

Computer
Sciences
Department

Building Cheap and Large CAMs Using BufferHash

Ashok Anand
Steven Kappes
Aditya Akella
Suman Nath

Technical Report #1651

February 2009

Building Cheap and Large CAMs Using BufferHash

Ashok Anand⋆, Steven Kappes⋆, Aditya Akella⋆ and Suman Nath†

⋆UW-Madison,†Microsoft Research

ABSTRACT
We show how to build cheap and large CAMs, orCLAMs, us-
ing flash memory. These CLAMs are targeted at an emerging
class of networking applications that require massive indexes
running into a hundred GB or more, with items been inserted,
updated and looked up at a rapid rate. Examples of such
applications include WAN optimizers, data de-duplication,
network monitoring, and traffic analyzers. For such applica-
tions, using DRAM-based indexes is quite expensive, while
on-disk approaches are too slow. In contrast, our flash memory-
based CLAMs cost nearly the same as using existing on-disk
approaches but offer orders of magnitude better performance.

While flash memory inherently offers efficient random reads
required for fast lookups, it does not support efficient small
random writes required for inserts and updates. To address
this, we design an efficient data-structure calledBufferHash
that significantly lowers the amortized cost of all write opera-
tions. Our design ofBufferHash also incorporates efficient
and flexible eviction policies.

We build CLAMs usingBufferHash on SSDs and disks.
We find that the SSD-based CLAMs can offer average in-
sert and lookup latencies of 0.02ms and 0.06ms (for 40%
lookup success rate), respectively. We show that using such
a CLAM in a WAN optimization application can offer 3X
better throughput improvement than current designs.

1. INTRODUCTION
In recent years, a number of networked systems and archi-

tectures have emerged that use indexes as large as tens to a
few hundred gigabytes in size. These indexes are hash ta-
bles of random “fingerprints” constructed over large stream-
ing data sets. Examples include WAN optimization [2, 8, 7,
1] (index is 16-32GB), data deduplication and backup sys-
tems [3, 38] (index is>20GB [38]), monitoring and traf-
fic analysis systems for fine-grained traffic engineering and
anomaly detection [29] (index is>100GB) and data-oriented
networks [36, 32, 27]. In all these applications the index
is looked-up and updated frequently. For instance, a WAN
optimizer connected to a 1Gbps link that is operating un-
der medium-to-heavy load may require roughly 10,000 index
lookups and insertions each per second.

Conventionally, CAMs (i.e., content-addressable memo-
ries) measuring a few hundred KB have been used to provide
low latency support for lookups, insertions and updates in
high performance networking scenarios such as forwarding.
In this paper, we show how to build CAMs that are very large

and inexpensive, and are fast enough to meet the latency de-
mands of the above applications. We call theseCLAMs, for
cheap and large CAMs.

Today, there are two possible choices for providing CAM-
like functionalities at large scales in the aforementionedsys-
tems. The first is to maintain a large index in DRAM. How-
ever, at the sizes we are targeting (a few hundred GB), the
memory sub-system cost could place the system in question
at a very unattractive price point. Furthermore, memory sys-
tems with such large amounts of DRAM also consume a lot
of power, further increasing operating cost.

A popular alternative is to maintain database indexes, such
as Berkeley-DB [6], designed for magnetic disks. Such in-
dexes can be very large, but the throughputs of the above ope-
rations are roughly two orders of magnitude lower than what
is needed optimally. Unfortunately, this can severely under-
mine the effectiveness of the systems in practice. For ex-
ample, bandwidth savings from using Berkeley-DB in WAN
optimization could be less than half the best possible sav-
ings when the WAN optimizer is under heavy load. Note that
fast stream databases such as GigaScope [19] and others [10,
11] and wire-speed data collection systems such as Endace
DAG [21] and CoMo [24] are not suitable as CLAMs as they
do not include any archiving and indexing mechanism.

In this paper we investigate a new approach that offers
an attractive middleground in the cost-performance tradeoff
posed by the above two choices. In terms of cost-per-GB,
our desired CLAM should be significantly, e.g., an order of
magnitude, cheaper than DRAM (but can be slightly more
expensive than disks). In terms of performance, the CLAM
should be at least 2 orders of magnitude faster than conven-
tional disk-based approaches (but can be 2 or more orders
of magnitude slower than DRAM-only solutions). More-
over, the CLAM can be very large, e.g., up to a few hun-
dred GB, which may be infeasible in DRAM-only systems.
Such CLAMs, in addition to significantly boosting the per-
formance of the above applications, may suggest alternate
network architectures that are cost-effective and efficient. For
instance, high-throughputcentralized mechanisms for resolv-
ing content-based names in data-oriented architectures [36,
27] can be designed at low cost using CLAMs.

Our CLAM design uses a commodity two-level storage/memory
hierarchy consisting of a small amount of DRAM and a much
larger amount offlash-based storage(i.e. flash memory chips
or solid state disks (SSDs)). Flash is rapidly supplanting
magnetic disks in many systems because of many superior

1

aspects such as higher I/O per second per dollar, greater re-
liability, and better power efficiency. Because of popularity,
newer generation of SSDs are getting bigger and cheaper.
Configuring a CLAM with 4GB of memory and 32GB of
flash, for instance, costs as little as $300 using current hard-
ware, and the cost is likely to fall as flash becomes cheaper [18].

Flash is attractive for designing CLAMs because it sup-
ports fast random reads required for lookup operations. How-
ever, some operations for streaming applications, such as
random inserts and updates are very expensive on flash as
they may require erasing entire flash blocks (details in Sec-
tion 4). Moreover, the size of an I/O operation on flash is
several orders of magnitude bigger than that of an individ-
ual CLAM operation. Because of these unique properties of
flash, unless designed carefully, a flash-based CLAM could
perform poorer than a disk-based index! (See Section 2)

To support high performance in light of the above proper-
ties of flash, we introduce a new data structure calledBuffer-
Hash. A key idea behindBufferHash is that instead of
performing individual random insertions directly on flash,
we can leverage faster memory (DRAM) to buffer multi-
ple operations and write them to flash all at once in abatch.
This shares the cost of a flash I/O operation across multiple
CLAM operations, resulting in a better amortized cost per
operation. Like a log-structured file system [33], batches are
written to flash sequentially, the most efficient write pattern
for flash. The idea of batching operations to amortize I/O
costs has been used before in the context of many systems,
including tree-based index [12], and group commit in DBMS
and file systems [23]. However using it for a flash-based hash
table is novel, and it poses several challenges.

Fast lookup. A CLAM must support very fast lookup of
a given key. However, with batched write, a given key may
reside in any prior batch, depending on time it was written
out to flash. A naive lookup algorithm would examine all
batches for the key, which would incur high and potentially
unacceptable I/O costs. To reduce the overhead of examining
on-flash batches,BufferHash (i) partitions the key space to
limit the lookup in one partition, instead of the entire flash,
and (ii) uses in-memory Bloom filters (like Hyperion [20]) to
efficiently determine a small set of batches that may contain
the key. To further reduce the cost of Bloom filter lookup
and update,BufferHash organizes the Bloom filters with a
technique calledwindowed bit-slicing.

Flash properties. The unique I/O properties of flash de-
mand careful choice of various CLAM design parameters
such as the amount of DRAM to use, the sizes of batches and
Bloom filters, etc. Suboptimal choice of these parameters
may result in poor performance of a CLAM on flash. An im-
portant contribution of this paper is to analytically show the
impact of these parameters on latencies of different CLAM
operations. Our analysis also provides optimal values of var-
ious design parameters.

Limited flash. In many of the applications identified ear-
lier in this section the index holds streaming data (e.g. WAN

optimization and network monitoring). Thus, under steady
state, insertion of new keys into a CLAM may require creat-
ing space by evicting old keys. Without effective support,
eviction could be time consuming and impact the perfor-
mance of other operations such as insertions and lookups.
BufferHash uses an age-based internal organization of in-
dex information that naturally supports bulk evictions of old
keys in an I/O-efficient manner.BufferHash also supports
other flexible eviction policies (e.g. priority-based removal)
to match different application needs, albeit at additionalper-
formance cost. Existing indexing systems for archived stream-
ing data do not address such eviction.

Supporting updates. Since flash does not support up-
date or deletion efficiently, modifying existing(key, value)
mappingsin situ in a CLAM is expensive. To support good
update latencies, we adopt alazy updateapproach where
all value mappings, including deleted or updated ones, are
temporarily left on flash and later deleted in batch during
eviction. However, this does not affect the semantics of the
CLAM operations; i.e., during lookup,BufferHash returns
the most recent value. Such lazy updates have been previ-
ously used in other contexts, such as in tree-based index [12]
and lazy garbage collection in log structured file systems [33].

We prototype CLAMs usingBufferHash on SSDs from
two different vendors. While designed for flash, we show
that BufferHash could enable CLAM-like functionality on
disks, but with poor performance than flash-based CLAMs.
Using extensive analysis based on a variety of workloads, we
study the latencies supported in each case and compare the
CLAMs against popular approaches such as using Berkeley-
DB on disk. Finally, we study the benefits of using CLAMs
in a WAN optimization application using a variety of syn-
thetic and real traffic traces. Our key observations are:

(1) Our Intel SSD-based CLAM offers average insert la-
tency of 0.02ms compared to 7ms from using Berkeley-DB
on disk. For a workload with 40% hit rate, the average lookup
latency is 0.06ms for our CLAM, but 7ms for Berkeley-DB.

(2) The other two CLAMs are cheaper than the Intel-based
CLAM. They are each an order of magnitude worse in terms
of latencies but still much better than Berkeley-DB on disk.
They could replace disk-based Berkeley-DB index in low-
end equipment such as WAN optimizers for slow links.

(3) Using an Intel-SSD based CLAM, the throughput ben-
efits from a WAN optimizer under heavy load can be im-
proved 3X compared to using Berkeley-DB on disk.

2. MOTIVATING APPLICATIONS
Our goal is to design CLAMs that support random lookup

and insert latencies of under 0.1ms and can hold hash ta-
bles that are several tens of GB in size. We now describe
three networking and systems applications that employ in-
dexes with these requirements. We also describe a data ori-
ented architecture that could leverage such CLAMs.

WAN Optimization. WAN optimizers [2, 1, 8, 7] leverage
the fact that network transfers carry redundant information
and that it may be faster to look for redundancies locally and

2

transmit compressed data than to transmit full data. These
products are widely deployed by enterprises and data centers
to lower their WAN usage costs. A WAN optimizer computes
fingerprints of each arriving data object. These are looked
up in an index constructed over all prior content seen. A
matching fingerprint indicates a certain degree of similarity
between the current object and a prior object. Overlapping
content is removed, and the “compressed object” (augmented
with some meta-data) is transmitted to the destination, where
it gets reconstructed. Fingerprints for the original object are
inserted into the index to aid in future matches.

The caches holding prior content are∼10TB in size [9].
The fingerprint are 16-32B hashes computed over 10KB data
chunks; thus the index could be 16-32GB. Consider a WAN
optimizer connected to a 1Gbps link operating at 100% uti-
lization. Assuming an average object size of 100KB, about
10,000 fingerprints are created per second. Fingerprint lookup
latencies could add to the total transfer time of each object;
hence it should be low enough so that tangible compression
benefits are obtained. Depending on the implementation,
three scenarios may arise during insertion under heavy load
situations: (1) lookups for upcoming objects are held-up un-
til inserts for prior objects complete (2) instead of waiting,
upcoming objects are transmitted without fingerprinting and
look up (3) insertions are aborted mid-way and upcoming ob-
jects looked up against an “incomplete index”. Fast support
for insertions can improve all three situations and help iden-
tify more content redundancy in situations of heavy load. We
studied the suitability of an on-disk index like Berkeley-DB
for this application use a real trace (§8). We found that due
to poor support for insertions and lookups of streams ran-
dom keys, the throughput improvements are less than a third
of the optimal assuming a 100Mbps link (this could be much
worse for higher speed links). In contrast, using an Intel-
based CLAM offers optimal benefits.

Data deduplication and Backup.Data de-duplication [3]
is the process of removing redundant content from enter-
prise data leaving only one copy of the data to be stored for
archival. As users generate greater amounts of data, the de-
mand for these products has risen sharply. Prior work sug-
gests that the data sets could be roughly 8-10TB and employ
20GB indexes [3, 38]. A time-consuming activity in dedu-
plication is merging data sets and the corresponding indexes.
Reducing the time taken in this operation is crucial to ensur-
ing high availability of the deduplication service. To merge
a smaller index into a larger one, fingerprints from the latter
dataset needs to be looked up, and the larger index updated
with any new information. Merging a million fingerprints
into a larger index using Berkeley-DB could take as long as
2 hours. In contrast, using CLAMs based onBufferHash,
the merge finishes in under 2 minutes.

Without going into the details, we note that a similar set
of challenges arise in online backup services [4] which allow
users to constantly, and in an online fashion, update a central
repository with “diffs” of the files they are editing, and to

retrieve changes from any remote location on demand.
Monitoring. An important task in traffic engineering is

to monitor the performance experienced by packets at they
traverse a set of links for traffic engineering and debugging
performance problems. One approach to do this is obtain-
ing header traces, say for a customer’s traffic, from multiple
network locations (e.g. entry/exit links into a PoP) over sev-
eral minutes to an hour. Packet records from one location
are loaded into a large hash table. Records from adjacent
links are then looked up. As lookups are performed, record
could get updated with performance information (e.g. PoP-
by-PoP delay). Assuming a customer’s traffic makes up 1%
of total traffic, capturing this on a 50% utilized OC768 link
over a one hour interval could create a 100GB index. Sprint’s
IPMon employed such an approach [29] but relied on an on-
disk index. This needs fast random inserts, lookups and up-
dates to improve the speed of responding to anomalies.

A Data Oriented Network Architecture. Network users
today are interested in content, but not who is serving it. To
simplify content access in the modern age, recent propos-
als argue for a separate and robust resolution infrastructure
for content names [27, 36, 32]. The names are hashes com-
puted over chunks of content inside data objects. The reso-
lution infrastructure provides a mapping of the locations of
data chunks. As new sources of data arise or as old sources
leave the network, the resolution infrastructure should beup-
dated accordingly. To support scalability, the architectures
have conventionally relied on a distributed resolution mech-
anism based on DHTs [27, 36, 32]. However, in some de-
ployment scenarios (e.g. a large corporation), the resolution
may have to be provided by a trusted central entity. To en-
sure high availability and throughput for a large user-base,
the centralized deployment should support fast inserts and
efficient lookups of the mappings. CLAMs can support such
an architecture effectively.

3. RELATED WORK
Hash table is used as one of the fundamental modules in

several network processing algorithms and applications and
therefore building fast hash tables has been an active research
area. Broder et al. [16] demonstrated a fast lookup technique
based on multiple hashing, which has recently been opti-
mized for hardware implementation [26]. Song et al. [34]
proposed a novel and fast hash table data structure based on
multiple-access Bloom filter. The common goals of these
work is to build hash tables on hardware or on extremely
fast but small, byte-addressable memory and to optimize for
lookups only (i.e., optimizing insertions is typically notthe
goal). In contrast, a CLAM is much larger and cheaper, but
slower, than these solutions. Moreover, unlike these existing
solutions, CLAM is designed for streaming applications that
require, in addition to looking up items, inserting items toa
hash table at a high rate and discarding old items if needed.

Like BufferHash, Hyperion [20] enables archival, index-
ing, and on-line retrieval of high-volume data streams. Al-
though it has a more general set of functionalities thanBuffer-

3

Hash (e.g., it can support rank and range queries),Buffer-
Hash is more optimized for CAM-like functionalities in a
streaming scenario. For example, to lookup a key, Hyperion
may need to examine prohibitively high volume of data (it
does not use partition, and individual batch of data is not or-
ganized as hash tables), resulting in a high latency. Second, it
does not consider using flash storage, and hence does not aim
to optimize design parameters for flash. Third, it does not fo-
cus on efficient eviction of indexed data. Finally, it does not
support updating or deleting already indexed data.

The GigaScope [19] network monitoring system is able to
process full-speed network monitoring streams and provides
a SQL-based query language. Queries can, however, be made
on incoming data streams only; there is no mechanism in Gi-
gaScope to index and query past data. The same is true for
many other existing datastream systems [10, 11]. Stream-
Base [35], another general purpose streaming database, sup-
ports archiving data and processing query over past data; but
the data is archived in conventional hash or B-Tree-indexed
tables, which are slow and are suitable only for offline queries.
Endace DAG [21] and CoMo [24] are designed for wire-
speed data collection and archiving; but they provide no mech-
anism to index and query the archived data. Existing DBMSs
can support CAM-like functionalities. However, they are de-
signed neither for high update and lookup rates (see [11]) nor
for flash storage (see [31]).

Recent research has shown how to design efficient data
structures on flash memory. Examples include MicroHash [37],
a hash table and FlashDB [31], a B-Tree index, both de-
signed for flash memory. UnlikeBufferHash, these data
structures are designed for memory-constrained embedded
devices where the design goal is to optimize energy usage
and minimize memory footprint—latency is typically not a
design goal; e.g., in MicroHash, a lookup operation may
need to follow multiple pointers to locate the desired key in
a chain of flash blocks.

4. FLASH MEDIA AND HASH TABLES
Flash storage media comes in two different flavors: raw

flash chips and portable flash packages.

Flash Chips. The most common type of flash chip used for
storage is NAND flash. Its high storage capacity (currently
up to 32GB in a single chip) is suitable for storing large
amounts of data. The key properties of NAND flash that di-
rectly influence storage design are related to the method in
which the media can be read or written, and are discussed
in [28, 31]. In summary, all read and write operations hap-
pen at page granularity (or for some chips down to1

8 th of a
page granularity), where a page is typically 512–2048 bytes.
Pages are organized into blocks, typically of 32 or 64 pages.
A page can be written only after erasing the entire block to
which the page belongs. However, once a block is erased,
all the pages in the block can be written once with no further
erasing. Thus, for an in-place update, before the erase and
write can proceed, any useful data residing in other pages in

Device Operation Latency (ms) Linear model (ms)
Flash chip Read 0.24/page 0.15 + 0.05x

(FujiFilm XD-card Write 0.28/page 0.15 + 0.07x

flash chip, 2GB) Erase 3.31/block 0.5 + 0.022x

Intel SSD Seq. Read 0.16 0.036 + 0.004x

(Model: X18-M) Seq. Write 0.49 0.095 + 0.012x

80 GB Rnd. Read 0.31 0.143 + 0.005x

Rnd. Write 0.83 0.284 + 0.019x

Samsung SSD Seq. Read 0.5 0.114 + 0.01x

(MCBQE32G5MPP) Seq. Write 0.6 0.086 + 0.014x

32 GB Rnd. Read 0.5 0.117 + 0.01x

Rnd.Write 18 12.772 + 0.13x

MTron SSD Seq. Read 0.4 0.058 + 0.012x

(SATA7035-016) Seq. Write 0.4 0.035 + 0.012x

16GB Rnd. Read 0.5 0.07 + 0.012x

Rnd. Write 9 8.79 + 0.006x

Table 1: I/O latency for different flash devices. The I/O
size for SSDs in the Latency column is 32 KB. The symbol
x in the models represents the I/O size in KiloBytes.

the same block must be copied to a new block; thisinter-
nal copyingincurs a considerable overhead. Because there is
no mechanical latency involved, random read/write is as fast
as sequential read/write (assuming the writes are for erased
pages).

Portable flash packages.Portable flash packages such as
solid state disks (SSDs), compact flash (CF) cards, secure
digital (SD) cards, and USB sticks provide a disk-like ATA
bus interface on top of flash chips. Typically, the unit of I/O
operations is a sector of 512 bytes. The disk-like interface
is provided through a Flash Translation Layer (FTL) [25],
which is implemented within the micro-controller of the de-
vice (or in software, such as Windows Mobile). FTL emu-
lates disk-like in-place update for a (logical) address by writ-
ing the new data to a different physical location, maintain-
ing a mapping between each logical address and its current
physical address, and marking the old data as invalid for later
garbage collection. Thus, although FTL enables disk-based
applications to use flash without any modification, it needs
to internally deal with flash characteristics (e.g., erasing an
entire block before writing to a page). Many recent stud-
ies have shown that FTL-equipped flash devices, although
a great convenience, suffer many performance problems (in
particular for random writes and in-place updates [13, 15]).

Performance of flash devices.Table 1 shows I/O costs of
several flash devices. The flash chip and Intel SSD costs are
based on our experiments with the uFlip Benchmark [14].
The Samsung and MTron costs are reported by the authors of
the uFlip benchmark in [15] and in [14]. As shown in Table 1,
also mentioned in previous work [15, 28, 31], different I/O
costs on flash can be modeled well with linear equations.

Because of unique characteristics of flash media, applica-
tions designed for flash should follow a few key well-known
design principles. First, applications should avoid random
writes, as they are significantly more expensive than other
I/Os, as shown in Table 1. Second, applications should avoid
in-place updates and sub-block deletions. As shown in [30],
such operations are over two orders of magnitude slower than

4

...

i’th Bloom Filter

Incarnation Table

i’th Incarnation

DRAM

Flash

Buffer

Figure 1: A Super Table

out-of-place updates and block deletions on flash devices (with
or without an FTL), because they require internal copying.
Third, since reads and writes happen at the granularity of a
flash page (or an SSD sector), an I/O of size smaller than
a page costs at least as much as a full-page I/O. Thus, ap-
plications should avoid small I/Os if possible. Finally, the
high fixed initialization cost of an I/O (the componenta in
Table 1) can be amortized with a large I/O size. Thus, ap-
plications should batch I/Os whenever possible. In designing
flash-based CLAMs usingBufferHash, we follow these de-
sign principles.

A conventional hash table on flash.Before going into the
details of ourBufferHash design, it might be useful to see
why a conventional hashtable on flash is likely to suffer from
poor performance. Successive keys inserted into a hashtable
are likely to hash to random locations in the hashtable; there-
fore, values written to those hashed locations will result in
random writes, violating the first design principle above. Up-
dates and deletions are immediately applied to a conventional
hashtable, resulting in in-place updates and sub-block dele-
tions (since each hashed value is typically much smaller than
a flash block), and violation of the second principle above.
Since each hashed value is much smaller than a flash page (or
an SSD sector), inserting a single key in an in-flash hashtable
violates the third and the fourth principles above. Violation
of these design principles results in a poor performance of a
conventional hashtable on flash, as we demonstrate in§7.

5. THE BufferHash DATA STRUCTURE
TheBufferHash is a flash-friendly data structure that sup-

ports hashtable-like operations on(key, value) pairs. The
key idea underlyingBufferHash is that instead of perform-
ing individual insertions/deletions one at a time to the hash
table on flash, we can perform multiple operations all at once.
This way, the cost of a flash I/O operation can be shared
among multiple insertions, resulting in a better amortized
cost for each operation (similar to buffer trees [12] and group
commits in DBMS and file systems [23]). For simplicity, we
consider only insertion and lookup operations for now; we
will discuss updates and deletions later. To allow multiplein-
sertions to be performed all at once, aBufferHash operates
in a lazy batched manner: it accumulates insertions in an in-
memory buffer, without actually performing the insertionson
flash. When the buffer fills up, all inserted items are pushed
in a batch to in-flash hash tables. For I/O efficiency, items

pushed from buffer to flash are sequentially written as a new
hash table, instead of performing expensive update to exist-
ing in-flash hash tables. During lookup, a set of Bloom filters
is used to determine which in-flash hash tables may contain
the desired key, and only those tables are retrieved from flash.
At a high level, the efficiency of this organization comes from
batch I/O and sequential writes during insertions. Successful
lookup operations still need random reads, however, random
reads are almost as efficient as sequential reads in flash.

5.1 A Super Table
A BufferHash consists of multiplesuper tables. In this

section we describe the structure of a super table; the overall
structure ofBufferHash will be described in the next sec-
tion. Each super table has three main components; a buffer,
an incarnation table, and a set of Bloom filters. These com-
ponents are organized in two levels of hierarchy, as shown
in Figure 1. Components in the higher level are maintained
in fast memory such as DRAM, while that in the lower level
are maintained in large (but potentially slow) memory, such
as flash.

Buffer. This is an in-memory hash table where all newly
inserted hash values are stored. The hash table can be built
using existing fast algorithms such as multiple-choice hash-
ing [16, 26]. A buffer has a fixed capacity of maximum num-
ber of items, determined by its size and the desired upper
bound of hash collisions. When the number of items in the
buffer reaches its capacity, the entire buffer is flushed to flash,
after which the buffer is re-initialized for inserting new keys.
The buffers flushed to flash are calledincarnations.

Incarnation Table. This is an in-flash table that contains
old and flushed incarnations of the in-memory buffer. The
table containsk incarnations, wherek denotes the ratio of
the size of the incarnation table and the buffer. The table is
organized as a circular list, where a new incarnation is se-
quentially written at the list-head. To make space for a new
incarnation, the oldest incarnation, at the tail of the circular
list, is evicted from the table. Depending on how an app-
lication configures aBufferHash, some items in an evicted
incarnation may need to be retained and are re-inserted into
the buffer (details in§5.1.2).

Bloom Filters. Since the incarnation table contains a se-
quence of incarnations, the value for a given hash key may
reside in any of the incarnations, depending on its insertion
time. A naive lookup algorithm for an item would examine
all incarnations, which would require reading all incarnations
from flash. To avoid this excessive I/O cost, a super table
maintains a set of in-memory Bloom filters [17], one per in-
carnation. The Bloom filter for an incarnation is a compact
signature built on the hash keys in that incarnation. To search
for a particular hash key, we first test the Bloom filters for
all incarnations; if any Bloom filter matches, then the corre-
sponding incarnation is retrieved from flash and looked up
for the desired key. Bloom filters do not produce any false
negative, and hence no hash keys stored in any incarnation

5

will be missed. However, Bloom filters may have some pro-
bability of a false positive, where it can indicate a match
when there is none. This may result in unnecessary flash
I/O. Bloom filter lookup poses a trade-off between the filter
size and I/O overhead due to false positives. We examine the
tradeoff in§6.4.

The Bloom filters are maintained as follows. When a buffer
is initialized after a flush, a Bloom filter is created for it.
When items are inserted into the buffer, the Bloom filter is
updated with the correspondingkey. When the buffer is flushed
as an incarnation, the Bloom filter is saved in memory as the
Bloom filter for that incarnation. Finally, when an incarna-
tion is evicted, it’s Bloom filter is discarded from memory.

5.1.1 Super Table Operations

A super table supports all standard hash table operations.
Insert. To insert a(key, value) pair, the value is inserted

in the buffer (which is a hash table). If the buffer does not
have space to accommodate the key, the buffer is flushed and
written as a new incarnation in the incarnation table. The in-
carnation table may need to evict an old incarnation to make
space for this new incarnation.

Lookup. To lookup a key, it is first looked up in the buffer.
If it is found, the corresponding value is returned. Otherwise,
in-flash incarnations are examined in the order of their age
until the key is found. To examine an incarnation, first its
Bloom filter is checked to see if the incarnation might include
the key. If the Bloom filter matches, the incarnation is read
from flash, and checked if it really contains the key. Note
that since each incarnation is in fact a hash table, to lookupa
key in an incarnation, only the relevant part of the incarnation
(e.g., a flash page) can be read directly.

Update/Delete.As mentioned before, flash does not sup-
port small updates/deletions efficiently; hence, we support
them in a lazy manner. Suppose a super table contains an
item (k, v), and later, the item needs to be updated with the
item (k, v′). In a traditional hash table, the item(k, v) is im-
mediately replaced with(k, v′). If (k, v) is still in the buffer
when(k, v′) is inserted, we do the same. However, if(k, v)
has already been written to flash, replacing(k, v) will be ex-
pensive. Hence, we simply insert(k, v′) without doing any-
thing to(k, v). Since the incarnations are examined in order
of their age during lookup, if the same key is inserted with
multiple updated values, the latest value (in this example,v′)
is returned by a lookup. Similarly, for deleting a keyk, a su-
per table does not delete the corresponding item unless it is
still in the buffer; rather the deleted key is kept in a separate
list (or, a small in-memory hash table), which is consulted
before lookup—if the key is in the delete list, it is assumed
to be deleted even though its present in some incarnation.
Lazy update wastes space on flash, as outdated items are left
on flash; the space is reclaimed during incarnation eviction.

5.1.2 Incarnation Eviction

A BufferHash with limited flash memory may require to

... ...
...

DRAM

Flash

Super Table

...

Figure 2: A BufferHash with multiple super tables

evict old in-flash items to make space for new items. For
example, in a streaming application, many more items may
be inserted into aBufferHash than it can store in its lim-
ited flash. In such case, aBufferHash must select items to
discard. However, the choice of particular items to discard
depends on the policy set by the application.

For I/O efficiency,BufferHash evicts items in granularity
of an incarnation. Since each incarnation is an independent
hash table, discarding a part of it may require expensive re-
organization of the table and expensive I/O to write it back
to flash. Since items with similar ages (i.e., items that are
flushed together from the buffer) are clustered in the same
incarnation,BufferHash naturally supports discarding items
based on their ages. Thus, if an application uses a policy
of discarding oldest items and indexing recent items only, a
BufferHash can easily support such a policy by afull discard
mechanism by entirely discarding the oldest incarnation, de-
allocating (and erasing) its flash blocks, and later allocating
them for future incarnations.

Supporting discard policies that are not based on age are,
however, a bit expensive. Such policies can be desirable
when, for example, an application wants to discard lower
priority data, irrespective of their ages. Such a policy is
also useful when the workload contains a lot of update or
delete operations—in such a case, in-flash incarnations may
contain many out-of-date items that have already been (log-
ically) deleted of updated, but haven’t been physically re-
moved from flash yet. During eviction of the oldest incarna-
tion, theBufferHash should discard only the items that have
already been deleted or updated, and retain the other items.

BufferHash supports apartial discardmechanism to sup-
port the above policies. This mechanism scans through all
the items in an incarnation to be discarded, selects the items
to be retained, and re-inserts them (into the buffer). An app-
lication can configureBufferHash with different policies to
determine if an item should be discarded during incarnation
eviction. For example, in a priority-based policy, an item is
discarded if its priority is less than a threshold (the threshold
can change over time, as in [30]). For a workload with many
updates and deletes, theBufferHash discards an item if it has
been deleted or updated. The former can be efficiently deter-
mined by examining the in-memory delete list, while the lat-
ter can be determined by checking the in-memory Bloom fil-
ters. Note that partial discard is expensive as it requires pro-
cessing all items in the victim incarnation; moreover, since
some items are re-inserted into the buffer, buffers fill up more
frequently, resulting in more frequent flush operations.

6

5.2 Partitioned Super Tables
A super table, although simple, has a drawback. Since

only a single buffer is maintained in a super table, it can be
very large (e.g., as permitted by the available DRAM). Since
the entire buffer is flushed at once, the flushing operation can
take a long time. Since flash I/Os are blocking operations,
lookup operations that go to flash during this long flushing
period will block (insertions can still happen as they go to
in-memory buffer). Moreover, an entire incarnation from the
incarnation table is evicted at a time, increasing the cost of
eviction with partial discard.

BufferHash avoids this problem by partitioning the hash
key space and maintaining one super table for each partition
(Figure 2). More specifically, suppose each hash key hask =
k1 + k2 bits; then, aBufferHash maintains2k1 super tables.
The first k1 bits of a hash key represents the index of the
super table containing the hash key, while the lastk2 bits are
used as the hash key within the particular super table.

Partitioning enables using small buffers in super tables,
thus avoiding the problems caused by a large buffer. How-
ever, we show in§6.4 that too many partitions (i.e., very
small buffers) can also adversely affect performance. We
show how to choose the number of partitions for good per-
formance in practice. For example, we show for flash chips
that the number of partitions should be such that the size of a
buffer matches the size of a flash block.

A BufferHash with multiple super tables can be imple-
mented on a flash device as follows. To implement on a flash
chip, the chip can be statically partitioned and each partition
can be allocated to a super table. A super table writes its
incarnations in its partition in a circular way—after the last
block of the partition is written, the first block of the parti-
tion is erased and the corresponding incarnation is evicted.
Such an implementation, however, may not be optimal on an
SSD. Even though writes within a single partition are sequen-
tial, writes from different super tables to different partitions
may interleave with each other, resulting in a performance
worse than a single sequential write (see [15] for empirical
results). To deal with that,BufferHash uses the entire SSD
as a single circular list and writes incarnations from different
super tables sequentially, in the order they are flushed to the
flash. (This is in contrast to the log rotation approach of Hy-
perion [20] that provides FIFO semantics for each partition,
instead of the entire key space.) Partitioning also naturally
supports using multiple SSDs in parallel, by distributing par-
titions to different SSDs. This scheme, however, spreads the
incarnations of a super table all over the SSD. To be able to
locate incarnations for a given super table, we maintain their
flash addresses along with their Bloom filters and use the ad-
dresses during lookup. Note that lookup operations now may
require random reads, but random reads are cheap on SSDs.

5.3 Bit-slicing with a Sliding Window
To support efficient Bloom filter lookup, we organize the

Bloom filters for all incarnations in a super table in bit-sliced

Symbol Meaning
N Total number of items inserted
M Total memory size
B Total size of buffers
b Total size of Bloom filters
k Number of incarnations in a super table
F Total flash size
s Average size taken by a hash entry
h Number of hash functions
B′ Size of a single buffer (=B/n)
Sp Size of a flash page/sector
Sb Size of a flash block

Table 2: Notations used inBufferHash analysis

fashion [22]. Suppose a super table containsk incarnations,
and the Bloom filter for each incarnation hasm bits. We store
all k Bloom filters asm k-bit slices, where thei’th slice is
constructed by concatenating biti from each of thek Bloom
filters (Fig 3(b)). Then, if a Bloom filter usesh hash func-
tions, we need to check onlyh bit-slices to check which in-
carnations may contain a keyx. That is, we first applyh hash
functions on the keyx to geth bit positions in a Bloom fil-
ter, retrieveh bit slices at those positions, compute bit-wise
AND of those slices. Then, the positions of 1-bits in this ag-
gregated slice, which can be looked up from a pre-computed
table, represent the incarnations that may contain the keyx.

As new incarnations are added and old ones are evicted
from an incarnation table, bit slices need to be updated ac-
cordingly. A naive approach would reset the left-most bits of
all m bit-slices on every eviction, further increasing the cost
of an eviction operation. To avoid this, we appendw extra
bits with every bit-slice, wherew is the size of a word that
can be reset to 0 with one memory operation. Within each
(k+w)-bit-slice, a window ofk bits represents the Bloom fil-
ter bits ofk current incarnations (Figure 3(c)), and only these
bits are used during lookup. After an incarnation is evicted,
the window is shifted one bit right (Figure 3(d)). Since the
bit falling off the window is no longer used for lookup, it
can be left unchanged. When the window has shiftedw bits
(Figure 3(e)), entirew-bit words are reset to zero at once, re-
sulting in a small amortized cost. The window wraps around
after it reaches the end of a bit-slice.

Note that this is an in-memory optimization; therefore, it
will be useful when the workload is mostly memory bound.
For example, for a workload with very little redundancy, lookup
operations will mostly be unsuccessfully returned from mem-
ory; for such a workload, the above optimization can improve
the overall throughput.

6. COST ANALYSIS OF BUFFERHASH
In this section, we first analyze the I/O costs of insertion

and lookup operations in usingBufferHash for flash-based
storage, and then use the analytical results to determine op-
timal values of two important parameters of aBufferHash.
We use the notations in Table 5.3 for our analysis.

6.1 Insertion Cost

7

k
B

lo
o

m
 F

ilt
e

rs

1 0 1 0 1 1 ... 0 1

0 0 1 1 0 1 ... 1 0

1 1 0 0 1 0 ... 0 0

.

.

.

m bits

m
 w

o
rd

s

1 0 ... 1

1 0 ... 1

1 0 ... 1

.

.

.

i−bit slice

.

.

.

1 0 1 ... 0 0 0 ... 0 0

0 0 1 ... 0 0 0 ... 0 0

1 0 0 ... 0 0 0 ... 0 0

(k+w)−bit slice

m
 w

o
rd

s

k−bit slice

.

.

.

1 0 1 ... 0 1 0 ... 0 0

0 0 1 ... 1 0 0 ... 0 0

1 0 0 ... 1 1 0 ... 0 0

(k+w)−bit slice

m
 w

o
rd

s

0 0 1 ... 1 0 0 ... 1 1

1 0 0 ... 1 1 1 ... 0 1

1 0 1 ... 0 1 0 ... 1 0

.

.

.

m
 w

o
rd

s

(k+w)−bit slice

w−bit slice

(a)k Bloom filters (b) Bit-slicing (c) Sliding window (d) Slidingwindow (e) Sliding window
(initial state) (after 2 evictions) (afterw evictions)

Figure 3: Bit-slicing with Sliding Window

We now analyze the amortized and the worst case cost of
an insertion operation onBufferHash. We assume that the
BufferHash is maintained in a flash chip without an FTL;
later we show how the results can be trivially extended to
SSDs with FTLs. As the measurements in Table 1 show, we
use linear cost functions for flash I/Os—reading, writing, and
erasingx bits, at appropriate granularities, costar + brx,
aw + bwx, andae + bex respectively.

Consider a workload of insertingN keys into aBuffer-
Hash. Most insertions are consumed in buffers, and hence
do not need any I/O. However, expensive flash I/O occurs
when a buffer fills and is flushed to flash. Each flush oper-
ation involves three different types of I/O costs. First, each
flush requires writingni = ⌈B′/Sp⌉ pages, whereB′ is the
size of a buffer in a super tale, andSp is the size of a flash
page (or an SSD sector). This results in a write cost of

C1 = aw + bwniSp

Second, each flush operation requires evicting an old in-
carnation from the incarnation table. For simplicity, we con-
sider full discard policy for an evicted incarnation. Note that
each incarnation occupiesni = ⌈B′/Sp⌉ flash pages, and
each flash block hasnb = Sb/Sp pages, whereSb is the size
of a flash block. Ifni ≥ nb, every flush will require erasing
flash blocks; otherwise, onlyni/nb fraction of the flushes
will require erasing blocks. Finally, during each erase, we
need to erase⌈ni/nb⌉ flash blocks. Putting all together, we
get the erase cost of a single flush operation as

C2 = Min(1, ni/nb)(ae + be⌈ni/nb⌉Sb)

Finally, a flash block to be erased may contain valid pages
(from other incarnations), which must be backed up before
erase and copied back after erase. This can happen because
flash can be erased only at the granularity of a block and an
incarnations to be evicted may occupy only part a block. In
this case,p′ = (nb − ni) mod nb pages must be read and
written during each flush. This results in a copying cost of

C3 = ar + p′brSp + aw + p′bwSp

Amortized cost.Consider insertion ofN keys into aBuffer-
Hash. If each hash entry occupiess space in theBuffer-
Hash, each buffer can holdB′/s entries, and hence buffers
will be flushed to flash totalnf = Ns/B′ times. Thus, the
amortized insertion cost is

Camortized = nf(C1 +C2 +C3)/N = (C1 +C2 +C3)s/B′

Note that the cost is independent ofN and inversely pro-
portional to the buffer sizeB′.

Worst case cost.An insert operation experiences the worst-
case performance when the buffer for the key is full, and
hence must be flushed. Thus, the worst case cost of an in-
sert operation is

Cworst = C1 + C2 + C3

SSD.The above analysis can trivially be extended for SSDs.
Since the costsC2 andC3 in an SSD are handled by its FTL,
the overheads of erasing blocks and copying valid pages are
reflected in its write cost parametersaw andbw. Hence, for
an SSD, we can ignore the cost ofC2 andC3. This results
in an amortized cost of insertion is given byCamortized =
C1s/B′ andCworst = C1.

6.2 Lookup Cost
A lookup operation in a super table involves first checking

the buffer for the key, checking the Bloom filters to determine
which incarnations may contain the key, and reading a flash
page for each of those incarnations to actually lookup the key.
Since a Bloom filter may produce false positives, some of
these incarnations may not contain the key, and hence some
of the I/Os may redundant.

Suppose theBufferHash containsnt super tables. Then,
each super table will haveB′ = B/nt bits for its buffer, and
b′ = b/nt bits for Bloom filters. In steady state, each super
table will containk = (F/nt)/(B/nt) = F/B incarnations.
Each incarnation containsn′ = B′/s entries, and a Bloom
filter for an incarnation will havem′ = b′/k bits. For a given
m′ andn′, the false positive rate of a Bloom filter is mini-
mized withh = m′ ln 2/n′ hash functions [17]. Thus, the
probability that a Bloom filter will return a hit (i.e., indicat-
ing the presence of a given key) is given byp = (1/2)h.
For each hit, we need to read a flash page. Since there arec
incarnations, the expected flash I/O cost is given by

Clookup = kpcr = k(1/2)hcr

= F/B(1/2)bs ln 2/F cr

wherecr is the cost of reading a single flash page from a flash
chip, or a single sector from an SSD.

6.3 Discussion
The above analysis can provide insights into benefits and

overheads of variousBufferHash components not used in

8

traditional hash tables. Consider a traditional hash tablestored
on an SSD; without any buffer, each insertion operation would
require one random sector write. Suppose, sequentially writ-
ing a buffer of sizeB′ is α times more expensive than ran-
domly writing one sector of an SSD.α is typically small even
for a buffer significantly bigger than a sector, mainly due to
two reasons. First, sequential writes are significantly cheaper
than random writes in most existing SSDs. Second, writing
multiple consecutive sectors in a batch has better per sector
latency. In fact, for many existing SSDs, the value ofα is
less than 1 even for a buffer size of256KB (e.g.,0.39 and
0.36 for Samsung and MTron SSDs respectively). For Intel
SSD, the gap between sequential and random writes is small;
still the value ofα is less than 10 due to I/O batching.

Clearly, the worst case insertion cost of aBufferHash is
α times more expensive than that of a traditional hash ta-
ble without buffer—a traditional hash table requires writing a
random sector, whileBufferHash requires sequentially writ-
ing the entire buffer. As discussed above the value ofα is
small for existing SSDs, and for many existing SSDs,Buffer-
Hash provides better worst case cost. On the other hand, our
previous analysis shows that the amortized insertion cost of
BufferHash is at leastB

′

αs times less than a traditional hash
table, even if we assume random writes required by tradi-
tional hash table are as cheap as sequential writes requiredby
BufferHash. In practice, random writes are more expensive,
and therefore, the amortized insertion cost of aBufferHash
is even more cheaper than that of a traditional hash table.

Similarly, a traditional hashtable on flash will need one
read operation for each lookup operation, even for the un-
successful ones. In contrast, the use of Bloom filter can sig-
nificantly reduce the number of flash reads for unsuccessful
lookups. More precisely, if the Bloom filters are configured
to provide a false positive rate ofp (as shown before), use of
Bloom filter can reduce the cost of an unsuccessful lookup
by a factor of1/p. Note that the same benefit can be realized
by using Bloom filters with a traditional hash table as well.
Even thoughBufferHash maintains multiple Bloom filters
over different partitions and incarnations, the total sizeof all
Bloom filters will be the same as the size of a single Bloom
filter computed over all items. This is because for a given
false positive rate, the size of a Bloom filter is proportional
to the number of unique items in the filter,

6.4 BufferHash Parameters
Tuning aBufferHash for performance requires carefully

setting two key parameters. First, one needs to decide how
much DRAM to use, and if a large enough DRAM is avail-
able, how much of it is to allocate for buffer and how much
to allocate for Bloom filters. Second, once the total size of
in-memory buffers is decided, one need to decide how many
super tables to use. We now use the previous cost analysis to
address these two questions.

Buffer Size. Assume that the total memory size isM bits,
of whichB bits are allocated for (all) buffers (in all super ta-

 0
 2
 4
 6
 8

 10
 12
 14
 16

 10 100 1000 10000E
xp

ec
te

d
I/O

 O
ve

rh
ea

d
(m

s)

Bloom Filter Size (MB)

F = 64GB
F = 32GB

Figure 4: Expected I/O overhead vs Bloom filter size

bles) andb = M−B bits are allocated for Bloom filters. Our
previous analysis shows that the value ofB does not directly
affect insertion cost; however, it affects lookup cost. So,we
would like to find the optimal value ofB, in the number of
bits, that minimizes the expected lookup cost.

Intuitively, a buffer size poses a tradeoff between the num-
ber of total incarnations and the probability of an incarnation
to be read from flash during lookup. As our previous analy-
sis showed, the I/O cost is proportional to the product of the
number of incarnations and the hit rate of Bloom filters. In
one hand, reducing buffer size increases the number of incar-
nations, increasing the cost. On the other hand, increasing
buffer size leaves less memory for Bloom filters, which in-
creases its false positive rate and I/O cost.

We can use our previous analysis to find a sweet spot within
this tradeoff. The analysis shows that the lookup cost is given
by C = F/B · (1/2)(M−B)s ln 2/F · cr. The costC is mini-
mized whendC/dB = 0, or, equivalentlyd(log2(C))/dB =
0. Solving this equation gives the optimal value ofB as,

Bopt =
F

s(ln 2)2
≈

2F

s

Interestingly, this optimal value ofB does not depend on
M ; rather, it depends only on the total sizeF of flash and
the average spaces taken by each hashed item. Thus, given
some memory of sizeM > B, we should use≈ 2F/s bits
for buffers, and the remaining for Bloom filters. If additional
memory is available, that should be used only for Bloom fil-
ters, not for the buffers.

Total Memory Size. We can also determine how much
total memory to use for aBufferHash. Intuitively, increasing
more memory improves lookup performance, as this allows
using larger Bloom filters and lowering false positive rates.
Suppose, we want to limit the I/O overhead that happen due
to false positives toCtarget. Then, we can determineb′, the
required size of Bloom filters as follows.

Ctarget ≥
F

B

(

1

2

)b′s ln 2/F

· cr

b′ ≥
F

s(ln 2)2
ln

(

s(ln 2)2cr

Ctarget

)

Figure 4 shows required size of a Bloom filter for different
expected I/O overheads. As the graph shows, the benefit of
using large Bloom filter diminishes after a certain size. For
example, for aBufferHash with 32GB flash, allocating 1GB
for all Bloom filters is sufficient to limit the expected I/O

9

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

1 10 102 103 104 105

A
vg

. L
at

en
cy

 (
m

s)

Buffer size (KB)

 10

 100

 1000

1 10 102 103

M
ax

. L
at

en
cy

 (
m

s)

Buffer size (KB)

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014

1 10 102 103 104

A
vg

. L
at

en
cy

 (
m

s)

Buffer size (KB)

 0.1

 1

 10

 100

1 10 102 103

M
ax

. L
at

en
cy

 (
m

s)

Buffer size (KB)

(a) Avg. latency (chip) (b) Max. latency (chip) (c) Avg. latency (SSD) (d) Max. latency (SSD)

Figure 5: Amortized and worst-case insertion cost on a flash chip and an Intel SSD. Only flash I/O costs are shown.

overheadCtarget below 1ms.
In summary, to limit I/O overhead during lookup toCtarget,

aBufferHash requires(Bopt + b′) bits of memory, of which
Bopt is used for buffers and the rest for Bloom filters.

Number of Super Tables.Given a fixed memory sizeB
for all buffers, the number of super table determines the size
B′ of a buffer within a super table. As our analysis shows,B′

does not affect the lookup cost; rather, it affects the amortized
and worst case cost of insertion. So one should use a suitable
value ofB′ that minimizes the insertion cost.

Figure 5 shows the insertion cost of aBufferHash, based
on our previous analysis, in two flash media. (The SSD per-
forms better because it uses multiple flash chips in parallel.).
For the flash chip, both amortized and worst-case cost min-
imize when the buffer sizeB′ matches the flash block size.
Thus, buffer size should match a block size for flash chip.
The situation is slightly different for SSDs; as Figure 5(b)
and (c) show, a large buffer reduces average latency but in-
creases worst case latency. An application should use its tol-
erance for average- and worst-case latencies and our analyti-
cal results to determine the desired size ofB′ and the number
of super tablesB/B′.

7. EVALUATION
In this section, we evaluate severalBufferHash-based CLAM

prototypes with different secondary storage media and com-
pare them with an existing disk-based index.

BufferHash Prototype. We have prototypedBufferHash
in around 3000 lines of C++ code and run it on a Linux ma-
chine. The hash table in a buffer is implemented with Google
Sparsehash library [5]. For simplicity of implementation,
different incarnations are written as separate files. A new
incarnation is written by overwriting the file corresponding
to the oldest incarnation in its super table. Thus the perfor-
mance numbers we report include small overheads imposed
by theext3 file system. One can achieve better performance
by writing directly to the disk as a raw device, bypassing the
file system. We run the prototype on three storage devices:
an Intel SSD (model: X18-M, which represents a new gener-
ation SSD), a Transcend SSD (model: TS32GSSD25, which
represent a relatively old generation but cheaper SSD), anda
magnetic disk (Hitachi Deskstar 7K80 drive).

Workload. We use several workloads in our comparative
study. Each workload consists of a sequence of lookups and
insertions of keys. The keys are generated using random dis-
tribution with varying range; the range effects the lookup

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 500 1000 1500 2000

S
p

u
ri
o

u
s
 L

o
o

k
u

p
 R

a
te

Buffer size (MB)

Figure 6: Spurious rate vs. memory allocated to buffers
in BufferHash with 4 GB RAM, 32 GB Flash

of Probability Latency (ms)
flash I/O 0% LSR 40% LSR Flash chip Intel SSD

0 0.9899 0.6032 0 0
1 0.0094 0.3894 0.24 0.31
2 0.0005 0.0073 0.48 0.62
3 0.00005 0.00003 0.72 0.93

Table 3: Lookup latency probability distribution

success rate (LSR) of a key. The workloads are motivated
by the WAN optimization application (§8).

7.1 BufferHash Parameters
As mentioned in§2, our key motivating applications like

WAN optimization and deduplication employ 16-32GB in-
dexes. In our evaluation, we use a similar index: specifically,
we use 32GB of slow storage (flash, SSD or disk) and 4GB
of DRAM. The buffer size of a super table is set to 128 KB,
as suggested by our analysis in§6.4. Each hash entry takes
16 bytes of space. However, we limit the utilization of the
hash table in a buffer to80%—a higher utilization increases
hash collision and lookup latency. Thus, each buffer (and
each incarnation) contains around 6500 hash entries.

According to the analysis in§6.4, the optimal size of buffers
for the above configuration is 416MB. We now experimen-
tally validate the value. Figure 6 shows the variation of false
positive rates as the memory allocated to buffers is varied
from 16 MB to 2048 MB in our prototype. As our analy-
sis indicated, allocating a very small memory for all buffers
gives a high false positive rate (e.g., 0.2 for 16MB) and this
imposes significant lookup overhead. Increasing this mem-
ory to 384MB reduces spurious lookup rate (due to false pos-
itives) to 0.02, which is optimal for our setup. Further in-
creasing the size of buffers increases the spurious rate (e.g.,
0.23 for 2048 MB). The trend is similar to that shown by our
analysis in§6.4. Moreover, the experimental optimal buffer
size (384MB) is close to our analytical optimal (416MB); the
small difference is because our analysis allows the optimal
number of hash functions to be an any positive real number.

10

7.2 I/O Rates of BufferHash Operations
BufferHash consists of two levels of memory/storage hi-

erarchy. The storage layer is relatively slow, but many of
the operations are performed on memory. Table 3 shows the
distribution of flash I/Os required by a lookup operation in
our BufferHash prototype, under two different lookup suc-
cess ratio (LSR). As shown, most of the lookups are an-
swered from memory. Moreover,≈ 99% lookups require
at most only one flash read. Table 3 also shows distributions
of lookup latencies for two different flash devices, based on
their measured latencies as shown in Table 1. As shown,
more than99.99% of the lookups are answered within 1 ms.

SinceBufferHash buffers writes in memory before writ-
ing to flash, most of the insert operations are done in mem-
ory. Since a buffer holds around 6500 items, only 1 out of
6500 insertions on average requires writing to flash. So, the
average and median insert latencies forBufferHash are min-
imal (average≈ 0.02ms for Intel SSD). The worst case insert
latency, when a buffer is flushed to the Intel SSD, is 0.83 ms.

7.3 Performance of SSD-based CLAMs
We now evaluate two CLAMs: 1)BH+SSD: our Buffer-

Hash prototype running on an SSD and 2)BH+Disk: Buffer-
Hash running on a magnetic disk, and report the measured
latencies of differentBufferHash operations. This helps us
understand how much performance benefit of a CLAM comes
from using SSD. We use a workload with 40% look-up suc-
cess rate over random keys with interleaved inserts and lookups.

In Figure 7(a), we show the distribution of latencies for
lookup operations on theBH+SSDCLAM with an Intel and
a Transcend SSD. Around 63% of the time, the in-memory
bloom filter saves the lookups from going to the slow media;
of course, in the rare case of false positives some additional
latency is incurred, but we see very negligible impact in prac-
tice (Recall thatBufferHash is configured for< 0.02 false
positive rate). 99.8% of the lookup times are less than 0.176
ms for the Intel SSD. For Transcend SSD, 90% of the lookup
times are under 0.6ms and the maximum is 1ms.

In Figure 7(b), we show the latencies for insert opera-
tions on different CLAMs. As shown, most of the opera-
tions involve only the main memory, so the average insert
cost is very small (0.02ms and 0.032ms for Intel and Tran-
scend SSD). The worst case latency for insert is 0.9ms and
20ms for Intel and Transcend SSDs respectively.

Figures 7(a) and (b) also show the latencies for lookup and
inserts inBH+Disk. Lookup latencies range from 0.1 to 12
ms, an order or magnitude higher than the SSD prototypes
due to the high seek latencies in disks. The average insert
cost is very small and the worst case insert cost is 12 ms,
corresponding to high seek latency.

The results show using different storage media gives rise
to systems with different performance. Note that the pricesof
these different storage media are different as well. Thus app-
lication and system designers with different cost-performance
constraints could select a suitable CLAM from the above set.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.001 0.01 0.1 1 10

C
D

F

Lookup Latency(ms)

BH+SSD(Intel)
BH+SSD(Transcend)

BH+Disk
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.001 0.01 0.1 1 10

C
D

F

Insert Latency(ms)

BH+SSD(Intel)
BH+SSD(Transcend)

BH+Disk

Figure 7: BufferHash latencies on different media

Intel SSD is the most expensive of them all, but it offers the
best latencies for lookups and inserts, and we expect high-
end systems like WAN optimizers for 1Gbps or faster links
to leverage these. CLAMs based on the lower-end Transcend
SSDs are less expensive but they offer an order or magnitude
worse worst-case latencies for both operations. Finally, disk-
based indexes are the cheapest but the worst-case latencies
they offer are a further order of magnitude worse. WAN opti-
mizers designed for lower speed network links could employ
the latter two variants, for instance.

7.4 Comparison with DB-Indexes
We now compare ourBufferHash prototype against the

hash table structure in Berkeley-DB [6], a popular database
index, with the same workload above. (We also considered
the B-Tree index of the same database, but the performance
was worse than the hash table.) We consider the following
systems: a)DB+SSD: Berkeley-DB running on an SSD, and
b) DB+Disk: Berkeley-Db running on a magnetic disk.

Figure 8 (a) and (b) show the look-up and the insert la-
tencies for the two systems. More than 60% of the lookups
and more than40% of the inserts have latencies greater than
5 ms forDB+Disk. Surprisingly, for the Intel SSD, around
40% of lookups and 40% inserts have latencies greater than
5ms! This is counterintuitive given that Intel SSD has sig-
nificantly faster random I/O latency (0.15 ms) than magnetic
disks. This is explained by the fact that the low latency of
an SSD is achieved only when the write load on the SSD
is “low”; i.e., there are sufficient pauses between bursts of
writes so that the SSD gets enough time to clean dirty blocks
to produce erased blocks for new writes [15]. Under a high
write rate, the SSD quickly uses up its pool of erased blocks
and then I/Os block until it has reclaimed enough space from
dirty blocks by performing garbage collection.

This result shows that existing disk based solutions that
send all I/O requests to disks are not likely to perform well
on SSDs, even if SSDs are significantly faster than disks (for
workloads that give SSDs sufficient time for garbage collec-
tion). In other words, these solutions are not likely to exploit
the performance benefit of SSDs under “high” write load.
In contrast, sinceBufferHash writes to flash only when the
buffer fills up, it poses a relatively “light” load on the SSD,
resulting in faster reads.

Comparing Figure 7 and Figure 8 shows thatBH+Disk

11

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.001 0.01 0.1 1 10

C
D

F

Lookup Latency(ms)

DB + SSD(Intel)
DB + Disk

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.001 0.01 0.1 1 10

C
D

F

Insert Latency(ms)

DB + SSD(Intel)
DB + Disk

Figure 8: Berkeley-DB Latencies

Buffer size (KB) Priority-discard Update-discard
16 0.38 ms 0.43 ms
32 0.67 ms 0.84 ms
64 1.39 ms 1.73 ms
128 2.73 ms 3.41 ms

Table 4: Increase in worst-case insert latency (ms) for dif-
ferent eviction policies
performs better thanDB+SSD, implying that the benefit due
to usingBufferHash dominates the benefit due to using SSD.

We do note that it is possible to supplement the Berkeley-
DB index with an in-memory Bloom filter to improve lookups.
For disks, we note that lookup performance will become com-
parable to that achieved usingBufferHash (Figure 7 (a)).
For Intel-SSD, the lookup performance will improve but not
become comparable toBufferHash, as the lookups going to
SSD will still be effected by the garbage collection overhead
imposed by fast insertions in the workload.

7.5 Eviction Support in BufferHash
Our experiments so far are based on the default eviction

policy of full discard forBufferHash. Here, we consider two
partial discard policies discussed in§ 5.1.2: theupdate-based
policy where only the stale entries are discarded, and the
priority-based policywhere entries with priority lower than
a threshold are discarded. Note that these policies increase
the worst-case insertion cost as they require reading entries
from the oldest incarnation and re-inserting some of them to
the buffer. We evaluate the two policies for theBufferHash
configuration of 32 incarnations. Priority-based discard pol-
icy increases the worst-case insertion cost by 2.73 ms, while
update-based policy increases it by 3.41 ms. Update-based
discard is more expensive as it needs to search Bloom filters
to see if an entry has already been updated.

The overhead of partial discard depends on the buffer size
(which determines the number of items in the evicted incar-
nation). Table 4 shows the increase in worst-case insertion
cost for these two policies for different buffer sizes with a
configuration of 32 incarnations per super table. An applica-
tion using partial discard can choose the buffer size according
to how much worst-case insert latency it can tolerate.

8. WAN OPTIMIZATION
In this section, we perform a front-to-end evaluation of

employing a CLAM designed usingBufferHash in a WAN
optimization application. We use a variety of traces, both

synthetic and real, to examine the benefits and trade-offs of
the CLAM under different settings.

Real traces. We collect packet traces at a large US uni-
versity’s access link to the Internet and at the access link of a
high volume Web server in the university. We then construct
an object-level trace by grouping packets with the same con-
nection 4-tuple into a single object.

Synthetic traces.Synthetic workloads allow us to flexibly
study the benefits of CLAMs and traditional approaches un-
der different settings. We construct synthetic traces based on
key properties of real traces. A synthetic trace has 3 main pa-
rameters: (1) object size distribution, (2) overall redundancy
and (3) content match length distribution.

(1) We choose object sizes from a Zipf distribution with
α = 1. (2) We assume that fingerprints (i.e., a random
hashes) are computed for 1KB chunks of content in each ob-
ject. Depending on the overall redundancy in the trace, a
fraction of fingerprints may observe a match, implying there
is overlap in the object’s content and the content in prior ob-
jects. (3) When a match is observed, the match length dis-
tribution determines the amount of redundant content “in the
vicinity” of the fingerprinted region. This models how WAN
optimizers identify content overlap, namely, by “growing”
the data chunk corresponding to a matching fingerprint until
a maximal match region is found. We use a simple match
length distribution derived from real traces.

Emulator. To evaluate the application, we builta WAN
optimizer emulatorto emulate a scenario where two branch
offices of an enterprise, connected by a link of certain ca-
pacity, wish to employ WAN optimization to improve effec-
tive link utilization and speed up transfers. Each end has an
object cachethat holds items sent earlier to the counterpart
campus (we assume that the object cache resides on a disk).
New objects are fingerprinted and matched against the con-
tent in the object cache to identify redundancy. Afingerprint
indexholds information on the mapping between fingerprints
and the on-disk locations of the objects in which the corre-
sponding chunks were found. We study how the benefits of
the WAN optimizer depend on the architecture of the index.

There are two differences between our emulator and a real
WAN optimizer. (1) The emulator approximates the laten-
cies of reading objects from, and writing objects, to an ob-
ject cache. For reading/writing X bytes of content, we as-
sume that the latency needed is X/D, where D is the disk’s se-
quential read/write throughput. (2) The network and storage
subsystems are assumed to have no interaction, which may
not be true in practice. In our emulator, a compressed ob-
ject being transmitted does not “block” an arriving yet-to-be
compressed object from getting processed (i.e., fingerprints
getting computed and then getting looked up).

We replay synthetic and real workloads on this emulator
using our Intel-SSD CLAM prototype based onBufferHash
and on-disk index based on Berkeley-DB. Our CLAM imple-
ments the fullBufferHash functionality, including eviction
based on full discard and windowed bit slicing. The CLAM

12

 0

 0.5

 1

 1.5

 2

 2.5

 3

r=0.45 r=0.20 r=0.0

T
h
ro

u
g
h
p
u
t
Im

p
ro

v
e
m

e
n
t

 F
a
c
to

r

Different Redundancy(r) Traces

Ideal
Bufferhash + SSD(Intel)

BerkeleyDB + Disk

Figure 9: End-to-end throughput improvement for
Berkeley-DB on disk and Intel SSD-based CLAM on
traces with different levels of redundancy.

is configured with 4GB RAM and 32GB of SSD. Berkeley-
DB holds 32GB index on disk.

Performance metrics. Our key metrics are the end-to-
end and per-object throughput improvements from employ-
ing WAN optimization. Typically, WAN optimizers trans-
mit bytes from all compressed objects in a single or a small
number of TCP connections to avoid TCP start-up effects.
Thus, the throughput of an object compressed to a certain
size S, where S can be small or large, can be approximated
by S/∆T, where∆T is the difference between the time when
the object arrived till the time when the last byte of the com-
pressed object was sent. Note that∆T includes the time to
fingerprint the object, look for matches and compress the ob-
ject. In addition, it may include delays from actions that the
WAN optimizer was taking on earlier objects when the object
in question arrived (e.g., updating the index with fingerprints
for the earlier object).

8.1 Analysis Using Synthetic Traces
Unless otherwise specified, we assume that the link be-

tween the WAN optimizers is heavily loaded, i.e., new ob-
jects arrive at one of the WAN optimizers before fingerprints
for earlier objects are inserted into the index. We also studied
other “light” and “medium” load situations and our observa-
tions were qualitatively similar — we omit these results for
brevity. The link capacity is assumed to be 10Mbps.

We study how different approaches used for holding the
index – i.e. CLAMs vs Berkeley-DB – impact the benefits
of the WAN optimizer. As a baseline, we compare the ap-
proaches against the ideal achievable benefits which depends
simply on the amount of redundancy in all content.

Figure 9 shows the end-to-end throughput improvement
from WAN optimization on synthetic workloads with three
different levels of redundancy. For the highly redundant trace,
using the Intel-based CAM to hold the index allows the WAN
optimizer to achieve a throughput improvement, averaged
across all objects, of 1.51X, compared to the optimal of 1.8X.
There are many fingerprint matches in the highly redundant
trace, and the CLAM-based optimizer incurs substantial over-
head in reading objects from disk for each match. There is
no overhead due to the index itself because of the optimized
lookup and insert performance ofBufferHash.

In contrast, using Berkeley-DB, the WAN optimizer achieves

 0

 0.5

 1

 1.5

 2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h

ro
u

g
h

p
u

t
Im

p
ro

v
e

m
e

n
t

 F
a

c
to

r

Object size(KB)

Bufferhash + SSD(Intel)

 0

 0.5

 1

 1.5

 2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h

ro
u

g
h

p
u

t
Im

p
ro

v
e

m
e

n
t

 F
a

c
to

r

Object size(KB)

BerkeleyDB + Disk

Figure 10: Heavy Load: Throughput improvement per
object for (a) BufferHash-based CLAM using Intel SSD
and (b) Berkeley-DB on disk

just 1.2X average improvement. The additional overhead
compared to the CLAM-based optimizer is due to the high
lookup and insert latencies for the on-disk index. When there
is no redundancy in network traffic, the Berkeley-DB based
optimizer has a very large overhead of 30%, while the CLAM-
based optimizer imposes little or no overhead.

We now take a closer look at the improvements for the
high redundancy workload. Figures 10 (a) and (b) show
the relative throughput improvement on an object-by-object
basis. We see that Berkeley-DB has a negative effect on
the throughputs of a large number of objects (compared to
ideal), especially objects 500KB or smaller; their throughput
is worsened by a factor of two or more due to the high costs
of lookups and inserts (the latter for fingerprints of prior ob-
jects). When a small object observes a match, the accompa-
nying disk reads also impose an overhead. Our CLAM also
imposes overhead on some of these objects, but this happens
on far fewer occasions and it is significantly lower. As be-
fore, the overhead when using the CLAM arises only due to
disk reads for matching objects.

8.2 Analysis Using Real Traces
We repeat the above analysis for real object traces. The

university-wide trace had a redundancy of 5% and the trace
from the Web server had a redundancy of 38%. We evaluate
a heavy load situation with a link speed of 100Mbps.

We note from Figure 10(a) that the Berkeley-DB optimizer
achieves an improvement of 1.2X compared to the optimal
1.62X; thus Berkeley-DB based on-disk index offers less than
a third of the optimal benefits. In contrast, theBufferHash-
based CLAM performsvery close to optimal.

Compared to the synthetic trace (Figure 9), we see that the
overhead incurred by the CLAM-based optimizer is small,
even though the redundancy is very high. This is because
there were few fingerprint matches per object in this trace
but each match resulted in the WAN optimizer identifying a
large region of overlap with a prior object. As a result the
amortized overheads due to accessing the SSD in order to
read matching fingerprint information and the overhead of
reading matching objects from the object cache are both low.
In case of the less-redundant trace, our CLAM imposes a
negligible overhead as most lookups do not go to the SSD.

13

 0

 0.5

 1

 1.5

 2

 2.5

 3

High Redundancy(0.38) Low Redundancy(0.05)

T
h
ro

u
g
h
p
u
t
im

p
ro

v
e
m

e
n
t

 f
a
c
to

r

Different redundancy(r) traces

Ideal
Bufferhash + SSD(Intel)

BerkeleyDB + Disk

 0

 0.5

 1

 1.5

 2

 2.5

 3

10 Mbps 100 Mbps 400 Mbps 800 Mbps

T
h
ro

u
g
h
p
u
t
im

p
ro

v
e
m

e
n
t

 f
a
c
to

r

Link bandwidth

Bufferhash + SSD(Intel)
BerkeleyDB + Disk

Figure 11: (a) End-to-end throughput improvement for
high and low redundancy traces (link speed of 100Mbps)
(b) Effect of link speeds on throughput improvement.

Next, we study the effect of link speed on the overall ben-
efits. The greater the speed, the greater the demand on the
WAN optimizer to support low latency index operations. In-
dexes with poor insert/lookup latencies may perform well at
low link speeds, but their peak-time performance will dimin-
ish rapidly at higher link rates.

A comparison of CLAMs against Berkeley-DB for four
different link speeds is shown in Figure 11. We see that
the performance of the Berkeley-DB based index degrades
rapidly with link speed. In contrast, the benefits from our
Intel-SSD based CLAM are sustained benefits even until 800Mbps.

9. CONCLUSIONS
Recent years have seen the emergence of applications that

maintain indexes up to 100GB or more in size and require
constants lookups into and updates of the index. Current al-
ternative to maintaining such indexes are either too expen-
sive (e.g. using DRAM) or too constraining (e.g. using disk-
based indexes). To support such application we propose and
design CLAMs, or cheap and large CAMs. Our CLAMs use
flash-based storage and cost slightly more than disk-based in-
dexes, but are two orders of magnitude faster, and could hold
a few hundred GB worth of index information. We introduce
a new data structure, calledBufferHash, to facilitate rapid
random writes and lookups on flash-based storage.

Our analytical study and evaluation of prototypes based
on high-end SSDs show that our CLAMs offer random up-
date and lookup latencies of 0.02 and 0.06ms on average,
implying that they can support 10,000 or more insertions and
lookups per second on average. We show how such CLAMs
can improve the performance of networked systems, using
the example of WAN optimization. Our CLAMs can improve
the bandwidth savings from such WAN optimizers by nearly
three-fold in situations of high load.

We note that alternate designs are possible for CLAMs. In
particular,BufferHash is just one of a family of data struc-
tures that enable flash storage to provider CLAM-like func-
tionality. CLAMs can also be designed for traditional storage
systems and our evaluations show thatBufferHash is ideally
suited for such designs as well.

10. REFERENCES
[1] BlueCoat: WAN Optimization.http://www.bluecoat.com/.

[2] Cisco Wide Area Application Acceleration Services.
http://www.cisco.com/en/US/products/ps5680/
Products Sub Category Home.html.

[3] Disk Backup and deduplication with DataDomain.
http://www.datadomain.com.

[4] Dropbox.http://www.getdropbox.com.
[5] Google sparse hash library.

http://code.google.com/p/google-sparsehash/.
[6] Oracle Berkeley-DB.http://www.oracle.com/technology/

products/berkeley-db/index.html.
[7] Peribit Networks (Acquired by Juniper in 2005): WAN Optimization Solution.

http://www.juniper.net/.
[8] Riverbed Networks: WAN Optimization.

http://www.riverbed.com/solutions/optimize/.
[9] WAN Optimization Design. Private communication with a major vendor.

[10] D. Abadi et al. The Design of the Borealis Stream Processing Engine. InCIDR,
2005.

[11] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein,
and J. Widom. Stream: The stanford stream data manager.IEEE Data
Engineering Bulletin, 26, 2003.

[12] L. Arge. The buffer tree: A new technique for optimal i/o-algorithms. In4th
International Workshop on Algorithms and Data Structures (WADS), 1995.

[13] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A designfor high-performance
flash disks.SIGOPS Oper. Syst. Rev., 41(2), 2007.

[14] L. Bouganim, B. Jónsson, and P. Bonnet. The uFlip Benchmark.
http://www.uflip.org, 2009.

[15] L. Bouganim, B. Jónsson, and P. Bonnet. uFLIP: Understanding flash IO
patterns. InCIDR, 2009.

[16] A. Broder and M. Mitzenmacher. Using multiple hash functions to improve IP
lookups. InIEEE INFOCOM, 2001.

[17] A. Broder and M. Mitzenmacher. Network applications ofbloom filters: A
survey.Internet Mathematics, 1(4):485–509, 2005.

[18] A. Caulfield, L. Grupp, and S. Swanson. Gordon: Using flash memory to build
fast, power-efficient clusters for data-intensive applications. InASPLOS, 2009.

[19] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: a stream
database for network applications. InSIGMOD, 2003.

[20] P. J. Desnoyers and P. Shenoy. Hyperion: high volume stream archival for
retrospective querying. InUSENIX, 2007.

[21] Endace Inc. Endace DAG3.4GE network monitoring card.
http://www.endace.com/, 2009.

[22] C. Faloutsos and S. Christodoulakis. Signature files: An access method for
documents and its analytical performance evaluation.ACM Transactions on
Information Systems, 2(4):267–288, 1984.

[23] R. Hagmann. Reimplementing the cedar file system using logging and group
commit. InACM SOSP, 1987.

[24] G. Iannaccone, C. Diot, D. McAuley, A. Moore, I. Pratt, and L. Rizzo. The
CoMo white paper. Technical Report IRC-TR-04-17, Intel Research, 2004.

[25] Intel-Corporation. Understanding the Flash Translation Layer (FTL)
specification. www.embeddedfreebsd.org/Documents/Intel-FTL.pdf, 1998.

[26] A. Kirsch and M. Mitzenmacher. The power of one move: Hashing schemes for
hardware. InIEEE INFOCOM, 2008.

[27] T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. Kim, S. Shenker, and
I. Stoica. A data-oriented (and beyond) network architecture. InACM
SIGCOMM, 2006.

[28] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Capsule: an
energy-optimized object storage system for memory-constrained sensor devices.
In ACM SenSys, 2006.

[29] S. Moon and T. Roscoe. Metadata management of terabyte datasets from an ip
backbone network: Experience and challenges. InACM SIGMOD Workshop on
Network-Related Data Management, 2001.

[30] S. Nath and P. B. Gibbons. Online Maintenance of Very Large Random Samples
on Flash Storage . InVLDB, 2008.

[31] S. Nath and A. Kansal. FlashDB: dynamic self-tuning database for NAND flash.
In ACM/IEEE IPSN, 2007.

[32] H. Pucha, D. G. Andersen, and M. Kaminsky. Exploiting similarity for
multi-source downloads using file handprints. InNSDI, 2007.

[33] M. Rosenblum and J. K. Ousterhout. The design and implementation of a
log-structured file system. InACM SOSP, 1991.

[34] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood. Fast hash table lookup
using extended bloom filter: an aid to network processing. InIn ACM
SIGCOMM, 2005.

[35] StreamBase Inc. Streambase: Real-time low latency data processing with a
stream processing engine.http://www.streambase.com/, 2009.

[36] N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil. An architecture for
Internet data transfer. InProc. 3rd Symposium on Networked Systems Design
and Implementation (NSDI), San Jose, CA, May 2006.

[37] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and W. A. Najjar.
Microhash: an efficient index structure for fash-based sensor devices. In
USENIX FAST, 2005.

[38] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the data domain
deduplication file system. InFAST, 2008.

14

