Computer
Sciences
Department

Building Cheap and Large CAMs Using BufferHash

Ashok Anand
Steven Kappes
Aditya Akella
Suman Nath

Technical Report #1651

February 2009




Building Cheap and Large CAMs Using BufferHash

Ashok Anand*, Steven Kappes*, Aditya Akella and Suman Nathf
*UW-Madison,fMicrosoft Research

ABSTRACT and inexpensive, and are fast enough to meet the latency de-

We show how to build cheap and large CAMS@RIrAMS us- mands of the above applications. We call th€seAMs for
ing flash memory. These CLAMs are targeted at an emergingch€ap and large CAMs. _ .
class of networking applications that require massivesede _ 10day, there are two possible choices for providing CAM-
running into a hundred GB or more, with items been inserted, lIke functionalities at large scales in the aforementiospst
updated and looked up at a rapid rate. Examples of suchteéms. The flrs_t is to maintain a Igrge index in DRAM. How-
applications include WAN optimizers, data de-duplicafion €Vel at the sizes we are targeting (a few hundred GB), the
network monitoring, and traffic analyzers. For such applica MemMory sub-system cost could place the system in question
tions, using DRAM-based indexes is quite expensive, while &t @ Very unattractive price point. Furthermore, memory sys
on-disk approaches are too slow. In contrast, our flash mgmor!€MS with such large amounts of DRAM also consume a lot
based CLAMs cost nearly the same as using existing on-disk® POWer, furtherincreasing operating cost.
approaches but offer orders of magnitude better performanc A POPUlar alternative is to maintain database indexes, such
While flash memory inherently offers efficient random reads®S Berkeley-DB [6], designed for magnetic disks. Such in-
required for fast lookups, it does not support efficient gmal dexes can be very large, butthe throughputs of the above ope-
random writes required for inserts and updates. To addressations are roughly two orders of magnitude lower than what
this, we design an efficient data-structure caBedferHash |s_needed opUmaIIy. Unfortunately, this can sevgrely unde
that significantly lowers the amortized cost of all write qpe ~~ Mine the effectiveness of the systems in practice. For ex-
tions. Our design oBufferHash also incorporates efficient ~aMple, bandwidth savings from using Berkeley-DB in WAN
and flexible eviction policies. thlmlzatlon could be I.es.s thgn half the best possible sav-
We build CLAMs usingBufferHash on SSDs and disks. NS when the WAN optimizer is under heavy load. Note that
We find that the SSD-based CLAMSs can offer average in- fast stream databases such as G_igaScope [19] and others [10,
sert and lookup latencies of 0.02ms and 0.06ms (for 40% 11] and wire-speed data coIIectlon. systems such as Endace
lookup success rate), respectively. We show that using suchPAG [21] and CoMo [24] are not suitable as CLAMs as they

a CLAM in a WAN optimization application can offer 3X do not include any archiving and indexing mechanism.

better throughput improvement than current designs. In this paper we investigate a new approach that offers
an attractive middleground in the cost-performance trédeo
1. INTRODUCTION posed by the above two choices. In terms of cost-per-GB,

| ¢ ber of networked svst d archi our desired CLAM should be significantly, e.g., an order of
nrecentyears, a numboer of networked systems and arc I'magnitude, cheaper than DRAM (but can be slightly more

tectures have emerged that use indexes as large as tens to@xpensive than disks). In terms of performance, the CLAM
few hundred gigabytes in size. These indexes are hash ta- ' i

bles of random “fingernrints” constructed over large stream should be at least 2 orders of magnitude faster than conven-
: gerprin veriarg tional disk-based approaches (but can be 2 or more orders
ing data sets. Examples include WAN optimization [2, 8, 7,

. : S of magnitude slower than DRAM-only solutions). More-
t1] (mdgx éSSJ'G.'P:fGB)’ gggl;eggpllcatlortl a_nd bacdkltjpfsys- over, the CLAM can be very large, e.g., up to a few hun-
ems [3, . ] (index is> X [ ) D, monitoring and trat- .04 GB, which may be infeasible in DRAM-only systems.
fic analysis systems for fine-grained traffic engineering and

. . 4 . Such CLAMs, in addition to significantly boosting the per-
anomaly detection [29] (index is100GB) and data-oriented o
networks [36, 32, 27]. In all these applications the index formance of the above applications, may suggest alternate

is looked 4 undated f tv. For inst WAN network architectures that are cost-effective and efficiear
IS looked-up and updated frequently. For instance, a instance, high-throughput centralized mechanisms faives
optimizer connected to a 1Gbps link that is operating un-

der medium-to-heavy load may require roughly 10,000 index g]?g] gggfgggi?ge: GSZTE)?NIZ O(l?tl? é%réegtfgl\? ;chnectuﬁas 3
IooCkups ar;d ms”eruggi/leac.h per se;:or;d.dd bl Our CLAM design uses a commaodity two-level storage/memory
_ —onventionally, s (i.e., content-addressable memo- hierarchy consisting of a small amount of DRAM and a much

ries) measuring a few hundred KB_have_been used to prov'.delarger amount oflash-based storagée. flash memory chips
lr?i\gl:jvhI;fr?gXms:npcpeO:eft(\jvrolr(I)((i):\(;Z(S:é:\n:r?czgostscr?gi ;Jopr\(jlvi[redsiAg or solid state disks (SSDs)). Flash is rapidly supplanting

In this paper, we show how to build CAMs that are very large magnetic disks in many systems because of many superior



aspects such as higher 1/0 per second per dollar, greater reoptimization and network monitoring). Thus, under steady
liability, and better power efficiency. Because of populari  state, insertion of new keys into a CLAM may require creat-
newer generation of SSDs are getting bigger and cheapering space by evicting old keys. Without effective support,
Configuring a CLAM with 4GB of memory and 32GB of eviction could be time consuming and impact the perfor-
flash, for instance, costs as little as $300 using currem-har mance of other operations such as insertions and lookups.
ware, and the costis likely to fall as flash becomes cheagér [1 BufferHash uses an age-based internal organization of in-
Flash is attractive for designing CLAMs because it sup- dex information that naturally supports bulk evictions &f o
ports fast random reads required for lookup operations. How keys in an I/O-efficient manneBufferHash also supports
ever, some operations for streaming applications, such asother flexible eviction policies (e.g. priority-based rerat)
random inserts and updates are very expensive on flash aso match different application needs, albeit at additiqreat
they may require erasing entire flash blocks (details in Sec- formance cost. Existing indexing systems for archivecbstre
tion 4). Moreover, the size of an I/O operation on flash is ing data do not address such eviction.
several orders of magnitude bigger than that of an individ-  Supporting updates. Since flash does not support up-
ual CLAM operation. Because of these unique properties of date or deletion efficiently, modifying existingey, value)
flash, unless designed carefully, a flash-based CLAM could mappingsn situin a CLAM is expensive. To support good
perform poorer than a disk-based index! (See Section 2) update latencies, we adoptlazy updateapproach where
To support high performance in light of the above proper- all value mappings, including deleted or updated ones, are
ties of flash, we introduce a new data structure cafiatfer- temporarily left on flash and later deleted in batch during
Hash. A key idea behindBufferHash is that instead of  eviction. However, this does not affect the semantics of the
performing individual random insertions directly on flash, CLAM operations; i.e., during looku@BufferHash returns
we can leverage faster memory (DRAM) to buffer multi- the most recent value. Such lazy updates have been previ-
ple operations and write them to flash all at once lmatch ously used in other contexts, such as in tree-based indéx [12
This shares the cost of a flash I/O operation across multiple and lazy garbage collection in log structured file systerg [3
CLAM operations, resulting in a better amortized cost per  We prototype CLAMs usindufferHash on SSDs from
operation. Like a log-structured file system [33], batches a two different vendors. While designed for flash, we show
written to flash sequentially, the most efficient write patte  that BufferHash could enable CLAM-like functionality on
for flash. The idea of batching operations to amortize 1/0 disks, but with poor performance than flash-based CLAMSs.
costs has been used before in the context of many systemslUsing extensive analysis based on a variety of workloads, we
including tree-based index [12], and group commitin DBMS study the latencies supported in each case and compare the
and file systems [23]. However using it for a flash-based hash CLAMs against popular approaches such as using Berkeley-
table is novel, and it poses several challenges. DB on disk. Finally, we study the benefits of using CLAMs
Fast lookup. A CLAM must support very fast lookup of  in a WAN optimization application using a variety of syn-
a given key. However, with batched write, a given key may thetic and real traffic traces. Our key observations are:
reside in any prior batch, depending on time it was written (1) Our Intel SSD-based CLAM offers average insert la-
out to flash. A naive lookup algorithm would examine all tency of 0.02ms compared to 7ms from using Berkeley-DB
batches for the key, which would incur high and potentially on disk. For a workload with 40% hit rate, the average lookup
unacceptable I/O costs. To reduce the overhead of examinindatency is 0.06ms for our CLAM, but 7ms for Berkeley-DB.
on-flash batche®ufferHash (i) partitions the key space to (2) The other two CLAMs are cheaper than the Intel-based
limit the lookup in one partition, instead of the entire flash CLAM. They are each an order of magnitude worse in terms
and (ii) uses in-memory Bloom filters (like Hyperion [20]) to  of latencies but still much better than Berkeley-DB on disk.
efficiently determine a small set of batches that may contain They could replace disk-based Berkeley-DB index in low-
the key. To further reduce the cost of Bloom filter lookup end equipment such as WAN optimizers for slow links.
and updateBufferHash organizes the Bloom filters with a (3) Using an Intel-SSD based CLAM, the throughput ben-
technique calledvindowed bit-slicing efits from a WAN optimizer under heavy load can be im-
Flash properties. The unique I/O properties of flash de- proved 3X compared to using Berkeley-DB on disk.
mand careful choice of various CLAM design parameters 2 MOTIVATING APPLICATIONS
such as the amount of DRAM to use, the sizes of batches and
Bloom filters, etc. Suboptimal choice of these parameters . )
may result in poor performance of a CLAM on flash. An im- and insert latencies of under O.lms gnd can hold hash_ta-
portant contribution of this paper is to analytically shdvet bles that are §everal tens of GB in Slze. We now descrl_be
impact of these parameters on latencies of different CLAM thrée networking and systems applications that employ in-
operations. Our analysis also provides optimal values bf va dexes W|th.these requirements. We also describe a data ori-
ious design parameters. ented archn_ec_turg that could Ieye_rage such CLAMs.
Limited flash. In many of the applications identified ear- WAN Optimization. WAN optimizers[2, 1,8, 7] leverage

lier in this section the index holds streaming data (e.g. WAN the fact that network transfers carry redundant infornratio
and that it may be faster to look for redundancies locally and

Our goal is to design CLAMs that support random lookup



transmit compressed data than to transmit full data. Theseretrieve changes from any remote location on demand.
products are widely deployed by enterprises and data center Monitoring. An important task in traffic engineering is

to lower their WAN usage costs. A WAN optimizer computes to monitor the performance experienced by packets at they
fingerprints of each arriving data object. These are looked traverse a set of links for traffic engineering and debugging
up in an index constructed over all prior content seen. A performance problems. One approach to do this is obtain-
matching fingerprint indicates a certain degree of sintjari  ing header traces, say for a customer’s traffic, from muétipl
between the current object and a prior object. Overlapping network locations (e.g. entry/exit links into a PoP) over-se
contentis removed, and the “compressed object” (augmentederal minutes to an hour. Packet records from one location
with some meta-data) is transmitted to the destinationygvhe are loaded into a large hash table. Records from adjacent

it gets reconstructed. Fingerprints for the original obpe links are then looked up. As lookups are performed, record
inserted into the index to aid in future matches. could get updated with performance information (e.g. PoP-
The caches holding prior content arelOTB in size [9]. by-PoP delay). Assuming a customer’s traffic makes up 1%

The fingerprint are 16-32B hashes computed over 10KB dataof total traffic, capturing this on a 50% utilized OC768 link
chunks; thus the index could be 16-32GB. Consider a WAN over a one hour interval could create a 100GB index. Sprint’'s
optimizer connected to a 1Gbps link operating at 100% uti- IPMon employed such an approach [29] but relied on an on-
lization. Assuming an average object size of 100KB, about disk index. This needs fast random inserts, lookups and up-
10,000 fingerprints are created per second. Fingerprikiipo  dates to improve the speed of responding to anomalies.
latencies could add to the total transfer time of each opject A Data Oriented Network Architecture. Network users
hence it should be low enough so that tangible compressiontoday are interested in content, but not who is serving it. To
benefits are obtained. Depending on the implementation,simplify content access in the modern age, recent propos-
three scenarios may arise during insertion under heavy loadals argue for a separate and robust resolution infrastreictu
situations: (1) lookups for upcoming objects are held-up un for content names [27, 36, 32]. The names are hashes com-
til inserts for prior objects complete (2) instead of wajtin ~ puted over chunks of content inside data objects. The reso-
upcoming objects are transmitted without fingerprintind an lution infrastructure provides a mapping of the locatiofis o
look up (3) insertions are aborted mid-way and upcoming ob- data chunks. As new sources of data arise or as old sources
jects looked up against an “incomplete index”. Fast support leave the network, the resolution infrastructure shouldjpe
for insertions can improve all three situations and helmide dated accordingly. To support scalability, the architezsu
tify more content redundancy in situations of heavy load. We have conventionally relied on a distributed resolution hrec
studied the suitability of an on-disk index like Berkele®D  anism based on DHTs [27, 36, 32]. However, in some de-
for this application use a real tracgB]. We found that due  ployment scenarios (e.g. a large corporation), the rewmiut
to poor support for insertions and lookups of streams ran- may have to be provided by a trusted central entity. To en-
dom keys, the throughput improvements are less than a thirdsure high availability and throughput for a large user-base
of the optimal assuming a 100Mbps link (this could be much the centralized deployment should support fast inserts and
worse for higher speed links). In contrast, using an Intel- efficient lookups of the mappings. CLAMs can support such
based CLAM offers optimal benefits. an architecture effectively.

Data deduplication and Backup.Data de-duplication [3] 3. RELATED WORK
is the process of removing redundant content from enter-

prise data leaving only one copy of the data to be stored for . _ L
archival. As users generate greater amounts of data, the de_several netvyor_k processing algorithms and app"‘?a“om an
mand for these products has risen sharply. Prior work sug- therefore building fast hash tables has been an activerdsea

gests that the data sets could be roughly 8-10TB and employ2/€@- Broder etal. [16] demonstrated a fast lookup tecleniqu
20GB indexes [3, 38]. A time-consuming activity in dedu- based on multiple hashing, which has recently been opti-

plication is merging data sets and the corresponding irglexe mized for hardware implementation [26]. Song et al. [34]
Reducing the time taken in this operation is crucial to ensur prop_osed a novel and fa§t hash table data structure based on
ing high availability of the deduplication service. To merg multiple-access Bloom filter. The common goals of these

a smaller index into a larger one, fingerprints from the katte WO'K iS 10 build hash tables on hardware or on extremely
dataset needs to be looked up, and the larger index update(?aSt but small, .byte—ad_drfas_saple memory and.to optimize for
with any new information. Merging a million fingerprints ooklups only (i.e., optlmlzmg mser::cl)ns IS typécarlly b
into a larger index using Berkeley-DB could take as long as goal). In contrast, a CL,AM IS much farger and cheaper, ut
2 hours. In contrast, using CLAMs based BafferHash slower, than these solutions. Moreover, unlike these iexjst
the merge finishes in, under 2 minutes ’ solutions, CLAM is designed for streaming applicationd tha
Without going into the details, we note that a similar set require, in additiqn to looking up items, insgrting iFemsan
of challenges arise in online backup services [4] whichvallo has_rlltableﬁat a h'ﬁh rate a_nd dlscardmégl old |terr;r_13 Ilf r_1ededed.
users to constantly, and in an online fashion, update aalentr Like BufferHash, Hyperion [20] enables archival, index-

repository with “diffs” of the files they are editing, and to ing, an(_:i on-line retrieval of hlgh—volumg dat_a_ streams. Al-
though it has a more general set of functionalities tRafier-

Hash table is used as one of the fundamental modules in



Hash (e.g., it can support rank and range queri&)ffer-
Hash is more optimized for CAM-like functionalities in a
streaming scenario. For example, to lookup a key, Hyperion
may need to examine prohibitively high volume of data (it
does not use partition, and individual batch of data is net or
ganized as hash tables), resulting in a high latency. Sedond

does not consider using flash storage, and hence does not aimm Samsung SSD

to optimize design parameters for flash. Third, it does not fo
cus on efficient eviction of indexed data. Finally, it doe$ no
support updating or deleting already indexed data.

The GigaScope [19] network monitoring system is able to
process full-speed network monitoring streams and previde

Device Operation | Latency (ns) | Linear model {ns)

Flash chip Read 0.24/page 0.15 4+ 0.05x
(FujiFilm XD-card Write 0.28/page 0.15 + 0.07x
flash chip, 2GB) Erase 3.31/block 0.5 + 0.022x

Intel SSD Seq. Read 0.16 0.036 + 0.004x

(Model: X18-M) | Seq. Write 0.49 0.095 + 0.012x

80 GB Rnd. Read 0.31 0.143 + 0.005z

Rnd. Write 0.83 0.284 + 0.019z

Seq. Read 0.5 0.114 + 0.01x

(MCBQE32G5MPl [ Seq. Write 0.6 0.086 + 0.014x
32GB Rnd. Read 0.5 0.117 + 0.01z

Rnd.Write 18 12.772 + 0.13x

MTron SSD Seq. Read 0.4 0.058 + 0.012x

(SATA7035-016) [ Seq. Write 04 0.035 + 0.012z
16GB Rnd. Read 0.5 0.07 + 0.012x

Rnd. Write 9 8.79 4+ 0.006x

a SQL-based query language. Queries can, however, be mad
on incoming data streams only; there is no mechanism in Gi-

Table 1: 1/O latency for different flash devices. The I/O

gaScope to index and query past data. The same is true fosize for SSDs in the Latency column is 32 KB. The symbol

many other existing datastream systems [10, 11]. Stream-

x in the models represents the 1/O size in KiloBytes.

Base [35], another general purpose streaming database, sup .
ports archiving data and processing query over past data; bu the same block must be copied to a new block; thier-

the data is archived in conventional hash or B-Tree-indexed
tables, which are slow and are suitable only for offline ceeri
Endace DAG [21] and CoMo [24] are designed for wire-
speed data collection and archiving; but they provide namec
anism to index and query the archived data. Existing DBMSs
can support CAM-like functionalities. However, they are de
signed neither for high update and lookup rates (see [11]) no
for flash storage (see [31]).

nal copyingincurs a considerable overhead. Because there is
no mechanical latency involved, random read/write is ats fas
as sequential read/write (assuming the writes are for drase

pages).

Portable flash packages.Portable flash packages such as
solid state disks (SSDs), compact flash (CF) cards, secure
digital (SD) cards, and USB sticks provide a disk-like ATA
bus interface on top of flash chips. Typically, the unit of I/O

Recent research has shown how to design efficient datagperations is a sector of 512 bytes. The disk-like interface
structures on flash memory. Examples include MicroHash [37]s provided through a Flash Translation Layer (FTL) [25],

a hash table and FlashDB [31], a B-Tree index, both de-
signed for flash memory. Unlik8ufferHash, these data

which is implemented within the micro-controller of the de-
vice (or in software, such as Windows Mobile). FTL emu-

structures are designed for memory-constrained embeddedates disk-like in-place update for a (logical) address big-w
devices where the design goal is to optimize energy usagejng the new data to a different physical location, maintain-

and minimize memory footprint—Ilatency is typically not a
design goal; e.g., in MicroHash, a lookup operation may
need to follow multiple pointers to locate the desired key in
a chain of flash blocks.

4. FLASH MEDIA AND HASH TABLES

Flash storage media comes in two different flavors: raw
flash chips and portable flash packages.

Flash Chips. The most common type of flash chip used for
storage is NAND flash. Its high storage capacity (currently
up to 32GB in a single chip) is suitable for storing large
amounts of data. The key properties of NAND flash that di-
rectly influence storage design are related to the method in

ing a mapping between each logical address and its current
physical address, and marking the old data as invalid fer lat
garbage collection. Thus, although FTL enables disk-based
applications to use flash without any modification, it needs
to internally deal with flash characteristics (e.g., ergsam
entire block before writing to a page). Many recent stud-
ies have shown that FTL-equipped flash devices, although
a great convenience, suffer many performance problems (in
particular for random writes and in-place updates [13, 15])

Performance of flash devices.Table 1 shows I/O costs of
several flash devices. The flash chip and Intel SSD costs are
based on our experiments with the uFlip Benchmark [14].
The Samsung and MTron costs are reported by the authors of

which the media can be read or written, and are discussedthe uFlip benchmarkin [15]and in [14]. As shownin Table 1,

in [28, 31]. In summary, all read and write operations hap-
pen at page granularity (or for some chips dowr%tb of a
page granularity), where a page is typically 512—2048 hytes
Pages are organized into blocks, typically of 32 or 64 pages.
A page can be written only after erasing the entire block to

also mentioned in previous work [15, 28, 31], different I/O
costs on flash can be modeled well with linear equations.
Because of unique characteristics of flash media, applica-
tions designed for flash should follow a few key well-known
design principles. First, applications should avoid rando

which the page belongs. However, once a block is erased,writes, as they are significantly more expensive than other
all the pages in the block can be written once with no further 1/0s, as shown in Table 1. Second, applications should avoid
erasing. Thus, for an in-place update, before the erase andn-place updates and sub-block deletions. As shown in [30],
write can proceed, any useful data residing in other pages insuch operations are over two orders of magnitude slower than



Buffer pushed from buffer to flash are sequentially written as a new
hash table, instead of performing expensive update to-exist
ing in-flash hash tables. During lookup, a set of Bloom filters
is used to determine which in-flash hash tables may contain
the desired key, and only those tables are retrieved from.flas
Atahighlevel, the efficiency of this organization comesifiro
batch I/O and sequential writes during insertions. Sudakss
lookup operations still need random reads, however, random
reads are almost as efficient as sequential reads in flash.

DRAM
i'th Bloom Filter

i’th}carnation

T

Incarnation Table

Figure 1: A Super Table

out-of-place updates and block deletions on flash devicitis (w 5.1 A Super Table

or without an FTL), because they require internal copying. A BufferHash consists of multiplesuper tables In this
Third, since reads and writes happen at the granularity of a section we describe the structure of a super table; the bvera
flash page (or an SSD sector), an 1/O of size smaller than structure ofBufferHash will be described in the next sec-

a page costs at least as much as a full-page I/O. Thus, aption. Each super table has three main components; a buffer,
plications should avoid small I/Os if possible. Finallyeth  an incarnation table, and a set of Bloom filters. These com-
high fixed initialization cost of an 1/0O (the componentn ponents are organized in two levels of hierarchy, as shown
Table 1) can be amortized with a large I/O size. Thus, ap- in Figure 1. Components in the higher level are maintained
plications should batch I/Os whenever possible. In desgni  in fast memory such as DRAM, while that in the lower level
flash-based CLAMs usinBufferHash, we follow these de-  are maintained in large (but potentially slow) memory, such
sign principles. as flash.

A conventional hash table on flash.Before going into the Buffer. This is an in-memory hash table where all newly
details of ourBufferHash design, it might be useful to see inserted hash values are stored. The hash table can be built
why a conventional hashtable on flash is likely to suffer from using existing fast algorithms such as multiple-choicehhas
poor performance. Successive keys inserted into a haghtabl ing [16, 26]. A buffer has a fixed capacity of maximum num-
are likely to hash to random locations in the hashtablegther ber of items, determined by its size and the desired upper
fore, values written to those hashed locations will result i  bound of hash collisions. When the number of items in the
random writes, violating the first design principle above@-U  buffer reaches its capacity, the entire buffer is flusheditsH]
dates and deletions are immediately applied to a conveadtion after which the buffer is re-initialized for inserting newys.
hashtable, resulting in in-place updates and sub-bloak-del The buffers flushed to flash are calliedarnations

tions (since each hashed value is typically much smaller tha |ncarnation Table. This is an in-flash table that contains

a flash block), and violation of the second principle above. g|d and flushed incarnations of the in-memory buffer. The
Since each hashed value is much smaller than a flash page (ofaple contains: incarnations, wheré denotes the ratio of

an SSD sector), inserting a single key in an in-flash hasétabl the sjze of the incarnation table and the buffer. The table is
violates the third and the fourth principles above. Viaati organized as a circular list, where a new incarnation is se-
of these design principles results in a poor performance of a quentially written at the list-head. To make space for a new
conventional hashtable on flash, as we demonstrafé.in incarnation, the oldest incarnation, at the tail of the uliac

list, is evicted from the table. Depending on how an app-
lication configures 8ufferHash, some items in an evicted
incarnation may need to be retained and are re-inserted into

5. THE BufferHash DATA STRUCTURE

TheBufferHash is a flash-friendly data structure that sup- y N
ports hashtable-like operations ¢hey, value) pairs. The  the buffer (details ir§5.1.2).
key idea underlyin@BufferHash is that instead of perform-  Bloom Filters. Since the incarnation table contains a se-
ing individual insertions/deletions one at a time to thehhas quence of incarnations, the value for a given hash key may
table on flash, we can perform multiple operations all at once reside in any of the incarnations, depending on its insertio
This way, the cost of a flash 1/O operation can be sharedtime. A naive lookup algorithm for an item would examine
among multiple insertions, resulting in a better amortized all incarnations, which would require reading all incaroas
cost for each operation (similar to buffer trees [12] andugro ~ from flash. To avoid this excessive 1/0O cost, a super table
commits in DBMS and file systems [23]). For simplicity, we maintains a set of in-memory Bloom filters [17], one per in-
consider only insertion and lookup operations for now; we carnation. The Bloom filter for an incarnation is a compact

will discuss updates and deletions later. To allow multipte
sertions to be performed all at onceBafferHash operates

in a lazy batched manner: it accumulates insertions in an in-

memory buffer, without actually performing the insertianrs

signature built on the hash keys in that incarnation. Tockear
for a particular hash key, we first test the Bloom filters for
all incarnations; if any Bloom filter matches, then the cerre
sponding incarnation is retrieved from flash and looked up

flash. When the buffer fills up, all inserted items are pushed for the desired key. Bloom filters do not produce any false
in a batch to in-flash hash tables. For I/O efficiency, items negative, and hence no hash keys stored in any incarnation



will be missed. However, Bloom filters may have some pro- Super Table DRAM

bability of a false positive, where it can indicate a match o | (B
when there is none. This may result in unnecessary flash L L L
I/0. Bloom filter lookup poses a trade-off between the filter C R I C ] [

size and 1/0 overhead due to false positives. We examine the
tradeoff in§6.4.

The Bloom filters are maintained as follows. When a buffer
is initialized after a flush, a Bloom filter is created for it.
When items are inserted into the buffer, the Bloom filter is
updated with the corresponding key. When the buffer is fldshe
as an incarnation, the Bloom filter is saved in memory as the
Bloom filter for that incarnation. Finally, when an incarna-
tion is evicted, it's Bloom filter is discarded from memory.

Flash

Figure 2: A BufferHash with multiple super tables

evict old in-flash items to make space for new items. For
example, in a streaming application, many more items may
be inserted into @ufferHash than it can store in its lim-
ited flash. In such case,BufferHash must select items to
discard. However, the choice of particular items to discard
5.1.1 Super Table Operations depends on _th_e policy set by the a_ppli_cation_. _
i For 1/O efficiencyBufferHash evicts items in granularity

A super table supports all standard hash table operations. 4t 4 incarnation. Since each incamation is an independent
_ Insert. To insert a(_key, value) pair, the value is inserted  55h table, discarding a part of it may require expensive re-
in the buffer (which is a hash table). If the buffer does not qganization of the table and expensive 1/O to write it back
have space to accommodate the key, the bufferis flushed andg fiash.  Since items with similar ages (i.e., items that are
written as a new incarnation in the incarnation table. The in  f,,shed together from the buffer) are clustered in the same
carnation ta_ble may need t(_) evict an old incarnation to make incarnation BufferHash naturally supports discarding items
space for this new incarnation. _ based on their ages. Thus, if an application uses a policy

Lookup. Tolookup akey, itis firstlooked up inthe buffer. ¢ giscarding oldest items and indexing recent items only, a
If it is found, the corresponding value is returned. Othaseyi BufferHash can easily support such a policy bjial discard
in-flash incarnations are examined in the order of their age e chanism by entirely discarding the oldest incaratien, d
until the key is found. To examine an incarnation, first its 4 15cating (and erasing) its flash blocks, and later aliogat
Bloom filter is checked to see if the incarnation mightin@ud  {hem for future incarnations.
the key. If the Bloom filter matches, the incarnation is read Supporting discard policies that are not based on age are,

from flash, and checked if it really contains the key. Note however, a bit expensive. Such policies can be desirable
that since each incarnation is in fact a hash table, to lo@kup \ynen. for example, an application wants to discard lower

key in anincarnation, only the relevant part of the incaiorat priority data, irrespective of their ages. Such a policy is

(e.9., aflash page) can be read directly. also useful when the workload contains a lot of update or
Update/Delete.As mentioned before, flash does not sup-  gglete operations—in such a case, in-flash incarnations may

port small updates/deletions efficiently; hence, we SUPPOT ¢ontain many out-of-date items that have already been (log-
them in a lazy manner. Suppose a super table contains ancg|ly) deleted of updated, but haven’t been physically re-
item (k, v), and later, the item needs to be updated with the qyeq from flash yet. During eviction of the oldest incara-

item (k. v"). In a traditional hash table, the itefh, v) isim- tion theBufferHash should discard only the items that have
mediately replaced withik, '). If (k,v) is stillin the buffer  5ready been deleted or updated, and retain the other items.
when(k, v') is inserted, we do the same. Howeverif v) BufferHash supports gartial discardmechanism to sup-
has already been written to flash, replaciagv) will be ex- port the above policies. This mechanism scans through all

pensive. Hence, we simply ins&#, v') without doing any-  the jtems in an incarnation to be discarded, selects thesitem
thing to (k, v). Since the incarnations are examined in order , pe retained, and re-inserts them (into the buffer). An-app
of their age during lookup, if the same key is inserted with |ication can configur@ufferHash with different policies to

multiple updated values, the latest value (in this examp)e,  getermine if an item should be discarded during incarnation
is returned by a lookup. Similarly, for deleting a keya su-  eyiction. For example, in a priority-based policy, an itesn i

per table does not delete the corresponding item unless it iSgiscarded if its priority is less than a threshold (the thad
s_tiII in the bufferz rather the deleted key is kgpt i_n asepara gn change over time, as in [30]). For a workload with many
list (or, a small in-memory hash table), which is consulted ,n4ates and deletes, tBafferHash discards an item if it has
before lookup—if the key is in the delete list, it is assumed peen geleted or updated. The former can be efficiently deter-
to be deleted even though its present in some incarnation.mined by examining the in-memory delete list, while the lat-
Lazy update wastes space on flash, as outdated items are let; can be determined by checking the in-memory Bloom fil-
on flash; the space is reclaimed during incarnation eviction a5 Note that partial discard is expensive as it requires p
) . cessing all items in the victim incarnation; moreover, sinc
5.1.2 Incarnation Eviction some items are re-inserted into the buffer, buffers fill upeno

A BufferHash with limited flash memory may require to  frequently, resulting in more frequent flush operations.



5.2 Partitioned Super Tables

A super table, although simple, has a drawback. Since
only a single buffer is maintained in a super table, it can be
very large (e.g., as permitted by the available DRAM). Since
the entire buffer is flushed at once, the flushing operation ca
take a long time. Since flash 1/Os are blocking operations,
lookup operations that go to flash during this long flushing
period will block (insertions can still happen as they go to
in-memory buffer). Moreover, an entire incarnation frore th
incarnation table is evicted at a time, increasing the cbst o
eviction with partial discard.

BufferHash avoids this problem by partitioning the hash

key space and maintaining one super table for each partition

(Figure 2). More specifically, suppose each hash key:has
k1 + ko bits; then, 8BufferHash maintain2* super tables.
The first k; bits of a hash key represents the index of the
super table containing the hash key, while the kadbits are
used as the hash key within the particular super table.
Partitioning enables using small buffers in super tables,
thus avoiding the problems caused by a large buffer. How-
ever, we show ing6.4 that too many partitions (i.e., very
small buffers) can also adversely affect performance. We
show how to choose the number of partitions for good per-
formance in practice. For example, we show for flash chips

that the number of partitions should be such that the size of a

buffer matches the size of a flash block.
A BufferHash with multiple super tables can be imple-

mented on a flash device as follows. To implement on a flash

chip, the chip can be statically partitioned and each pantit

can be allocated to a super table. A super table writes its

incarnations in its partition in a circular way—after thetla
block of the partition is written, the first block of the parti
tion is erased and the corresponding incarnation is evicted

Such an implementation, however, may not be optimal on an

SSD. Even though writes within a single partition are sequen
tial, writes from different super tables to different paans
may interleave with each other, resulting in a performance
worse than a single sequential write (see [15] for empirical
results). To deal with thaBufferHash uses the entire SSD
as a single circular list and writes incarnations from dfet
super tables sequentially, in the order they are flushedeto th
flash. (This is in contrast to the log rotation approach of Hy-
perion [20] that provides FIFO semantics for each partjtion
instead of the entire key space.) Partitioning also ndtural
supports using multiple SSDs in parallel, by distributirag-p
titions to different SSDs. This scheme, however, spreagls th

incarnations of a super table all over the SSD. To be able to

locate incarnations for a given super table, we maintaiir the

flash addresses along with their Bloom filters and use the ad-

Symbol Meaning

N Total number of items inserted
M Total memory size

B Total size of buffers

b Total size of Bloom filters

k Number of incarnations in a super table
F Total flash size

s Average size taken by a hash entry
h Number of hash functions
B’ Size of a single buffer (=B/n)

Sp Size of a flash page/sector

Sh Size of a flash block

Table 2: Notations used inBufferHash analysis

fashion [22]. Suppose a super table contdirigscarnations,

and the Bloom filter for each incarnation hadits. We store

all £ Bloom filters asm k-bit slices, where thé'th slice is
constructed by concatenating birom each of thé: Bloom
filters (Fig 3(b)). Then, if a Bloom filter uses hash func-
tions, we need to check onlybit-slices to check which in-
carnations may contain a key That is, we first apply. hash
functions on the key to geth bit positions in a Bloom fil-
ter, retrieveh bit slices at those positions, compute bit-wise
AND of those slices. Then, the positions of 1-bits in this ag-
gregated slice, which can be looked up from a pre-computed
table, represent the incarnations that may contain theckey

As new incarnations are added and old ones are evicted
from an incarnation table, bit slices need to be updated ac-
cordingly. A naive approach would reset the left-most bfts o
all m bit-slices on every eviction, further increasing the cost
of an eviction operation. To avoid this, we appendxtra
bits with every bit-slice, where is the size of a word that
can be reset to 0 with one memory operation. Within each
(k—+w)-bit-slice, a window of; bits represents the Bloom fil-
ter bits ofk current incarnations (Figure 3(c)), and only these
bits are used during lookup. After an incarnation is evicted
the window is shifted one bit right (Figure 3(d)). Since the
bit falling off the window is no longer used for lookup, it
can be left unchanged. When the window has shiétduits
(Figure 3(e)), entirev-bit words are reset to zero at once, re-
sulting in a small amortized cost. The window wraps around
after it reaches the end of a bit-slice.

Note that this is an in-memory optimization; therefore, it
will be useful when the workload is mostly memory bound.
For example, for a workload with very little redundancy, koip
operations will mostly be unsuccessfully returned from mem
ory; for such a workload, the above optimization can improve
the overall throughput.

COST ANALYSIS OF BUFFERHASH

In this section, we first analyze the 1/O costs of insertion

dresses during lookup. Note that lookup operations now may and lookup operations in usirBufferHash for flash-based
require random reads, but random reads are cheap on SSDsstorage, and then use the analytical results to determine op

5.3 Bit-slicing with a Sliding Window

To support efficient Bloom filter lookup, we organize the
Bloom filters for all incarnations in a super table in bitesid

timal values of two important parameters oBafferHash.
We use the notations in Table 5.3 for our analysis.

6.1 Insertion Cost



m bits i-bit slice (k+w)-bit slice (k+w)-bit slice (k+w)-bit slice

101011..01 101..010..00 101..010..10

w
9] %} 001..000..00 001..100..11
g 8
Z 001101..10 5 P - 001..100..00 2
£ . s : 8 : 8 . 5
S . I . 3 : 5 H
2 . : € |1100..000..00 2 : S 100..111..01
X~ 110010..00 E 100..110..00 —
k-bit slice w-bit slice

(a) k Bloom filters (b) Bit-slicing  (c) Sliding window  (d) SlidingZindow (e) Sliding window
(initial state) (after 2 evictions) (aftes evictions)
Figure 3: Bit-slicing with Sliding Window

We now analyze the amortized and the worst case cost of Note that the cost is independentdfand inversely pro-
an insertion operation oBufferHash. We assume that the portional to the buffer sizé’.
BufferHash is maintained in a flash chip without an FTL; Worst case costAn insert operation experiences the worst-
later we show how the results can be trivially extended to case performance when the buffer for the key is full, and
SSDs with FTLs. As the measurements in Table 1 show, we hence must be flushed. Thus, the worst case cost of an in-
use linear cost functions for flash I/Os—reading, writingdla ~ sert operation is
erasingz bits, at appropriate granularities, cast + b,.z,
aw + bw, anda. + b.z respectively. Cuworst = C1+C2 + C3

Consider a workload of insertingy keys into aBuffer- SSD.The above analysis can trivially be extended for SSDs.
Hash. Most insertions are consumed in buffers, and hence Since the cost§’; andC5 in an SSD are handled by its FTL,
do not need any I/O. However, expensive flash 1/0 occurs the overheads of erasing blocks and copying valid pages are
when a buffer fills and is flushed to flash. Each flush oper- reflected in its write cost parametets andb,,. Hence, for
ation involves three different types of 1/0 costs. Firstglea an SSD, we can ignore the cost©f andCs. This results
flush requires writing:; = [B’/S,]| pages, wheré’ is the in an amortized cost of insertion is given BY,ortized =
size of a buffer in a super tale, aiffj is the size of a flash ~ Cis/B" andCyorsr = Ci.
page (or an SSD sector). This results in a write cost of 6.2 Lookup Cost

A lookup operation in a super table involves first checking
Second, each flush operation requires evicting an old in- the buffer for the key, checking the Bloom filters to deterenin
carnation from the incarnation table. For simplicity, weneo  which incarnations may contain the key, and reading a flash
sider full discard policy for an evicted incarnation. Notat page for each of those incarnations to actually lookup tlye ke
each incarnation occupies = [B’/S,] flash pages, and  Since a Bloom filter may produce false positives, some of
each flash block has, = S;,/S,, pages, wheré,, is the size these incarnations may not contain the key, and hence some

of a flash block. Ifn; > ny, every flush will require erasing  of the I/Os may redundant.
flash blocks; otherwise, only;/ny, fraction of the flushes Suppose th8ufferHash containsn; super tables. Then,
will require erasing blocks. Finally, during each erase, we each super table will havB’ = B/n; bits for its buffer, and
need to erasén,/n;| flash blocks. Putting all together, we o' = b/n, bits for Bloom filters. In steady state, each super
get the erase cost of a single flush operation as table will containk = (F/n:)/(B/n:) = F/B incarnations.
. Each incarnation contains = B’/s entries, and a Bloom
2 =Min(L,ni/no)(@c + be[ni/no] S) filter for an incarnation will haven’/: b’ /k bits. For a given
Finally, a flash block to be erased may contain valid pages m’ andn/, the false positive rate of a Bloom filter is mini-
(from other incarnations), which must be backed up before mized withh = m’In2/n’ hash functions [17]. Thus, the
erase and copied back after erase. This can happen becauggrobability that a Bloom filter will return a hit (i.e., indat-
flash can be erased only at the granularity of a block and aning the presence of a given key) is given py= (1/2)".
incarnations to be evicted may occupy only part a block. In For each hit, we need to read a flash page. Since there are
this casep’ = (n, — n;) mod n, pages must be read and incarnations, the expected flash I/O cost is given by
written during each flush. This results in a copying cost of Crommuy = kpey — k(1/2)ke,

C3 :aT-i-p’bTSp-i-aw +p/wap _ F/B(1/2)bsln2/Fc

C1 = Gy + byniSp

Amortized cost. Consider insertion olV keys into eBuffer-
Hash. If each hash entry occupiesspace in theBuffer-
Hash, each buffer can hol®’/s entries, and hence buffers
will be flushed to flash totak; = Ns/B’ times. Thus,the 6.3 Discussion
amortized insertion cost is

wherec,. is the cost of reading a single flash page from a flash
chip, or a single sector from an SSD.

The above analysis can provide insights into benefits and
Camortized = nf(C1+C2+C3) /N = (C1 +Ca+C3)s/B’ overheads of variouBufferHash components not used in



traditional hash tables. Consider a traditional hash tstiole=d
on an SSD; without any buffer, each insertion operation @oul
require one random sector write. Suppose, sequentialty wri
ing a buffer of sizeB’ is « times more expensive than ran-
domly writing one sector of an SSk.is typically small even
for a buffer significantly bigger than a sector, mainly due to 10 00 5000
two reasons. First, sequential writes are significantlyagee Bloom Filter Size (MB)
than random writes in most existing SSDs. Second, writing  Figure 4: Expected 1/O overhead vs Bloom filter size
multiple consecutive sectors in a batch has better perisecto
latency. In fact, for many existing SSDs, the valueoois bles) and = M — B bits are allocated for Bloom filters. Our
less than 1 even for a buffer size 2¥6 K B (e.g.,0.39 and previous analysis shows that the valugiloes not directly
0.36 for Samsung and MTron SSDs respectively). For Intel affect insertion cost; however, it affects lookup cost. Be,
SSD, the gap between sequential and random writes is smallwould like to find the optimal value aB, in the number of
still the value ofx is less than 10 due to 1/O batching. bits, that minimizes the expected lookup cost.

Clearly, the worst case insertion cost oBafferHash is Intuitively, a buffer size poses a tradeoff between the num-
o times more expensive than that of a traditional hash ta- per of total incarnations and the probability of an incaiomat
ble without buffer—a traditional hash table requires vgtia to be read from flash during lookup. As our previous analy-
random sector, whilBufferHash requires sequentially writ-  sis showed, the 1/O cost is proportional to the product of the
ing the entire buffer. As discussed above the valuex o number of incarnations and the hit rate of Bloom filters. In
small for existing SSDs, and for many existing SSBisffer- one hand, reducing buffer size increases the number of-incar
Hash provides better worst case cost. On the other hand, ournations, increasing the cost. On the other hand, increasing
previous analysis shows that the amortized insertion cost 0 puffer size leaves less memory for Bloom filters, which in-
BufferHash is at leastZ times less than a traditional hash creases its false positive rate and 1/O cost.
table, even if we assume random writes required by tradi-  We can use our previous analysis to find a sweet spot within
tional hash table are as cheap as sequential writes redired  this tradeoff. The analysis shows that the lookup cost ismjiv
BufferHash. In practice, random writes are more expensive, by C' = F/B- (1/2)(1\4—8)sln 2/F . ¢,.. The costC is mini-
and therefore, the amortized insertion cost &ufferHash mized whenlC'/dB = 0, or, equivalentlyl(logz(C))/dB =
is even more cheaper than that of a traditional hash table. 0. Solving this equation gives the optimal value®s,

Similarly, a traditional hashtable on flash will need one r oF
read operation for each lookup operation, even for the un- opt =~y N ——
successful ones. In contrast, the use of Bloom filter can sig- s(In2) 5
nificantly reduce the number of flash reads for unsuccessful Interestingly, this optimal value a8 does not depend on
lookups. More precisely, if the Bloom filters are configured M; rather, it depends only on the total sizeof flash and
to provide a false positive rate pf(as shown before), use of  the average spacetaken by each hashed item. Thus, given
Bloom filter can reduce the cost of an unsuccessful lookup some memory of sizéd/ > B, we should uses 2F/s bits
by a factor ofl /p. Note that the same benefit can be realized for buffers, and the remaining for Bloom filters. If additain
by using Bloom filters with a traditional hash table as well. memory is available, that should be used only for Bloom fil-
Even thoughBufferHash maintains multiple Bloom filters  ters, not for the buffers.
over different partitions and incarnations, the total sizall Total Memory Size. We can also determine how much
Bloom filters will be the same as the size of a single Bloom total memory to use for BufferHash. Intuitively, increasing
filter computed over all items. This is because for a given more memory improves lookup performance, as this allows
false positive rate, the size of a Bloom filter is proportibna using larger Bloom filters and lowering false positive rates

Expected 1/0 Overhead (ms)

to the number of unique items in the filter, Suppose, we want to limit the I/O overhead that happen due
to false positives t@},,4.¢. Then, we can determirig, the
6.4 BufferHash Parameters required size of Bloom filters as follows.
Tuning aBufferHash for performance requires carefully Fo1\Yemr
setting two key parameters. First, one needs to decide how Ctarget = B (5) Cr
much DRAM to use, and if a large enough DRAM is avail- r s(In2)2c
able, how much of it is to allocate for buffer and how much o> 5 In ( T)
to allocate for Bloom filters. Second, once the total size of s(In2) Ctarget

in-memory buffers is decided, one need to decide how many Figure 4 shows required size of a Bloom filter for different

super tables to use. We now use the previous cost analysis t@xpected 1/0 overheads. As the graph shows, the benefit of

address these two questions. using large Bloom filter diminishes after a certain size. For
Buffer Size. Assume that the total memory sizelif bits, example, for BufferHash with 32GB flash, allocating 1GB

of which B bits are allocated for (all) buffers (in all superta- for all Bloom filters is sufficient to limit the expected 1/O



1000

0.014

100

E 0.25 g E 0.012 E

Z 02 ) z ool 2 10

< c c 0.008 S

& 015 & 100 5 3

L : £ o :

S 005 % o 0002 3

z 0 = 10 2z 0 = 01

1 10 10 10° 10* 10° 1 10 102 10° 1 10 10° 10° 10* 1 10 10% 10°
Buffer size (KB) Buffer size (KB) Buffer size (KB) Buffer size (KB)
(a) Avg. latency (chip) (b) Max. latency (chip) (c) Avg. lay (SSD) (d) Max. latency (SSD)

Figure 5: Amortized and worst-case insertion cost on a flashhip and an Intel SSD. Only flash I/O costs are shown.

overhead’ 4+ below 1ms. 03
In summary, to limit I/O overhead during lookup9,, ge:,

aBufferHash requires(B,,; + b") bits of memory, of which

By, is used for buffers and the rest for Bloom filters.
Number of Super Tables. Given a fixed memory siz&

for all buffers, the number of super table determines the siz

B’ of a buffer within a super table. As our analysis shoi®s,

does not affect the lookup cost; rather, it affects the aizexit 0 50 1000 1500 2000

and worst case cost of insertion. So one should use a suitable_ & Souri . Bufersize 1F) located to buff
value of B’ that minimizes the insertion cost. Igure 5. Spurious rate vs. memory atlocated to butters

in BufferHash with 4 GB RAM, 32 GB Flash

o
N
A

S
o

0.15

Spurious Lookup Rate

Figure 5 shows the insertion cost oBafferHash, based 7 of Probability Latency (ms)
on our previous analysis, in two flash media. (The SSD per- flash 1/O [ 0% LSR | 40% LSR | Flash chip| Intel SSD
forms better because it uses multiple flash chips in pargallel 0 0.9899 | 0.6032 0 0
: ; ; 1 0.0094 | 0.3894 0.24 0.31
For the flash chip, both amortized and worst-case cost min- : 0.0005 | 0.0073 i e
imize when the buffer sizé’ matches the flash block size. 3 0.00005 | 0.00003 0.72 0.93

Thus, buffer size should match a block size for flash chip.
The situation is slightly different for SSDs; as Figure 5(b)
and (c) show, a large buffer reduces average latency but in-success rate (LSR) of a key. The workloads are motivated
creases worst case latency. An application should uselits to by the WAN optimization applicatiortg).

erance for average- and worst-case latencies and our analyt
cal results to determine the desired sizé36find the number

Table 3: Lookup latency probability distribution

7.1 BufferHash Parameters

of super table3/B’. As mentioned ir§2, our key motivating applications like
WAN optimization and deduplication employ 16-32GB in-
7. EVALUATION dexes. In our evaluation, we use a similar index: specificall

we use 32GB of slow storage (flash, SSD or disk) and 4GB
of DRAM. The buffer size of a super table is set to 128 KB,
as suggested by our analysissiB.4. Each hash entry takes
16 bytes of space. However, we limit the utilization of the
BufferHash Prototype. We have prototype@ufferHash hash table in a buffer t80%—a higher utilization increases
in around 3000 lines of C++ code and run it on a Linux ma- hash collision and lookup latency. Thus, each buffer (and
chine. The hash table in a buffer is implemented with Google g5ch incarnation) contains around 6500 hash entries.
Sparsehash library [5]. For simplicity of implementation,  according to the analysis ig6.4, the optimal size of buffers
different incarnations are written as separate files. A new ¢y, the above configuration is 416MB. We now experimen-
incarnation is written by overwriting the file correspongin 51y validate the value. Figure 6 shows the variation o§éal

to the oldest incarnation in its super table. Thus the perfor ,gitive rates as the memory allocated to buffers is varied
mance numbers we report include small overheads imposedfprom 16 MB to 2048 MB in our prototype. As our analy-
by theext 3 file system. One can achieve better performance gjs indicated, allocating a very small memory for all busfer
by writing directly to the disk as a raw device, bypassing the gives a high false positive rate (e.g., 0.2 for 16MB) and this
file system. We run the prototype on three storage devices:imposes significant lookup overhead. Increasing this mem-

an Intel SSD (model: X18-M, which represents a new gener- ory to 384MB reduces spurious lookup rate (due to false pos-
ation SSD), a Transcend SSD (model: TS32GSSD25, whichitives) to 0.02, which is optimal for our setup. Further in-

represent a relatively old generation but cheaper SSD)aand creasing the size of buffers increases the spurious rage (e.
magnetic disk (Hitachi Deskstar 7K80 drive). 0.23 for 2048 MB). The trend is similar to that shown by our
Workload. We use several workloads in our comparative analysis ing6.4. Moreover, the experimental optimal buffer
study. Each workload consists of a sequence of lookups andsize (384MB) is close to our analytical optimal (416MB); the
insertions of keys. The keys are generated using random dis-small difference is because our analysis allows the optimal
tribution with varying range; the range effects the lookup number of hash functions to be an any positive real number.

In this section, we evaluate sevelalfferHash-based CLAM
prototypes with different secondary storage media and com-
pare them with an existing disk-based index.

10



7.2 1/0 Rates of BufferHash Operations 1

il T 1
. . 09 | / S 09 | 1
BufferHash consists of two levels of memory/storage hi- 08 | . 08 | .
erarchy. The storage layer is relatively slow, but many of 8; T i 82 i
. w > w v
the operations are performed on memory. Table 3 shows the ggi - ] ggi - ]
distribution of flash 1/0Os required by a lookup operation in 03| BH4SSD(rte) i 03| BH4SSD(rte) i
our BufferHash prototype, under two different lookup suc- 021 ) [BH+sSD(Transcend) - i P Bi#+SSD(Transcend) - i
. 0l g2 BH+Disk ------- 1 0lr BH+Disk -~ 1
cess ratio (LSR). As shown, most of the lookups are an- 0 . ! ‘ 0 - ! !
0.001 001 0.1 1 10 0.001 001 0.1 1 10

swered from memory. Moreovers 99% lookups require

at most only one flash read. Table 3 also shows distributions

of lookup latencies for two different flash devices, based on Figure 7: BufferHash latencies on different media

their measured latencies as shown in Table 1. As shown,

more tharp9.99% of the lookups are answered within 1 ms. Intel SSD is the most expensive of them all, but it offers the
SinceBufferHash buffers writes in memory before writ-  best latencies for lookups and inserts, and we expect high-

ing to flash, most of the insert operations are done in mem- end systems like WAN optimizers for 1Gbps or faster links

ory. Since a buffer holds around 6500 items, only 1 out of to leverage these. CLAMs based on the lower-end Transcend

6500 insertions on average requires writing to flash. So, the SSDs are less expensive but they offer an order or magnitude

average and median insert latenciesBafferHash are min- worse worst-case latencies for both operations. Finaitk-d

imal (average= 0.02ms for Intel SSD). The worst case insert based indexes are the cheapest but the worst-case latencies

latency, when a buffer is flushed to the Intel SSD, is 0.83 ms. they offer are a further order of magnitude worse. WAN opti-

mizers designed for lower speed network links could employ
7.3 Performance of SSD-based CLAMs the latter two variants, for instance.

We now evaluate two CLAMs: 1BH+SSD: our Buffer- . .
Hash prototype running on an SSD and2h+Disk: Buffer- 7.4 Comparison with DB-Indexes
Hash running on a magnetic disk, and report the measured We now compare ouBufferHash prototype against the
latencies of differenBufferHash operations. This helps us hash table structure in Berkeley-DB [6], a popular database
understand how much performance benefit of a CLAM comesindex, with the same workload above. (We also considered
from using SSD. We use a workload with 40% look-up suc- the B-Tree index of the same database, but the performance
cess rate over random keys with interleaved inserts andijpgk was worse than the hash table.) We consider the following
In Figure 7(a), we show the distribution of latencies for systems: apB+SSD Berkeley-DB running on an SSD, and
lookup operations on thBH+SSD CLAM with an Intel and b) DB+Disk: Berkeley-Db running on a magnetic disk.
a Transcend SSD. Around 63% of the time, the in-memory  Figure 8 (a) and (b) show the look-up and the insert la-
bloom filter saves the lookups from going to the slow media; tencies for the two systems. More than 60% of the lookups
of course, in the rare case of false positives some addltiona and more thar0% of the inserts have latencies greater than
latency is incurred, but we see very negligible impactircpra 5 ms forDB+Disk. Surprisingly, for the Intel SSD, around
tice (Recall thaBufferHash is configured for< 0.02 false 40% of lookups and 40% inserts have latencies greater than
positive rate). 99.8% of the lookup times are less than 0.176 5ms! This is counterintuitive given that Intel SSD has sig-
ms for the Intel SSD. For Transcend SSD, 90% of the lookup nificantly faster random 1/O latency (0.15 ms) than magnetic
times are under 0.6ms and the maximum is 1ms. disks. This is explained by the fact that the low latency of
In Figure 7(b), we show the latencies for insert opera- an SSD is achieved only when the write load on the SSD
tions on different CLAMs. As shown, most of the opera- is “low”; i.e., there are sufficient pauses between bursts of
tions involve only the main memory, so the average insert writes so that the SSD gets enough time to clean dirty blocks
cost is very small (0.02ms and 0.032ms for Intel and Tran- to produce erased blocks for new writes [15]. Under a high
scend SSD). The worst case latency for insert is 0.9ms andwrite rate, the SSD quickly uses up its pool of erased blocks
20ms for Intel and Transcend SSDs respectively. and then I/Os block until it has reclaimed enough space from
Figures 7(a) and (b) also show the latencies for lookup and dirty blocks by performing garbage collection.
inserts inBH+Disk. Lookup latencies range from 0.1 to 12 This result shows that existing disk based solutions that
ms, an order or magnitude higher than the SSD prototypessend all 1/0 requests to disks are not likely to perform well
due to the high seek latencies in disks. The average inserton SSDs, even if SSDs are significantly faster than disks (for
cost is very small and the worst case insert cost is 12 ms,workloads that give SSDs sufficient time for garbage collec-
corresponding to high seek latency. tion). In other words, these solutions are not likely to eipl
The results show using different storage media gives rise the performance benefit of SSDs under “high” write load.
to systems with different performance. Note that the prafes  In contrast, sinc&ufferHash writes to flash only when the
these different storage media are different as well. Thps ap buffer fills up, it poses a relatively “light” load on the SSD,
lication and system designers with different cost-perfance resulting in faster reads.
constraints could select a suitable CLAM from the above set. Comparing Figure 7 and Figure 8 shows tisi+Disk

Lookup Latency(ms) Insert Latency(ms)

11



DB+ SSD(lntel) —
DB + Disk

1
09 F
08
0.7 F

DB+ SSD(ntel) ——
DB + Disk

1
09 F
08
0.7 F

L 06 L 06}
aosft gosf
Ooat Co4t

03
02
01

03
02
01F

}‘: |
001 01 1
Lookup Latency(ms)

0 0
0.001 10 0001 001 01 1

Insert Latency(ms)

10

Figure 8: Berkeley-DB Latencies

Buffer size (KB) | Priority-discard | Update-discard
16 0.38 ms 0.43 ms
32 0.67 ms 0.84 ms
64 1.39ms 1.73ms
128 2.73 ms 3.41 ms

Table 4: Increase in worst-case insert latency (ms) for dif-
ferent eviction policies

performs better thaBB+SSD, implying that the benefit due
to usingBufferHash dominates the benefit due to using SSD.
We do note that it is possible to supplement the Berkeley-
DB index with an in-memory Bloom filter to improve lookups.
For disks, we note that lookup performance will become com-
parable to that achieved usiBufferHash (Figure 7 (a)).
For Intel-SSD, the lookup performance will improve but not
become comparable BufferHash, as the lookups going to
SSD will still be effected by the garbage collection overdhea
imposed by fast insertions in the workload.

7.5 Eviction Support in BufferHash

Our experiments so far are based on the default eviction
policy of full discard forBufferHash. Here, we consider two
partial discard policies discussediib.1.2: theupdate-based
policy where only the stale entries are discarded, and the
priority-based policywhere entries with priority lower than
a threshold are discarded. Note that these policies inereas
the worst-case insertion cost as they require readingesntri
from the oldest incarnation and re-inserting some of them to
the buffer. We evaluate the two policies for tBafferHash
configuration of 32 incarnations. Priority-based discaoti p
icy increases the worst-case insertion cost by 2.73 msewhil

synthetic and real, to examine the benefits and trade-offs of
the CLAM under different settings.

Real traces. We collect packet traces at a large US uni-
versity’s access link to the Internet and at the access liak o
high volume Web server in the university. We then construct
an object-level trace by grouping packets with the same con-
nection 4-tuple into a single object.

Synthetic traces.Synthetic workloads allow us to flexibly
study the benefits of CLAMs and traditional approaches un-
der different settings. We construct synthetic traces dase
key properties of real traces. A synthetic trace has 3 main pa
rameters: (1) object size distribution, (2) overall redandy
and (3) content match length distribution.

(1) We choose object sizes from a Zipf distribution with
a = 1. (2) We assume that fingerprints (i.e., a random
hashes) are computed for 1KB chunks of contentin each ob-
ject. Depending on the overall redundancy in the trace, a
fraction of fingerprints may observe a match, implying there
is overlap in the object’s content and the content in prior ob
jects. (3) When a match is observed, the match length dis-
tribution determines the amount of redundant content “& th
vicinity” of the fingerprinted region. This models how WAN
optimizers identify content overlap, namely, by “growing”
the data chunk corresponding to a matching fingerprint until
a maximal match region is found. We use a simple match
length distribution derived from real traces.

Emulator. To evaluate the application, we budtWAN
optimizer emulatoto emulate a scenario where two branch
offices of an enterprise, connected by a link of certain ca-
pacity, wish to employ WAN optimization to improve effec-
tive link utilization and speed up transfers. Each end has an
object cachedhat holds items sent earlier to the counterpart
campus (we assume that the object cache resides on a disk).
New objects are fingerprinted and matched against the con-
tent in the object cache to identify redundancyfidgerprint
indexholds information on the mapping between fingerprints
and the on-disk locations of the objects in which the corre-
sponding chunks were found. We study how the benefits of
the WAN optimizer depend on the architecture of the index.

There are two differences between our emulator and a real
WAN optimizer. (1) The emulator approximates the laten-

update-based policy increases it by 3.41 ms. Update-baseqes of reading objects from, and writing objects, to an ob-

discard is more expensive as it needs to search Bloom filters;

to see if an entry has already been updated.

The overhead of partial discard depends on the buffer size

(which determines the number of items in the evicted incar-

nation). Table 4 shows the increase in worst-case insertion

cost for these two policies for different buffer sizes with a
configuration of 32 incarnations per super table. An applica
tion using partial discard can choose the buffer size adgegrd
to how much worst-case insert latency it can tolerate.

8. WAN OPTIMIZATION

In this section, we perform a front-to-end evaluation of
employing a CLAM designed usingufferHash in a WAN
optimization application. We use a variety of traces, both

12

ject cache. For reading/writing X bytes of content, we as-
sume that the latency needed is X/D, where D is the disk’s se-
guential read/write throughput. (2) The network and sterag
subsystems are assumed to have no interaction, which may
not be true in practice. In our emulator, a compressed ob-
ject being transmitted does not “block” an arriving yetke-
compressed object from getting processed (i.e., fingesrin
getting computed and then getting looked up).

We replay synthetic and real workloads on this emulator
using our Intel-SSD CLAM prototype based BafferHash
and on-disk index based on Berkeley-DB. Our CLAM imple-
ments the fullBBufferHash functionality, including eviction
based on full discard and windowed bit slicing. The CLAM



‘ BerkeleyDB + Disk -

Ideal ez
Bufferhash + SSD(Intel)
BerkeleyDB + Disk 22272

Y

SRS SIETE IS

Factor
-
»
Throughput Improvement
Factor
Throughput Improvement
Factor

Throughput Improvement

1=0.45 1=0.20 1=0.0 0 0
0 10002000 3000 4000 5000 6000 7000 8000 900010000 0 10002000 3000 4000 5000 6000 7000 8000 900010000
Different Redundancy(r) Traces Object size(KB) Object size(KB)

Figure 9: End-to-end throughput improvement for

Berkeley-DB on disk and Intel SSD-based CLAM on  Figure 10: Heavy Load: Throughput improvement per
traces with different levels of redundancy. object for (a) BufferHash-based CLAM using Intel SSD

and (b) Berkeley-DB on disk

is configured with 4GB RAM and 32GB of SSD. Berkeley-
DB holds 32GB index on disk. just 1.2X average improvement. The additional overhead

Performance metrics. Our key metrics are the end-to- compared to the CLAM-based optimizer is due to the high
end and per-object throughput improvements from employ- lookup and insert latencies for the on-disk index. Whengher
ing WAN optimization. Typically, WAN optimizers trans-  is no redundancy in network traffic, the Berkeley-DB based
mit bytes from all compressed objects in a single or a small optimizer has a very large overhead of 30%, while the CLAM-
number of TCP connections to avoid TCP start-up effects. based optimizer imposes little or no overhead.
Thus, the throughput of an object compressed to a certain We now take a closer look at the improvements for the
size S, where S can be small or large, can be approximatechigh redundancy workload. Figures 10 (a) and (b) show
by S/AT, whereAT is the difference between the time when the relative throughput improvement on an object-by-abjec
the object arrived till the time when the last byte of the com- basis. We see that Berkeley-DB has a negative effect on
pressed object was sent. Note thef includes the time to  the throughputs of a large number of objects (compared to
fingerprint the object, look for matches and compress the ob-ideal), especially objects 500KB or smaller; their thropgh
ject. In addition, it may include delays from actions that th  is worsened by a factor of two or more due to the high costs
WAN optimizer was taking on earlier objects when the object 0f lookups and inserts (the latter for fingerprints of pridwo
in question arrived (e.g., updating the index with fingentei  jects). When a small object observes a match, the accompa-

for the earlier object). nying disk reads also impose an overhead. Our CLAM also
imposes overhead on some of these objects, but this happens
8.1 Analysis Using Synthetic Traces on far fewer occasions and it is significantly lower. As be-

fore, the overhead when using the CLAM arises only due to

Unless otherwise specified, we assume that the link be- " . )
! peciied, w u ! disk reads for matching objects.

tween the WAN optimizers is heavily loaded, i.e., new ob-
jects arrive at one of the WAN optimizers before fingerprints . .
for earlier objects are inserted into the index. We alsoistlid 8.2 Analysis Using Real Traces
other “light” and “medium” load situations and our observa-  We repeat the above analysis for real object traces. The
tions were qualitatively similar — we omit these results for university-wide trace had a redundancy of 5% and the trace
brevity. The link capacity is assumed to be 10Mbps. from the Web server had a redundancy of 38%. We evaluate
We study how different approaches used for holding the a heavy load situation with a link speed of 100Mbps.
index — i.e. CLAMs vs Berkeley-DB — impact the benefits ~ We note from Figure 10(a) that the Berkeley-DB optimizer
of the WAN optimizer. As a baseline, we compare the ap- achieves an improvement of 1.2X compared to the optimal
proaches against the ideal achievable benefits which depend1.62X; thus Berkeley-DB based on-disk index offers lesa tha
simply on the amount of redundancy in all content. athird of the optimal benefits. In contrast, tBeifferHash-
Figure 9 shows the end-to-end throughput improvement based CLAM performsery close to optimal
from WAN optimization on synthetic workloads with three Compared to the synthetic trace (Figure 9), we see that the
differentlevels of redundancy. For the highly redundaantéy, overhead incurred by the CLAM-based optimizer is small,
using the Intel-based CAM to hold the index allows the WAN even though the redundancy is very high. This is because
optimizer to achieve a throughput improvement, averaged there were few fingerprint matches per object in this trace
across all objects, of 1.51X, compared to the optimal of 1.8X but each match resulted in the WAN optimizer identifying a
There are many fingerprint matches in the highly redundant large region of overlap with a prior object. As a result the
trace, and the CLAM-based optimizer incurs substantial-ove amortized overheads due to accessing the SSD in order to
head in reading objects from disk for each match. There is read matching fingerprint information and the overhead of
no overhead due to the index itself because of the optimizedreading matching objects from the object cache are both low.
lookup and insert performance BlfferHash. In case of the less-redundant trace, our CLAM imposes a
In contrast, using Berkeley-DB, the WAN optimizer achievesiegligible overhead as most lookups do not go to the SSD.

13



w

=] T T = T T T
5 Ideal ExxzRR g Bufferhash + SSD(Intel) &
£ 25 Bufferhash + SSD(Intel) £ 25 BerkeleyDB + Disk
3 BerkeleyDB + Disk 7777 3 3
3 2 3 2 [3]
gs &g

S ¢ by 2 -
TRV B Sg15 (4]
ERa ¢ 5+
Y SR g i 5]
£ KR £ &
3 05K 3 05 /6]

195 E [

< < &
= F £

High Redundancy(0.38)  Low Redundancy(0.05)
Different redundancy(r) traces

Mbps
Link bandwidth

Figure 11: (a) End-to-end throughput improvement for
high and low redundancy traces (link speed of 100Mbps)
(b) Effect of link speeds on throughput improvement.

[
[10]

(1]

Next, we study the effect of link speed on the overall ben-
efits. The greater the speed, the greater the demand on th&?!
WAN optimizer to support low latency index operations. In- [13]
dexes with poor insert/lookup latencies may perform well at 14
low link speeds, but their peak-time performance will dimin
ish rapidly at higher link rates. [15

A comparison of CLAMs against Berkeley-DB for four [16]
different link speeds is shown in Figure 11. We see that (17
the performance of the Berkeley-DB based index degrades
rapidly with link speed. In contrast, the benefits from our [8l
Intel-SSD based CLAM are sustained benefits even until 8yl

9. CONCLUSIONS

Recent years have seen the emergence of applications thag1l
maintain indexes up to 100GB or more in size and require [,
constants lookups into and updates of the index. Current al-
ternative to maintaining such indexes are either too expen- 3
sive (e.g. using DRAM) or too constraining (e.g. using disk-
based indexes). To support such application we propose and*¥
design CLAMs, or cheap and large CAMs. Our CLAMs use [25]
flash-based storage and cost slightly more than disk-based i
dexes, but are two orders of magnitude faster, and could hold
a few hundred GB worth of index information. We introduce ")
a new data structure, call®ufferHash, to facilitate rapid
random writes and lookups on flash-based storage.

Our analytical study and evaluation of prototypes based
on high-end SSDs show that our CLAMs offer random up- %
date and lookup latencies of 0.02 and 0.06ms on average,
implying that they can support 10,000 or more insertions and |
lookups per second on average. We show how such CLAMs [31]
can improve the performance of networked systems, using 32]
the example of WAN optimization. Our CLAMs can improve
the bandwidth savings from such WAN optimizers by nearly
three-fold in situations of high load.

We note that alternate designs are possible for CLAMSs. In
particular,BufferHash is just one of a family of data struc-
tures that enable flash storage to provider CLAM-like func-
tionality. CLAMs can also be designed for traditional stgea
systems and our evaluations show tBafferHash is ideally
suited for such designs as well.

[20]

26

(28]

30]

(33]

(34]

(35]

[36

(37]

10. REFERENCES el

[1] BlueCoat: WAN Optimizationht t p: / / www. bl uecoat . coni .

14

Cisco Wide Area Application Acceleration Services.

http://ww. ci sco. conl en/ US/ product s/ ps5680/

Pr oduct s_Sub_Cat egor y_Horne. ht m .

Disk Backup and deduplication with DataDomain.

http://ww. dat adomai n. com

Dropbox.ht t p: / / www. get dr opbox. com

Google sparse hash library.

http://code. googl e. conl p/ googl e- spar sehash/ .

Oracle Berkeley-DBht t p: / / ww. or acl e. coni t echnol ogy/
product s/ ber kel ey- db/i ndex. htn .

Peribit Networks (Acquired by Juniper in 2005): WAN Opiization Solution.
http://wwm. j uni per.net/.

Riverbed Networks: WAN Optimization.

http://ww. riverbed. con sol uti ons/ optim ze/.

WAN Optimization Design. Private communication with ajor vendor.

D. Abadi et al. The Design of the Borealis Stream ProicesEngine. INCIDR,
2005.

A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, |. Nishiza, J. Rosenstein,
and J. Widom. Stream: The stanford stream data manigeE Data
Engineering Bulletin26, 2003.

L. Arge. The buffer tree: A new technique for optimal-étgorithms. Indth
International Workshop on Algorithms and Data Structur#\DS) 1995.

A. Birrell, M. Isard, C. Thacker, and T. Wobber. A desifgm high-performance
flash disksSIGOPS Oper. Syst. Re1(2), 2007.

] L. Bouganim, B. Jonsson, and P. Bonnet. The uFlip Berathk.

http://ww. uflip. org,2009.

] L. Bouganim, B. Jonsson, and P. Bonnet. uFLIP: Undeding flash 10

patterns. INCIDR, 2009.

A. Broder and M. Mitzenmacher. Using multiple hash ftiogs to improve IP
lookups. INIEEE INFOCOM 2001.

A. Broder and M. Mitzenmacher. Network applicationsbédom filters: A
survey.Internet Mathematicsl(4):485-509, 2005.

A. Caulfield, L. Grupp, and S. Swanson. Gordon: UsingHflamory to build
fast, power-efficient clusters for data-intensive appiass. INASPLOS2009.
C. Cranor, T. Johnson, O. Spataschek, and V. Shkape@igkscope: a stream
database for network applications.3hiGMOD, 2003.

P. J. Desnoyers and P. Shenoy. Hyperion: high voluneastrarchival for
retrospective querying. INSENIX 2007.

Endace Inc. Endace DAG3.4GE network monitoring card.

http://ww. endace. conl , 2009.

C. Faloutsos and S. Christodoulakis. Signature filesadcess method for
documents and its analytical performance evalua#&@M Transactions on
Information System®(4):267-288, 1984.

R. Hagmann. Reimplementing the cedar file system usiggihg and group
commit. INACM SOSP1987.

G. lannaccone, C. Diot, D. McAuley, A. Moore, |. Pratdal. Rizzo. The
CoMo white paper. Technical Report IRC-TR-04-17, Intel &ash, 2004.
Intel-Corporation. Understanding the Flash Tranefat.ayer (FTL)
specification. www.embeddedfreebsd.org/Documentsd/Fike. pdf, 1998.

] A. Kirsch and M. Mitzenmacher. The power of one move: hiag schemes for

hardware. INREEE INFOCOM 2008.

T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. Kim, Shenker, and

|. Stoica. A data-oriented (and beyond) network architectin ACM

SIGCOMM 2006.

G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoyueas
energy-optimized object storage system for memory-caired sensor devices.
In ACM SenSy<006.

S. Moon and T. Roscoe. Metadata management of teralayasets from an ip
backbone network: Experience and challenge&@M SIGMOD Workshop on
Network-Related Data Manageme@001.

S. Nath and P. B. Gibbons. Online Maintenance of VerngkeaRandom Samples
on Flash Storage . IMLDB, 2008.

S. Nath and A. Kansal. FlashDB: dynamic self-tuningathase for NAND flash.
In ACM/IEEE IPSN2007.

H. Pucha, D. G. Andersen, and M. Kaminsky. Exploitingigarity for
multi-source downloads using file handprintsN8D|, 2007.

M. Rosenblum and J. K. Ousterhout. The design and imefeation of a
log-structured file system. lACM SOSP1991.

H. Song, S. Dharmapurikar, J. Turner, and J. Lockwoadst Rash table lookup
using extended bloom filter: an aid to network processindn IACM

SIGCOMM 2005.

StreamBase Inc. Streambase: Real-time low latengy pl@icessing with a
stream processing engirtet t p: / / wwv. st r eanbase. coni , 2009.

N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil. Aclaitecture for
Internet data transfer. IRroc. 3rd Symposium on Networked Systems Design
and Implementation (NSDIBan Jose, CA, May 2006.

D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunojms, and W. A. Najjar.
Microhash: an efficient index structure for fash-based sedevices. In
USENIX FAST2005.

B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottéek in the data domain
deduplication file system. IRAST, 2008.



