 3-on-2 KeepAway to 3-on-2 BreakAway, the situation mikar:

kO — a0
k1l e al
k2 — a2
t0 — do
t1l — do

minDistTaker(k1) — minDistDefender(al)
minDistTaker(k2) — minDistDefender(a2)
minAngleTaker(kl) — minAngleDefender(al)
minAngleTaker(k2) — minAngleDefender(a2)

147

APPENDIX
D. Conditional Independence Proof

This appendix supplies a proof that decision nodes in my Mansconditionally independent
given evidence at all other nodes. This is important bec#@usiéows the larger problem of in-
ferring the probabilities of multiple decision nodes to Ipditinto independent problems. | prove
conditional independence for two nodes, specifically the itwFigure 5.12 from the thesis, but
it holds true in general for any number of decision nodes ltizae direct links only to evidence
nodes.

Recall that each MLN formulg; € F', with weightw;, has a numbe;(z) of true groundings
in each possible world:;, and that the probability that the world is the correct one is, from

Equation 2.7 in Section 2.4:

P(X =x)= % exp;wmi(a:) (D.1)
Consider calculating the probabilities of thass(al)andpass(a2hodes in Figure 5.12 given
evidence at all the other nodes. Let= (z1,x2) represent a possible world, where represents
the truth value for thgpass(alnode and:, represents the truth value for tpass(a2hode. The
four possible worlds ar¢(0, 0), (0,1),(1,0), (1,1)}.

If 21 andx, are conditionally independent, then the following is true:

P(X = (x1,29)) = P(X; = 21)P(X3 = x9) (D.2)

Because the evidence literals are all known, the cauft) can be divided into two separate
counts. These are;(z), the number of true groundings given ti@ammate = alandn;(zs),

the number of true groundings given tiH@ammate = a2Inserting these into Equation D.1 gives:

148

P(X = (21,22)) = % eipzwi[”i(%) + ni(z2)] (D.3)
iEF
= % exp; win;(z) exp; win;(xs) (D.4)

Because the formulas are conjuncts that include at mosterisidn node, some of the counts
are known to be zero. Note thaf(x,) = 0 whenz; = 0, since there are no true groundings with
Teammate = aif Teammate # al, and likewisen;(z,) = 0 whenzs, = 0. This means that

Equation D.4 can be simplified for the following worlds:

P(X =(0,0)) = % exp(0) exp(0) = % (D.5)

POX = (0,1)) = eap > woni() (06)
i€l

PX = (1,0)) = eap Y wini(ea) (D.7)

Recall that” is just a normalizing factor so that the probabilities oftbwatorlds sum tal:

P(X = (0,0)) + P(X = (0,1)) + P(X = (1,0)) + P(X = (1,1)) =1 (D.8)

By substituting Equations D.4, D.5, D.6, and D.7 into EquatD.8, the value o7 can be

calculated as:

7 = (1 + epowmi(xl)> (1 + epowini(x2)> (D.9)

1€l 1€EF

Substituting” back into Equation D.4 gives:

149

exrp Z win;(xq) exrp Z win;(xs)

P(X = (21,32)) = = en (D.10)
1+ exp E wini(z1) 14+ exp E win;(x2)
i€F icF

Equation D.10 is equivalent to the independence assertion:

P(X = (21,22)) = P(X1 = 1) P(X5 = 23) (D.11)

This completes the proof that the decision nodes are condilly independent.

