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ABSTRACT
The Internet’s routing protocol provides users a single end-
to-end route that is not guaranteed to be available or to meet
user requirements. Our paper addresses this rigidity usingan
economically grounded approach that appeals both to users
and to service providers. We propose a framework called
RouteBazaar in which service providers announce links con-
necting different parts of the Internet, along with dynamically
changing prices associated with using the links. All topology
information is exposed to end-users. Users simply use routes
that best match their cost-performance requirements. The ap-
peal to users is that they can always obtain a route of their
choice as long as they are willing to pay for it. The appeal to
providers is that our framework offers them means for mon-
etary gains as long as they are willing to offer greater visibil-
ity into their topology and greater flexibility in user routes.
We present both centralized and distributed versions of this
framework. Both versions are designed to supplement, not
supplant, BGP. We design a variety of algorithms to ensure
robustness and stability of either framework. We study the
framework using a simplified game-theoretic model and also
conduct large scale simulations of its performance in practice
using real and synthetic network topologies. We find that de-
spite allowing flexibility to both users and service providers,
our system operates at a stable and close-to-optimal state.

1. INTRODUCTION
The BGP routing protocol forms the backbone of the In-

ternet today. It enables end-users to communicate with dif-
ferent corners of the Internet and has played a key role in
the growth of the network. Unfortunately, BGP suffers from
key drawbacks that constrain the Internet and the applica-
tions running on it in various ways [26, 3, 22, 10, 29]. A
key constraint of BGP is that it offers end-users very limited
visibility into network topology and routes, providing users
exactly one policy-constrained path per destination. There
is no guarantee that the single route that BGP provides will
meet an end-user’s requirements. Most importantly, the route
is not guaranteed to be available [3].

Approaches that have been proposed to address these chal-
lenges and improve end-user experience, such as overlay rout-
ing [27, 3] and multihoming [2, 4], are either undesirable in
practice or inadequate [2]. The flexibility offered by over-
lay routing to end-users has undesirable interactions withISP
policies and traffic engineering objectives. Multihoming can
offer better performance than single BGP paths, but it still

cannot guarantee meeting users’ end-to-end requirements sat-
isfactorily (e.g., routes are not guaranteed to be available).

We argue that overcoming the rigidity in BGP—i.e., the
poor visibility into routes and no flexibility in routing—requires
an alternate, economically-grounded approach. We believe
that service providers will be willing to expose greater amounts
of information to users, and/or offer them greater flexibility
in routing, as long as this leads to suitable monetary compen-
sation. Equivalently, users who have the means will spend
money to buy the additional visibility and flexibility as long
as their requirements are guaranteed to be met. Our work
asks whether it is possible to develop a flexible and robust
economic framework to match the desires of users with those
of service providers.

A crucial requirement of the framework is that it attract
participation from both users and service providers. There-
fore, it should explicitly account for the local goals of both
users and service providers, makingrobustness to selfish be-
havior a first class design requirement. This offers flexibil-
ity simultaneously to users and service providers, and fosters
greater participation from both, without requiring any kind of
global oversight. A secondary requirement is that the frame-
work exist alongside BGP and other existing systems such as
multihoming and overlay routing. This ensures that when-
ever user and service provider requirements are misaligned,
users can fall back to the existing mechanisms.

We describe and study such a framework calledRoute-
Bazaar. Providers participating inRouteBazaar announce
(virtual) links connecting different locations of the Internet,
along with the price associated with routing over them. Cru-
cially, providers have the flexibility of dynamically altering
the link prices so as to control quality of their links and,
more importantly, to attract traffic and maximize their rev-
enue. Users ofRouteBazaar will have complete visibility
into the links and paths offered by service providers via the
system. Crucially, users will always be able to find a route
overRouteBazaar to the destination of their choice that best
meets their constraints as long as they have the willingness
to pay for it. A user’s route inRouteBazaar could be com-
posed of links from different providers (each with a diffe-
rent price). Each user settles payments with each individual
provider along the paths she uses.

RouteBazaar encourages competition among service providers
and makes it easy for newcomers to participate in our system.
In particular, providers can use dynamic pricing as a tool to
attract traffic from users who are not connected directly to
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their links. Thus, third-party service providers can startof-
fering services using our system even if they don’t have a
customer base like ISPs do today.

We describe two variants ofRouteBazaar. In the cen-
tralized variant, users submit their requirements and service
providers submit their topology information to a central ar-
biter. The arbiter simulates selfish behavior for both users
and service providers and derives theNash equilibriumprices
for providers links and routes for users (some users may be
denied a route). In thedistributedvariant, users and service
providers constantly and directly interact with each other. We
develop learning-based algorithms for service provider- and
user-response. The former dictates how service providers
should change prices to maximize revenue. The latter dic-
tates how users should reroute traffic (in response to price
changes) toward newer paths that best match their require-
ments. Our algorithms are designed to ensure stable opera-
tion in the face of modest churn in the system.

We evaluate our framework using both analysis and large
scale simulations. We consider a stylized model ofRoute-
Bazaar in a game-theoretic setting and analyze itsprice of
anarchy—the gap between the performance of the system
when users and service providers are selfish, and the opti-
mal performance achievable through global oversight. Pre-
vious work [14] has shown that the price of anarchy wors-
ens as the disparity among users or the number of monop-
olistic service providers in the system increases. We prove
that the price of anarchy improves considerably under mild
assumptions on the users’ values. We conduct simulations
over several real and synthetic topologies. Our key finding
is that, in most scenarios, the net performance derived by
RouteBazaar users (in both the centralized and distributed
versions) is just 25%-35% away from the best possible (i.e.
where all service providers are altruistic and provide globally-
optimal routes). We find that network topology, link capaci-
ties and the requirements of users have minor impact on the
performance ofRouteBazaar in practice. On the whole, our
study shows thatRouteBazaar is a viable system to supple-
ment BGP and could address some of its key drawbacks in a
way that appeals to both users and service providers.

2. RELATED WORK
Our RouteBazaar framework builds upon existing liter-

ature on the interplay between routing and economics. We
discuss potential similarities and key differences next.

Economics-based systems.TheRouteBazaar framework
bears some similarity to the network “nanopayment” systems
Bill-Pay [15] and A la carte [16]. In these clean-slate archi-
tectures proposed as alternatives to BGP, ISPs announce a
list of service levels and corresponding prices, which apply
at the packet level. Based on knowledge of topology and
link prices, users compute paths they wish to use and insert
source routes along with nanopayments into each packet they
send. The ISPs may be able to alter their prices, although
neither system specifies what approach ISPs should adopt.

The nanopayments are used to pay each on-path ISP for the
service it offered to the packet. Because these are packet-
level system they impose significant overhead on the service
provider infrastructure. They also need significant changes
to applications and to TCP/IP stacks. Users in these systems
may not find a path whose price matches their willingness
to pay; neither system addresses how to accommodate them.
Finally, unlike our framework, neither system has been evalu-
ated (theoretically or otherwise) to test for practical viability.

A few other systems have proposed broker-based archi-
tectures for routing and quality of service. Bandwidth bro-
kers [35] were proposed originally in the context provision-
ing QoS paths in a single service provider network. More re-
cent proposals extend the bandwidth broker framework across
multiple ISPs [20, 31]. Thus, they enable users to buy quality-
of-service across multi-ISP paths. Both systems are designed
to work alongside BGP, similar to our approach. The MINT
proposal [31] uses a centralized mediator to run a continuous
double auction in order to match user requests (e.g. for band-
width between two points on the Internet) against ISP bids
(e.g. price per unit bandwidth per link). A similar media-
tor is used in [20]. The design of these approaches is similar
our centralized framework at a high level and they share the
same broad goal as us, but there are key differences. In par-
ticular, neither approach takes the selfish goals of users and
service providers into account. Service providers cannot di-
rectly compete against each other in these systems. Its also
not clear if users of the system will have their requirements
met in the optimal fashion (e.g. it is not clear if the systems
provide users the least expensive paths for the level of service
they want). Because our framework explicitly takes selfish-
ness into account it addresses both of these issues. Thus, we
believe that it fosters greater participation from both users
and service providers. Another key difference is that, un-
like our approach, it is not clear if these architectures are
amenable to a distributed implementation.

Our framework also draws from prior work on congestion-
based pricing for the Internet such as the smart-markets pro-
posal [21]. In these proposals, network users pay for a service
whose price is set dynamically based on the individual offers
of the users. While these proposals apply to a single service
provider network, ours applies to multiple service providers
that could be interconnected arbitrarily.

Fine-grained route selection. Without directly address-
ing the economic aspects of the problem, several papers have
proposed routing systems that allow users greater flexibility
in selecting routes. In Pathlet routing [17], users perform
source routing over “pathlets”, where each pathlet is a virtual
link between points in the Internet (e.g. between PoPs in the
same ISP). NIRA [34] and MIRO [33] allow users to con-
struct AS level source routes to achieve various traffic engi-
neering objectives and economic goals. Both distributed and
centralized versions of our system leverage these proposals
to facilitate forwarding.

Analytical studies. A number of recent papers have theo-
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retically analyzed the economic aspects of bandwidth pricing
under various models (see, e.g., [19, 1, 5, 24, 14]). Among
these the model considered by Chawla and Roughgarden [14]
is the most relevant to our setting. Chawla and Roughgarden
analyze the price of anarchy of a bandwidth pricing game in
which service providers pick prices to maximize their rev-
enue and users pick paths to maximize their utilities. The
price of anarchy is the worst gap between the performance of
an equilibrium (stable state) in this game to the optimal per-
formance that may be achieved through centralized control.
They show that the price of anarchy for this bandwidth pric-
ing game can be large when there is a large disparity between
the values of different users and the network contains many
“monopolistic” service providers. In Section 5 we expand on
these results and show that under mild and natural assump-
tions on the distribution of users’ values in the network, the
price of anarchy improves considerably. Our simulations in
Section 6 support these findings.

3. OVERVIEW OF RouteBazaar

We start by briefly stating the architectural features of our
framework and comparing against BGP routing.

(1) Separating route visibility from economics.Our sys-
tem is designed to separate payment and economics from vis-
ibility into network topology. Specifically, economic con-
straints of service providers in our system should not limit
users’ knowledge of, and their ability to potentially use, dif-
ferent paths in the network. In BGP routing, providers imple-
ment a variety of economics-driven import and export poli-
cies on route announcements that filter out topology and route
information before it reaches end-users.

(2) Optimal routes for users who are willing to pay.
Users of the system should be able to route to their corre-
sponding destinations using our system as long as they have
the means to pay for the route provided by our system. Thus,
only a user’s willingness to pay determines whether or not
she will find a route with our system. Today, end-networks
who are willing to pay can afford to buy connectivity from
one or more large ISPs with global reach. While such ISPs
have greater reachability to various parts of the Internet,merely
connecting to them does not guarantee that an end-to-end
route will be available no matter how much a user pays.

In order to accommodate user constraints well and to en-
courage participation, we additionally require that the routes
provided by our system beoptimal from the user’s perspec-
tive. In other words, there should be no cheaper route in the
system that also meets the users constraints.

(3) Service provider flexibility. In order to encourage par-
ticipation from service providers, our system should similarly
offer them flexibility as well. We require that service provider
constraints be accommodated by letting them set prices for
the services they offer any way they want in order to attract
traffic and boost revenue. Because of the hop-by-hop nature
of Internet routing, today, a service provider’s constraints
are specified implicitly in the form of a collection of long-

term bi-lateral relationships with neighboring networks.The
binding, bi-lateral nature of these contracts constrains service
providers from offering a rich variety of flexibly-priced ser-
vices to users who transit their networks.

Our system allows service providers to vary prices for their
services at finer time-scales. More importantly, the price im-
posed by a service provider is charged to all traffic routed
over its links, irrespective of where it originates. Users who
route atop our system pay each on-path service provider for
the services they used. Thus our framework allows a service
provider to attract a user who may not be directly connected
to it to route over its links and potentially boost its revenues
further. In contrast, ISPs today can only charge customers
who are directly connected to them.

We present a high-level description of ourRouteBazaar
framework next. Design details and specific algorithms that
we use to enable the above features are discussed in§4.

Assumptions.Our description of theRouteBazaar frame-
work in this section makes a few assumptions.

The service offered by each service provider in our sys-
tem is providing a route between two points in the Internet at
some cost per unit bandwidth consumed on the path between
the points. We use the term connectivity service providers or
CSPs to describe the service providers.

Each user of the system wishes to use the system to route to
a specific destination. Someone wishing to route to multiple
destinations could be represented by a collection of end-users
each wishing to route to one of the destinations. Users may
enter and leave the system at any time. But we assume that
this happens at avery low rate.

At any given time, some of the potential users of the sys-
tem may be denied a route. This is because the system may
be unable to provide routes with prices that match the user’s
willingness to pay and other requirements of the user. We as-
sume that all such users fall back to using default BGP routes.

We assume that a source routing-based system such as
Pathlet routing [17], MIRO [33] or NIRA [34] is available
for users to route traffic along the paths specified by the sys-
tem. The specific approach does not matter as long as it offers
scalable support for source routing.

3.1 TheRouteBazaar Framework
We now describe the two sets of participants in our frame-

work, the service providers and users, and their behavior.
Connectivity service providers:Our system is composed

of multiple connectivity service providers (CSPs) that offer to
connect different Internetlocations. Each location is akin to a
point-of-presence today and each link is a virtual connection
of a fixed maximum capacity between the locations. Each
CSP can own multiple virtual links of different capacities.
Each CSP announces a price per unit bandwidth for the links
it owns. The link could have different prices. We assume that
the CSP link graph connects users to their destinations.

Users: We envision the system to be used by medium to
large end-networks, including enterprises (single or multi-
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campus), universities, data centers, and even regional Inter-
net service providers that wish to provide their customers ro-
bust transit across the wide-area network. Each suchuserE
wishes to purchase some amount of bandwidth between its
own location and the location of some destinationD.

An user attaches somevalue per unit demandfor its traf-
fic. This reflects the user’s willingness to pay per unit traffic
to the destinationD. We model this using ademand-value
vector,〈B, V 〉E,D. An entry〈bi, vi〉 in this vector indicates
that the userE is willing to pay at leastvi per unit traffic for
bi units of traffic to the destinationD.

We assume that the users’ values are local to the users, and
provided to our system as inputs. Depending on a user’s local
requirements, the demand-value vectors to a destination may
change slowly over time based, for example, on the time of
the day or day of the week.

CSP and user behavior:Each CSP participating inRoute-
Bazaar is revenue-maximizingin that it sets prices so that
the net revenue derived from the collection of links owned
is maximal. In particular, CSPs may change their link prices
over time, especially when the current prices are deemed sub-
optimal given the price choices of other CSPs in the system.
We assume that the CSPs are unaware of the values of the
users and cannot distinguish between the users. The only
feedback available to them from the system is the amount of
traffic willing to use their links at their current prices.

A CSP’s revenue per link is the amount of user demand
routed on the link times the price per unit demand. However,
whenever the load on link exceeds it capacity, we assume that
the CSP derives no revenue from the link.

We assume that users select routes in autility-maximizing
fashion: given the prices of each CSP link, the routes em-
ployed by a user are such that the user’sutility—the differ-
ence between the value derived by the user and the price it
pays—is maximized on a per destination basis.

How a user uses the bandwidth provided by our system
is purely based on local policies. A user may apply a local
traffic classification algorithm and use its outcome to deter-
mine which traffic to route using the bandwidth allocated to
it by the system. The rest of the user’s traffic is routed in a
best-effort manner using current BGP-based paths.

We now present two flavors ofRouteBazaar, one based
on a centralized arbiter and the other completely distributed.

3.2 CentralizedRouteBazaar Architecture
In the centralized variant ofRouteBazaar, we assume the

presence of a logically central, neutralarbiter servicewith
whom both users and CSPs communicate. The arbiter service
coordinates the actions and choices of users and CSPs and
tries to accommodate their requirements and goals.

The CSPs provide as input to the arbiter the list of links
they own, the locations that the links connect, and the capac-
ity of the links. Users provide as input their demands and the
value per unit demand. Recall that we assume users to arrive
or leave slowly over time. In our description of the central-

ized architecture below, and of the distributed architecture in
the next subsection, we assume for simplicity that the set of
users (and CSPs) remains fixed and does not change. We dis-
cuss how to accommodate low-rate churn in Sections 4 and 6.

The arbiter’s role is tosimulate the behaviorof both the
users and the CSPs (as per the behavior outlined in§3.1 above)
and find a stable state for the system that is acceptable to all
parties. It runs the simulation until anequilibriumis reached.

The arbiter determines the following:
1. The prices that CSPs should charge for their links.
2. Which users get to route their demand over the CSP net-

work and those who must route using default BGP routes.
3. For the former set of users in #2 above:

a. The routes to the corresponding destinations over the
CSP network that the users must use.

b. The split-up of users’ demands across these routes.
The arbiter communicates this information to the CSPs and
users, who can then choose to follow or ignore the arbiter’s
advice in picking their respective strategies.

In order for the arbiter’s solution to be stable and accept-
able to CSPs and users, it must form aNash equilibrium[30].
At equilibrium the following properties are satisfied:
• No CSP has the incentive to unilaterally deviate from the

current offered price in order to boost its revenue. Further-
more, no CSP observes a load> 1 on its links.

• All users employ utility-maximizing paths and have no
incentive to route over alternate paths. If there exists a
path whose price is less than a user’s value per unit de-
mand, then all of the user’s demand is routed usingRoute-
Bazaar. If the price of the least-cost path equals the user’s
value for the traffic, the user’s traffic may be split between
RouteBazaar and regular BGP routes.
Flexible global policies: A feature of the centralized ap-

proach is that it allows the arbiter to impose flexible policies
in order to try to ensure someglobal propertiesare satis-
fied, while ensuring that the local, selfish goals of the vari-
ous player (CSPs and users) are also honored. For instance,
one set of policies could ensure that, at equilibrium, a certain
minimum amount of demand from each geographic region is
guaranteed routes over the CSP network, irrespective of the
values of the users located at each geographic location. This
introduces some level of fairness into the system. Another
set of policies could ensure that the net value derived across
all users who end up using the system is maximized. While
this can ensure global optimality in terms of net value, this
policy could result in unfairness. A final set of policies could
enforce some combination of fairness and value-optimality.

3.3 Distributed RouteBazaar Architecture
At a high level, the distributed architecture works in roughly

the same fashion as the centralized approach. As before,
CSPs can adjust their prices to boost their revenue. Users
select routes over the collection of CSPs to maximize their
utility. However, there are three key aspects that differentiate
the distributed and the centralized architectures.
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(1) Dissemination. In the centralized approach, the ar-
biter coordinates CSP pricing and user route selection and
suggests a globally stable solution to all parties. In the decen-
tralized approach, however, special mechanisms are needed
to facilitate this. In particular, link prices should be com-
municated to the participating users to enable them to select
routes. Two alternatives are possible here:
• CSPs employ a link-state based routing algorithm to gather

this information. Link state updates could be created on a
regular basis, or on a triggered basis, whenever a CSP up-
dates its link price in an attempt to boost revenue. Network-
wide link-state updates are sent to the users as well.

• CSPs register the current prices with, and send all updates
to, a central database. Users query the database for current
CSP-level topology and link prices at regular intervals.
In our design (§4), we adopt the latter of the two approaches

because of its simplicity and because it offers more consistent
network views to CSPs and users.

(2) No global policies.In the distributed approach, the ac-
tions of the different players are completely uncoordinated.
This means that global desirable properties such as optimal
net value or fairness cannot be guaranteed. The advantage of
the decentralized mechanism, however, is that it offers flex-
ibility to CSPs and users in implementing local algorithms,
rather than a central arbiter simulating their selfish behavior
based on assumptions about their objectives.

(3) Constant online operation. In the centralized ap-
proach, the arbiter simulates CSP and end-user behavior un-
til an equilibrium is deemed to have been reached. CSPs and
end-users only use the parameters corresponding to the equi-
librium. No equivalent arrangement can be made in the dis-
tributed case. Instead, we assume the distributed version of
the system to be in a constant state of flux with prices changes
and users alternating their paths. However, we propose a
suite of CSP price change and user response algorithms in§4
which ensure that the system operates in a stable state with
only minor changes in link loads and prices.

3.4 Deployment Path and Role of BGP
Before providing the details of either variant, we briefly

outline how we envisionRouteBazaar to be adopted in prac-
tice. We envision theRouteBazaar system to start out being
using in a centralized fashion on a small scale with a few
early adopters. We envision large end-networks and small
ISPs with mission critical information to be active early users
of this system. Third party overlay service providers, as well
as current tier-1 and tier-2 ISPs could offer connectivity within
theRouteBazaar system. As the scale grows, we envision
the system to transition into a distributed set-up, perhapswith
a much larger user and CSP-base. We envision the set of
CSPs to be rich and diverse, composed of a wide variety of
providers of different sizes and reach. Similarly, we also en-
vision users with different demand-value distributions toco-
exist and use the system in parallel.

SinceRouteBazaar runs the risk of not being able to route

all user requests, we feel that the underlying BGP routing will
continue to play a crucial role through the evolutions because
it is the fallback option.

4. DESIGN DETAILS
We now expand on the algorithms used by various partici-

pants inRouteBazaar to arrive at a stable state for the sys-
tem. Towards the end of the section we present a discussion
of the performance metrics that can be used to evaluate the
system, as well as factors that may influence these metrics.
For ease of exposition, we describe the distributed architec-
ture first. Again, for ease of exposition, we assume that the
set of CSPs and users in either case is fixed and address the
issue of accommodating slow churn in§4.5.

4.1 Distributed Architecture: CSP Behavior
The goal of every CSP is to price its links so as to max-

imize its revenue given the other CSPs’ and users’ choices.
Since the CSP has incomplete information about others’ strate-
gies and moreover strategies change dynamically, the CSP
faces an online optimization problem. Each CSP therefore
employs a learning algorithm to determine the best strategy.
The learning algorithm successively tries different prices at
different iterations and gradually converges to a near-optimal
one. The goal of the algorithm is to minimize the “regret”
of the CSP, which is the difference between the optimal aver-
age revenue achievable through a single price and the average
revenue obtained by the algorithm over all the iterations.

Below we present two iterative regret-minimizing learning
algorithms. The first, theepsilon-decreasing explore-exploit
algorithm [32], is a simple and natural learning algorithm
that is proven to minimize regret in a static environment (that
is, if strategies of other CSPs and users are picked from an
unchanging probability distribution, and do not adapt to this
CSP’s strategy). The second, thehedge-banditalgorithm [13,
6], provably minimizes regret even in worst-case dynamic
online settings, and is therefore (from a theoretical view-
point) most appropriate for our setting. A crucial aspect of
both algorithms is their use ofhistory. The algorithms track
historical information on the net revenue derived at various
prices to determine optimal price choices at each iteration.

We now describe the two algorithms. In theepsilon-decreasing
explore-exploitalgorithm, at every iteration the CSP either
“explores” the space of prices by picking a price uniformly
at random, or “exploits” by picking a price that has histor-
ically obtained the most revenue. At iterationt, an explore
is performed with probabilityǫt and an exploit is performed
with probability1−ǫt. In the beginning, to bootstrap,ǫt is set
to a high value but as more and more history is accumulated it
decreases witht. Specifically, we useǫt = min(N/t log t, 1)
for some constantN that depends on the size of the network.

In order to pick the best-price-so-far in an exploit step, the
CSP maintains an exponentially weighted moving average
(EWMA) of the revenue obtained by each potential price. Af-
ter a certain large number of iterations, this approach would
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Parameters: k, the number of different prices;N = k2; α, the weighting
parameter for EWMA.
Variables: Randomness parameterǫt = min(N/t log t, 1); for every
potential pricei, a revenue estimateπi.
Initialization: For every pricei, πi = 0.

At every iterationt do:
1. With probabilityǫt, pick a pricei uniformly at random and report it.
2. Otherwise (i.e. with probability1 − ǫt), pick the pricei with the maxi-

mumπi and report it.
3. Let the revenue obtained at the current step beX. Update the revenue

estimates fori as follows:πi = απi + (1 − α)X.

Figure 1: Algorithm epsilon-decreasing explore-exploit—
Regret-minimizing learning algorithm for CSPs

Parameters: k, the number of different prices;L = the capacity of the
link times maximum price; randomness parameterǫ = 0.01 and weight
δ = 0.01.
Variables: Weights wi and probabilitiespi for every potential pricei.
W =

P

i wi, andpi = wi/W .
Initialization: For every pricei, wi = 1 andpi = 1/k. W = k.

At every iteration do:
1. With probabilityǫ, pick a pricei uniformly at random and report it.
2. Otherwise (i.e. with probability1 − ǫ), pick a pricei randomly from the

distributionp and report it.
3. Let the revenue obtained at this step beX. Updatewi as follows:wi =

wie
δX/LP whereP = ǫ/k + (1 − ǫ)pi. Other weights stay the same.

4. Update the probability vectorp by settingpj = wj/W for every j,
whereW is the new sum of all the weights.

Figure 2: Algorithm Hedge-Bandit—Regret-minimizing
learning algorithm for CSPs

give more weight to newer knowledge gained and less to his-
torical data compared to a simple average. This is especially
important in a dynamic environment where demands come
and go, because a price that was attractive historically may
become unattractive over time. The EWMA approach allows
the algorithm to adapt quickly to such changes. We present
this algorithm formally in Figure 1.

The hedge-banditalgorithm also “explores” at every it-
eration with anǫt probability. However, in this algorithm
ǫt continues to remain at a constant value and does not de-
crease over time. The crucial difference between the two al-
gorithms is in their “exploit” step. Instead of picking the best-
in-history price at every exploit step, Hedge-bandit picksa
price from a probability distribution that assigns high pro-
bability to prices with high revenues and low probability to
other prices. The probability associated with prices that con-
sistently perform poorly decreases exponentially over time.
Therefore, Hedge-bandit quickly converges to good prices
while not entirely disregarding prices that perform moder-
ately. This allows it to adapt quickly to changes in the system
such as the arrival or departure of demands. We present this
algorithm formally in Figure 2.

4.2 Distributed Architecture: User Behavior
As described earlier, the goal of every user is to maximize

the utility it derives from routing its traffic – this is the differ-
ence between the value it obtains from routing its traffic and

Parameters: Selfishness parameterǫs; granularity parameterδ.
Variables: H, a list of paths used in the previous iteration;L, a list of
currently least-cost paths;fP , flow on pathP ; r, the amount of flow to be
redistributed at any iteration.
Initialization: H = ∅.

At every iterationt do:
1. ConstructL by finding all least-cost paths.
2. Initialize r = 0. For every pathP in H \ L, incrementr by ǫsfP if

fP ≥ δ andfP otherwise; SetfP = fP − r.
3. Let ftot =

P

P∈L max(fP , δ). For every pathP in L, setfP =
fP + r/ftot max(fP , δ).

Figure 3: Distributed flow-update algorithm for users

the price it pays to the CSPs. Therefore, every user distributes
its traffic over least cost paths between its source and desti-
nation, and uses the default BGP path for traffic with value
less than the price on the least cost paths. In what follows,
we use the term “user” to denote all traffic from some source
to some destination with the same per-unit-flow value.

In the basic version of the user algorithm, each user main-
tains a list of the paths that it currently uses, as well as a list of
currently least-cost paths. At every iteration the user removes
all traffic from paths that are not currently least-cost, and
spreads this traffic across least-cost paths in proportion to the
traffic already carried by them. Additionally, the user treats
the default BGP path as another available source-destination
path in the system with price equal to the user’s per-unit-flow
value. When the price on the least-cost path is smaller than
the user’s value, it sends some fraction of its flow on the de-
fault BGP path. This algorithm is described in Figure 3.

We also study a smoother version of this flow-update algo-
rithm with the goal of understanding whether slow updates
to users’ flow lead to better convergence properties. Similar
algorithms [8, 7] have been employed to solve flow problems
in distributed settings and have been theoretically shown to
have good convergence times. In our setting in particular, be-
cause the system is dynamic, just like the CSPs, users may
benefit from using historical data to determine good paths. In
the smoother version, once again each user gradually moves
its traffic from paths used in the previous iteration to those
that currently charge the least price. In particular, each user
removes anǫs fraction of its flow from non-least-cost paths
and distributes it over least-cost paths.

The parameterǫs characterizes user selfishness —ǫs = 1
corresponds to the basic “selfish” version where users al-
ways only use least-cost paths, whileǫs < 1 corresponds to
the “smooth” version where users give weight to historically
good paths and occasionally route over non-least-cost paths.
While on the one hand the smooth version is more robust to
sudden random fluctuations in CSP prices, on the other hand,
it may adversely affect performance because CSPs get slower
feedback to their price changes. In§6 we study the impact of
ǫs on the performance of the system.

4.3 Centralized Architecture
The goal of the central arbiter is to compute a “good”
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max
X

u

X

P∈Pu

vufP,u subject to

X

u

X

P∈Pu,P∋e

fP,u ≤ ce ∀e

X

P∈Pu

fP,u ≤ du ∀u

u : user with sourcesu, destinationdu, valuevu, demanddu

Pu : the set of all shortest paths for useru

fP,u : the flow of useru on pathP

e : edges with capacitiesce

Figure 4: Value maximizing LP for the central arbiter

equilibrium for the system. It does so through an iterative
approach, by simulating CSP behavior and user behavior at
each step. Specifically at each iteration it first picks prices
for each CSP and then flow paths for each user, until some
termination condition is met. We now elaborate on these two
aspects of the centralized architecture.

Simulating CSP behavior: The central arbiter simulates
the system as a repeated game among the CSPs. In any
repeated game if each player employs a regret minimizing
learning algorithm for picking its strategy, then the game con-
verges to a correlated equilibrium [18, 12]. That is, no player
has incentive to deviate from its strategy if other players con-
tinue to follow their strategies. The central arbiter therefore
uses one of the two algorithms,epsilon-decreasing explore-
exploitandhedge-bandit, described in§ 4.1.

Simulating user behavior: At every iteration given prices
for the CSPs, the central arbiter simulates user behavior by
routing the flow of each user along the least cost path. De-
spite this constraint of following the best response, the arbiter
has a lot of flexibility in routing flow because some source-
destination pairs may have multiple least cost paths between
them. Moreover, for some users the cost of the least cost path
may be exactly equal to their value in which case routing their
flow over this path or over the default BGP path brings equal
utility to them. The arbiter may use this flexibility to imple-
ment any desirable social objective. Here we focus on the
objective of maximizing the total social value of the system.

To achieve this objective, the arbiter solves the following
max-value flow problem: It first determines for every user a
list of all least cost paths between the corresponding source-
destination pair. It then determines the amount of flow to
be sent by the user along every such least cost path while
honoring capacity constraints on edges and maximizing total
value of the flow routed. This problem can be set up as a
linear program (Fig 4) and solved using standard LP solvers.

While the solution to the LP maximizes the value routed
subject to capacity constraints, it may not follow best re-
sponse for every user. This is because if for some user the
cost of the least cost path is strictly less than the user’s value,
it is in the best interest of the user to route its entire flow,
while the LP may only route a fraction of the flow in order to
satisfy capacity constraints. In order to rectify this, forevery
user with value strictly larger than the cost of the least cost

path, the arbiter finds an arbitrary least cost path and routes
the entire remaining flow of the user along this path.

We now elaborate on how the arbiter computes a list of
all shortest paths for a user in order to set up the aforemen-
tioned LP. The arbiter first computes all-pairs-shortest-path
distances given the CSP prices. It then determines for every
source, the set of edges that lies on some shortest path start-
ing at that source. An edge(u → v) lies on a shortest path
starting at sources if and only if dist(s, v) = dist(s, u) +
price(u → v). The arbiter then runs a depth-first search
(DFS) starting from the source and only following edges that
lie on shortest paths. Every time it encounters the destination
in this DFS, it outputs the current path from the source to
the destination. This algorithm takes time proportional tothe
number of shortest paths between a source-destination pair.
We find in our simulations that the number of distinct short-
est paths between any source-destination pair is at least one
order of magnitude smaller than the number of edges in the
graph. Therefore this algorithm is efficient in practice.

Termination condition: The arbiter could use a variety
of tests to determine when to halt the simulation of the in-
teraction between users and CSPs. In general, a good test
is to check if the system is at a state where the total utility
as perceived by both CSPs and users does not improve any
further. The arbiter should also check for other conditions
that the system should meet at equilibrium (§3.2). In our im-
plementation of the arbiter, we check to see if in addition to
the above conditions, over a certain large numberI of itera-
tions, the net utility in the system does not seem to improve
or change significantly. Specifically, we check if the differ-
ence between the 95th and the 5th percentile net utilities is
less than a small fraction (say 5%) of the 95th percentile.

4.4 EvaluatingRouteBazaar Performance
A natural metric for measuring the performance ofRoute-

Bazaar is to quantify the total value it offers to the partici-
pants (CSPs and users). Define thesocial valueof a state of
the system to be the total utility of all the agents, or, the to-
tal value obtained by all the users, minus the prices paid by
the users, plus the revenues (prices) earned by all the CSPs.
Since prices are endogenous to the game this is equivalent
to the total value obtained by all the users. Throughout this
paper we use this metric to understand how well our system
performs. In particular, we compare it against the optimal or
the maximum possible social value achievable through global
oversight while satisfying capacity constraints on edges.In
the next section we discuss various factors that influence this
metric and analytically study how the system behaves in var-
ious situations. Several other key metrics can also be used to
evaluate the system; we discuss these in§6.

4.5 Churn
Users ofRouteBazaar enter or leave the system only oc-

casionally.RouteBazaar is designed to accommodate slow
churn. In the centralized framework, we require that users
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enter or leave the systemat fixed times, e.g. at the beginning
of a two hour period. Such churn is not so much an issue
for the centralized framework because the arbiter can sim-
ply recompute the routes and link prices from scratch. Note
that addition of new users may affect whether or not some
current users can continue using routing overRouteBazaar.
We require that existing users of the system check with the
arbiter at the beginning of every time interval. If denied, they
stop using the system (they may submit a new request). In
the common case, users who have low willingness to pay are
likely to be more affected by churn in the system, and we
consider this to be an acceptable operating mode.

The distributed framework allows users to enter or leave at
any time, but the system is designed for the user-set to change
slowly. When single users are added to the system over time,
few (if any) CSPs are likely to be effected, because small
changes in demand do not cause immediate CSP response.
In the rare case that multiple users join simultaneously, links
could be overwhelmed and both the users routing over the
links and the CSPs who own the links are dissatisfied. In
such situations, the faster the system reconverges to a stable
set of prices the better it is overall. We evaluate this situation
in §6.

5. UNDERSTANDING THE FRAMEWORK
Since each CSP in our system is interested in maximizing

its own revenue, the system performance in terms of this to-
tal benefit may not be optimal. In this section we perform a
theoretical study of the gap between the optimal system per-
formance and the performance at equilibrium.

A theoretical model: We analyze the following “pricing
game”. We are given a directed network (graph) with capaci-
tated edges representing CSPs and a value-demand curve for
each pair of nodes in the graph representing users. The game
has two stages. In the first stage of the game each CSP or
edge picks a price. In the second stage each user picks paths
between its source and destination to send its traffic. We as-
sume that users can split their traffic into infinitesimally small
chunks, and spread it across multiple paths, or send fractional
amounts of traffic. A given state in a game (in this case con-
sisting of a set of prices and traffic pattern) is called aNash
equilibrium if no participant (user or CSP) wants to change
its strategy unilaterally so as to improve its own utility. In
the pricing game users are price-takers, that is, they merely
follow a best response to the prices set by CSPs, and the
responses of different users are decoupled from each other.
Therefore, given the first stage strategies, the second stage
strategies always form a Nash equilibrium, and the dynamics
of the system is determined primarily by the first stage game.

We evaluate Nash equilibria in the pricing game by com-
paring the social value at an equilibrium to the maximum
possible social value achievable while satisfying capacity con-
straints on edges. Recall that the social value for any stateis
defined as the total value of all the users in the system. The
ratio of the worst value over all Nash equilibria to the optimal

value is called thePrice of Anarchy (POA)of the game. POA
is always at least 1, and small values indicate good system
behavior. In particular, a POA of1 indicates that every Nash
equilibrium is optimal in terms of social value.

Monopolies and the price of anarchy:Chawla and Rough-
garden [14] showed that the price of anarchy of the pric-
ing game depends primarily on the existence and number
of “monopolies” in the network, and also on the distribu-
tion of traffic. A CSP is called a monopoly if there exist
source-destination pairs such that all paths from the source to
the destination go through the CSP. Specifically Chawla and
Roughgarden proved the following:

Theorem 1 ([14]) When all the demands in the network have
the same source and destination, the POA of the pricing game
is 1 in the absence of monopolies, at mostlog L when there
is one monopoly, and can be unbounded otherwise. When the
instance containsk > 1 monopolies, there always exists one
equilibrium with social value at least anO(Lk) fraction of
the optimal. HereL is the ratio of the maximum per-unit-
demand value to the minimum per-unit-demand value.

This theorem shows that networks that contain great dis-
parity among users in terms of per-unit-demand values, or
that contain long source-destination paths (leading to a large
k), can have poor equilibria. Furthermore, it suggests that
eliminating monopolies from a network may be sufficient to
ensure good performance. Unfortunately the latter is not true
in networks with multiple sources of traffic. Specifically, by
making certain parts of a network congested, it is possible to
create so-called “virtual monopolies” in the network that lead
to poor performance. A link is called a virtual monopoly if
there exists a source-destination pair such that all of the flow
routed from the source to the destination is carried by the
link (because all alternate routes are too expensive). Chawla
and Roughgarden further proved the following theorem about
networks with multiple sources. Here the sparsity of the net-
work is a measure of congestion in the network and is defined
(in single-destination instances) as the maximum fractionof
each demand that can simultaneously be routed in the net-
work while satisfying link capacities.

Theorem 2 ([14]) The price of anarchy in a network with
multiple sources can be unbounded. When all users have
a common destination (but different sources) and identical
value-demand curves, and the graph is a so-called “traffic
spreader”, there exists a Nash equilibrium with social value
at least a1/α fraction of the optimal social value, whereα
is the sparsity of the network.

Monotone Hazard Rate distributions: As mentioned ear-
lier, the above results indicate that network performance gets
worse as the disparity between different users in terms of
value per-unit-demand increases. These negative results are
quite pessimistic in that the worst bounds arise from unnat-
ural value-demand curves that are unlikely to occur in prac-
tice. We now show that when value-demand curves satisfy
the “monotone hazard rate (MHR)” condition, the price of
anarchy of a network improves considerably and does not
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depend on the value disparity. That is, all Nash equilibria
in the system are good. The MHR condition, defined below,
is widely used in game theory and economics to character-
ize commonly occurring value distributions (see, for exam-
ple, [11, 9]). Most natural distributions such as the uniform,
normal, exponential, power-law (for exponents greater than
one), Laplace, chi-square, etc. satisfy this condition [9].

Definition 1 (The Monotone Hazard Rate (MHR) condition)
For a given user and a valuev, letF (v) denote the fraction of
traffic for which the user is willing to pay a per-unit-demand
value of at mostv. Let f denote the derivative of the func-
tion F . The MHR condition states that the “hazard rate” of
the value-demand curve,h(v) = f(v)

1−F (v) , is a monotonically
non-decreasing function ofv.

Theorem 3 Consider an instance of the pricing game in which
all users have the same source and destination. If the aggre-
gate value-demand curve for the system satisfies the MHR
condition and the network containsk monopolies, the POA
of the game is at mostek.

PROOF. As in the definition above, letF (v) denote the to-
tal fraction of traffic with per-unit-demand value at mostv.
Consider an arbitrary Nash equilibrium for the game. If the
network is saturated under this equilibrium it already oper-
ates optimally. Otherwise, we note that all non-monopolies
in the network charge a price of0. (We omit an argument for
the sake of brevity.) Now consider the monopoly charging
the maximum price at this equilibrium; say that the price is
p∗. Let P + p∗ be the total price charged by all the monop-
olies (this is the price paid by all the users that are routed).
Thenp∗ ≥ (P + p∗)/k. If this monopoly changes its price
to p, its revenue is given byp(1− F (P + p)). Since the sys-
tem is at equilibrium and sop∗ is the price maximizing this
revenue, upon differentiating the function we get:

1 − F (P + p∗) − p∗f(P + p∗) = 0

That is,h(P ′) = 1/p∗ ≤ k/P ′ whereP ′ = P + p∗.
Now, by the MHR condition,h is a non-decreasing func-

tion, therefore,h(t) ≤ k/P ′ for all t ≤ P ′. Finally, we note
that by definition,F (t) = 1 − exp(

∫ t

0 h(x)dx). Therefore,

F (P ′) = 1 − exp(
∫ P ′

0
h(x)dx) ≤ 1 − exp(k).

The total traffic admitted by this equilibrium is therefore
at least anek fraction of all traffic. Therefore, the total social
value of this equilibrium is at least anek fraction of the total
value of all the users, and so also at least anek fraction of the
optimal social value.

The result above focuses on single-source single-sink net-
works containing monopolies. However it is also relevant to
more general settings of multiple-source multiple-sink net-
works without monopolies because, as described earlier, such
instances can contain virtual monopolies. In a companion
paper currently under submission we show that both the up-
per and lower bound given above extend to multiple-source
single-sink networks when all users have identical value-demand
curves that satisfy the MHR condition.

Topology Nodes, Edges
Rocketfuel-based 50, 100
Power law 46, 93
Random 50, 93
Regular 50, 100

Table 1: Details of topologies used in this study. For Ran-
dom graphs, the probability of each edge is 0.08. In the
regular graph, each node has a degree of 4.

These results show that the performance of the system de-
grades as the value disparity between different users increases,
as congestion increases (equivalently sparsity decreases), or
as the number of hops in source-sink paths increase (lead-
ing to a larger number of virtual monopolies). However, if
all demand-value curves satisfy the MHR condition defined
above, the system performs well atanyequilibrium.

6. RouteBazaar EVALUATION
We conduct a variety of simulations to study the perfor-

mance ofRouteBazaar in realistic settings. We study sev-
eral CSP interconnection topologies that may arise in practi-
cal instantiations ofRouteBazaar. We also experiment with
a few different distributions of user demand-value vectors.
Our primary goal is to understand the global performance of
the system (and compare against the theoretical results out-
lined above). Our key metric of interest is the social value
derived by the system relative to the optimal social value, that
we also refer to as “efficiency”, under the different settings.
This metric measures the ability of users to obtain as much
benefit as possible from the system while allowing the CSPs
to derive reasonable revenue, and indicates whether the sys-
tem operates to its full potential. Note that this metric is diffe-
rent from POA because POA is a measure of efficiency of the
worst Nash equilibrium; in general, when multiple equilibria
exist, our system may converge to a good equilibrium. We
also examine lower-level details of the system, e.g. the per-
formance of various CSP and end-user algorithms designed
for system robustness and stability, convergencebehaviorand
re-convergence under churn, CSP revenues, link loads, link
price distributions etc. A final goal is to compare the central-
ized and distributed variants of our system. The centralized
approach is able to ensure sound global properties and our
goal is to understand how close a completely decentralized
approach can come to achieving such properties.

6.1 Experimental Setup
Topologies. We conduct experiments using several diffe-

rent CSP interconnection topologies. Our baseline topology
is one derived from the ISP topologies discovered in [28]. We
extracted a subset of 50 highly populated tier-1 PoPs in North
America and the edges between them (100 edges in all).

We generated three other synthetic topologies: Power-law
random graphs, Erdos-Renyi random graphs and regular graphs.
The details of these graphs are shown in Table 1.

In all the graphs described above, every bi-directional edge
is replaced by two individual links allowing traffic to flow
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Algorithm Parameters
Explore-Exploit (EE) α = .95, N = 10000
Hedge-Bandit (HB) ǫ = .01, δ = .01

Table 2: Parameters for learning algorithms.

in opposite directions. Link capacities are drawn at random
from one of two values—25 or 100 units. We force links
flowing in opposite directions between a pair of nodes to be
the same capacity. We also experimented with other link ca-
pacity distributions and our high level observations remain
qualitatively similar in those settings.

Link costs. Each link is assigned an initial cost gener-
ated randomly between0.1 units and5 at a granularity of0.1
units. The monetary value of “units” is arbitrary and would
be determined by real demands in practice. CSPs adjust their
link costs according to the algorithms presented in§4. We
ensure that link costs stay in the range[0.1, 5.0].

Sources and sinks.We use a multi-source multi-sink set-
ting throughout our evaluation. Sources of traffic, i.e., users
in RouteBazaar, could be located at any node in the above
topology. However, the sinks are located at the 16 most
highly populated nodes, where we assume that node popu-
lation is proportional to degree (when degrees are similar,we
pick 16 nodes at random).

User demands.To determine the amount of demand in the
system, we use the gravity model: the net demand between
a pair of nodes is proportional to the population of the cor-
responding nodes. The total number of users in the system
is proportional to the net demand and each user has a single
unit of demand to one of the 16 destinations.

User values.We study a simplistic setting where all users
have a demand-value vector containing a single entry, with
demand set to unity. Each user is assigned an associated
value with the unit demand it imposes. The values are drawn
from the same range as link costs,[0.1, 5.0] units.

We experiment with several value distributions. The first
is a Zipfian distribution with an exponent ofα = 1. This rep-
resents a typical income model and satisfies the MHR condi-
tion. The second set of values is drawn uniformly at random
from the range and also satisfies the MHR condition. The
third is a bimodal distribution where there is significant dis-
parity in user values: they are drawn from the ranges [0.1,1]
or [4.5 and 5], with 90% of values originating from the first
interval. This does not satisfy the MHR condition.

Parameters. The algorithms we proposed in§4 each use
a set of parameters. We conducted a variety of simulations
to understand how to select these parameters. Without going
into the details and in the interest of brevity we briefly list
values selected for key parameters in Table 2. These param-
eters ensure that the algorithms offer the fast convergenceto
equilibrium and good overall system performance in all sce-
narios we consider.

6.2 CentralizedRouteBazaar

Our first set of simulations considers the centralizedRoute-
Bazaar framework under different settings. We first show
that the system converges and is efficient in practice, and then
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Figure 5: Convergence: Rocketfuel topology, with Zip-
fian value distribution.

Topology Value Distribution ConvergenceEfficiency
Rocketfuel Zipfian 52,000 0.78
Rocketfuel Uniform 53,000 0.70
Rocketfuel Bimodal 53,000 0.75
Random Zipfian 50,000 0.74
Random Uniform 50,000 0.74
Random Bimodal 50,000 0.79
Regular Zipfian 52,000 0.68
Regular Uniform 52,000 0.66
Regular Bimodal 53,000 0.75

Power law Zipfian 50,000 0.68
Power law Uniform 50,000 0.67
Power law Bimodal 50,000 0.73

Table 3: Centralized framework, with CSPs using EE.

compare the two CSP learning algorithms.
Convergence.Figure 5 shows the evolution over time of

social value and total revenue at the central arbiter in the cen-
tralized RouteBazaar system for one of our experiments.
We present these results for both CSP learning algorithms—
EE (epsilon-decreasing explore-exploit) and HB (hedge-bandit).
Note that both the social value and revenue curves flatten out
after 50,000 iterations for EE (Fig 5(a)) and 200000 iterations
for HB (Fig 5(b)). This indicates that the arbiter’s simulation
of user and CSP interaction reaches a stable state over time.

Using the termination condition described in§4.3 the ar-
biter declares convergence and outputs link prices and user
routes at around 52,000 and 230,000 iterations for the two al-
gorithms, respectively. In the rest of this section we referto
the state of the system at these points of time as the equilib-
rium (although it may not correspond to an actual Nash equi-
librium), and say that the system has converged. We tried
several other scenarios and observed convergence in all of
them — the iteration at which convergence was observed is
shown in column 3 of Table 3 for the EE algorithm.

Note that the two CSP learning algorithms differ in their
convergence speed. We revisit this issue later in this section.

Efficiency. We now discuss a key measure of the overall
performance of centralizedRouteBazaar, the system effi-
ciency, as defined earlier. The higher the efficiency, the closer
the system operates to its capacity.

Table 3 shows the efficiency of the system upon conver-
gence for different topologies and user value distributions.
We assume that the EE algorithm is used to emulate CSP
learning. In general, we note that despite allowing users and
CSPs to interact selfishly with each other, our system arrives
at a reasonably efficient outcome in most of the situations
we studied. Although not 100% efficient, the centralized
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Figure 6: Comparing EE and HB: Zipfian user values
over different topologies

RouteBazaar framework is able to perform at 60%-80% ef-
ficiency. We note that system performance at equilibrium is
significantly better than indicated by the worst-case analysis.
In particular, value distributions that were shown to result in
undesirable outcomes by prior analytical results—e.g. thebi-
modal distribution—still result in fairly efficient outcomes in
the situations we have analyzed.

Comparing CSP Learning Algorithms. We now com-
pare the two CSP algorithms on various topologies. The
results of the comparison are shown in Figure 6, where we
study the time taken for the system to converge and the link
prices derived by either algorithm. Recall that while HB has
been theoretically shown to converge in arbitrary settings[13,
6], no such result is known for EE.

Several points are worth noting: Figure 6(b) shows that the
algorithms result in roughly the same settings of link prices
at equilibrium. We also found that the two algorithms differ
negligibly in system efficiency at equilibrium (specifics not
shown for brevity). However, Figure 6(a) indicates that HB
takes a lot longer (4-10 times slower) to converge to an equi-
librium in practice. In the HB algorithm, link prices could
change more abruptly and more often until convergence is
reached because the algorithm explores mediocre prices in
addition to the best ones. In contrast, EE forces link prices
to be more stable and slowly evolving. The same reason
also contributes to HB converging slower on topologies with
greater potential for route diversity (e.g. compare Regular
against Power law in Figure 6(a)).

On the whole, it is unclear which algorithm is more suit-
able in practice. On the one hand, HB is designed for the
worst case and offers theoretically sound properties, and hence
may be more appealing under a wide spectrum of situations.
On the other hand, the EE algorithm seems to work well in
most practical situations anyway. Because of its simplic-
ity and reasonable performance we expect that EE will be
adopted in practical implementations.

6.3 Distributed RouteBazaar

We now evaluate the distributed variant of theRouteBazaar
framework. Note that CSPs continue to use one of the two
learning algorithms, EE and HB, in the distributed setting as
well. We start with examining the impact of user response in
this framework on system performance.

Understanding User Response.In the distributed set-

CSP Price Algorithm ǫs Efficiency Convergence
EE 0.1 0.39 73,000
EE 0.5 0.55 91,000
EE 1 0.69 52,000
HB 0.1 0.19 100,000
HB 1 0.61 150,000

Table 4: The impact ofǫs in the distributed case; Rocket-
fuel topology and Zipfian value distribution

Topology ConvergenceEfficiency Efficiency - centralized
Rocketfuel 52,000 0.69 0.78
Random 59,000 0.62 0.74

Power law 88,000 0.61 0.68
Regular 52,000 0.59 0.68

Table 5: Efficiency of the distributed approach for Zip-
fian value distribution.

ting, users employ the flow update algorithm described in
Figure 3 to adapt to changes in prices at the CSPs. The al-
gorithm gradually moves anǫs amount of the users’ traffic
from currently-used sub-optimal paths to the new best priced
paths. We study how the choice ofǫs impacts system perfor-
mance and in particular if allowing users to be “fully selfish”
(ǫs = 1) leads to poor outcomes.

Table 4 summarizes our findings for both the CSP learn-
ing algorithms (EE and HB). Surprisingly, we find that using
large ǫs leads to robust performance—allowing users to be
selfish is not bad from a global viewpoint. On the other hand,
constraining users from reacting selfishly (i.e. using small ǫs)
seems to lead to inferior system-wide performance at equilib-
rium. This is because when users use smallǫs, CSPs get very
slow feedback about the effect of their price changes. CSPs
naı̈vely believe that the price changes they made caused only
a small increase/decrease in the amount of traffic they carried
and the revenue it produced. This “incorrect” revenue “pol-
lutes” their history, causing sub-optimal prices to be charged
and the system to converge to a worse equilibrium.

The results are consistent across both CSP learning algo-
rithms and across other scenarios (i.e. network topologies
and user value distributions — not shown for brevity).

Comparison with the Centralized Variant. A key differ-
ence between the centralized and distributed variants is that
the central arbiter in the former can optimize global objec-
tives to the extent allowed by CSP and user constraints. In
particular, when the system admits multiple stable states,the
central arbiter can suggest the best one to all the participants,
in particular the one that maximizes social value. Such opti-
mizations cannot be performed in the distributed framework.
A natural question is to examine the extent to which the dis-
tributed framework suffers due to the lack of this global op-
timization. Our evaluation, summarized in Table 5, indicates
that the distributed approach performs nearly as well as the
centralized one. In particular, the difference between thedis-
tributed and centralized variants in terms of efficiency is just
0.07 to 0.12. Thus, the distributed approach in practice can
offer reasonable system-wide performance despite the lack
of a global perspective.

Recall that the distributed approach is designed to run in a
continuous online fashion and is always in a state of flux. To

11



 0

 1000

 2000

 3000

 4000

 5000

20k 40k 60k 80k
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1
 1.1

V
al

ue
 in

 u
ni

ts

E
ffi

ci
en

cy

Iteration

Value
Revenue

Value average
Revenue average

Figure 7: Distributed Convergence: Rocketfuel topology,
Zipfian user values and CSPs using the EE algorithm
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Figure 8: Distributed RouteBazaar at equilibrium

understand if the system oscillates, we applied a variety of
tests. We monitored the change in the net social value of the
system and net CSP revenues over time in various settings. In
particular, we applied the centralized termination condition
(Section 4.3) to the distributed simulation state to examine if
the latter even converges and if so how the convergence rate
compares to the centralized approach. Our observations are
summarized in column 3 of Table 5. The distributed frame-
work achieves convergence in all cases. (Note that iterations
to convergence mean different things in the context of the
centralized and distributed approach, because the latter in-
volves direct user-CSP interaction.)

For completeness, in Figure 7, we show the evolution of
the distributed framework over multiple iterations when CSPs
use the EE learning algorithm and users employǫs = 1 in
their flow update algorithms. We find that the social value of
the system reaches a steady state in about 50,000 iterations.
Net CSP revenue is also stable beyond this point.

6.4 RouteBazaar at Equilibrium
RouteBazaar is designed to attract participation from users

and CSPs. We now examine the status ofRouteBazaar at
equilibrium to check if this design requirement is met sat-
isfactorily. We consider the distributed approach and takea
snapshot of the system after a certain large number of iter-
ations. We use the Rocketfuel topology with Zipfian value
distributions, the EE algorithm for CSPs and assume selfish
user response (ǫs = 1 for user flow update). Our observations
for the centralized approach are qualitatively similar.

In Figure 8(a), we show the fraction of users that are allo-
cated routes at each value for the distributed framework. We
see that very few users with low values (< 1 unit) get to route
using the system. In contrast, almost all users with high val-
ues (> 3 units) route using the system. We note that some
users with high values are denied service—this could happen
because of where they are located and how many other high-
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Figure 9: Distributed RouteBazaar: CSPs at equilibrium

value users they are competing against. In general, the sys-
tem shows the expected behavior, allowing users who value
the routes the most to be able to useRouteBazaar.

In Figure 8(b), we show the utilizations of links owned by
different CSPs. A small fraction of the links (20%) have link
utilizations below 10%. About 30% of the links have 50% or
higher utilization. This suggests that most CSPs are able to
attract enough traffic onto their links usingRouteBazaar. In
Figure 9 we show the link prices and revenues of CSPs. We
find that in an overwhelming fraction of the cases, the equi-
librium prices are 2 units or lower (Figure 9(a)). From (Fig-
ure 9(b)) we see that revenues are fairly evenly distributed
across the CSPs and there is no significant skew. Roughly
45% of the revenues are in the 10-40 unit range. The rea-
sonable distribution of revenues and link utilizations indicate
that service providers would be willing to take part on our
RouteBazaar framework. Since users with moderate to high
values are able to route inRouteBazaar, our system would
be able to attract enough users as well.

6.5 Churn
In this section, we discuss the performance ofRouteBazaar

when users enter and leave. Our discussion in§4.5 argues
that slow churn can be accommodated in both the centralized
and the distributed frameworks. In this section, we evaluate
the rare situation where the system faces unexpected churn.
We focus on the distributed setting.

To test the flexibility of handling “extreme” churn, we ran
the rocketfuel topology with Zipfian user values with the EE
CSP response behavior. After the system converges for an
initial set of demands, we add new users with a total de-
mand of 1% to 5% of the existing demand. The reconver-
gence times for these scenarios are presented in Table 6. We
also show the efficiency of the system after reconvergence
and the “restart” efficiency which reflects what would have
been achieved had the entire set of users been in the system
from the start.

We note that although the system converges close to the
restart efficiency under extreme churn, it takes a long time to
reconverge. A potential concern in this case is that at certain
times links may become overloaded due to extra demand in
the system, causing dissatisfaction to users as well as CSPs.
On the other hand, if all link loads are always< 1 prior to
reconvergence, then users with the willingness to pay still
get service, and CSPs still get good revenue, and long re-
convergence times are of less concern. To address this, each
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Demand IncreaseReconvergenceEfficiency Restart Efficiency αb needed
1% 14,000 0.60 0.62 .01
5% 28,000 0.54 0.58 .08

Table 6: Reconvergence on distributed simulations on
Rocketfuel topology and Zipfian user values. We assume
CSPs use the EE algorithm, which we updated to accom-
modate churn—in this approach, CSPs employ a random
price at every iteration with a fixed small probability, sim-
ilar to the HB algorithm.

k Convergence iteration Efficiency
3 43,000 0.26
4 52,000 0.59
6 219,000 0.70

Table 7: Efficiency in k-regular graphs

CSP link can have a small fraction of its capacityαb set aside
as backup. Each CSP sets or alters prices to operate below
1 − αb of its link capacity at equilibrium; if not, CSPs as-
sume that no revenue is made on the link and change price
to bring the load down. The spareαb fraction of capacity
can thus be utilized to accommodate relatively heavy churn
and ensure that most users are satisfied even during churn. In
our simulations using Rocketfuel topologies, we found that
settingαb = 8% (conservatively) is sufficient to ensure that
a link is not overwhelmed beyond its full capacity with high
probability (see Table 6).

6.6 Factors Affecting the System
In §5, we outlined several factors that may affect theRoute-

Bazaar framework, including disparity in user values, net-
work topology, and the presence of real or virtual monop-
olies. Our simulations were designed to evaluateRoute-
Bazaar to understand the impact of these factors in practice.
So far we have presented results detailing the impact of the
first two factors. As our results show, the practical impact of
these factors seems minimal andRouteBazaar seems to of-
fer reasonable performance under a broad range of situations.

As we show earlier,RouteBazaar presents a low bar-
rier to entry to CSPs. Therefore we don’t expect the sys-
tem to contain monopolies. We conducted a brief analysis
to understand the impact of virtual monopolies by varying
the connectivity of the network, and thereby impacting the
hop-lengths of source-destination paths. Theorems 1 and 2
suggest that as the hop-lengths of paths increase, leading to a
potentially larger number of virtual monopolies for any user,
the system performance relative to the optimal social value
worsens. We verify this behavior through simulations.

In this set of experiments we selected the baseline regular
graph topology (with per node degree of 4) and changed the
average degree of each node to both increase and decrease
route diversity and path lengths (use per node degrees of 3
and 6 respectively). We employed the distributedRoute-
Bazaar framework in this analysis. Our observations are
summarized in Table 7. We note that in networks where
path diversity is severely restricted (correspondingly, there
is a high incidence of virtual monopolies), the system-wide
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Figure 10: User and CSP properties in regular graphs.

efficiency suffers significantly.
Figure 10 shows the distribution of values of users who

route overRouteBazaar, and the link prices selected by
CSPs, in the different regular topologies. As expected, link
prices increase slightly with decreased path-diversity (Fig-
ure 10(b)), because virtual monopolies tend to charge higher
prices. More tellingly, the set of users using the system is
very different. In topologies with larger degree, greater frac-
tions of users who value the routes more end up using the
system. In such topologies there are both a larger number
of, and shorter on average, paths available. For the degree-3
graph, significant fractions of even the high-value users are
denied. In this case, the effect of higher link prices is aggra-
vated by longer paths—longer paths mean that users’ money
will only get them so far, leading to poor social outcome.

7. DISCUSSION
Payments between users and CSPs.In the centralized

approach, the arbiter can also play the role of mediating money
exchange between each user and the set of service providers
it routes over. The arbiter can tally the net amount owed by a
user to each service provider and issue a monthly bill. In the
distributed setting, a separate accounting framework would
be necessary. The accounting mechanism could be based
on the current approaches ISPs employ when charging cus-
tomers on the basis of usage [25]. Using such an approach,
each CSP tracks the net amount owed by individual users
(note that the users may not be directly connected to the CSP
links) and directly issues bills to the users. We believe that
two factors will make the accounting problem relatively sim-
ple from the view-point of CSPs: (1) The users in our setting
are large stub networks and small-to-medium ISPs. Thus,
they are few in number and it should be possible for CSPs
to track their usage without incurring too much overhead.
(2) We expect the system to mostly operate at steady state
with few arrivals and departures of users, and relatively slow
changes to demand-value vectors (based on time of day, for
example). As a result, the usage profiles (i.e. the set of users
routing over each link and the amount of capacity consumed)
and link prices of CSPs are likely to change slowly, if at all.

Multi-level RouteBazaar. Depending on the equilibrium
prices selected by CSPs and network topology, it is possible
that several users are denied service inRouteBazaar (note
that the net social value of the system could still be high as
users with high willingness to pay are unlikely to be denied).
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To be more inclusive, a multi-level framework akin to “Paris
Metro Pricing” [23] could be adopted: CSPs can offer mul-
tiple levels of service where each is priced independently
and prices of different levels are significantly different.To
use such a system, users would have to include the specific
service-level they desire in each CSP alongside the source
route. Users with low overall values now have the flexibility
of (possibly) leveraging the lowest service level in each CSP
and such paths are still better than routing over default BGP
paths (e.g., in terms of availability). In future work we hope
to evaluate such a multi-levelRouteBazaar framework.

Information granularity. In RouteBazaar CSPs base
their pricing decisions only on the net volume of traffic at-
tracted by their links at a certain price setting, and how the
revenue derived compares against that obtained at other price
settings. Thus, the CSPs only usecoarse grained informa-
tion. They know and use very little information about users,
e.g., how many there are and what their demand-value vec-
tors are. CSPs are also assumed to be unaware of the prices
selected and revenues derived by other CSPs in the system.
Employing limited coarse-grained information helps keep the
CSP price adjustment algorithms simple. We do note that it
is possible for a given CSP to use additional information and
set its prices more intelligently to further improve its revenue;
both the centralized and distributed frameworks could be ex-
tended with such intelligence and this further enhances the
flexibility our system offers to CSPs. Two points are worth
mentioning in the context of such smarter algorithms: (1) Our
analytical bounds on the price of anarchy of the system hold
even with such flexibility. (2) In practice, given that CSPs al-
ready obtain reasonable revenues with the simpler approach
(Section 6), more intelligent algorithms are unlikely to fur-
ther boost revenues. We plan to explore the practical effects
of using finer-grained information in future work.

8. CONCLUSIONS
BGP’s inherent rigidity has forced users of the Internet

to explore solutions like overlay routing and multihoming,
which are either undesirable or inadequate. In this paper, we
present an economically motivated approach calledRoute-
Bazaar for overcoming the rigidity. RouteBazaar offers
flexibility and visibility to users who are willing to pay. Iten-
courages participation and competition among service providers
by allowing them to dynamically alter prices for the services
they offer and giving them the ability to attract users who are
not directly connected to them. Our evaluation using both
analysis and simulations suggests that the framework is both
efficient and stable under mild but realistic assumptions about
user requirements and network topology.

Our design of the centralized and distributed versions of
RouteBazaar are in no way complete or final. We expect
several innovations to be possible, for instance, in service
provider and user response algorithms and in accommodat-
ing high churn a lot more gracefully. Our ideas in this paper
present likely starting points for these.

RouteBazaar is meant to support BGP, not replace it. As
RouteBazaar adoption grows, and more scalable alterna-
tives are introduced, we envision greater amounts of traffic
using the system. At all times, however,RouteBazaar de-
pends crucially on BGP, or some other protocol that provides
reasonable bare bones reachability, as a fallback option.
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