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ABSTRACT

The Internet’s routing protocol provides users a single-end

cannot guarantee meeting users’ end-to-end requirements s
isfactorily (e.g., routes are not guaranteed to be availabl

to-end route that is not guaranteed to be available or to meet Ve argue that overcoming the rigidity in BGP—i.e., the

user requirements. Our paper addresses this rigidity eing

poor visibility into routes and no flexibility in routing—aglires

economically grounded approach that appeals both to user<n alternate, economically-grounded approach. We believe

and to service providers. We propose a framework called
RouteBazaar in which service providers announce links con-
necting different parts of the Internet, along with dynaatlic
changing prices associated with using the links. All togglo
information is exposed to end-users. Users simply use soute
that best match their cost-performance requirements. phe a
peal to users is that they can always obtain a route of their
choice as long as they are willing to pay for it. The appeal to
providers is that our framework offers them means for mon-
etary gains as long as they are willing to offer greater visib
ity into their topology and greater flexibility in user roste
We present both centralized and distributed versions af thi

that service providers will be willing to expose greater amis
of information to users, and/or offer them greater flextiili
in routing, as long as this leads to suitable monetary compen
sation. Equivalently, users who have the means will spend
money to buy the additional visibility and flexibility as Ign
as their requirements are guaranteed to be met. Our work
asks whether it is possible to develop a flexible and robust
economic framework to match the desires of users with those
of service providers.

A crucial requirement of the framework is that it attract
participation from both users and service providers. There
fore, it should explicitly account for the local goals of hot

framework. Both versions are designed to supplement, not USers and service providers, makingustness to selfish be-

supplant, BGP. We design a variety of algorithms to ensure
robustness and stability of either framework. We study the
framework using a simplified game-theoretic model and also
conduct large scale simulations of its performance in jzact
using real and synthetic network topologies. We find that de-
spite allowing flexibility to both users and service prowvisie
our system operates at a stable and close-to-optimal state.

1. INTRODUCTION

The BGP routing protocol forms the backbone of the In-
ternet today. It enables end-users to communicate with dif-
ferent corners of the Internet and has played a key role in
the growth of the network. Unfortunately, BGP suffers from
key drawbacks that constrain the Internet and the applica-
tions running on it in various ways [26, 3, 22, 10, 29]. A
key constraint of BGP is that it offers end-users very limite
visibility into network topology and routes, providing use
exactly one policy-constrained path per destination. &her
is no guarantee that the single route that BGP provides will
meet an end-user’s requirements. Most importantly, theerou
is not guaranteed to be available [3].

Approaches that have been proposed to address these cha[2

lenges and improve end-user experience, such as overlay rou
ing [27, 3] and multihoming [2, 4], are either undesirable in
practice or inadequate [2]. The flexibility offered by over-
lay routing to end-users has undesirable interactions\3ih
policies and traffic engineering objectives. Multihomiranc
offer better performance than single BGP paths, but it still

havior a first class design requirement. This offers flexibil-
ity simultaneously to users and service providers, anafast
greater participation from both, without requiring any &iof
global oversight. A secondary requirement is that the frame
work exist alongside BGP and other existing systems such as
multihoming and overlay routing. This ensures that when-
ever user and service provider requirements are misaligned
users can fall back to the existing mechanisms.

We describe and study such a framework calRamlite-
Bazaar. Providers participating iRouteBazaar announce
(virtual) links connecting different locations of the Intet,
along with the price associated with routing over them. Cru-
cially, providers have the flexibility of dynamically alteg
the link prices so as to control quality of their links and,
more importantly, to attract traffic and maximize their rev-
enue. Users oRouteBazaar will have complete visibility
into the links and paths offered by service providers via the
system. Crucially, users will always be able to find a route
overRouteBazaar to the destination of their choice that best
meets their constraints as long as they have the willingness
to pay for it. A user’s route ilRouteBazaar could be com-
osed of links from different providers (each with a diffe-
ent price). Each user settles payments with each individua
provider along the paths she uses.

RouteBazaar encourages competition among service providers

and makes it easy for newcomers to participate in our system.
In particular, providers can use dynamic pricing as a tool to
attract traffic from users who are not connected directly to



their links. Thus, third-party service providers can stafrt The nanopayments are used to pay each on-path ISP for the
fering services using our system even if they don't have a service it offered to the packet. Because these are packet-
customer base like ISPs do today. level system they impose significant overhead on the service
We describe two variants dRouteBazaar. In the cen- provider infrastructure. They also need significant change
tralized variant, users submit their requirements and service to applications and to TCP/IP stacks. Users in these systems
providers submit their topology information to a central ar may not find a path whose price matches their willingness
biter. The arbiter simulates selfish behavior for both users to pay; neither system addresses how to accommodate them.
and service providers and derives tii@sh equilibriunprices Finally, unlike our framework, neither system has beenweval
for providers links and routes for users (some users may beated (theoretically or otherwise) to test for practicabiiiy.
denied a route). In thdistributedvariant, users and service A few other systems have proposed broker-based archi-
providers constantly and directly interact with each athés tectures for routing and quality of service. Bandwidth bro-
develop learning-based algorithms for service providad a  kers [35] were proposed originally in the context provision
user-response. The former dictates how service providersing QoS paths in a single service provider network. More re-
should change prices to maximize revenue. The latter dic- cent proposals extend the bandwidth broker framework acros
tates how users should reroute traffic (in response to price multiple ISPs [20, 31]. Thus, they enable users to buy gualit
changes) toward newer paths that best match their require-of-service across multi-ISP paths. Both systems are dedign
ments. Our algorithms are designed to ensure stable operato work alongside BGP, similar to our approach. The MINT

tion in the face of modest churn in the system. proposal [31] uses a centralized mediator to run a contisuou
We evaluate our framework using both analysis and large double auction in order to match user requests (e.g. forband
scale simulations. We consider a stylized modeRolite- width between two points on the Internet) against ISP bids

Bazaar in a game-theoretic setting and analyzepitze of (e.g. price per unit bandwidth per link). A similar media-
anarchy—the gap between the performance of the system toris used in [20]. The design of these approaches is similar
when users and service providers are selfish, and the opti-our centralized framework at a high level and they share the
mal performance achievable through global oversight. Pre- same broad goal as us, but there are key differences. In par-
vious work [14] has shown that the price of anarchy wors- ticular, neither approach takes the selfish goals of usats an
ens as the disparity among users or the number of monop-service providers into account. Service providers canirot d
olistic service providers in the system increases. We prove rectly compete against each other in these systems. Its also
that the price of anarchy improves considerably under mild not clear if users of the system will have their requirements
assumptions on the users’ values. We conduct simulationsmet in the optimal fashion (e.qg. it is not clear if the systems
over several real and synthetic topologies. Our key finding provide users the least expensive paths for the level ofcerv

is that, in most scenarios, the net performance derived bythey want). Because our framework explicitly takes selfish-
RouteBazaar users (in both the centralized and distributed ness into account it addresses both of these issues. Thus, we
versions) is just 25%-35% away from the best possible (i.e. believe that it fosters greater participation from bothrase
where all service providers are altruistic and provide glbb and service providers. Another key difference is that, un-
optimal routes). We find that network topology, link capaci- like our approach, it is not clear if these architectures are
ties and the requirements of users have minor impact on theamenable to a distributed implementation.

performance oRouteBazaar in practice. On the whole, our Our framework also draws from prior work on congestion-
study shows thaRouteBazaar is a viable system to supple- based pricing for the Internet such as the smart-markets pro
ment BGP and could address some of its key drawbacks in aposal [21]. In these proposals, network users pay for aservi

way that appeals to both users and service providers. whose price is set dynamically based on the individual effer
of the users. While these proposals apply to a single service
2. RELATED WORK provider network, ours applies to multiple service provgle

that could be interconnected arbitrarily.

Fine-grained route selection. Without directly address-
ing the economic aspects of the problem, several papers have
proposed routing systems that allow users greater flewibili
e ; N in selecting routes. In Pathlet routing [17], users perform
bears some similarity to the network “nanopayment” systems o, ,ce routing over “pathlets”, where each pathlet is arirt

Bill-Pay [15] and A la carte [16,]' In these clean-slate archi link between points in the Internet (e.g. between PoPs in the
tectures proposed as alternatives to BGP, ISPs announce ame ISP). NIRA [34] and MIRO [33] allow users to con-

list ﬁf serwli:e Ilevells and C(()jrrespkondwllgdprlce?, Wh'fh ?Pp'd struct AS level source routes to achieve various traffic €ngi
at the packet level. Based on knowledge of topology an neering objectives and economic goals. Both distributetl an

link prices, users com_pute paths they W!Sh to use and INSeMteantralized versions of our system leverage these proposal
source routes along with nanopayments into each packet the){0 facilitate forwarding

send. The ISPs may be able to alter their prices, although Analytical studies. A number of recent papers have theo-
neither system specifies what approach ISPs should adopt.

Our RouteBazaar framework builds upon existing liter-
ature on the interplay between routing and economics. We
discuss potential similarities and key differences next.

Economics-based system3.heRouteBazaar framework



retically analyzed the economic aspects of bandwidthipgici  term bi-lateral relationships with neighboring networitie
under various models (see, e.g., [19, 1, 5, 24, 14]). Among binding, bi-lateral nature of these contracts constragngise
these the model considered by Chawla and Roughgarden [14providers from offering a rich variety of flexibly-priced se

is the most relevant to our setting. Chawla and Roughgardenvices to users who transit their networks.

analyze the price of anarchy of a bandwidth pricing game in ~ Our system allows service providers to vary prices for their
which service providers pick prices to maximize their rev- services at finer time-scales. More importantly, the pne i
enue and users pick paths to maximize their utilities. The posed by a service provider is charged to all traffic routed
price of anarchy is the worst gap between the performance ofover its links, irrespective of where it originates. Usefisov

an equilibrium (stable state) in this game to the optimat per route atop our system pay each on-path service provider for
formance that may be achieved through centralized control. the services they used. Thus our framework allows a service
They show that the price of anarchy for this bandwidth pric- provider to attract a user who may not be directly connected
ing game can be large when there is a large disparity betweerto it to route over its links and potentially boost its revesu
the values of different users and the network contains manyfurther. In contrast, ISPs today can only charge customers
“monopolistic” service providers. In Section 5 we expand on who are directly connected to them.

these results and show that under mild and natural assump- We present a high-level description of drouteBazaar
tions on the distribution of users’ values in the networlg th  framework next. Design details and specific algorithms that
price of anarchy improves considerably. Our simulations in we use to enable the above features are discussgt in

Section 6 support these findings. Assumptions.Our description of th®outeBazaar frame-
work in this section makes a few assumptions.
3. OVERVIEW OF RouteBazaar The service offered by each service provider in our sys-

tem is providing a route between two points in the Internet at
some cost per unit bandwidth consumed on the path between

fraTeévork and companngba_llgal?st BGP rouu_ng.o the points. We use the term connectivity service providers o
(1) Separating route visibility from economics.Our sys-  ~gps to describe the service providers,

tem is designed to separate payment and economics from vis- Each user of the system wishes to use the system to route to

ibility into network topology. Specifically, economic con- 5 gaific destination. Someone wishing to route to multiple
straints of service providers In-our system Sh?“'d nqt limit destinations could be represented by a collection of erdsus
users’ knowledge of, and their ability to potentially usé; d o5 \yishing to route to one of the destinations. Users may

ferent paths in the network. In BGP routing, providers imple enter and leave the system at any time. But we assume that
ment a variety of economics-driven import and export poli- this happens ateery low rate

cies on route announcements that filter out topology anerout At any given time, some of the potential users of the sys-

|nformat|o.n before it reaches end-users. . tem may be denied a route. This is because the system may
(2) Optimal routes for users who are willing to pay. be unable to provide routes with prices that match the user’s
Users.of the §yst§m ShO_UId be able to route to their corre- willingness to pay and other requirements of the user. We as-
sponding destinations using our sy_stem as long as they haVesume that all such users fall back to using default BGP routes
the means to pay for the route provided by our system. Thus, We assume that a source routing-based system such as
only a uger’s wiIIingne;s to pay determines whether or not Pathlet routing [17], MIRO [33] or NIRA [34] is available
she will find a route with our system. Today, end-networks ¢, ,sers to route traffic along the paths specified by the sys-

who are W'”'Tg to pay can ﬁﬁ?r% t(l) buyhconnr?_::tlvny ;‘]rom tem. The specific approach does not matter as long as it offers
one or more large ISPs with global reach. While such ISPs scalable support for source routing.

have greater reachability to various parts of the Intemetely
connecting to them does not guarantee that an end-to—end3
route will be available no matter how much a user pays. .1 TheRouteBazaar Framework

In order to accommodate user constraints well and to en- We now describe the two sets of participants in our frame-
courage participation, we additionally require that thetes work, the service providers and users, and their behavior.

We start by briefly stating the architectural features of our

provided by our system beptimal from the user’s perspec- Connectivity service providers: Our system is composed
tive. In other words, there should be no cheaper route in the of multiple connectivity service providers (CSPs) thatotb
system that also meets the users constraints. connect different Internédcations Each location is akinto a
(3) Service provider flexibility. In orderto encourage par-  point-of-presence today and each link is a virtual conecti
ticipation from service providers, our system should syl of a fixed maximum capacity between the locations. Each
offer them flexibility as well. We require that service prder CSP can own multiple virtual links of different capacities.

constraints be accommodated by letting them set prices forEach CSP announces a price per unit bandwidth for the links
the services they offer any way they want in order to attract it owns. The link could have different prices. We assume that
traffic and boost revenue. Because of the hop-by-hop naturethe CSP link graph connects users to their destinations.

of Internet routing, today, a service provider’s consttain Users: We envision the system to be used by medium to
are specified implicitly in the form of a collection of long- large end-networks, including enterprises (single or mult



campus), universities, data centers, and even regioretInt
net service providers that wish to provide their customess r
bust transit across the wide-area network. Each sisen &/

ized architecture below, and of the distributed architecin
the next subsection, we assume for simplicity that the set of

users (and CSPs) remains fixed and does not change. We dis-

wishes to purchase some amount of bandwidth between itscuss how to accommodate low-rate churn in Sections 4 and 6.

own location and the location of some destination

An user attaches soma&lue per unit demantbr its traf-
fic. This reflects the user’s willingness to pay per unit traffi
to the destinatiorD. We model this using demand-value
vector,(B,V)g p. An entry (b;, v;) in this vector indicates
that the usel is willing to pay at least; per unit traffic for
b; units of traffic to the destinatiom.

The arbiter’s role is tsimulate the behavioof both the
users and the CSPs (as per the behavior outling8l.thabove)

and find a stable state for the system that is acceptable to all

parties. It runs the simulation until aguilibriumis reached.
The arbiter determines the following:

1. The prices that CSPs should charge for their links.

2. Which users get to route their demand over the CSP net-

We assume that the users’ values are local to the users, and work and those who must route using default BGP routes.
provided to our system as inputs. Depending on a user’s local3. For the former set of users in #2 above:

requirements, the demand-value vectors to a destinatign ma
change slowly over time based, for example, on the time of
the day or day of the week.

CSP and user behavior:Each CSP participating iRoute-
Bazaar is revenue-maximizin that it sets prices so that
the net revenue derived from the collection of links owned
is maximal. In particular, CSPs may change their link prices

a. The routes to the corresponding destinations over the
CSP network that the users must use.

b. The split-up of users’ demands across these routes.

The arbiter communicates this information to the CSPs and

users, who can then choose to follow or ignore the arbiter's
advice in picking their respective strategies.
In order for the arbiter’s solution to be stable and accept-

over time, especially when the current prices are deemed sub able to CSPs and users, it must fortNash equilibriun{30].

optimal given the price choices of other CSPs in the system.

At equilibrium the following properties are satisfied:

We assume that the CSPs are unaware of the values of thee No CSP has the incentive to unilaterally deviate from the

users and cannot distinguish between the users. The only
feedback available to them from the system is the amount of

traffic willing to use their links at their current prices.
A CSP’s revenue per link is the amount of user demand
routed on the link times the price per unit demand. However,

whenever the load on link exceeds it capacity, we assume that

the CSP derives no revenue from the link.

We assume that users select routes iility-maximizing
fashion: given the prices of each CSP link, the routes em-
ployed by a user are such that the useitifity—the differ-

current offered price in order to boost its revenue. Further
more, no CSP observes a loadl on its links.

All users employ utility-maximizing paths and have no
incentive to route over alternate paths. If there exists a
path whose price is less than a user’s value per unit de-
mand, then all of the user’'s demand is routed utogte-
Bazaar. If the price of the least-cost path equals the user’s
value for the traffic, the user’s traffic may be split between
RouteBazaar and regular BGP routes.

Flexible global policies: A feature of the centralized ap-

ence between the value derived by the user and the price ityroach is that it allows the arbiter to impose flexible p&i

pays—is maximized on a per destination basis.

How a user uses the bandwidth provided by our system
is purely based on local policies. A user may apply a local
traffic classification algorithm and use its outcome to deter
mine which traffic to route using the bandwidth allocated to
it by the system. The rest of the user’s traffic is routed in a
best-effort manner using current BGP-based paths.

We now present two flavors dRouteBazaar, one based
on a centralized arbiter and the other completely distetut

3.2 CentralizedRouteBazaar Architecture

In the centralized variant dRouteBazaar, we assume the
presence of a logically central, neutabiter servicewith

in order to try to ensure somglobal propertiesare satis-
fied, while ensuring that the local, selfish goals of the vari-
ous player (CSPs and users) are also honored. For instance,
one set of policies could ensure that, at equilibrium, aatert
minimum amount of demand from each geographic region is
guaranteed routes over the CSP network, irrespective of the
values of the users located at each geographic locatiors. Thi
introduces some level of fairness into the system. Another
set of policies could ensure that the net value derived acros
all users who end up using the system is maximized. While
this can ensure global optimality in terms of net value, this
policy could result in unfairness. A final set of policies tbu
enforce some combination of fairness and value-optimality

whom both users and CSPs communicate. The arbiter service istrib d hi
coordinates the actions and choices of users and CSPs ang-3  Distributed RouteBazaar Architecture

tries to accommodate their requirements and goals.
The CSPs provide as input to the arbiter the list of links
they own, the locations that the links connect, and the capac

At a high level, the distributed architecture works in rolygh
the same fashion as the centralized approach. As before,
CSPs can adjust their prices to boost their revenue. Users

ity of the links. Users provide as input their demands and the select routes over the collection of CSPs to maximize their
value per unit demand. Recall that we assume users to arriveutility. However, there are three key aspects that difféeta

or leave slowly over time. In our description of the central-

the distributed and the centralized architectures.



(1) Dissemination. In the centralized approach, the ar- all user requests, we feel that the underlying BGP routidlg wi
biter coordinates CSP pricing and user route selection andcontinue to play a crucial role through the evolutions beeau
suggests a globally stable solution to all parties. In treede it is the fallback option.
tralized approach, however, special mechanisms are needed
to facilitate this. In particular, link prices should be com 4. DESIGN DETAILS
municated to the participating users to enable them to selec

routes. Two alternatives are possible here: We now expand on the algorithms used by various partici-

e CSPs employ alink-state based routing algorithm to gatherpants InRouteBazaar to arrive at a stable state for the SYys-
tem. Towards the end of the section we present a discussion

this information. Link state updates could be created on a .
. . . of the performance metrics that can be used to evaluate the
regular basis, or on a triggered basis, whenever a CSP up-

datesits link price in an attempt to boost revenue. Network—syStem' as well as _factors that may mflue_ncg these me_trlcs.
- For ease of exposition, we describe the distributed archite
wide link-state updates are sent to the users as well. . ) e
ture first. Again, for ease of exposition, we assume that the

o CSPs register the current prices with, and send all lde""tesset of CSPs and users in either case is fixed and address the
to, a central database. Users query the database for curre

CSP-level topology and link prices at regular intervals. sue of accommodating slow churnjA.5.

In our design{4), we adoptthe latter of the two approaches 4,1  Distributed Architecture: CSP Behavior
because of its simplicity and because it offers more cozsist
network views to CSPs and users.

(2) No global policies.In the distributed approach, the ac-

The goal of every CSP is to price its links so as to max-
imize its revenue given the other CSPs’ and users’ choices.
. . . Since the CSP has incomplete information about othergestra
tions of the different players are completely uncoordidate . ) )

gies and moreover strategies change dynamically, the CSP

This means th_at global desirable properties such as Optlmaf]aces an online optimization problem. Each CSP therefore
net value or fairness cannot be guaranteed. The advantage o

the decentralized mechanism, however, is that it offers flex employs a Iearnlng algorithm to_determlne t_he best s_trategy
o T . . The learning algorithm successively tries different psiee
ibility to CSPs and users in implementing local algorithms, different iterations and gradually converges to a neainogt
rather than a central arbiter simulating their selfish bérav 9 y 9

based on assumptions about their obiectives one. The goal of the algorithm is to minimize the “regret”
(3) Constant (?nline operation Ithhe ceﬁtralized ap- of the CSP, which is the difference between the optimal aver-

proach, the arbiter simulates CSP and end-user behavior un2ge revenue achlevable through asingle price :_;md the averag
evenue obtained by the algorithm over all the iterations.

til an equilibrium is deemed to have been reached. CSPs and . , L .
Below we present two iterative regret-minimizing learning

end-users only use the parameters corresponding to the equi : : ; . .

S . . . “algorithms. The first, thepsilon-decreasing explore-exploit

librium. No equivalent arrangement can be made in the dis- . . . ! .
algorithm [32], is a simple and natural learning algorithm

tributed case. Instead, we assume the distributed vergion o . S . . .
) . . that is proven to minimize regret in a static environmena{th
the system to be in a constant state of flux with prices changes

. . Is, if strategies of other CSPs and users are picked from an
and users alternating their paths. However, we propose @unchanging probability distribution, and do not adapt fis th
suite of CSP price change and user response algorithfids in ging p Y ' P

which ensure that the system operates in a stable state witl'gSP S strsltegy). _Th_e second, threxjge-.bandmlgonthmd[lis, .
only minor changes in link loads and prices. ] provably minimizes regret even in worst-casg ynamic
online settings, and is therefore (from a theoretical view-
point) most appropriate for our setting. A crucial aspect of
3.4 Deployment Path and Role of BGP both algorithms is their use dfistory. The algorithms track
Before providing the details of either variant, we briefly historical information on the net revenue derived at vasiou
outline how we envisioRouteBazaar to be adopted in prac-  prices to determine optimal price choices at each iteration
tice. We envision th®outeBazaar system to start out being We now describe the two algorithms. In thgsilon-decreasing
using in a centralized fashion on a small scale with a few explore-exploitalgorithm, at every iteration the CSP either
early adopters. We envision large end-networks and small “explores” the space of prices by picking a price uniformly
ISPs with mission critical information to be active earlets at random, or “exploits” by picking a price that has histor-
of this system. Third party overlay service providers, al we ically obtained the most revenue. At iterationan explore
as currenttier-1 and tier-2 ISPs could offer connectivitthim is performed with probabilitg;, and an exploit is performed
the RouteBazaar system. As the scale grows, we envision with probabilityl—e,. In the beginning, to bootstrag,is set
the system to transition into a distributed set-up, permatis to a high value but as more and more history is accumulated it
a much larger user and CSP-base. We envision the set ofdecreases with Specifically, we use, = min(N/tlogt, 1)
CSPs to be rich and diverse, composed of a wide variety of for some constan¥ that depends on the size of the network.

providers of different sizes and reach. Similarly, we alge e In order to pick the best-price-so-far in an exploit steg, th
vision users with different demand-value distribution€te CSP maintains an exponentially weighted moving average
exist and use the system in parallel. (EWMA) of the revenue obtained by each potential price. Af-

SinceRouteBazaar runs the risk of not being able to route  ter a certain large number of iterations, this approach doul



Parameters: k, the number of different pricesy = k2; «, the weighting
parameter for EWMA.

Variables: Randomness parametey =
potential pricei, a revenue estimate;.
Initialization: For every price;, m; = 0.

min(N/tlogt,1); for every

Parameters: Selfishness parametey; granularity parametef.

Variables: H, a list of paths used in the previous iteratioh; a list of
currently least-cost pathg;p, flow on pathP; r, the amount of flow to be
redistributed at any iteration.

Initialization: H = 0.

At every iterationt do:

1. With probabilitye;, pick a prices uniformly at random and report it.

2. Otherwise (i.e. with probability — €;), pick the pricez with the maxi-
mum; and report it.

3. Let the revenue obtained at the current stepXbeUpdate the revenue
estimates foi as follows:7; = am; + (1 — a)X.

At every iterationt do:

1. ConstructL by finding all least-cost paths.

2. Initialize r = 0. For every pathP in H \ L, incrementr by e fp if
fp > 6 and fp otherwise; Sefp = fp —r.

3. Let fiot = >_pey max(fp,d). For every pathP in L, setfp =
fp +7/frotmax(fp,d).

Figure 1: Algorithm epsilon-decreasing explore-exploit—
Regret-minimizing learning algorithm for CSPs

Parameters: k, the number of different pricesl. = the capacity of the
link times maximum price; randomness parameter 0.01 and weight
6 =0.01.

Variables: Weights w; and probabilitiesp; for every potential price.
W =3, w;, andp; = w;/W.

Initialization: For every pricei, w; = 1 andp; = 1/k. W = k.

At every iteration do:

1. With probabilitye, pick a price: uniformly at random and report it.

2. Otherwise (i.e. with probability — ¢), pick a price: randomly from the
distributionp and report it.

3. Let the revenue obtained at this stepbeUpdatew; as follows:w; =
w;edX/LP whereP = ¢/k + (1 — €)p;. Other weights stay the same.

4. Update the probability vectgs by settingp; = w;/W for every j,
whereW is the new sum of all the weights.

Figure 2: Algorithm Hedge-Bandit—Regret-minimizing
learning algorithm for CSPs

Figure 3: Distributed flow-update algorithm for users

the price it pays to the CSPs. Therefore, every user disgtbu
its traffic over least cost paths between its source and-desti
nation, and uses the default BGP path for traffic with value
less than the price on the least cost paths. In what follows,
we use the term “user” to denote all traffic from some source
to some destination with the same per-unit-flow value.

In the basic version of the user algorithm, each user main-
tains a list of the paths that it currently uses, as well ast&fi
currently least-cost paths. At every iteration the useroess
all traffic from paths that are not currently least-cost, and
spreads this traffic across least-cost paths in proporbidimet
traffic already carried by them. Additionally, the user teea
the default BGP path as another available source-destinati
path in the system with price equal to the user’s per-unit-flo
value. When the price on the least-cost path is smaller than
the user’s value, it sends some fraction of its flow on the de-

give more weight to newer knowledge gained and less to his- fault BGP path. This algorithm is described in Figure 3.

torical data compared to a simple average. This is espgciall

We also study a smoother version of this flow-update algo-

important in a dynamic environment where demands come ithm with the goal of understanding whether slow updates
and go, because a price that was attractive historically mayto users’ flow lead to better convergence properties. Simila
become unattractive over time. The EWMA approach allows algorithms [8, 7] have been employed to solve flow problems
the algorithm to adapt quickly to such changes. We presentin distributed settings and have been theoretically shawn t

this algorithm formally in Figure 1.
The hedge-banditlgorithm also “explores” at every it-
eration with ane; probability. However, in this algorithm

have good convergencetimes. In our setting in particutar, b
cause the system is dynamic, just like the CSPs, users may
benefit from using historical data to determine good patfs. |

¢; continues to remain at a constant value and does not dethe smoother version, once again each user gradually moves
crease over time. The crucial difference between the two al- its traffic from paths used in the previous iteration to those

gorithmsis in their “exploit” step. Instead of picking thedi-
in-history price at every exploit step, Hedge-bandit pieks

price from a probability distribution that assigns high pro
bability to prices with high revenues and low probability to

other prices. The probability associated with prices tloat-c
sistently perform poorly decreases exponentially oveetim

that currently charge the least price. In particular, easdru
removes ar, fraction of its flow from non-least-cost paths
and distributes it over least-cost paths.

The parameter, characterizes user selfishnesses— 1
corresponds to the basic “selfish” version where users al-
ways only use least-cost paths, while< 1 corresponds to

Therefore, Hedge-bandit quickly converges to good prices the “smooth” version where users give weight to historicall
while not entirely disregarding prices that perform moder- good paths and occasionally route over non-least-cosspath

ately. This allows it to adapt quickly to changes in the syste

While on the one hand the smooth version is more robust to

such as the arrival or departure of demands. We present thissudden random fluctuations in CSP prices, on the other hand,

algorithm formally in Figure 2.

4.2 Distributed Architecture: User Behavior

As described earlier, the goal of every user is to maximize

the utility it derives from routing its traffic — this is theftér-

ence between the value it obtains from routing its traffic and

it may adversely affect performance because CSPs get slower
feedback to their price changes.g® we study the impact of
€5 on the performance of the system.
4.3 Centralized Architecture
The goal of the central arbiter is to compute a “good”
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Figure 4: Value maximizing LP for the central arbiter

equilibrium for the system. It does so through an iterative

approach, by simulating CSP behavior and user behavior at

each step. Specifically at each iteration it first picks [wice

for each CSP and then flow paths for each user, until some

termination condition is met. We now elaborate on these two
aspects of the centralized architecture.

Simulating CSP behavior: The central arbiter simulates
the system as a repeated game among the CSPs.
repeated game if each player employs a regret minimizing
learning algorithm for picking its strategy, then the garoe-c
verges to a correlated equilibrium [18, 12]. That s, no play
has incentive to deviate from its strategy if other playens-c
tinue to follow their strategies. The central arbiter tHere
uses one of the two algorithmepsilon-decreasing explore-
exploitandhedge-bandjtdescribed ir§ 4.1.

Simulating user behavior: At every iteration given prices

path, the arbiter finds an arbitrary least cost path and soute
the entire remaining flow of the user along this path.

We now elaborate on how the arbiter computes a list of
all shortest paths for a user in order to set up the aforemen-
tioned LP. The arbiter first computes all-pairs-shortestfip
distances given the CSP prices. It then determines for every
source, the set of edges that lies on some shortest path start
ing at that source. An edge: — v) lies on a shortest path
starting at source if and only if dist(s,v) = dist(s,u) +
priclu — v). The arbiter then runs a depth-first search
(DFS) starting from the source and only following edges that
lie on shortest paths. Every time it encounters the de#imat
in this DFS, it outputs the current path from the source to
the destination. This algorithm takes time proportionahi®
number of shortest paths between a source-destination pair
We find in our simulations that the number of distinct short-
est paths between any source-destination pair is at least on
order of magnitude smaller than the number of edges in the
graph. Therefore this algorithm is efficient in practice.

Termination condition: The arbiter could use a variety

In an¥ tests to determine when to halt the simulation of the in-

teraction between users and CSPs. In general, a good test
is to check if the system is at a state where the total utility
as perceived by both CSPs and users does not improve any
further. The arbiter should also check for other conditions
that the system should meet at equilibriugB.@). In our im-
plementation of the arbiter, we check to see if in addition to
the above conditions, over a certain large numbef itera-
tions, the net utility in the system does not seem to improve

for the CSPs, the central arbiter simulates user behavior byOr change significantly. Specifically, we check if the differ

routing the flow of each user along the least cost path. De-
spite this constraint of following the best response, thétear
has a lot of flexibility in routing flow because some source-

ence between the 95th and the 5th percentile net utilities is
less than a small fraction (say 5%) of the 95th percentile.

destination pairs may have multiple least cost paths betwee 4 4 Evaluating RouteBazaar Performance
them. Moreover, for some users the cost of the least cost path

may be exactly equal to their value in which case routingthei
flow over this path or over the default BGP path brings equal
utility to them. The arbiter may use this flexibility to imple
ment any desirable social objective. Here we focus on the
objective of maximizing the total social value of the system
To achieve this objective, the arbiter solves the following
max-value flow problem: It first determines for every user a
list of all least cost paths between the corresponding ssurc
destination pair. It then determines the amount of flow to

A natural metric for measuring the performancd=afute-
Bazaar is to quantify the total value it offers to the partici-
pants (CSPs and users). Define soeial valueof a state of
the system to be the total utility of all the agents, or, the to
tal value obtained by all the users, minus the prices paid by
the users, plus the revenues (prices) earned by all the CSPs.
Since prices are endogenous to the game this is equivalent
to the total value obtained by all the users. Throughout this
paper we use this metric to understand how well our system

be sent by the user along every such least cost path whilePerforms. In particular, we compare it against the optintal o

honoring capacity constraints on edges and maximizing tota
value of the flow routed. This problem can be set up as a
linear program (Fig 4) and solved using standard LP solvers.
While the solution to the LP maximizes the value routed
subject to capacity constraints, it may not follow best re-

the maximum possible social value achievable through dgloba
oversight while satisfying capacity constraints on eddes.
the next section we discuss various factors that influerise th
metric and analytically study how the system behaves in var-
ious situations. Several other key metrics can also be wsed t

sponse for every user. This is because if for some user the€valuate the system; we discuss thesgsin

cost of the least cost path is strictly less than the usehseya

it is in the best interest of the user to route its entire flow,
while the LP may only route a fraction of the flow in order to
satisfy capacity constraints. In order to rectify this, émery
user with value strictly larger than the cost of the least cos

45 Churn

Users ofRouteBazaar enter or leave the system only oc-
casionally.RouteBazaar is designed to accommodate slow
churn. In the centralized framework, we require that users



enter or leave the systeat fixed timese.g. at the beginning  value is called th®rice of Anarchy (POAYf the game. POA

of a two hour period. Such churn is not so much an issue is always at least 1, and small values indicate good system
for the centralized framework because the arbiter can sim- behavior. In particular, a POA df indicates that every Nash
ply recompute the routes and link prices from scratch. Note equilibrium is optimal in terms of social value.

that addition of new users may affect whether or not some Monopolies and the price of anarchy:Chawla and Rough-
current users can continue using routing oReuteBazaar. garden [14] showed that the price of anarchy of the pric-
We require that existing users of the system check with the ing game depends primarily on the existence and number
arbiter at the beginning of every time interval. If denidtgy of “monopolies” in the network, and also on the distribu-
stop using the system (they may submit a new request). Intion of traffic. A CSP is called a monopoly if there exist
the common case, users who have low willingness to pay aresource-destination pairs such that all paths from the sotarc
likely to be more affected by churn in the system, and we the destination go through the CSP. Specifically Chawla and
consider this to be an acceptable operating mode. Roughgarden proved the following:

The distributed framework allows users to enter or leave at Theprem 1 ([14]) When all the demands in the network have
any time, but the system is designed for the user-set to @1ang e same source and destination, the POA of the pricing game
slowly. When single users are added to the system over time,s | in the absence of monopolies, at mbgt L when there
few (if any) CSPs are likely to be effected, because small js one monopoly, and can be unbounded otherwise. When the

changes in demand do not cause immediate CSP responsgnstance containg > 1 monopolies, there always exists one
In the rare case that multiple users join simultaneousiigli equilibrium with social value at least a@(L*) fraction of
could be overwhelmed and both the users routing over the ;¢ optimal. Herel is the ratio of the maximum per-unit-

links and the CSPs who own the links are dissatisfied. In joemand value to the minimum per-unit-demand value.

such situations, the faster the system reconverges to @stab  Thjs theorem shows that networks that contain great dis-
set of prices the better it is overall. We evaluate this situa parity among users in terms of per-unit-demand values, or

in §6. that contain long source-destination paths (leading togela
k), can have poor equilibria. Furthermore, it suggests that
5. UNDERSTANDING THE FRAMEWORK eliminating monopolies from a network may be sufficient to
Since each CSP in our system is interested in maximizing €Nsure good performance. Unfortunately the latter is nut tr
its own revenue, the system performance in terms of this to- In Neétworks with multiple sources of traffic. Specifically b
tal benefit may not be optimal. In this section we perform a Making certain parts of a network congested, it is possile t
theoretical study of the gap between the optimal system per-Créate so-called “virtual monopolies”in the network tresid
formance and the performance at equilibrium. to poor performance. A I|r_1k is calle_d a virtual monopoly if
A theoretical model: We analyze the following “pricing there exists a source-destination pair su_ch t.hat alllof tive fl
game”. We are given a directed network (graph) with capaci- r_outed from the source to the destination is cafned by the
tated edges representing CSPs and a value-demand curve fdink (because all alternate routes are too expensive). Ghaw
each pair of nodes in the graph representing users. The gamémd Roughgarden further proved the following theorem about
has two stages. In the first stage of the game each CSP of€tworks with multiple sources. Here the sparsity of the net
edge picks a price. In the second stage each user picks path!ﬂ’ork_ isa meas.ure.of c_ongestlon inthe netwqu andis dgfmed
between its source and destination to send its traffic. We as-(in Single-destination instances) as the maximum fraation
sume that users can split their traffic into infinitesimatyes each demand that can simultaneously be routed in the net-
chunks, and spread it across multiple paths, or send fradtio WOk while satisfying link capacities.
amounts of traffic. A given state in a game (in this case con- Theorem 2 ([14]) The price of anarchy in a network with
sisting of a set of prices and traffic pattern) is calledash multiple sources can be unbounded. When all users have
equilibriumif no participant (user or CSP) wants to change a common destination (but different sources) and identical
its strategy unilaterally so as to improve its own utilityn | value-demand curves, and the graph is a so-called “traffic
the pricing game users are price-takers, that is, they merel spreader”, there exists a Nash equilibrium with social v&alu
follow a best response to the prices set by CSPs, and theat least al/« fraction of the optimal social value, where
responses of different users are decoupled from each otheris the sparsity of the network.
Therefore, given the first stage strategies, the secon@ stag Monotone Hazard Rate distributions: As mentioned ear-
strategies always form a Nash equilibrium, and the dynamicslier, the above results indicate that network performarets g
of the system is determined primarily by the first stage game. worse as the disparity between different users in terms of
We evaluate Nash equilibria in the pricing game by com- value per-unit-demand increases. These negative resalts a
paring the social value at an equilibrium to the maximum quite pessimistic in that the worst bounds arise from unnat-
possible social value achievable while satisfying capaain- ural value-demand curves that are unlikely to occur in prac-
straints on edges. Recall that the social value for any ®ate tice. We now show that when value-demand curves satisfy
defined as the total value of all the users in the system. Thethe “monotone hazard rate (MHR)” condition, the price of
ratio of the worst value over all Nash equilibria to the opilm  anarchy of a network improves considerably and does not



depend on the value disparity. That is, all Nash equilibria
in the system are good. The MHR condition, defined below,
is widely used in game theory and economics to character-
ize commonly occurring value distributions (see, for exam-
ple, [11, 9]). Most natural distributions such as the unifor
normal, exponential, power-law (for exponents greatentha
one), Laplace, chi-square, etc. satisfy this condition [9]
Definition 1 (The Monotone Hazard Rate (MHR) condition)
For a given user and a valug let F'(v) denote the fraction of
traffic for which the user is willing to pay a per-unit-demand
value of at most. Let f denote the derivative of the func-
tion F'. The MHR condition states that the “hazard rate” of
the value-demand curvé(v) % is @ monotonically
non-decreasing function af

Theorem 3 Consider an instance of the pricing game in which

all users have the same source and destination. If the aggre-

Topology Nodes, Edges|
Rocketfuel-based 50, 100
Power law 46, 93
Random 50, 93
Regular 50, 100

Table 1: Details of topologies used in this study. For Ran-
dom graphs, the probability of each edge is 0.08. In the
regular graph, each node has a degree of 4.

These results show that the performance of the system de-
grades as the value disparity between different usersasee
as congestion increases (equivalently sparsity decrgases
as the number of hops in source-sink paths increase (lead-
ing to a larger number of virtual monopolies). However, if
all demand-value curves satisfy the MHR condition defined
above, the system performs wellatyequilibrium.

6. RouteBazaar EVALUATION

gate value-demand curve for the system satisfies the MHR

condition and the network contaiksmonopolies, the POA
of the game is at most.

PROOF As in the definition above, |&f (v) denote the to-
tal fraction of traffic with per-unit-demand value at mast
Consider an arbitrary Nash equilibrium for the game. If the
network is saturated under this equilibrium it already eper
ates optimally. Otherwise, we note that all non-monopolies
in the network charge a price 6f (We omit an argument for
the sake of brevity.) Now consider the monopoly charging
the maximum price at this equilibrium; say that the price is
p*. Let P + p* be the total price charged by all the monop-
olies (this is the price paid by all the users that are routed)
Thenp* > (P + p*)/k. If this monopoly changes its price
to p, its revenue is given by(1 — F(P + p)). Since the sys-
tem is at equilibrium and sp* is the price maximizing this
revenue, upon differentiating the function we get:

L—FP+p)—p f(P+p")=0

Thatis,h(P') = 1/p* < k/P’ whereP’ = P + p*.

Now, by the MHR condition}: is a non-decreasing func-
tion, thereforeh(t) < k/P’ forall t < P’. Finally, we note
that by definition,F(t) = 1 — exp(fot h(x)dx). Therefore,
F(P') =1—exp(f) h(z)dz) < 1 — exp(k).

The total traffic admitted by this equilibrium is therefore
at least ar”* fraction of all traffic. Therefore, the total social
value of this equilibrium is at least aff fraction of the total
value of all the users, and so also at leastafraction of the
optimal social value. O

The result above focuses on single-source single-sink net-

works containing monopolies. However it is also relevant to
more general settings of multiple-source multiple-sink-ne
works without monopolies because, as described earlien, su
instances can contain virtual monopolies. In a companion
paper currently under submission we show that both the up-
per and lower bound given above extend to multiple-source
single-sink networks when all users have identical valesand
curves that satisfy the MHR condition.

We conduct a variety of simulations to study the perfor-
mance ofRouteBazaar in realistic settings. We study sev-
eral CSP interconnection topologies that may arise in pract
cal instantiations oRouteBazaar. We also experiment with
a few different distributions of user demand-value vectors
Our primary goal is to understand the global performance of
the system (and compare against the theoretical results out
lined above). Our key metric of interest is the social value
derived by the system relative to the optimal social valoat t
we also refer to as “efficiency”, under the different setting
This metric measures the ability of users to obtain as much
benefit as possible from the system while allowing the CSPs
to derive reasonable revenue, and indicates whether the sys
tem operates to its full potential. Note that this metriciféed
rent from POA because POA is a measure of efficiency of the
worst Nash equilibrium; in general, when multiple equiigr
exist, our system may converge to a good equilibrium. We
also examine lower-level details of the system, e.g. the per
formance of various CSP and end-user algorithms designed
for system robustness and stability, convergence behamiabr
re-convergence under churn, CSP revenues, link loads, link
price distributions etc. A final goal is to compare the cdntra
ized and distributed variants of our system. The centrdlize
approach is able to ensure sound global properties and our
goal is to understand how close a completely decentralized
approach can come to achieving such properties.

6.1 Experimental Setup

Topologies. We conduct experiments using several diffe-
rent CSP interconnection topologies. Our baseline topolog
is one derived from the ISP topologies discovered in [28]. We
extracted a subset of 50 highly populated tier-1 PoPs intNort
America and the edges between them (100 edges in all).

We generated three other synthetic topologies: Power-law
random graphs, Erdos-Renyirandom graphs and regulargraph
The details of these graphs are shown in Table 1.

In all the graphs described above, every bi-directionatedg
is replaced by two individual links allowing traffic to flow
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Table 2: Parameters for learning algorithms.
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in opposite directions. Link capacities are drawn at randoneg
from one of two values—25 or 100 units. We force links

flowing in opposite directions between a pair of nodes to be  ° 2o a0 eor a0 ® o0 100K 150K 200K 250K
the same capacity. We also experimented with other link ca- @ E'“*E“X’Igomhm ) H'E‘;'A“'I‘;“orithm
pacity distributions and our high level observations remai _ ) ,
qualitatively similar in those settings. F|gure 5: C_onyergence: Rocketfuel topology, with Zip-

Link costs. Each link is assigned an initial cost gener- flan value distribution.
ated randomly betwedn1 units ands at a granularity 0f).1

1000

0.2 1000

’ ; . . Topology [Value Distribution [ConvergencdEfficiency
units. The monetary value of “units” is arbitrary and would Rocketfue Zipfian 52,000 0.78
be determined by real demands in practice. CSPs adjust their Rocketfuel___Jniform, 00 97
link costs according to the algorithms presenteg4n We Random Zipfian 50.000 0.74
ensure that link costs stay in the rarjgd, 5.0]. Random Uniform 50,000 | 0.74

S d sinks Wi Iti Iti-sink t Random Bimodal 50,000 0.79

~ Sources and sinks We use a multi-source multi-sink set- Regular Zipfian 55000 068
ting throughout our evaluation. Sources of traffic, i.egngs Regular Uniform 52,000 0.66
; : Regular Bimodal 53,000 0.75
in RouteBazaar, could be I_ocated at any node in the above Sorerla Zipfian 50.000 558
topology. However, the sinks are located at the 16 most Power [a Uniform 50,000 0.67
highly populated nodes, where we assume that node popu- Power I Bimodal 50000 | 0.3

lation is proportional to degree (when degrees are simvilar,
pick 16 nodes at random).
User demands.To determine the amount of demand in the compare the two CSP learning algorithms.
system, we use the gravity model: the net demand between Convergence.Figure 5 shows the evolution over time of
a pair of nodes is proportional to the population of the cor- social value and total revenue at the central arbiter in éme c
responding nodes. The total number of users in the systemtralized RouteBazaar system for one of our experiments.
is proportional to the net demand and each user has a singléNVe present these results for both CSP learning algorithms—
unit of demand to one of the 16 destinations. EE (epsilon-decreasing explore-exploit) and HB (hedgedlia
User values.We study a simplistic setting where all users Note that both the social value and revenue curves flatten out
have a demand-value vector containing a single entry, with after 50,000 iterations for EE (Fig 5(a)) and 200000 itenadi
demand set to unity. Each user is assigned an associatedor HB (Fig 5(b)). This indicates that the arbiter’s simudet
value with the unit demand it imposes. The values are drawn of user and CSP interaction reaches a stable state over time.

Table 3: Centralized framework, with CSPs using EE.

from the same range as link cosi,1, 5.0] units. Using the termination condition described§4.3 the ar-
We experiment with several value distributions. The first biter declares convergence and outputs link prices and user
is a Zipfian distribution with an exponentaf= 1. This rep- routes at around 52,000 and 230,000 iterations for the two al

resents a typical income model and satisfies the MHR condi- gorithms, respectively. In the rest of this section we reder
tion. The second set of values is drawn uniformly at random the state of the system at these points of time as the equilib-
from the range and also satisfies the MHR condition. The rium (although it may not correspond to an actual Nash equi-
third is a bimodal distribution where there is significarg-di  librium), and say that the system has converged. We tried
parity in user values: they are drawn from the ranges [0.1,1] several other scenarios and observed convergence in all of
or [4.5 and 5], with 90% of values originating from the first them — the iteration at which convergence was observed is
interval. This does not satisfy the MHR condition. shown in column 3 of Table 3 for the EE algorithm.
Parameters. The algorithms we proposed fj# each use Note that the two CSP learning algorithms differ in their
a set of parameters. We conducted a variety of simulationsconvergence speed. We revisit this issue later in this@ecti
to understand how to select these parameters. Without going Efficiency. We now discuss a key measure of the overall
into the details and in the interest of brevity we briefly list performance of centralizeRouteBazaar, the system effi-
values selected for key parameters in Table 2. These param<iency, as defined earlier. The higher the efficiency, theasio
eters ensure that the algorithms offer the fast convergence the system operates to its capacity.
equilibrium and good overall system performance in all sce- Table 3 shows the efficiency of the system upon conver-

narios we consider. gence for different topologies and user value distribigion
. We assume that the EE algorithm is used to emulate CSP
6.2 CentralizedRouteBazaar learning. In general, we note that despite allowing useds an
Our first set of simulations considers the centraliRedite- CSPs to interact selfishly with each other, our system asrive

Bazaar framework under different settings. We first show at a reasonably efficient outcome in most of the situations
that the system converges and is efficient in practice, aad th we studied. Although not 100% efficient, the centralized
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Figure 6: Comparing EE and HB: Zipfian user values
over different topologies

RouteBazaar framework is able to perform at 60%-80% ef-
ficiency. We note that system performance at equilibrium is
significantly better than indicated by the worst-case asigly

In particular, value distributions that were shown to régul
undesirable outcomes by prior analytical results—e.gbthe
modal distribution—still result in fairly efficient outcoes in

the situations we have analyzed.

Comparing CSP Learning Algorithms. We now com-
pare the two CSP algorithms on various topologies. The
results of the comparison are shown in Figure 6, where we
study the time taken for the system to converge and the link
prices derived by either algorithm. Recall that while HB has
been theoretically shown to converge in arbitrary sett[igs
6], no such result is known for EE.

Several points are worth noting: Figure 6(b) shows that the
algorithms result in roughly the same settings of link psice
at equilibrium. We also found that the two algorithms differ
negligibly in system efficiency at equilibrium (specificstno
shown for brevity). However, Figure 6(a) indicates that HB
takes a lot longer (4-10 times slower) to converge to an equi-
librium in practice. In the HB algorithm, link prices could
change more abruptly and more often until convergence is

reached because the algorithm explores mediocre prices in

addition to the best ones. In contrast, EE forces link prices

to be more stable and slowly evolving. The same reason

also contributes to HB converging slower on topologies with
greater potential for route diversity (e.g. compare Regula
against Power law in Figure 6(a)).

On the whole, it is unclear which algorithm is more suit-
able in practice. On the one hand, HB is designed for the
worst case and offers theoretically sound properties, andé

may be more appealing under a wide spectrum of situations.

On the other hand, the EE algorithm seems to work well in
most practical situations anyway. Because of its simplic-
ity and reasonable performance we expect that EE will be
adopted in practical implementations.

6.3 Distributed RouteBazaar

We now evaluate the distributed variant of tReuteBazaar
framework. Note that CSPs continue to use one of the two
learning algorithms, EE and HB, in the distributed settisg a
well. We start with examining the impact of user response in
this framework on system performance.

Understanding User Response.In the distributed set-
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CSP Price Algorithm | ¢ |Efficiency|Convergencg
EE 0.1] 0.39 73,000
EE 0.5] 0.55 91,000
EE 1 0.69 52,000
HB 0.1] 0.19 100,000
HB 1 0.61 150,000

Table 4: The impact of ¢, in the distributed case; Rocket-
fuel topology and Zipfian value distribution

Topology | ConvergencdEfficiency |Efficiency - centralized|
Rocketfue 52,000 0.69 0.78
Random 59,000 0.62 0.74
Power lay 88,000 0.61 0.68
Regular 52,000 0.59 0.68

Table 5: Efficiency of the distributed approach for Zip-
fian value distribution.

ting, users employ the flow update algorithm described in
Figure 3 to adapt to changes in prices at the CSPs. The al-
gorithm gradually moves an, amount of the users’ traffic
from currently-used sub-optimal paths to the new best drice
paths. We study how the choiceQfimpacts system perfor-
mance and in particular if allowing users to be “fully selfish

(es = 1) leads to poor outcomes.

Table 4 summarizes our findings for both the CSP learn-
ing algorithms (EE and HB). Surprisingly, we find that using
large e, leads to robust performance—allowing users to be
selfish is not bad from a global viewpoint. On the other hand,
constraining users from reacting selfishly (i.e. using $mal
seems to lead to inferior system-wide performance at dxtuili
rium. This is because when users use smalCSPs get very
slow feedback about the effect of their price changes. CSPs
naively believe that the price changes they made causgd onl
a small increase/decrease in the amount of traffic theyexhrri
and the revenue it produced. This “incorrect” revenue “pol-
lutes” their history, causing sub-optimal prices to be glear
and the system to converge to a worse equilibrium.

The results are consistent across both CSP learning algo-
rithms and across other scenarios (i.e. network topologies
and user value distributions — not shown for brevity).

Comparison with the Centralized Variant. A key differ-
ence between the centralized and distributed variantsats th
the central arbiter in the former can optimize global objec-
tives to the extent allowed by CSP and user constraints. In
particular, when the system admits multiple stable stéites,
central arbiter can suggest the best one to all the partitspa
in particular the one that maximizes social value. Such-opti
mizations cannot be performed in the distributed framework
A natural question is to examine the extent to which the dis-
tributed framework suffers due to the lack of this global op-
timization. Our evaluation, summarized in Table 5, indésat
that the distributed approach performs nearly as well as the
centralized one. In particular, the difference betweertdike
tributed and centralized variants in terms of efficiencyuist
0.07 to 0.12. Thus, the distributed approach in practice can
offer reasonable system-wide performance despite the lack
of a global perspective.

Recall that the distributed approach is designed to runin a
continuous online fashion and is always in a state of flux. To
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Figure 7: Distributed Convergence: Rocketfuel topology, (@) Link Price (b) CSP Revenue
Zipfian user values and CSPs using the EE algorithm Figure 9: Distributed RouteBazaar: CSPs at equilibrium
5 1F — e, L value users they are competing against. In general, the sys-
5 sl ARl - tem shows the expected behavior, allowing users who value
£ o] ~ | % oel the routes the most to be able to iReuteBazaar.
g, sl | g oal In Figure 8(b), we show the utilizations of links owned by
= L 1 2 oaf different CSPs. A small fraction of the links (20%) have link
§ . s~ R P utilizations below 10%. About 30% of the links have 50% or
. 0 1 2 3 4 5 0 tgai"oj‘l’m‘;f’a:g;Oojfas;’dfyo 100 higher utilization. This suggests that most CSPs are able to
(a) Users Utilizing the System (b) CSP Link Utilizations attract enough traffic onto their links usiRputeBazaar. In

Figure 9 we show the link prices and revenues of CSPs. We
find that in an overwhelming fraction of the cases, the equi-
understand if the system oscillates, we applied a variety of librium prices are 2 units or lower (Figure 9(a)). From (Fig-
tests. We monitored the change in the net social value of theure 9(b)) we see that revenues are fairly evenly distributed
system and net CSP revenues over time in various settings. Inacross the CSPs and there is no significant skew. Roughly
particular, we applied the centralized termination caodit ~ 45% of the revenues are in the 10-40 unit range. The rea-
(Section 4.3) to the distributed simulation state to exanifin ~ sonable distribution of revenues and link utilizationsiaade
the latter even converges and if so how the convergence ratethat service providers would be willing to take part on our
compares to the centralized approach. Our observations areRouteBazaar framework. Since users with moderate to high
summarized in column 3 of Table 5. The distributed frame- values are able to route RouteBazaar, our system would
work achieves convergence in all cases. (Note that iteratio be able to attract enough users as well.
to convergence mean different things in the context of the
centralized and distributed approach, because the latter i 6.5 Churn
volves direct user-CSP interaction.) In this section, we discuss the performancRofiteBazaar

For completeness, in Figure 7, we show the evolution of when users enter and leave. Our discussiofdis argues
the distributed framework over multiple iterations wherP8S  that slow churn can be accommodated in both the centralized
use the EE learning algorithm and users emplpy= 1 in and the distributed frameworks. In this section, we evaluat
their flow update algorithms. We find that the social value of the rare situation where the system faces unexpected churn.
the system reaches a steady state in about 50,000 iterationspe focus on the distributed setting.

Figure 8: Distributed RouteBazaar at equilibrium

Net CSP revenue is also stable beyond this point. To test the flexibility of handling “extreme” churn, we ran
T the rocketfuel topology with Zipfian user values with the EE
6.4 RouteBazaar at Equilibrium CSP response behavior. After the system converges for an
RouteBazaar is designed to attract participation from users initial set of demands, we add new users with a total de-
and CSPs. We now examine the statufkoiteBazaar at mand of 1% to 5% of the existing demand. The reconver-

equilibrium to check if this design requirement is met sat- gence times for these scenarios are presented in Table 6. We
isfactorily. We consider the distributed approach and ke also show the efficiency of the system after reconvergence
snapshot of the system after a certain large number of iter-and the “restart” efficiency which reflects what would have
ations. We use the Rocketfuel topology with Zipfian value been achieved had the entire set of users been in the system
distributions, the EE algorithm for CSPs and assume selfishfrom the start.
user response{ = 1 for user flow update). Our observations We note that although the system converges close to the
for the centralized approach are qualitatively similar. restart efficiency under extreme churn, it takes a long tie t

In Figure 8(a), we show the fraction of users that are allo- reconverge. A potential concern in this case is that at iterta
cated routes at each value for the distributed framework. We times links may become overloaded due to extra demand in
see that very few users with low values ( unit) get to route the system, causing dissatisfaction to users as well as.CSPs
using the system. In contrast, almost all users with high val On the other hand, if all link loads are always1 prior to
ues ¢ 3 units) route using the system. We note that some reconvergence, then users with the willingness to pay still
users with high values are denied service—this could happenget service, and CSPs still get good revenue, and long re-
because of where they are located and how many other high-convergence times are of less concern. To address this, each
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Demand Increas¢ReconvergencgEfficiency|Restart Efficiency| a;, needed
1% 14,000 0.60 0.62 .01
5% 28,000 0.54 0.58 .08

Table 6: Reconvergence on distributed simulations on

Rocketfuel topology and Zipfian user values. We assume

CSPs use the EE algorithm, which we updated to accom- !

modate churn—in this approach, CSPs employ a random 0051152253354455
. . . . . - . Value Price of link

price at every iteration with a fixed small probability, sim- (a) Users Utilizing the System (b) Link Prices

ilar to the HB algorithm.
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o
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Figure 10: User and CSP properties in regular graphs.

k| Convergence iteration | Efficiency

3 43,000 0.26 . . e

7 52.000 059 efficiency suffers significantly.

6 219,000 0.70 Figure 10 shows the distribution of values of users who

route overRouteBazaar, and the link prices selected by
CSPs, in the different regular topologies. As expected, lin

CSP link can have a small fraction of its capacityset aside  Prices increase slightly with decreased path-diversitg-(F

as backup. Each CSP sets or alters prices to operate belowire 10(b)), because virtual monopolies tend to charge highe
1 — oy of its link capacity at equilibrium; if not, CSPs as- Prices. More tellingly, the set of users using the system is
sume that no revenue is made on the link and change pricevery different. In topologies with larger degree, greatect

to bring the load down. The spare, fraction of capacity tions of users who value the routes more end up using the
can thus be utilized to accommodate relatively heavy churn System. In such topologies there are both a larger number
and ensure that most users are satisfied even during churn. 119f, and shorter on average, paths available. For the degjree-
our simulations using Rocketfuel topologies, we found that 9raph, significant fractions of even the high-value usees ar
settinga, = 8% (conservatively) is sufficient to ensure that denied. In this case, the effect of higher link prices is aggr

a link is not overwhelmed beyond its full capacity with high vated by longer paths—longer paths mean that users’ money

Table 7: Efficiency in k-regular graphs

probability (see Table 6). will only get them so far, leading to poor social outcome.
6.6 Factors Affecting the System 7. DISCUSSION
In §5, we outlined several factors that may affectRuaite- Payments between users and CSPdn the centralized

Bazaar framework, including disparity in user values, net- approach, the arbiter can also play the role of mediatingayon
work topology, and the presence of real or virtual monop- exchange between each user and the set of service providers
olies. Our simulations were designed to evaluBtaute- it routes over. The arbiter can tally the net amount owed by a
Bazaar to understand the impact of these factors in practice. user to each service provider and issue a monthly bill. In the
So far we have presented results detailing the impact of thedistributed setting, a separate accounting framework @oul
first two factors. As our results show, the practical impdct o be necessary. The accounting mechanism could be based
these factors seems minimal aRduteBazaar seems to of- on the current approaches ISPs employ when charging cus-
fer reasonable performance under a broad range of sitigation tomers on the basis of usage [25]. Using such an approach,

As we show earlierRouteBazaar presents a low bar- each CSP tracks the net amount owed by individual users
rier to entry to CSPs. Therefore we don't expect the sys- (note that the users may not be directly connected to the CSP
tem to contain monopolies. We conducted a brief analysis links) and directly issues bills to the users. We believe tha
to understand the impact of virtual monopolies by varying two factors will make the accounting problem relatively sim
the connectivity of the network, and thereby impacting the ple from the view-point of CSPs: (1) The users in our setting
hop-lengths of source-destination paths. Theorems 1 and 2are large stub networks and small-to-medium ISPs. Thus,
suggest that as the hop-lengths of paths increase, leadingt they are few in number and it should be possible for CSPs
potentially larger number of virtual monopolies for any yse  to track their usage without incurring too much overhead.
the system performance relative to the optimal social value (2) We expect the system to mostly operate at steady state
worsens. We verify this behavior through simulations. with few arrivals and departures of users, and relativedyvs|

In this set of experiments we selected the baseline regularchanges to demand-value vectors (based on time of day, for
graph topology (with per node degree of 4) and changed theexample). As a result, the usage profiles (i.e. the set osuser
average degree of each node to both increase and decreaseuting over each link and the amount of capacity consumed)
route diversity and path lengths (use per node degrees of 3and link prices of CSPs are likely to change slowly, if at all.
and 6 respectively). We employed the distributedute- Multi-level RouteBazaar. Depending on the equilibrium
Bazaar framework in this analysis. Our observations are prices selected by CSPs and network topology, it is possible
summarized in Table 7. We note that in networks where that several users are denied servicRbuteBazaar (nhote
path diversity is severely restricted (correspondinghgre that the net social value of the system could still be high as
is a high incidence of virtual monopolies), the system-wide users with high willingness to pay are unlikely to be denied)
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To be more inclusive, a multi-level framework akin to “Paris RouteBazaar is meant to support BGP, not replace it. As
Metro Pricing” [23] could be adopted: CSPs can offer mul- RouteBazaar adoption grows, and more scalable alterna-
tiple levels of service where each is priced independently tives are introduced, we envision greater amounts of traffic
and prices of different levels are significantly differerio using the system. At all times, howev&oputeBazaar de-

use such a system, users would have to include the specifigpends crucially on BGP, or some other protocol that provides

service-level they desire in each CSP alongside the sourcereasonable bare bones reachability, as a fallback option.

route. Users with low overall values now have the flexibility
of (possibly) leveraging the lowest service level in eactPCS 9.
and such paths are still better than routing over default BGP
paths (e.qg., in terms of availability). In future work we teop
to evaluate such a multi-levBlouteBazaar framework.
Information granularity. In RouteBazaar CSPs base
their pricing decisions only on the net volume of traffic at-
tracted by their links at a certain price setting, and how the
revenue derived compares against that obtained at otloer pri
settings. Thus, the CSPs only usearse grained informa-
tion. They know and use very little information about users,
e.g., how many there are and what their demand-value vec- 8]
tors are. CSPs are also assumed to be unaware of the pricesg,
selected and revenues derived by other CSPs in the system.
Employing limited coarse-grained information helps kdep t
CSP price adjustment algorithms simple. We do note that it [11]
is possible for a given CSP to use additional information and ;5
setits prices more intelligently to furtherimprove its eenwie;
both the centralized and distributed frameworks could be ex
tended with such intelligence and this further enhances the[14]
flexibility our system offers to CSPs. Two points are worth [1s]
mentioning in the context of such smarter algorithms: (1) Ou
analytical bounds on the price of anarchy of the system hold [16]
even with such flexibility. (2) In practice, giventhat CSlsa  [17]
ready obtain reasonable revenues with the simpler approacH'®!
(Section 6), more intelligent algorithms are unlikely ta-fu  [19]
ther boost revenues. We plan to explore the practical effect
of using finer-grained information in future work.

(13]

[20]
[21]

[22]

8. CONCLUSIONS

BGP’s inherent rigidity has forced users of the Internet
to explore solutions like overlay routing and multihoming,
which are either undesirable or inadequate. In this paper, w
present an economically motivated approach caRedte-
Bazaar for overcoming the rigidity. RouteBazaar offers
flexibility and visibility to users who are willing to pay. &n-
courages participation and competition among serviceigers
by allowing them to dynamically alter prices for the sengce
they offer and giving them the ability to attract users whe ar
not directly connected to them. Our evaluation using both
analysis and simulations suggests that the framework Is bot
efficient and stable under mild but realistic assumptiomaiab
user requirements and network topology.

Our design of the centralized and distributed versions of 132
RouteBazaar are in no way complete or final. We expect [33]
several innovations to be possible, for instance, in servic 54
provider and user response algorithms and in accommodat-
ing high churn a lot more gracefully. Our ideas in this paper [35]
present likely starting points for these.

23]
[24]
[25]
[26]
[27]
28]
[29]
[30]

(31]
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