Computer
Sciences
Department

Physically-based Animation Rendering with Markov Chain Monte
Carlo

Yu-Chi Lai
Feng Liu
Charles Dyer

Technical Report #1653

March 2009




EUROGRAPHICS 2009 / P. Dutré and M. Stamminger Volume 282009, Number 2
(Guest Editors)

Physically-based Animation Rendering with Markov Chain
Monte Carlo

Y.-C. Lai* and F. Lit and C. Dyet

LUniversity of Wisconsin at Madison, U.S.A.

Abstract

Exploring temporal coherence among light transport pathgary important to remove temporally perception-sensitiv
artifacts in animation rendering. Using the contributiof @light transport path to all frames in an animation as the
sampling distribution function allows us to adapt MarkovahMonte Carlo (MCMC) algorithms to exploit the tem-
poral and spatial coherence among paths in order to geneagperceptually pleasant animation. A new perturbation
technique calledime perturbatioris developed to explore the temporal coherence among patighermore, in order

to make animation rendering plausible, we distribute it computational tasks to a pool of computers for parallel
computation. Each task is rendered with a set of parameteapi@d according to the local properties of each task. We
demonstrate that this local adaptation does not introduiees Istatistically. The resulting animations are percefifpua
better than those rendered in a frame-by-frame manner.

Categories and Subject Descriptascording to ACM CCS) 1.3.7 [Computer Graphics]: Raytracing

1. Introduction i.e. no edge is blocked by moving objects and then the cantrib
tion of valid static paths is evaluated by recomputing theDBR
A large number of movies employ visual effects using comput@alue at the first hit point from the camera. The reweighting
graphics. Photorealistic rendering is a critical elementiieate scheme introduces bias and causes unwanted artifactsdln ad
realistic visual effects. An animation is generally reretbas a tion, they only intended to reuse static paths not all padfimsh
sequence of static images in a frame-by-frame manner by usiét al. [GDHOE applied the framework of Sequential Monte Carlo
Monte Carlo algorithms describe iRH04DPSaBO0& As aresult  to exploit the temporal coherence among paths by reweighiag
the rendered animations normally contain annoying tempotia  samples in previous frames to generate good samples fouthe ¢
facts such as flickering and shimmering if the computatioretis  rent frame. However, their work is limited to environmentpna
not long enough. Therefore, some research on global illation  lighting. In this work we intend to exploit the temporal coéece
has started to pay attention to enhance the temporal cateereamong all path integrals in the entire animation whose atdtha
among frames in order to remove temporal artifacts. Cacpioy ~ entities are described by key-framed rigid transformation
tons and irradiances of sample patbsp2 VMKKO00, MTASO1,
DBMS02 WMM *04, TMS04, SKDMO05, GBPO7 from preced- Markov Chain Monte Carlo (MCMC) algorithms such as
ing and following frames can greatly improve the computaiio Metropolis Light Transport (MLT) YG97, KSKAC0Z, En-
efficiency as well as reduce temporal aliasindMAQ6] caches ergy Redistribution Path Tracing (ERPTCTEO0S, and Popu-
computed irradiances from different moments of time on tire s lation Monte Carlo Energy Redistribution (PMC-ER)HCDO7,
faces. The cached values are used to create a basis for temddZD08] have demonstrated the strengths of exploring the spatial
ral interpolation of irradiance in order to greatly redueenpo- coherence among path integrals when rendering a staticemag
ral artifacts. However, the fundamental problem of theshte However, all these algorithms are originally formulatedeader
niques is that the invalidity of cached samples across fsaime a static image without considering the temporal coherencang
troduces bias and error into the final result. When only the-ca frames in an animation. Thus, the temporal flickering actgas
era and the point lights are allowed to move inside an anonati perceptually unpleasant in the rendered animations. Buexve
scene, it is easy to reuse all light paths by re-evaluatiegotith  pect that they are good candidates for exploring the tenhjgora
contributions BSH02 HBS03 SSSK04SC04 SCH04HBS03 herence among path integrals. We formulate the contribudfa
or reweighing samples based on the multiple-importanamdra light transport path to all frames in an animation as the dengp
work [MFSSk0§. However, movement limitations reduce thedistribution for MCMC algorithms. This formulation allowss to
utility. Havran et al. HDMSO03 reused the static-object pathsextend from rendering a static image to rendering an ananati
from bi-directional path tracing to reduce temporal fligkifFor ~As a result, a newime perturbatiormethod is designed to reuse
each static candidate path, they first check the validitheftath, path samples with similar properties at different momentsee
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Framen at the camera for the entire animation denoted'ag(x) is the
surface area product measure for the pﬁthf}( is the contribu-
. tion brought by a light transport path to pixel j of framefkjs the

Frame o bidirectional scattering distribution functiohe is the emittance
- radiance of a light sourc(s’!\/jk is sensor respons§ is the geom-
etry term, andf is the radiance carried by the path. The contri-
bution function can be decomposed into two componentsosens
responsewjk, and the radiance carried by the path,Because
the radiance is independent of the response of the givel e
AT radiance can be reused for all pixels (which is the same for al
pixels in all frames). In other word#, = g f(x)du&') can be
used to express the total radiant energy delivered througimt-
age sweep as shown in FiguteThe intensity for each pixel can
be estimated by Monte Carlo integration

Figure 1. The image sweep is a set of three dimensional hyp
cubes which correspond to the frames, Frame ,Framey and
formed by all image planes aligned with the movement of the ca
era at different frame periods. Please notice that k is useddex
the frame and t is used to indicate the moment when a path is sam ‘ S o 1N
pled. Valid path samples for frame k are generated betweemdT a | = / W E) FE)AUE) ~ ZWj (Xi')
T+ AT, where T is the moment when the shutter opens. In addi- Q

tion, all pixel samples in the valid period must also spaiass \erep(%T) is the importance sampling function used by Monte
. { 1
through the image P'a”f centerec_i at the center of th? cameracayq integration. The idea of Markov Chain Monte Carlo algo
In other words, th,e Image svyeep is the sweep of th? Image pkmﬁms is to generate a set of correlated paths accordingetio t
along the camera’s locomotion in space along the time bmwe?adiance brought to the image sweep. Through the procetss pa
T and T+AT. mutate, and newly mutated paths are accepted or rejectéd wit
a carefully chosen probability to ensure that paths are ksinp
according to their radiance brought to the image sweep.Harot
to explore the temporal coherence among pat_h integrals_it_:\ror words, p(;(t) =mnX) = %ﬂ) is implicitly used as the target dis-
to reduce the temporal artifacts of an animation. In addito tribution density. Under this formulation, we can desigmpe-

having an algorithm to explore the temporal coherence, &e alral and spatial mutations by considering the coherence grahn
need to face computational limitation when rendering thiér@n valid paths in the entire animation.

animation sequence. Therefore, our rendering system igroks o

to render an animation by distributing a subset of iteratigm- ~ Veach [Vead7 purposed that using importance energy,
putational tasks to a pool of computers for parallel compota  f/P: Of the seed path to weigh each mutation of a Markov
Each computational task contains initial paths traced bgreegal  Chain can remove the start-up bias if the detail balance is
path tracing algorithm from a designated frame for energlsre maintained at each mutation Therefor.e, we can naturallly come
tribution. For efficient usage of parallel computation, wegenta UP ERPT balance energy transfer which a hybrid algorithm-com
formulation to allow us locally adjust the rendering pargenein  Pining the independently sampling path tracing algorithithw
each task without introducing bias. In this paper we dematest the correlatedly sampling Metropolis algorithm. The idead
the strength of exploiting the temporal coherence amonigsay ~ 9enerate a set of mdepende_nt samples by path tracing as seed
building the temporal perturbations on the PMC-ER alganih paths. Then each seed path is used to correlatedly explqre al
for parallel rendering. The animations rendered with terapo ¢@l Path spaceQs, around the seed path by MetropoliSy is
perturbations are perceptually more pleasant. Howeveralae 2 sub-space o2 and defined as the domain of all paths which

present a short discussion about applying the entire sirito €N be reached through a sequence of perturbations fronedide s
other MCMC algorithms. path. This definition is to guarantee that the local exploretan

reach and stay at the local stationary probabilit§') /bg where
by = [, f(X")du(X"). The estimation of the pixel intensity can be

D

f(X
p(X{")

2. Animation Formulation for Markov Chain Monte Carlo calculated as
When rendering an animation, the intensity of the j-th podehe N N vl g Ti
k-th frame, I ¥ czgn be expressed as path int)égrals: s IE( _ 15 1 %MC f(>~<%) jk(>~(J”) f()fﬂl) 1)
j Nvc & | Nmevc (& p(X{") f(Xy")
k K ot ot By,
lj = / f{(X)duX’) and
ot Q ¢t . The variance analysis ilAPSS04 allows us to bound the vari-
fi(X) = Le(X0,X1)G(X0,X1) ance of the Markov Chain of a seed path \Agcmc(Xi) <

= 2R(1
- bg NpierE}((l+ q(l @

N\,—2f (Xt XL, Xt )G(Xt X ) Nucme ~Xi —q)—R(l))
nEll SV =L A AL AL ber of pixels,EX is the average importance energy of the path

where Npixer is the num-

associated with this pixely is the probability that path con-

fs(X} X} Xk, ) G (xk X} )W-k(xt XN, ) ; ; ; ; ;

SIXNy—2> XNy =1, XN, Ny—15 XN VY] (XN, — 1 XNy tributes to the pixel under considerations, aRd) is the cor-

ij(f(t)f(f(t) relation between random variance indicating that two subse
quent paths go through the same pixel. The variance for the

entire hybrid estimator can be calculated \&6(1¥) = = X

MC

wheret is the moment when the light transport event happ@ns
represents the set of all valid light transport paths thgirben a 1 N o7 1 -y
point of a light surface, interact with the scene surfaced,end Nvic X p— 327" Vieme(X{") < Ryeeens P, NpixelEj (1+
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ﬁ%). Thus the variance of the entire algorithm istimes to redistribute the energy to the neighborhood of it p

O(1/Nyc), and the algorithm converges to the correct answer ficcording to a mixture distribution:

the number of |nde.pe_nde~nt samp;les g'\(l) to |nf|n|tf3£.)~(t'l)'r:(eite)xpenta Ki<0) (\?i(z,l) . yi@) _ 0(.(%) Tspatial(?<27l) Cdy — )7<Z))
of the Markov Chain i (Xi) = .- 3127 Jo, 75 b dH= -
1 and then the expectation of the entire algbrithm becomes + Zﬂi(?)'ﬁempora(\?(PD :th—>37<z))
sy =g L NMCf<)~(iTi)_I|_( = in

(17) = € (fe Zi21 o) 1

~ When perturbing a path, we first choose one perturbation
Veach Mea97 also purposed that we can use an equal weighfrom the set of spatial and temporal perturbations accardin

ing scheme if we resample the paths according to its imp% the weights,a-(o), where 5 erba'(O) = 1. The current path
tance energy. Thus, we can use a similar deterministic sagpl ! P :

) e is perturbed to generate a new perturbed path according to
strategy in Fan0§ to generate totally; Ei(X)/E paths where o hortyrbation parametat, for a spatial perturbation and

E(X) = %%. In other words, each seed path has a number gf for a temporal perturbation. The acceptance probability

Markov Chains proportional to its energy. (Y1) Top—type(X'1)[ Y12

; tgtoy — mi f
is chosen asa(Y*|X?) = min l'o’f(ilo)Top,type(\?‘l\i%)

« 1 Nwc 1 Nucwe KooT f(f(':'n) _ .
l] =N Z z NpathNi z Wi (X") }” (2) where Top_type is the type of perturbation chosen.
MC i3 | m=1 MCMC 1= ﬂ;ﬂ We can observe that the detail balance of this per-
. turbation is maintained by f(X®)Top_type(Y2[X?) =
~T ~ ~ ~ ~ ot VATHEVAS
where Npath = Nfloor + (E(X;r') — Nfioor +U(0,1)) x E and f(Ytl)Top,type(Xt°|Yt1)%;-mﬁ%% if
Nfioor = L&E(‘JJ The equally weighting scheme now becomes (\?tl)Top_type(f(tlp?tl) > f(XtO)Tog—type(\?“I)?t"); oth-

" & . v Sty oy FOV) Top_type(X'1 [V
ERPT equal deposition. We can observe $iépatn) = ﬂé'—) erwise f(Xto)TOD*type(Yt1|Xto)%§{ﬁ?%i% =

The convergence and expectaction analysisis similar totige f(?tl)Topftype()N(t%?tl)- After each perturbationEy = R,k s

discussed in the previous paragrapRTE0] described two Cri-  gergy s deposited at the pixel position of the newly mutate
teria to maintain the unbiasedness of ERPT equal depasiiist S (2) .
path,Y:”, andey energy is removed from the path& remain

the detail balance of mutation is maintained through thegss i i K i
for reaching and staying in the stationary probability;cses; the 1N energy-deposit constariy, is computed according to the
number of Markov Chains is proportional to the energy carrieProperties of this frame such as the number of samples in each

by the path. Later, we will show that although our kernel tipre ~ PIX€! @nd the number of caustics paths in order to maintan th
for each path adapts from iteration to iteration, it is fixeditle €n€rgy delivered from each pixel or each type of paths statis

a single Markov Chain. In addition, the acceptance protigbil Cally the same. At the end of eaotioop, the resampling process
is chosen to maintain the detail balance at each perturbatid 1S @PPlied. Paths in the population are eliminated accgrbrits

thus the stationary probability requirement is achieveruoto Eiremain If there is any energy remaining in the eliminated paths,
reach convergence and maintain unbiasedness. Furthermore (€ rémaining energy is deposited by equal deposition inéo t
algorithm deposits the remaining energy of an eliminateti pg  Mage sweep. To maintain the constant number of population,
the equal deposition methods back into the image sweepebeféf€ replace the eliminated path with newly generated patrs fr

a path is removed from the population in resampling process the pool of stratified and variance-regeneration pixel tp@ss or
terminated at the end of a task. This achieves the secomdigrit Unused paths from the pool of caustics pattiAD08]. We also
of unbaisedness. adapta values according to the performance of perturbations. We

use the acceptance probability of each perturbation asatidin
to determine the probability of perturbation choidg=CD07.
3. Population Monte Carlo Energy Redistribution After finishing theo loop, the algorithm deposits the remaining
] o o ) energy of the population paths onto the image sweep before
When rendering an animation, we distribute the computaion  gyiting. The remaining energy in eliminated paths and termi-
cording to the starting time of initial paths belonging te 8ame aied population paths at the end of the task is deposited to
frame to a task. Thus, in the following we will present PMC-ERne image sweep to guarantee the number of Markov Chains

Equal Deposition (PMC-ER-E) for a single computationakias starting from each path proportional to its initial energy for
Then we describe the details of time perturbation. Finallg, mgaintaining unbiasedness.

present the formulation to let us locally adjust the santpjia-
rameters for each task without introducing bias.

3.2. Time Perturbation

3.1. Population Monte Carlo Energy Redistribution with In order to exploit the temporal coherence, we design a netv pa

Equal Deposition perturbation strategy calletime perturbationIn this section we
first describe how to use our temporal perturbation methae-to
€onstruct the path temporally and how to calculate the tieta
transition probability accordingly.

Figure 2 shows the PMC-ER-E algorithm executed in a singl
computational task in a single computer. At the beginningaufh
computational task, a pool of pixel positions and a pool efsea
tics paths are generated for the initial population and ¢péace- The main idea behind time perturbation is that when a g&th
ment paths used in the resampling process. In each inner loegists at timetg, there may be a correlated pat* whose ver-
z, we spatially or temporally perturbed each member pafya  tices areobject-basedigid transformations of the vertices in the
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Figure 3: This is a path with the form LDDSSE and is used to

<17

> (Z /(2 Z /(2 .y (z—1
10 Yi( )= U@, 1_) < a(Yi<~)| '( ))) Wi( ) :Yi( ) demonstrate theample backwarthethod. We would like to trans-
11 deposiEg = Ry x4 on Yi<Z) form the pathX® at ty with 6 vertices to a new path att;. Since
12 Ei remain— = €4 the original path has the form of case 1, we have to reconstruc
13 Wi(o) = Ej remain the sub-path bypampling backwardThus, we first object-based
14 resample the population: elimination and regeneration rigid transform the position of verticest5° and xﬁ,} to yt51 andyﬁ’
15 deposit remaining energy in all population paths and link the edgey%yﬁ,'1 to form the tracing ray at timejt Then,

- — - —— Wwe extend the sub-path through the same specular bour;ég at
Figure 2: The PMC-ER equal deposition iteration l00p.iS g the corresponding to gety: and the same specular bounce
averaging path energy,qéis deposition energy of each p(_ertur_'atyts1 as the corresponding to getyy. Sincex? andx are dif-
bation, %ZG IS th? ratio b.etween caustics a.nd i‘” paths N thig,se surfaces, we only need to object-based rigid transtbein
frame, Nyopulation is the size of the population,shnpie iS the  positions to gey andyl and link the edges ofiyt andytyl
total number of initial seed paths, Ntorm is the number of 5 form a new path?tl_

stratified samples per pixel,msticsis the number of caustics-

generation paths, T is the time when the shutter opens, leis th

index of the frame, Rraﬂon is the total number of task iterations,

NK,rianceiS the number of variance-regeneration paths, zignds of step 2. The criterion used to choose eitd@mpling backward
the variance-regeneration distribution function. Theteys use or sampling forwards:

path tracing with a fixed number of samples per pixel to edéma

~ P . . e Case 1 if the path is an eye sub-path of the form
E, &, '%2(3'. and\/f yvhlch |s. proportlonfil to the variance of the {L|[(D|L)D]}(S+D|S+)+E, sample backwardrom the eye
sample radiances in the given pixel in a frame-by-frame man-

ner. U(0,1) generates a random number uniformly distributed vertex is chosen to reconstruct the sub-fiatensure that the

betweer0 and 1. E; remain is the energy remaining in the popu- eye sub-path passes through the camera.

. . . S ! e Case 2 if the path is a light sub-path of the form
lation path i after the inner energy redistribution loops, R the L(S"D|S*)*D(D|E), sample forwards chosen to reconstruct
energy-adapted constant discussed in Sec8dh

the sub-pattio ensure that the light sub-path starts from a
valid light source.
e Case 3 if the path has the forniL|D)D(S"D|S")"D(DI|E),
sample forwardandsample backwar@re randomly chosen to

"’to . _ .. . _
path X [BS9§. The object-based rigid transformation of a sur reconstruct the sub-path,

face point fromty tot; is computed ag® = M (M©) =1y where
Mt denotes the rigid transformation for the surface from the ob After we make the choice of the reconstruction direction, we
ject space to the world spacetaandx' is the world coordinate have to reconstruct the sub-path in the chosen directioe falh
of the surface poinkgy; att. A valid perturbed pa’[h(tl can be lowing we provide how to reconstruct a sub-path backward. A
generated if the visibility check passes in each edge. Hewevsub-path can be constructed forward in a similar mannerpgxce
this simple time perturbation method may fail if a path con-  that the direction of transverse is reverse. We would likeeto
tains a specular vertex because the relation between the inp  construct the sub-patlx1tO -.-x% of the formD(S"D|S")*D by
and output direction of a specular vertex is a delta function  usingsampling backwardFirst, the position of vertemn— 1 and
Thus, a more complex scheme is developed for paths congginim is object-based rigid transformed fragto t; to createyt and

specular vertices. yi: ;. Next, the edge/yt ; is linked to form the starting ray

Figure 3 shows an example of a valid time perturbation of0r constructing the sub-path. Sing_, is a specular vertex, we
a path with specular vertices. The step we take to perturb thBOOSe a specular bounceygi ; to find the next vertex, .
path is as follow: First, we identify the specular sub-paihthe ~ Then, according to the bounce at the vertices in the origia,
form {L|[(D|L)D]}(S"D|S")"{|D(D|E]|E}. Second, the specu- We use two different methods to construct the sub-path te tiae
lar sub-paths are reconstructed by eitiampling backwarcbr ~ same length as the original one.xff wherem—2>n>1+1
sampling forward The criterion for choosing a sampling direc-is @ specular vertex, we choose a specular bounce to find #he ne
tion and the details of reconstruction will be describedrjio vertex; otherwise we first transform the verbqt&l to getyﬁil
Finally, un-updated diffuse vertices are object-baseitifigins- by the object-based rigid transform method and lfikto y}}fl
formed to new locations and un-updated edges are linkedgnd to form the new edge.

dated accordingly. After the path is reconstructed temporally, the tentatiaagi-

The first and last step are trivial. Thus, we describe theildetation probability for the time perturbation method is comguiby
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considering all possible ways to reconstruct the path.&ime 4. Results
divide into specular sub-paths and diffuse sub-paths efimative
transition can be computed by multiplying the tentativasiion
probability for each sub-path. For a diffuse sub-path, #métive
transition probability is one because the transformatiod the
edge linking is deterministic. For a specular sub-path,téma-
tive transition probability is computed according to thdéféerent
cases discussed in the previous paragraph. The overadttitent
transition probability can be computed as:

The formulation in Sec2 allows us to exploit the temporal and
spatial coherence among paths when rendering an animation.
However, rendering a physically-correct animation on al&n
computer seems implausible. Thus, our animation rendexysg

tem distributes iterative computational tasks to a poolamhput-

ers. Each computational task contains a set of initial sexlisp
from a designated frame for energy redistribution. Accogdio

the discussion in Se8.3, we can locally adjust the energy deposi-

N - Nsub tion ratio of each path according to each frame’s properfieen,
Tty time (Xto - Yti) = rlTslpecuIar and the iterative computational result from each task is ceddao
i= update the intermediate result and create the iterativepatan
Thackward Casd tional tasks for the next iteration. The process repeats e
Tspecular = { Trorward Case rendering process reaches the desired iteration.
0.5 Trorward + 0.5 Thackward Case

. To evaluatg the performance of exploripg tgmporal cohereng
Trorward = % H?:li 1{ Tg)jsélj/n[l') Zl?yth c S} among path mtegrals, we cor.npar.ed anlmat|ons.rendered with
where ou time perturbations against animations rendered in a frayae-
R G(ytjl_’ytilil) _ N frame manner on the Cornell Box (CB) scene, q room scgng,
Toackward= & MjiZm-1 “TcoBjin| 1?5’1 CS¢ a chesshoard scene, and a basement scene using the criterion
of starting with the same number of initial PT paths and using
the same setting for the regeneration methods. Tabsédows
the scene-specific parameters and the statistics gatheradtie
computation of the first frame in the first iteration for eacti-a
ation. The reason behind this is that since Condor detesnin
r{rae distribution of computational tasks based on the loathef
system and the priority of the user, the completion time ahea
task is not predictable. It is not fair to compare the overetider-
ing time between different rendering methods because the lo
3.3. lteratively Distribute Samples in a Frame-by-Frame of Condor varies from time to time. As a result even the same
Manner rendering algorithm may result in very different overathdering
time. Therefore, we use the time needed for the first framben t
Since variance-regeneration and caustics-regeneratigroped  first iteration as a representative of the computation tigimi-
in [LLZDO08] can enhance the rendering efficiency, we would likgarly, since intermediate computational result arrivesliéerent
to have them in our rendering system. The weighting schemetige when using Condor, and we used asynchronous update of th
important to guarantee unbiasedness of the final result®it §ntermediate results. Thus, we use the time to load thetrisnh
computation must consider the distribution of pixel p@si and = the first frame in the first iteration to update the intermeslie-
caustics paths in the entire animation. This limits us t@thkl  sults as a representative of the update time. Time needsrider-
advantage of the parallel rendering. Carefully observimgén- ing an iterative task of an animation with temporal perttidoes
ergy distribution algorithm, we found that the energy defad to  requires about 10% more than in a frame-by-frame manner. In
the entire image sweep can be computedsby: 3;™ E(X) X  addition, rendering with temporal perturbations requitasghly
Nvcmc x €4 Where theE(+) is the energy of a seed path. Theadditional 60 s to update the intermediate result. In eask s
average path energy can be expressed in a iteration-fraseeh allocate extra 20 frames around the center frame of the task t
~ . Nirame | <N o o record the majority of perturbed samples to avoid fre tit-
manner a& = 5 gy, 7 {ZH—lpl E(X)  Nucmc x & 1= ing off-centerjsanz/plep:ecords to the%isk and save (?igﬁmstmce
the off-center records, and this requires extra 200 MB mgmor
zr’\r‘;t:erlamon E;'ime E(m,k) p. whereNieration is the total iterations However, when a perturbed sample falls outside this rarge, t
task writes a off-center record of time, pixel position, aadi-
used, Nframe is the total number of frames in the animationgnce into the disk. At the end of the task, the center framds an
Ngr';ple is the total number of samples distributed to #éh  out-of-core records are all sent back to the system. Theeramgl
mk task with temporal perturbations generates additionad-484.2

) N = NTE
frame inm-th iteration, and=(m, k) = anfpeg(x) *Nmeme X times more data than in the frame-by-frame manner.
€4 denotes the energy delivered at frak@ iterationm. If we

can keepE(m, k) statistically unchanged in each frame of each In Fig. 4, the brightness around the edge of the caustics re-
iteration, the energy delivered to the entire image sweegkeap gion rendered in a frame-by-frame manner changes drdstioal
unchanged. This derivation allows us to calculate the gnéeg consecutive frames. In comparison, the caustics regioneran-
position ratio in each frame according to the number of amsig imation rendered with time perturbations looks smooth aasl h
stratified pixel position to each pixel, the number of vaden similar shape and brightness in consecutive frames. Inmapeae
regeneration pixel positions in each pixel, and the totahber nied animations, the animation rendered in frame-by-framaa-

of generated caustics-regeneration paths in that franfewiin- ner has seriously flickering artifacts in the caustics regioVe
troducing bias[[LZDO08]. demonstrate the strength of temporal exploration to create

Whereytjil, Tforward is the tentative transition .probability when
reconstructing the sub-path forwar@yackward is the tentative
transition probability when reconstructing the sub-patbkward,
and6j jn,8j in is the angle between the normal of the surface al

the direction of the incoming/outgoing light rayy%?.
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5. Discussion

Time perturbations find correlated paths across differearnés
and our system needs to store the contribution of each etec!
path in a set of frames. Theoretically it is possible for olir a

Y.-C. Lai & F. Liu & C. Dyer / Physically-based Animation Renithg with Markov Chain Monte Carlo
gorithm to explore all temporal coherence in the entire @im
tion but practically the system has a limited amount of megmor

Therefore, we made a trade-off between the extent of terhpora

Figure 4: The top row of images is coming from the croppeg, oration and the amount of memory and disk usage and the
images of the _caus_,tlcs region o_f the 27th and 28th frame of thg,e for updating each process. We use a set of temporal per-
Cornell Box animation rendered in a frame-by-frame marifibe  ,rhation radii and the number of perturbations in each Mark
second row of images is coming from the cropped images of 185 1o get the samples distributed roughly in a 20-frandéus
caustics region of the 27th and 28th frame of the Cornell BoX a¢,5m the center of the starting frame to limit memory usage fo
imation rendered with our time perturbations. Our resulégr-  .opnier samples and disk space of out-of-center samplémugh

ate a smoother and temporally consistent caustics regiohése s jimits the extent of temporal exploration when the peved

two consecutive frames and the animation also has a SmoOtheLiance from the starting frame grows, the failure rateeaipo-

and more consistent caustics region. The caustics regiodered 5| yetyrhations grows. This should have slight effectwnrate

in frame-by-frame manner is noisy and looks different inpgha ¢ yenerating temporally consistent animations. A moresieit

for consecutive frames. As a result the animation has naisy amemory and disk usage and update scheme or a better task dis-
twisting caustics regions. tribution scheme is wanted in the future to avoid the liniitatf
temporal exploration radii and to relieve the burden of mgmo
and disk space requirement and the time for updating taskeba
data.

Currently we use visual inspection to check the rendering an
imations. This is time consuming and less preferred. Theze a
several animation measurement metrics developed for ides
pression. The main issue for video compression is that data |
causes the artifact of blockiness. However, the main issusl€
algorithms is that noise pops up randomly in the scene ansbsau
serious temporal artifacts. A proper metric must take irtwoaint
this independent disturbance. Such a MC-based percepaiatm
can help us evaluate the rendering results and further adjus
kernels to concentrate on perceptually important regions.
Figure 5: These are the cr.opped 'mage for Sth frames in the In the current implementation we used key-framed rigidgran
sgrriz?jlIaa?jxt;ger?geﬁtﬁ:erelﬁfjt(:er;r\:\(/jitet:? d";ﬁg Z;‘Egg ‘?’/r\]/gtg;oogormations to animate entities in the scene. It is obviowst th
serve that the motion blur is added naturally. We can seettieat our algorithm can be easily adjusted to render objects s k

i . the al ball and the shad : . framed properties such as material, light intensity, arigeotn-
caustics regions, the glass ball, and the shadow regionsacon formation. In addition, it is easy to extend the implemeptato
blurred areas around the edge.

include skin-skeleton animation and morph animation. Fam s
skeletons each vertex’s position is related to the skelptmition
and orientation at the moment. We can use the intersectiotipo
parametersu, v) and three vertices’ positions to compute the po-
sition of corresponding positions for different momentdiofe.
porally consistent lighting by intentionally using a lesaaoth ~ Similarly, the morph animation also usés,v) to compute the
caustics region. Later in CB2, we use another set of paramigte corresponding vertex position at different moments. Thecm

generate a smoother animation of the same CB animated scer@ism allows us to compute the same corresponding position f
each intersection point for different moments of time.
Fig. 6 shows the 60-th frame of CB2, room, chess board, and ) )
basement scenes rendered with temporal perturbation. Ween ©OUr @lgorithm made a trade-off between the rendering speed

check the accompanied animation results, we found thaethe t @nd the image quality by choosing the averaging path energy t
poral artifacts in animations rendered with temporal petions  determine the number of Markov Chains for each seed path. As
are far less than the results without the temporal pertighatin @ result, the image quality of the dark regions is generalgyen
addition, the algorithm with temporal perturbations canagate "0iSY- When rendering a static image, the dark regions acepe

a converged animation faster than without temporal peatiohs. tU@lly less important and, therefore, the perceptual nisiserd
to notice. However, since our perception is sensitive topienal

For comparison reasons, we rendered a frame in a transient nmconsistency, the noisy dark regions become perceptimappr-
ment. However, our system can easily be used to render framiast when rendering an animation. Although temporal exgtlon
with motion blur by setting a non-zero shutter-open peribds can reduce the variance in dark regions, the variance in ark
cause our time perturbation can easily perturb a path tohanot gions is still perceptible because the number of Markov @hai
path in any moment of time in the entire animation. Figemon-  distributed to the dark regions is low. Kelemen et & SKAC02Z
strate that motion blur can be added into a CB animation. used multiple importance framework to combine the independ
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Figure 6: The images from left to right are the 60-th frame generatethf€B, room, chess board, and basement scenes using PMC-ER
algorithms with temporal perturbations.

Scene Method i?ggtion Nuniform | Nvariance | Scaustics | Clt(s) | Dt(s) | Dk (M) | Mk (M) Err
CB1 frame-by-frame 1 4 0 0 2532 1 5 256 1.93e-2
time perturbation 2788 59 240 453 1.82e-2
CB2 frame-by-frame 1 4 36864000 0 3213 1 5 266 1.5e-2
time perturbation 3559 62 243 463 6.29e-3
Room frame-by-frame 4 4 36864000| 1.25 1743 1 5 606 3.94e-2
time perturbation 1844 65 263 803 8.37e-3
Chess frame-by-frame 8 4 36864000 1 2093 1 5 366 5.98e-2
time perturbation 2244 63 253 563 451e-1
Basement| frame-by-frame 8 4 36864000 1 2743 1 5 746 2.6le-1
time perturbation 2954 68 271 943 2.08e-2

Table 1: Measurements comparing temporal exploration with frampdrame. In all cases, we used a population size of 5000ethre
spatial perturbations having radii: 5, 10, and 50 pixels amb temporal perturbations having radii: 0.066 and 0.16%nsthe inner
loop z, we perturbed each member 20 times and eliminated 4886 population based on its remaining energy and regeeédratw
paths to maintain constant number of members in the populalin the preprocess we used 16 samples per pixel (SPPStiorating
E, &, '%2(: andyX. In the rendering process we chosgflion as the total number of iterations  Norm as the number of sample
per pixel for stratified regeneration, and,Niance @s the size of the variance-regeneration samples used iteeation. We computed
the number of caustics-regeneration in each frame@gsgesx N'e‘xpect Thus, we usé\l{t‘grsétion, Nuniform, Nvariance Scausticd t0 specify
the parameters used to render the animation scenes. Thethaa@umn is the time needed to finish the first frame in theifsation

in each animation. The eighth column is the time requiredobate the data from the first frame in the first iteration. Themcolumn
is the disk usage for the data when finishing the first framéh@nfirst iteration. The tenth column is the memory consumgtio
computing the task of the first frame in the first iteratione Bheventh column is the perceptual error defined=ar{0q for the entire
animation.

path samples and correlated path samples to relieve thiégono Although we demonstrate the strength of temporal explonati
This inspires us to think about taking advantage of the faat t based on PMC-ER, the temporal exploration and local adgistm
our algorithm generates a set of independent sample pafiiebeis easily adapted into the MLT and ERPT frameworks. The new
the energy redistribution step. We would like to develop brity time perturbation method can be added into the choice of the m
algorithm combining balance transfer and equal depositiothe tation methods in the ERPT and MLT algorithms with the im-
algorithm balance transfer is designed to explore the loergy plementation of the image sweep. Parallel rendering thenani
paths and equal deposition is designed to spending moretcompion with all regeneration methods and locally adjustingapae-
tation on exploring the high-energy paths. This should He &b ters is important to get a converged animation quickly. Sithe
relieve the problem of the relatively noisy dark regionsatidi- ERPT algorithm has a similar parallel energy-distributgiruc-
tion, they also purposed to map the creation and mutatioatbisp ture, we can use the same task distribution framework. Ezsth t
to a high-dimension uniform random number cube to increlase tcontains the paths starting from the same frame. In the prepr
success rate of mutations for enhancing rendering effigiédar cess we can estimavé and Rézc for each frame wittE andey.
time and lens perturbation is designed to use small pettiorba The computation of energy deposition ratio discussed in $8c

on the time and image plane domain to increase the pertarbatican be directly applied. However, applying parallel loodjuat-
success rate. A comparison in the success rate betweerpkreal ment to MLT is different. We should first generate a seed path
turbations and uniform-cube perturbations is needed infhe per frame and then a pool of replacement paths consisting of
ture. We also would like to explore the possibility of combipn  variance-regeneration and caustics-regeneration pathe same
the uniform-cube perturbation methods with our adaptagigo- frame. Then, during the mutation process, we can replaceuhe
rithm and spatial and temporal perturbation method by syste rent seed path with one of the paths from the pool similarns le
atically perturbing the random variables used to contrelplr- replacement mutation. The acceptance probability can be co
turbation of time and the perturbation of lens sub-pathsitthér puted accordingly to decide whether the exploration paitcees
increase the success rate of perturbation.
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to the new replacement path. This should achieve a simidaltre  '03: Proceedings of the 19th spring conference on Computer

as presented in our demonstration. graphics(New York, NY, USA, 2003), ACM, pp. 149-155.
[HDMS03] HAVRAN V., DAMEZ C., MYszkowskI K., SEI-
6. Conclusion DEL H.-P.: An efficient spatio-temporal architecture for ani-

mation rendering. I'SIGGRAPH '03: ACM SIGGRAPH 2003

In this paper our animation system is built on the PMC-ER #8am  gyeatches & Application@New York, NY, USA, 2003), ACM
work to demonstrate the enhancement in perceptually rergler pp. 1-1.

efficiency by exploring the temporal coherence among alitlig
transport paths in the entire animation. Our system is basete [KSKAC02] KELEMEN C., SZIRMAY-KALOSL., ANTAL G.,
Condor system, which allows us to iteratively render an aiom Csonka F.: A simple and robust mutation strategy for the
in a parallel manner. Our system demonstrates the abiligdef ~ Metropolis light transport algorithm. vol. 21, pp. 531-540
justing rendering parameters locally in each iterativé& teaighout [LFCD07] LAI Y., FAN S., CHENNEY S., DvER C.: Photore-
introducing bias into the final result. In addition, motidnifcan alistic image rendering with population monte carlo enaegy
be naturally added into each frame when using our temporal pe distribution. InEurographics Symposium on Render{8§07),
turbations. At the end a short discussion of applying thepem  pp. 287-296.
ral pgrturbqtlons aqd parallel rendering manner to otheﬂ\m [LLZDOS] LAI Y., Liu F., ZHANG L., DYER C.: Efficient
algorithms is described. The results show that exploratioall . . .
schemes for monte carlo markov chain algorithms in global

kinds of coherence among path integrals is definitely theecor . . . . .
N ; .- illumination. Ininternational Symposium on Visual Computing
direction to enhance rendering efficiency. (2008)

[MAO6] MEYER M., ANDERSONJ.: Statistical acceleration
for animated global illumination.ACM Trans. Graph. 253
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photon mapping. IiRendering Techniques '02 (Proceedings ofsco4] SErT M., CASTRO F.: Reuse of paths in final gath-
the Thirteenth Eurographics Workshop on Renderi{2§)02). ering step with moving light sources. International Confer-
[CTEO5] CLINE D., TALBOT J., EGBERTP.: Energy redistri-  ence on Computational Science 20@804), pp. 189-196.
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