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Abstract. We present a new decision procedure for detecting property vi-
olations in pushdown models for concurrent programs that use lock-based
synchronization, where each thread’s lock operations are properly nested
(à la synchronized methods in Java). The technique detects violations
expressed as indexed phase automata (PAs)—a class of non-deterministic
finite automata in which the only loops are self-loops.

Our interest in PAs stems from their ability to capture atomic-set serial-
izability violations. (Atomic-set serializability is a relaxation of atomicity
to only a user-specified set of memory locations.) We implemented the
decision procedure and applied it to detecting atomic-set-serializability
violations in models of concurrent Java programs. Compared with a prior
method based on a semi-decision procedure, not only was the decision
procedure 7.5X faster overall, but the semi-decision procedure timed out
on about 68% of the queries versus 4% for the decision procedure.

1 Introduction

Pushdown systems (PDSs) are a formalism for modeling the interprocedural
control flow of recursive programs. Likewise, multi-PDSs have been used to model
the set of all interleaved executions of a concurrent program with a finite number
of threads [1–7]. This paper presents a decision procedure for multi-PDS model
checking with respect to properties expressed as indexed phase automata (PAs)—a
class of non-deterministic finite automata in which the only loops are self-loops.
The decision procedure handles (i) reentrant locks, (ii) an unbounded number of
context switches, and (iii) an unbounded number of lock acquisitions and releases
by each PDS. The decision procedure is compositional : each PDS is analyzed
independently with respect to the PA, and then a single compatibility check is
performed that ties together the results obtained from the different PDSs.

Our interest in PAs stems from their ability to capture atomic-set serializability
(AS-serializability) violations. AS-serializability was proposed by Vaziri et al. [8]
? Supported by NSF under grants CCF-0540955, CCF-0524051, and CCF-0810053, by
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as a relaxation of the atomicity property [9] to only a user specified set of fields
of an object. (A detailed example is given in §2.) In previous work by some
of the authors [10], we developed techniques for verifying AS-serializability for
concurrent Java programs. Our tool first abstracts a concurrent Java program into
EML, a modeling language based on multi-PDSs and a finite number of reentrant
locks. The drawback of the approach that we have used to date is that an EML
program is compiled into a communicating pushdown system (CPDS) [4, 5], for
which the required model-checking problem is undecidable. (A semi-decision
procedure is used in [10].)

Kahlon and Gupta [7] explored the boundary between decidability and unde-
cidability for model checking multi-PDSs that synchronize via nested locks. One
of their results is an algorithm to decide if a multi-PDS satisfies an (indexed)
LTL formula that makes use of only atomic propositions, the “next” operator
X, and the “eventually” operator F. In the case of a 2-PDS, the algorithm uses
an automaton-pair M = (A,B) to represent a set of configurations of a 2-PDS,
where an automaton encodes the configurations of a single PDS in the usual
way [11, 12]. For a given logical formula, the Kahlon-Gupta algorithm is defined
inductively: from an automaton-pair that satisfies a subformula, they define an
algorithm that computes a new automaton-pair for a larger formula that has one
additional (outermost) temporal operator.

We observed that PAs can be compiled into an LTL formula that uses only
the X and F operators. (An algorithm to perform the encoding is given in
App. A.) Furthermore, [13] presents a sound and precise technique that uses only
non-reentrant locks to model EML’s reentrant locks. Thus, combining previous
work [10, 13] with the Kahlon-Gupta algorithm provides a decision procedure for
verifying AS-serializability of concurrent Java programs!

(Briefly, the technique for replacing reentrant locks with non-reentrant locks
pushes a special marker onto the stack the first time a lock is acquired, and
records the acquisition in a PDS’s state space. All subsequent lock acquires and
their matching releases do not change the state of the lock or the PDS. Only
when the special marker is seen again is the lock then released. This technique
requires that lock acquisition and releases be properly scoped, which is satisfied
by Java’s synchronized blocks. Consequently, we consider only non-reentrant
locks in the remainder of the paper.)

Unfortunately, [7] erroneously claims that the disjunction operation distributes
across two automaton-pairs. That is, for automaton-pairs M1 = (A1, B1) and
M2 = (A2, B2), they claim that the following holds: M1∨M2 = (A1∨A2, B1∨B2).
This is invalid because cross-terms arise when attempting to distribute the
disjunct. For example, if B1 ∩ B2 = ∅, then there can be configurations of the
form 〈a1 ∈ A1, b2 ∈ B2〉 that would be accepted by (A1∨A2, B1∨B2) but should
not be in M1 ∨M2.

To handle this issue properly, a corrected algorithm must use a set of
automaton-pairs instead of single automaton-pair to represent a set of con-
figurations of a 2-PDS.5 Because the size of the set is exponential in the number

5 We confirmed these observations in e-mail with Kahlon and Gupta [14].
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of locks, in the worst case, their algorithm may perform an exponential number
of individual reachability queries to handle one temporal operator. Furthermore,
once reachability from one automaton-pair has been performed, the resulting
automaton pair must be split into a set so that incompatible configurations are
eliminated. Thus, it is not immediately clear if the (corrected) Kahlon-Gupta
algorithm is amenable to an implementation that would be usable in practice.

This paper presents a new decision procedure for checking properties specified
as PAs on multi-PDSs that synchronize via nested locks.6 Unlike the (corrected)
Kahlon-Gupta algorithm, our decision procedure uses only one reachability query
per PDS. The key is to use tuples of lock histories (§5): moving from the lock
histories used by Kahlon and Gupta to tuples-of-lock histories introduces a
mechanism to maintain the correlations between the intermediate configurations.
Hence, our decision procedure is able to make use of only a single compatibility
check over the tuples-of-lock histories that our analysis obtains for each PDS.
The benefit of this approach is shown in the following table, where Procs denotes
the number of processes, L denotes the number of locks, and |PA| denotes the
number of states in property automaton PA:

PDS State Space Queries

Kahlon-Gupta [7] (corrected) O(2L) O(|PA| · Procs · 2L)

This paper (§6) O(|PA| · 2L) Procs

Because our algorithm isolates the exponential cost in the PDS state space, that
cost can often be side-stepped using symbolic techniques, such as BDDs, as
explained in §7.

This paper makes the following contributions:

– We define a decision procedure for multi-PDS model-checking for PAs. The
decision procedure handles (i) reentrant locks, (ii) an unbounded number of
context switches, (iii) an unbounded number of lock acquisitions and releases
by each PDS, and (iv) a bounded number of phase transitions.

– The decision procedure is compositional : each PDS is analyzed independently
with respect to the PA, and then a single compatibility check is performed
that ties together the results obtained from the different PDSs.

– We leverage the special form of PAs to give a symbolic implementation that
is more space-efficient than standard BDD-based techniques for PDSs [15].

– We used the decision procedure to detect AS-serializability violations in
automatically-generated models of four programs from the ConTest bench-
mark suite [16], and obtained substantially better performance than a prior
method based on a semi-decision procedure [10].

The rest of the paper is organized as follows: §2 provides motivation. §3 defines
multi-PDSs and PAs. §4 reviews Kahlon and Gupta’s decomposition result. §5
presents lock histories. §6 presents the decision procedure. §7 describes a symbolic
implementation. §8 presents experimental results. §9 describes related work.

6 We do not consider multi-PDSs that use wait-notify synchronization because reacha-
bility analysis of multi-PDSs with wait-notify is undecidable [7].
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class Stack {
Object[] storage = new Object[10];
int item = -1;
public static Stack makeStack(){

return new Stack();
}
public synchronized Object pop(){

Object res = storage[item];
storage[item--] = null;
return res;
}
public synchronized void push(Object o){

storage[++item] = o;
}
public synchronized boolean empty(){

return (item == -1);
}
}

class Client {
// @atomic
public synchronized Object get(Stack s){

if(!s.empty()) { return s.pop(); }
else return null;
}
public static Client makeClient(){

return new Client();
}
public static void main(String[] args){

Stack stack = Stack.makeStack();
stack.push(new Integer(1));
Client client1 = makeClient();
Client client2 = makeClient();
new Thread("1") { client1.get(stack); }
new Thread("2") { client2.get(stack); }
}
}

1:

get()z }| {
Abeg1

empty()z }| {
(sR1(i))s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pop()z }| {
(sR1(i)R1(s)R1(i)W1(s)W1(i))s Aend1

2: . . . . . . . . . . . . . .

get()z }| {
Abeg2 (sR2(i))s| {z }

empty()

(sR2(i)R2(s)R2(i)W2(s)W2(i))s| {z }
pop()

Aend2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 1. Example program and problematic interleaving that violates atomic-set serializ-
ability. R and W denote a read and write access, respectively. i and s denote fields item
and storage, respectively. Abeg and Aend denote the beginning and end, respectively,
of an atomic code block. The subscripts “1” and “2” are thread ids. “(s” and “)s” denote
the acquire and release operations, respectively, of the lock of Stack stack.

2 Motivating Example

Fig. 1 shows a simple Java implementation of a stack. Class Client is a test
harness that performs concurrent accesses on a single stack. Client.get() uses
the keyword “synchronized” to protect against concurrent calls on the same
Client object. The annotation “@atomic” on Client.get() specifies that the
programmer intends for Client.get() to be executed atomically.

The program’s synchronization actions do not ensure this, however. The root
cause is that the wrong object is used for synchronization: parameter “Stack
s” of Client.get() should have been used, instead of Client.get()’s implicit
this parameter. This mistake permits the interleaved execution shown at the
bottom of Fig. 1, which would result in an exception being thrown.

This is an example of an atomic-set serializability (AS-serializability)—a
relaxation of atomicity [9] to only a specified set of shared-memory locations—
violation [8] with respect to s.item and s.storage. AS-serializability violations
can be completely characterized by a set of fourteen problematic access patterns
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[8].7 Each problematic pattern is a finite sequence of reads and writes by two
threads to one or two shared memory locations. For the program in Fig. 1 and
problematic pattern “Abeg1;R1(i);W2(s);W2(i);R1(s)”, the accesses that match
the pattern are underlined in the interleaving shown at the bottom of Fig. 1.

W2(s) W2(i) R1(s)R1(i)Abeg1q1 q2 q3 q4 q5 q6

Σ ΛΛΛΛ

Fig. 2. The PA that accepts the problematic

access pattern in the program from Fig. 1. Σ

is the set of all actions, and Λ is Σ \ {Aend1}.

The fourteen problematic access
patterns can be encoded as an in-
dexed phase automaton (PA). The
PA that captures the problematic ac-
cesses of Fig. 1 is shown in Fig. 2. Its
states—which represent the phases
that the automaton passes through
to accept a string—are chained to-
gether by phase transitions; each
state has a self-loop for symbols that
cause the automaton to not change
state. (“Indexed” refers to the fact that the index of the thread performing an
action is included in the label of each transition.)

The PA in Fig. 2 “guesses” when a violation occurs. That is, when it observes
that thread 1 enters an atomic code block, such as get(), the atomic-code-block-
begin action Abeg1 causes it either to transition to state q2 (i.e., to start the next
phase), or to follow the self-loop and remain in q1. This process continues until it
reaches the accepting state. Note that the only transition that allows thread 1
to exit an atomic code block (Aend1) is the self-loop on the initial state. Thus,
incorrect guesses cause the PA in Fig. 2 to become “stuck” in one of the states
q1 . . . q5 and not reach final state q6.

3 Program Model and Property Specifications

Definition 1. A (labeled) pushdown system (PDS) is a tuple P =
(P,Act, Γ,∆, c0), where P is a finite set of control states, Act is a finite set
of actions, Γ is a finite stack alphabet, and ∆ ⊆ (P × Γ )×Act× (P × Γ ∗) is a
finite set of rules. A rule r ∈ ∆ is denoted by 〈p, γ〉 a

↪−→〈p′, u′〉. A PDS configu-
ration 〈p, u〉 is a control state along with a stack, where p ∈ P and u ∈ Γ ∗, and
c0 = 〈p0, γ0〉 is the initial configuration. ∆ defines a transition system over the set
of all configurations. From c = 〈p, γu〉, P can make a transition to c′ = 〈p′, u′u〉
on action a, denoted by c a−→ c′, if there exists a rule 〈p, γ〉 a

↪−→〈p′, u′〉 ∈ ∆. For
w ∈ Act∗, c w−−→ c′ is defined in the usual way. For a rule r = 〈p, γ〉 a

↪−→〈p′, u′〉,
act(r) denotes r’s action label a.

A multi-PDS consists of a finite number of PDSs P1, . . . ,Pn that synchronize
via a finite set of locks Locks = {l1, . . . , lL} (i.e., L = |Locks|). The actions Act

7 This result relies on an assumption that programs do not always satisfy: an atomic
code section that writes to one member of a set of correlated locations writes to all
locations in that set (e.g., item and storage of Stack s).
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of each PDS consist of lock-acquires (“(i”) and releases (“)i”) for 1 ≤ i ≤ L, plus
symbols from Σ, a finite alphabet of non-parenthesis symbols.

The intention is that each PDS models a thread, and lock-acquire and release
actions serve as synchronization primitives that constrain the behavior of the
multi-PDS. We assume that locks are acquired and released in a well-nested
fashion; i.e., locks are released in the opposite order in which they are acquired.

The choice of what actions appear in Σ depends on the intended application.
For verifying AS-serializability (see §2 and §7), Σ consists of actions to read and
write a shared-memory location m (denoted by R(m) and W (m), respectively),
and to enter and exit an atomic code section (Abeg and Aend, respectively).

Formally, a program model is a tuple Π = (P1, . . . ,Pn, Locks, Σ). A global
configuration g = (c1, . . . , cn, o1, . . . , oL) is a tuple consisting of a local configura-
tion ci for each PDS Pi and a valuation that indicates the owner of each lock:
for each 1 ≤ i ≤ L, oi ∈ {⊥, 1, . . . , n} indicates the identity of the PDS that
holds lock li. The value ⊥ signifies that a lock is currently not held by any PDS.
The initial global configuration is g0 = (c10, . . . , c

n
0 ,⊥, . . . ,⊥). A global config-

uration g = (c1, c2, . . . , cn, o1, . . . , oL) can make a transition to another global
configuration g′ = (c′1, c2, . . . , cn, o

′
1, . . . , o

′
L) under the following conditions:

– If c1
a−→ c′1 and a /∈ {(i, )i}, then g′ = (c′1, c2, . . . , cn, o1, . . . , oL).

– If c1
(i−−→ c′1 and g = (c1, c2, . . . , cn, o1, . . . , oi−1,⊥, oi+1, . . . , oL), then g′ =

(c′1, c2, . . . , cn, o1, . . . , oi−1, 1, oi+1, . . . , oL).
– If c1

)i−−→ c′1 and g = (c1, c2, . . . , cn, o1, . . . , oi−1, 1, oi+1, . . . , oL), then g′ =
(c′1, c2, . . . , cn, o1, . . . , oi−1,⊥, oi+1, . . . , oL).

For 1 < j ≤ n, a global configuration (c1, . . . , cj , . . . , cn, o1, . . . , oL) can make a
transition to (c1, . . . , c′j , . . . , cn, o

′
1, . . . , o

′
L) in a similar fashion.

A program property is specified as an indexed phase automaton.

Definition 2. An indexed phase automaton (PA) is a tuple (Q, Id, Σ, δ),
where Q is a finite, totally ordered set of states {q1, . . . , q|Q|}, Id is a finite set of
thread identifiers, Σ is a finite alphabet, and δ ⊆ Q× Id×Σ ×Q is a transition
relation. The transition relation δ is restricted to respect the order on states: for
each transition (qx, i, a, qy) ∈ δ, either y = x or y = x+ 1. We call a transition
of the form (qx, i, a, qx+1) a phase transition. The initial state is q1, and the
final state is q|Q|.

The restriction on δ in Defn. 2 ensures that the only loops in a PA are “self-
loops” on states. We assume that for every x, 1 ≤ x < |Q|, there is only one
phase transition of the form (qx, i, a, qx+1) ∈ δ. (A PA that has multiple such
transitions can be factored into a set of PAs, each of which satisfy this property.)
Finally, we only consider PAs that recognize a non-empty language, which means
that a PA must have exactly (|Q| − 1) phase transitions.

For the rest of this paper we consider 2-PDSs, and fix Π = (P1,P2, Locks, Σ)
and A = (Q, Id, Σ, δ); however, the techniques easily generalize to multi-PDSs
(see App. B), and our implementation is for the generic case. Given Π and A,
the model-checking problem of interest is to determine if there is an execution
that begins at the initial global configuration g0 that drives A to its final state.
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4 Path Incompatibility

The decision procedure analyzes the PDSs of Π independently, and then checks
if there exists a run from each PDS that can be performed in interleaved parallel
fashion under the lock-constrained transitions of Π. To do this, it makes use of
a decomposition result, due to Kahlon and Gupta [7, Thm. 1], which we now
review.

Suppose that PDS Pk, for k ∈ {1, 2}, when started in (single-PDS) config-
uration ck and executed alone, is able to reach configuration c′k using the rule
sequence ρk. Let LocksHeld(Pk, (b1, b2, o1, . . . , oL)) denote {li | oi = k}; i.e., the
set of locks held by PDS Pk at global configuration (b1, b2, o1, . . . , oL).

Along a rule sequence ρk and for an initially-held lock li and finally-held lock
lf , we say that the initial release of li is the first release of li, and that the final
acquisition of lf is the last acquisition of lf . Note that for execution to proceed
along ρk, Pk must hold an initial set of locks at ck that is a superset of the set of
initial releases along ρk; i.e., not all initially-held locks need be released. Similarly,
Pk’s final set of locks at c′k must be a superset of the set of final acquisitions
along ρk.

Theorem 1. (Decomposition Theorem [7].) Suppose that PDS Pk, when
started in configuration ck and executed alone, is able to reach configuration
c′k using the rule sequence ρk. For Π = (P1,P2, Locks, Σ), there does not exist
an interleaving of paths ρ1 and ρ2 from global configuration (c1, c2, o1, . . . , oL)
to global configuration (c′1, c

′
2, o
′
1, . . . , o

′
L) iff one or more of the following five

conditions hold:

1. LocksHeld(P1, (c1, c2, o1, . . . , oL)) ∩ LocksHeld(P2, (c1, c2, o1, . . . , oL)) 6= ∅
2. LocksHeld(P1, (c′1, c

′
2, o
′
1, . . . , o

′
L)) ∩ LocksHeld(P2, (c′1, c

′
2, o
′
1, . . . , o

′
L)) 6= ∅

3. In ρ1, P1 releases lock li before it initially releases lock lj, and in ρ2, P2

releases lj before it initially releases lock li.
4. In ρ1, P1 acquires lock li after its final acquisition of lock lj, and in ρ2, P2

acquires lock lj after its final acquisition of lock li,
5. (a) In ρ1, P1 acquires or uses a lock that is held by P2 throughout ρ2, or

(b) in ρ2, P2 acquires or uses a lock that is held by P1 throughout ρ1.

Intuitively, items 3 and 4 capture cycles in the dependence graph of lock
operations: a cycle is a proof that there does not exist any interleaving of rule
sequences ρ1 and ρ2 that adheres to the lock-constrained semantics of Π. If
there is a cycle, then ρ1 (ρ2) can complete execution but not ρ2 (ρ1), or neither
can complete because of a deadlock. The remaining items model standard lock
semantics: only one thread may hold a lock at a given time.

5 Extracting Information from PDS Rule Sequences

To employ Thm. 1, we now develop methods to extract relevant information
from a rule sequence ρk for PDS Pk. As in many program-analysis problems that
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involve matched operations [17]—in our case, lock-acquire and lock-release—it is
useful to consider semi-Dyck languages [18]: languages of matched parentheses
in which each parenthesis symbol is one-sided . That is, the symbols “(” and “)”
match in the string “()”, but do not match in “)(”.8

LetΣ be a finite alphabet of non-parenthesis symbols. The semi-Dyck language
of well-balanced parentheses over Σ ∪ {(i, )i | 1 ≤ i ≤ L} can be defined by the
following context-free grammar, where e denotes a member of Σ:

matched → ε | e matched | (i matched )i matched [for 1 ≤ i ≤ L]
Because we are interested in paths that can begin and end while holding a set of
locks, we define the following partially-matched parenthesis languages:

unbalR → ε | unbalR matched )i unbalL → ε | (i matched unbalL
The language of words that are possibly unbalanced on each end is defined by

suffixPrefix → unbalR matched unbalL

Example 1. Consider the following suffixPrefix string, in which the positions
between symbols are marked A–W. Its unbalR, matched, and unbalL components
are the substrings A–N, N–P, and P–W, respectively.

Â

)1
B̂

(2
Ĉ

)2
D̂

)3
Ê

(2
F̂

(4
Ĝ

(5
Ĥ

)5
Î

)4
Ĵ

(6
K̂

)6
L̂

)2
M̂

)7
N̂

(6
Ô

)6
P̂

(4
Q̂

(2
R̂

)2
Ŝ

(2
T̂

(7
Û

)7
V̂

(8
Ŵ

Let wk ∈ L(suffixPrefix) be the word formed by concatenating the action
symbols of the rule sequence ρk. One can see that to use Thm. 1, we merely
need to extract the relevant information from wk. That is, items 3 and 4 require
extracting (or recording) information from the unbalR and unbalL portions of wk,
respectively; item 5 requires extracting information from the matched portion of
wk; and items 1 and 2 require extracting information from the initial and final
parse configurations of wk.

The information is obtained using acquisition histories (AH) and release
histories (RH) for locks, as well as ρk’s release set (R), use set (U), acquisition
set (A), and held-throughout set (HT).

– The acquisition history (AH) [7] for a finally-held lock li is the union of the
set {li} with the set of locks that are acquired (or acquired and released)
after the final acquisition of li.9

– The release history (RH) [7] of an initially-held lock li is the union of the set
{li} with the set of locks that are released (or acquired and released) before
the initial release of li.

– The release set (R) is the set of initially-released locks.
– The use set (U) is the set of locks that form the matched part of wk.
– The acquisition set (A) is the set of finally-acquired locks.
– The held-throughout set (HT) is the set of initially-held locks that are not

released.
8 The language of interest is in fact regular because the locks are non-reentrant.

However, the semi-Dyck formulation provides insight into how one extracts the
relevant information from a rule sequence.

9 This is a slight variation from [7]; we include li in the acquisition history of lock li.
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A lock history is a six-tuple (R, R̂H,U, ÂH,A,HT), where R, U, A, and HT

are the sets defined above, and ÂH (R̂H) is a tuple of L acquisition (release)
histories, one for each lock li, 1 ≤ i ≤ L. Let ρ = [r1, . . . , rn] be a rule sequence
that drives a PDS from some starting configuration to an ending configuration,
and let I be the set of locks held at the beginning of ρ. We define an abstraction
function η(ρ, I) from rule sequences and initially-held locks to lock histories;
η(ρ, I) uses an auxiliary function, post, which tracks R, R̂H, U, ÂH, A, and HT
for each successively longer prefix.

η([], I) = (∅, ∅L, ∅, ∅L, ∅, I)
η([r1, . . . , rn], I) = post(η([r1, . . . , rn−1], I), act(rn)), where

post((R, cRH,U, cAH,A,HT), a) =8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

(R, cRH,U, cAH,A,HT) if a /∈ {(i, )i}
(R, cRH,U, cAH

′
,A ∪ {li},HT) if a = (i

where cAH
′
[j] =

8<:
{li} if j = i
∅ if j 6= i and lj /∈ AcAH[j] ∪ {li} if j 6= i and lj ∈ A

(R, cRH,U ∪ {li}, cAH
′
,A\{li},HT\{li}) if a = )i and li ∈ A

where cAH
′
[j] =


∅ if j = icAH[j] otherwise

(R ∪ {li}, cRH
′
,U, cAH,A,HT\{li}) if a = )i and li /∈ A

where cRH
′
[j] =


{li} ∪ U ∪ R if j = icRH[j] otherwise

Example 2. Suppose that ρ is a rule sequence whose labels spell out the string
from Example 1, and I = {1, 3, 7, 9}. Then η(ρ, I) returns the following lock
history (only lock indices are written):

({1, 3, 7}, 〈{1}, ∅, {1, 2, 3}, ∅, ∅, ∅, {1, 2, 3, 4, 5, 6, 7}, ∅, ∅〉,
{6}, 〈∅, {2, 7, 8}, ∅, {2, 4, 7, 8}, ∅, ∅, ∅, {8}, ∅ 〉, {2, 4, 8}, {9}).

Note: R and A are included above only for clarity; they can be recovered from
R̂H and ÂH, as follows: R = {i | R̂H[i] 6= ∅} and A = {i | ÂH[i] 6= ∅}. In addition,
from LH = (R, R̂H,U, ÂH,A,HT), it is easy to see that the set I of initially-held
locks is equal to (R ∪ HT), and the set of finally-held locks is equal to (A ∪ HT).

Definition 3. Lock histories LH1 = (R1, R̂H1, U1, ÂH1, A1, HT1) and LH2 =
(R2, R̂H2, U2, ÂH2, A2, HT2) are compatible, denoted by Compatible(LH1, LH2),
iff all of the following five conditions hold:

1.(R1 ∪ HT1) ∩ (R2 ∪ HT2) = ∅ 2.(A1 ∪ HT1) ∩ (A2 ∪ HT2) = ∅
3. 6 ∃ i, j . lj ∈ cAH1[i] ∧ li ∈ cAH2[j] 4. 6 ∃ i, j . lj ∈ cRH1[i] ∧ li ∈ cRH2[j]

5.(A1 ∪ U1) ∩ HT2 = ∅ ∧ (A2 ∪ U2) ∩ HT1 = ∅

Each conjunct verifies the absence of the corresponding incompatibility condition
from Thm. 1: conditions 1 and 2 verify that the initially-held and finally-held
locks of ρ1 and ρ2 are disjoint, respectively; conditions 3 and 4 verify the absence
of cycles in the acquisition and release histories, respectively; and condition 5
verifies that ρ1 does not use a lock that is held throughout in ρ2, and vice versa.
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Abeg1 R1(i) W2(s) W2(i) R1(s)1:
q3            q4 q4            q5q1            q2 q2            q3 q5            q6

Abeg1 R1(i) W2(s) W2(i) R1(s)2:
q1            q2 q2            q3 q5            q6q3            q4 q4            q5

Abeg1 R1(i) W2(s) W2(i) R1(s)
q3            q4 q4            q5q1            q2 q2            q3 q5            q6Π:

Fig. 3. Π: bad interleaving of Fig. 2, showing only the actions that cause a phase
transition. 1: the same interleaving from Thread 1’s point of view. The dashed boxes
show where Thread 1 guesses that Thread 2 causes a phase transition. 2: the same but
from Thread 2’s point of view and with the appropriate guesses.

6 The Decision Procedure

As noted in §4, the decision procedure analyzes the PDSs independently. This
decoupling of the PDSs has two consequences.

First, when P1 and A are considered together, independently of P2, they
cannot directly “observe” the actions of P2 that cause A to take certain phase
transitions. Thus, P1 must guess when P2 causes a phase transition, and vice
versa for P2. An example of the guessing is shown in Fig. 3. The interleaving
labeled “Π” is the bad interleaving from Fig. 2, but focuses on only the PDS
actions that cause phase transitions. The interleaving labeled “1” shows, via the
dashed boxes, where P1 guesses that P2 caused a phase transition. Similarly, the
interleaving labeled “2” shows the guesses that P2 must make.

Second, a post-processing step must be performed to ensure that only those
behaviors that are consistent with the lock-constrained behaviors of Π are
considered. For example, if P1 guesses that P2 performs the W2(s) action to
make the PA transition from state q3 to state q4 (the dashed box for interleaving “1”
in Fig. 3) while it is still executing the empty() method (see Fig. 2), the behavior
is inconsistent with the semantics of Π. This is because both threads would hold
the lock associated with the shared “Stack s” object. The post-processing step
ensures that such behaviors are not allowed.

6.1 Combining a PDS with a PA

To define a compositional algorithm, we must be able to analyze P1 and A
independently of P2, and likewise for P2 and A. Our approach is to combine A
and P1 to define a new PDS PA1 using a cross-product-like construction. The
main difference is that lock histories and lock-history updates are incorporated
in the construction.

Recall that the goal is to determine if there exists an execution of Π that drives
A to its final state. Any such execution must make |Q|−1 phase transitions. Hence,
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a valid interleaved execution must be able to reach |Q| global configurations, one
for each of the |Q| phases.

Lock histories encode the constraints that a PDS path places on the set of
possible interleaved executions of Π. A desired path of an individual PDS must
also make |Q| − 1 phase transitions, and hence our algorithm keeps track of |Q|
lock histories, one for each phase. This is accomplished by encoding into the state
space of PA1 a tuple of |Q| lock histories. A tuple maintains the sequence of lock
histories for one or more paths taken through a sequence of phases. In addition,
a tuple maintains the correlation between the lock histories of each phase, which
is necessary to ensure that only valid executions are considered. The rules of PA1
are then defined to update the lock-history tuple accordingly. The lock-history
tuples are used later to check whether some scheduling of an execution of Π can
actually perform all of the required phase transitions.

Let LH denote the set of all lock histories, and let L̂H = LH|Q| denote the
set of all tuples of lock histories of length |Q|. We denote a typical lock history by
LH, and a typical tuple of lock histories by L̂H. L̂H[i] denotes the ith component
of L̂H.

Our construction makes use of the phase-transition function on LHs defined
as follows: ptrans((R, R̂H,U, ÂH,A,HT)) = (∅, ∅L, ∅, ∅L, ∅,A ∪ HT). This function
is used to encode the start of a new phase: the set of initially-held locks is the
set of locks held at the end of the previous phase.

Let Pi = (Pi,Acti, Γi, ∆i, 〈p0, γ0〉) be a PDS, Locks be a set of locks of size
L, A = (Q, Id,Σ, δ) be a PA, and L̂H be a tuple of lock histories of length |Q|.
We define the PDS PAi = (PAi , ∅, Γi, ∆Ai , 〈pA0 , γ0〉), where PAi ⊆ Pi × Q × L̂H.
The initial control state is pA0 = (p0, q1, L̂H∅), where L̂H∅ is the lock-history tuple
(∅, ∅L, ∅, ∅L, ∅, ∅)|Q|. Each rule r ∈ ∆Ai performs only a single update to the tuple
L̂H, at an index x determined by a transition in δ. The update is denoted by
L̂H[x 7→ e], where e evaluates to an LH. Two kinds of rules are introduced to
account for whether a transition in δ is a phase transition or not:

1. Non-phase Transitions: L̂H
′

= L̂H[x 7→ post(L̂H[x], a)].

(a) For each rule 〈p, γ〉 a
↪−→〈p′, u〉 ∈ ∆i and transition (qx, i, a, qx) ∈ δ, there

is a rule r = 〈(p, qx, L̂H), γ〉 ↪−→〈(p′, qx, L̂H
′
), u〉 ∈ ∆Ai .

(b) For each rule 〈p, γ〉 a
↪−→〈p′, u〉 ∈ ∆i, a ∈ {(k, )k}, and each qx ∈ Q, there

is a rule r = 〈(p, qx, L̂H), γ〉 ↪−→〈(p′, qx, L̂H
′
), u〉 ∈ ∆Ai .

2. Phase Transitions: L̂H
′

= L̂H[(x+ 1) 7→ ptrans(L̂H[x])].

(a) For each rule 〈p, γ〉 a
↪−→〈p′, u〉 ∈ ∆i and transition (qx, i, a, qx+1) ∈ δ,

there is a rule r = 〈(p, qx, L̂H), γ〉 ↪−→〈(p′, qx+1, L̂H
′
), u〉 ∈ ∆Ai .

(b) For each transition (qx, j, a, qx+1) ∈ δ, j 6= i, and for each p ∈ Pi and
γ ∈ Γi, there is a rule r = 〈(p, qx, L̂H), γ〉 ↪−→〈(p, qx+1, L̂H

′
), γ〉 ∈ ∆A.
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input : A 2-PDS Π = (P1,P2, Locks, Σ) and a PA A.
output: true if Π can drive A to its final state.
let A1

post∗ ← post∗PA1
; let A2

post∗ ← post∗PA2
;1

foreach p1 ∈ P1, cLH1 s.t. ∃u1 ∈ Γ ∗1 : 〈(p1, q|Q|,cLH1), u1〉 ∈ L(A1
post∗) do2

foreach p2 ∈ P2, cLH2 s.t. ∃u2 ∈ Γ ∗2 : 〈(p2, q|Q|,cLH2), u2〉 ∈ L(A2
post∗) do3

if Compatible(cLH1,cLH2) then4

return true;5

return false;6

Algorithm 1: The decision procedure. The two tests of the form “∃uk ∈ Γ ∗k :

〈(pk, q|Q|,cLHk), uk〉 ∈ L(Ak
post∗)” can be performed by finding any path in Ak

post∗ from

state (pk, q|Q|,cLHk) to the final state.

Rules defined by item 1(a) make sure that PAi is constrained to follow the self-loops
on PA state qx. Rules defined by item 1(b) allow for PAi to perform lock acquires
and releases. Recall that the language of a PA is only over the non-parenthesis
alphabet Σ, and does not constrain the locking behavior. Consequently, a phase
transition cannot occur when PAi is acquiring or releasing a lock. Rules defined
by item 2(a) handle phase transitions caused by PAi . Finally, rules defined by
item 2(b) implement PAi ’s guessing that another PDS PAj , j 6= i, causes a phase
transition, in which case PAi has to move to the next phase as well.

6.2 Checking Path Compatibility

For a generated PDS PAk , we are interested in the set of paths that begin in
the initial configuration 〈pA0 , γ0〉 and drive A to its final state q|Q|. Each such
path ends in some configuration 〈(pk, q|Q|, L̂Hk), u〉, where u ∈ Γ ∗. Let ρ1 and
ρ2 be such paths from PA1 and PA2 , respectively. To determine if there exists a
compatible scheduling for ρ1 and ρ2, we use Thm. 1 on each component of the
lock-history tuples L̂H1 and L̂H2 from the ending configurations of ρ1 and ρ2:

Compatible(L̂H1, L̂H2)⇐⇒
|Q|∧
i=1

Compatible(L̂H1[i], L̂H2[i]).

Due to recursion, PA1 and PA2 could each have an infinite number of such paths.
However, each path is abstracted as a tuple of lock histories L̂H, and there are
only a finite number of tuples in L̂H; thus, we only have to check a finite number
of (L̂H1, L̂H2) pairs. For each PDS PA = (PA,Act, Γ,∆, cA0 ), we can identify
the set of relevant L̂H tuples by computing the set of all configurations that
are reachable starting from the initial configuration, post∗PA(cA0 ), using standard
automata-based PDS techniques [11, 12]. (Because the initial configuration is
defined by the PDS PA, henceforth, we merely write post∗PA .) That is, because
the construction of PA removed all labels, we can create a P-(multi)-automaton
[11] Apost∗ that accepts exactly the set of configurations post∗PA .

Alg. 1 gives the algorithm to check whether Π can drive A to its final state.
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Theorem 2. For 2-PDS Π = (P1,P2, Locks, Σ) and PA A, there exists an
execution of Π that drives A to its final state iff Alg. 1 returns true.

Proof. See App. D.1. ut

7 A Symbolic Implementation

Alg. 1 solves the multi-PDS model-checking problem for PAs. However, an imple-
mentation based on symbolic techniques is required because it would be infeasible
to perform the final explicit enumeration step specified in Alg. 1, lines 2–5. One
possibility is to use Schwoon’s BDD-based PDS techniques [15]; these represent
the transitions of a PDS’s control-state from one configuration to another as a
relation, using BDDs. This approach would work with relations over Q × LH,
which requires using |Q|2|LH|2 BDD variables, where |LH| = 2L+ 2L2.

This section describes a more economical encoding that needs only (|Q|+1)|LH|
BDD variables. Our approach leverages the fact that when a property is specified
with a phase automaton, once a PDS makes a phase transition from qx to qx+1,
the first x entries in L̂H tuples are no longer subject to change. In this situation,
Schwoon’s encoding contains redundant information; our technique eliminates
this redundancy.

We explain the more economical approach by defining a suitable weight
domain for use with a weighted PDS (WPDS) [4, 19]. A WPDS W = (P,S, f)
is a PDS P = (P,Act, Γ,∆, c0) augmented with a bounded idempotent semiring
S = (D,⊗,⊕, 1, 0) (see App. C), and a function f : ∆ → D that assigns a
semiring element d ∈ D to each rule r ∈ ∆. When working with WPDSs, the
result of a post∗ computation is a weighted automaton. For the purposes of this
paper, we view the weighted automaton Apost∗ = post∗W as a function from a
regular set of configurations C to the sum-over-all-paths from c0 to all c ∈ C;
i.e., Apost∗(C) =

⊕
{v | ∃c ∈ C : c0

r1...rn−−−−−→ c, v = f(r1) ⊗ . . . ⊗ f(rn)}, where
r1 . . . rn is a sequence of rules that transforms c0 into c. For efficient algorithms
for computing both Apost∗ and Apost∗(C), see [4, 19].

Definition 4. Let S be a finite set; let A ⊆ Sm+1 and B ⊆ Sp+1 be relations of
arity m+ 1 and p+ 1, respectively. The generalized relational composition
of A and B, denoted by “A ; B”, is the following subset of Sm+p:
A ; B = {〈a1, . . . , am, b2, . . . , bp+1〉 | 〈a1, . . . , am, x〉 ∈ A∧〈x, b2, . . . , bp+1〉 ∈ B}.

Definition 5. Let S be a finite set, and θ be the maximum number of phases of
interest. The set of all θ-term formal power series over z, with relation-
valued coefficients of different arities, is

RFPS[S, θ] = {
∑θ−1
i=0 ciz

i | ci ⊆ Si+2}.
A monomial is written as cizi (all other coefficients are understood to be ∅);
a monomial c0z0 denotes a constant. The multi-arity relational weight
domain over S and θ is defined by (RFPS[S, θ],×,+, Id, ∅), where × is poly-
nomial multiplication in which generalized relational composition and ∪ are
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used to multiply and add coefficients, respectively, and terms cjzj for j ≥ θ are
dropped; + is polynomial addition using ∪ to add coefficients; Id is the constant
{〈s, s〉 | s ∈ S}z0; and ∅ is the constant ∅z0.

We now define the WPDS Wi = (PWi ,S, f) that results from taking the prod-
uct of PDS Pi = (Pi,Acti, Γi, ∆i, 〈p0, γ0〉) and phase automatonA = (Q, Id,Σ, δ).
The construction is similar to that in §6.1, i.e., a cross product is performed that
pairs the control states of Pi with the state space of A. The difference is that the
lock-history tuples are removed from the control state, and instead are modeled
by S, the multi-arity relational weight domain over the finite set LH and θ = |Q|.
We define PWi = (Pi ×Q, ∅, Γi, ∆Wi , 〈(p0, q1), γ0〉), where ∆Wi and f are defined
as follows:

1. Non-phase Transitions: f(r) = {〈LH1, LH2〉 | LH2 = post(LH1, a)}z0.

(a) For each rule 〈p, γ〉 a
↪−→〈p′, u〉 ∈ ∆i and transition (qx, i, a, qx) ∈ δ, there

is a rule r = 〈(p, qx), γ〉 ↪−→〈(p′, qx), u〉 ∈ ∆Wi .
(b) For each rule 〈p, γ〉 a

↪−→〈p′, u〉 ∈ ∆i, a ∈ {(k, )k}, and for each qx ∈ Q,
there is a rule r = 〈(p, qx), γ〉 ↪−→〈(p′, qx), u〉 ∈ ∆Wi .

2. Phase Transitions: f(r) = {〈LH, LH, ptrans(LH)〉 | LH ∈ LH}z1.

(a) For each rule 〈p, γ〉 a
↪−→〈p′, u〉 ∈ ∆i and transition (qx, i, a, qx+1) ∈ δ,

there is a rule r = 〈(p, qx), γ〉 ↪−→〈(p′, qx+1), u〉 ∈ ∆Wi .
(b) For each transition (qx, j, a, qx+1) ∈ δ, j 6= i, and for each p ∈ Pi and

γ ∈ Γi, there is a rule r = 〈(p, qx), γ〉 ↪−→〈(p, qx+1), γ〉 ∈ ∆W .

A multi-arity relational weight domain is parameterized by the quantity
θ—the maximum number of phases of interest—which we have picked to be |Q|.
We must argue that weight operations performed during model checking do not
cause this threshold to be exceeded. For configuration 〈(p, qx), u〉 to be reachable
from the initial configuration 〈(p0, q1), γ0〉 of some WPDS Wi, PA A must make
a sequence of transitions from states q1 to qx, which means that A goes through
exactly x− 1 phase transitions. Each phase transition multiplies by a weight of
the form c1z

1; hence, the weight returned by Apost∗({〈(p, qx), u〉}) is a monomial
of the form cx−1z

x−1. The maximum number of phases in a PA is |Q|, and thus
the highest-power monomial that arises is of the form c|Q|−1z

|Q|−1. (Moreover,
during post∗Wk

as computed by the algorithm from [19], only monomial-valued
weights ever arise.)

Alg. 2 states the algorithm for solving the multi-PDS model-checking problem
for PAs. Note that the final step of Alg. 2 can be performed with a single BDD
operation.

Theorem 3. For 2-PDS Π = (P1,P2, Locks, Σ) and PA A, there exists an
execution of Π that drives A to the accepting state iff Alg. 2 returns true.

Proof. See App. D.2. ut
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input : A 2-PDS (P1,P2, Locks, Σ) and a PA A.
output: true if there is an execution that drives A to the accepting state.
let A1

post∗ ← post∗W1
; let A2

post∗ ← post∗W2
;1

let c1|Q|−1z
|Q|−1 = A1

post∗
`
{〈(p1, q|Q|), u〉 | p1 ∈ P1 ∧ u ∈ Γ ∗1 }

´
;2

let c2|Q|−1z
|Q|−1 = A2

post∗
`
{〈(p2, q|Q|), u〉 | p2 ∈ P2 ∧ u ∈ Γ ∗2 }

´
;3

return ∃〈LH0,cLH1〉 ∈ c1|Q|−1, 〈LH0,cLH2〉 ∈ c2|Q|−1 : Compatible(cLH1,cLH2);4

Algorithm 2: The symbolic decision procedure.

8 Experiments

Our experiment concerned detecting AS-serializability violations (or proving their
absence) in models of concurrent Java programs. The experiment was designed to
compare the performance of Alg. 2 against that of the communicating-pushdown
system (CPDS) semi-decision procedure from [10]. Alg. 2 was implemented using
the Wali WPDS library [20] (the multi-arity relational weight domain is included
in the Wali release 3.0). The weight domain uses the BuDDy BDD library [21].
All experiments were run on a dual-core 3 GHz Pentium Xeon processor with 4
GB of memory.

We analyzed four Java programs from the ConTest benchmark suite [16]. Our
tool requires that the allocation site of interest be annotated in the source program.
We annotated eleven of the twenty-seven programs that ConTest documentation
identifies as having “non-atomic” bugs. Our front-end currently handles eight of
the eleven (the AST rewriting of [10] currently does not support certain Java
constructs). Finally, after abstraction, four of the eight EML models did not use
locks, so we did not analyze them further. The four that we used in our study
are SoftwareVerificationHW, BugTester, BuggyProgram, and shop.

For each program, the front-end of the Empire tool [10] was used to create
an EML program. An EML program has a set of shared-memory locations,
SMem, a set of locks, SLocks, and a set of EML processes, SProcs. Five of the
fourteen PAs used for detecting AS-serializability violations check behaviors that
involve a single shared-memory location; the other nine check behaviors that
involve a pair of shared-memory locations. For each of the five PAs that involve
a single shared location, we ran one query for each m ∈ SMem. For each of the
nine PAs that involve a pair of shared locations, we ran one query for each
(m1,m2) ∈ SMem × SMem. In total, each tool ran 2,147 queries. Fig. 4 shows
log-log scatter-plots of the execution times, classified into the 43 queries for which
Alg. 2 reported an AS-serializability violation (left-hand graph), and the 2,095
queries for which Alg. 2 verified correctness (right-hand graph).

Although the CPDS-based method is a semi-decision procedure, it is capable
of both (i) verifying correctness, and (ii) finding AS-serializability violations [10].
(The third possibility is that it times out.) Comparing the total time to run all
queries, Alg. 2 ran 7.5X faster (136,235 seconds versus 17,728 seconds). The CPDS-
based method ran faster than Alg. 2 on some queries, although never more than
about 8X faster; in contrast, Alg. 2 was more than two orders of magnitude faster
on some queries. Moreover, the CPDS-based method timed out on about 68% of the
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Fig. 4. Log-log scatter-plots of the execution times of Alg. 2 (y-axis) versus the CPDS
semi-decision procedure [10] (x-axis). The dashed lines denote equal running times;
points below and to the right of the dashed lines are runs for which Alg. 2 was faster.
The timeout threshold was 200 seconds; the minimal reported time is .25 seconds.
The vertical bands near the right-hand axes represent queries for which the CPDS
semi-decision procedure timed out. (The horizontal banding is due to the fact that, for
a given program, Alg. 2 often has similar performance for many queries.)

Query Category

CPDS succeeded CPDS timed out
Alg. 2 succeeded Alg. 2 succeeded

Impl. (685 of 2,147) (1,453 of 2,147)

CPDS 6,006 130,229

Alg. 2 2,428 15,310

Fig. 5. Total time (in seconds) for exam-

ples classified according to whether CPDS

succeeded or timed out.

queries—both for the ones for which
Alg. 2 reported an AS-serializability vio-
lation (29 timeouts out of 43 queries), as
well as the ones for which Alg. 2 verified
correctness (1,425 timeouts out of 2,095
queries). Alg. 2 exceeded the 200-second
timeout threshold on nine queries. The
CPDS-based method also timed out on
those queries. When rerun with no time-
out threshold, Alg. 2 solved each of the
nine queries in 205–231 seconds.

Fig. 5 partitions the examples according to whether CPDS succeeded or timed
out. The 1,453 examples on which CPDS timed out (col. 3 of Fig. 5) might be
said to represent “harder” examples. Alg. 2 required 15,310 seconds for these,
which is about 3X more than the 1,453/685 × 2,428 = 5,150 seconds expected
if the queries in the two categories were of equal difficulty for Alg. 2. Roughly
speaking, therefore, the data supports the conclusion that what is harder for
CPDS is also harder for Alg. 2.
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9 Related Work

The present paper introduces a different technique than that used by Kahlon
and Gupta [7]. To decide the model-checking problem for PAs (as well as certain
generalizations not discussed here), one needs to check pairwise reachability of
multiple global configurations in succession. Our algorithm uses WPDS weights
that are sets of lock-history tuples, whereas Kahlon and Gupta use sets of pairs
of configuration automata.

There are similarities between the kind of splitting step needed by Qadeer
and Rehof to enumerate states at a context switch [1] in context-bounded
model checking and the splitting step on sets of automaton-pairs needed in the
algorithm of Kahlon and Gupta [7] to enumerate compatible configuration pairs
[14]. Kahlon and Gupta’s algorithm performs a succession of pre∗ queries; after
each one, it splits the resulting set of automaton-pairs to enforce the invariant
that succeeding queries are only applied to compatible configuration pairs. In
contrast, our algorithm (i) analyzes each PDS independently using one post∗

query per PDS, and then (ii) ties together the answers obtained from the different
PDSs by performing a single compatibility check on the sets of lock-history tuples
that result. Because our algorithm does not need a splitting step on intermediate
results, it avoids enumerating compatible configuration pairs, thereby enabling
BDD-based symbolic representations to be used throughout.

The Kahlon-Gupta decision procedure has not been implemented [14], so
a direct performance comparison was not possible. It is left for future work to
determine whether our approach can be applied to the decidable sub-logics of
LTL identified in [7].

Our approach of using sets of tuples is similar in spirit to the use of matrix
[2] and tuple [3] representations to address context-bounded model checking [1].
In this paper, we bound the number of phases, but permit an unbounded number
of context switches and an unbounded number of lock acquisitions and releases
by each PDS. The decision procedure is able to explore the entire state space of
the model; thus, our algorithm is able to verify properties of multi-PDSs instead
of just performing bug detection.

Dynamic pushdown networks (DPNs) [22] extend parallel PDSs with the
ability to create threads dynamically. Lammich et al. [23] present a generalization
of acquisition histories to DPNs with well-nested locks. Their algorithm uses
chained pre∗ queries, an explicit encoding of acquisition histories in the state
space, and is not implemented.
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A An LTL Formula for PA A

Intuitively, for a N -PDS, a PA A can be expressed as a N -indexed LTL formula
ϕA using only the “eventually” F and “next” X operators: self-loops are captured
with an F and phase-transitions with an X. Let the predicate Sqx denote an
atomic-logical formula meaning that the control state all (augmented) PDSs
satisfies qx. That is, the control state of the PDS that results from taking the
standard cross product of PDS P with PA A is of the form (p, qx). The following
function can be used to translate a PA into an N -indexed LTL formula:

H(q|Q|) = Sq|Q|
H(qx) = F(Sqx

∧ X1(. . . (XN(Sqx+1 ∧H(qx+1))) . . .)

Specifically, ϕA = H(q1).

B Generalizing to More Than Two PDSs

Generalizing the decision procedure from a 2-PDS system to an N -PDS system
only requires defining how to check compatibility for N lock-history tuples.
Because the set of reachable configurations, and hence the set of lock-history
tuples, are computed independently for each PDS, the construction from §6.1
that combines a PDS P with a PA A to form a new PDS PA does not change
when generalizing to N PDSs.

Generalizing the compatibility check to N lock-history tuples requires gener-
alizing Thm. 1. The extension of items 1, 2, and 5 to N lock-history tuples is
straightforward. Items 3 and 4 define incompatibility to be a cycle of length two in
the acquisition and release histories, respectively. Hence, the generalized condition
requires checking for a cycle in the acquisition and release histories that has a
length anywhere from two toN . We use the notation Compatible(LH1, . . . , LHN ) to
denote the generalized check. Then Alg. 1 is modified to contain N foreach loops,
and the compatibility check at line 4 is replaced with Compatible(L̂H1, . . . , L̂HN ).

Similarly, Alg. 2 is modified to construct N WPDSs, perform N post∗ opera-
tions (line 1), compute N sum-over-all-paths values c1|Q|−1z

|Q|−1, . . ., cN|Q|−1z
|Q|−1

(lines 2–3), and finally perform the check

∃〈LH0, L̂H1〉 ∈ c1|Q|−1, . . . , 〈LH0, L̂HN 〉 ∈ cN|Q|−1 : Compatible(L̂H1, . . . , L̂HN ).
As in Alg. 2, the compatibility check can be performed via a single BDD operation
by defining the N -way compatibility relation. This is how it is performed in our
implementation.

C Bounded Idempotent Semirings

Definition 6. A bounded idempotent semiring is a tuple (D,⊗,⊕, 1, 0),
where D is a set whose elements are called weights; 1, 0 ∈ D; and ⊗ (the
extend operation) and ⊕ (the combine operation) are binary operators on D
such that
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1. (D,⊕) is a commutative monoid with 0 as its neutral element, and where ⊕
is idempotent (i.e., for all a ∈ D, a⊕ a = a).

2. (D,⊗) is a monoid with 1 as its neutral element.
3. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) .
4. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a⊗ 0 = 0 = 0⊗ a
5. In the partial order v defined by ∀a, b ∈ D, a v b iff a⊕ b = a, there are no

infinite descending chains.

A multi-arity relational weight domain over S and θ, as defined in Defn. 5,
meets the requirements of Defn. 6 because of (i) the properties of polynomial
addition and truncated polynomial multiplication, (ii) the fact that the set of all
relations of finite arity ≥ 2 and the operation of generalized relational composition
defined in Defn. 4 (“;”) is a monoid, and (iii) “;” is both left- and right-distributive
over union of arity-k relations.

D Proofs

D.1 Proof of Thm. 2

Proof. From Thm. 1, we know that for paths π1 and π2 with rule sequences ρ1

and ρ2 from PDSs P1 and P2, respectively, where π1 and π2 begin with a disjoint
set of initially held locks I1 and I2, there exists a compatible scheduling of π1

and π2 iff Compatible(η(ρ1, I1), η(ρ2, I2)).
If Alg. 1 returns true, then there exists two tuples of lock histories, L̂H1 and

L̂H2, where L̂H1 (L̂H2) is an abstraction of a rule sequence ρ1 (ρ2) for a path π1

(π2) from the initial configuration of PDS P1 (P2) that drives the PA A to the
accepting state, such that Compatible(L̂H1, L̂H2). Because of the Decomposition
Theorem and the definition of Compatible(L̂H1, L̂H2), there must exist a scheduling
of ρ1 and ρ2 that adheres to the interleaved semantics of of Π. That is, there
must exist an interleaved scheduling of ρ1 and ρ2 that causes Π, starting from
the initial global configuration g0, to pass through a sequence of configurations
such that a phase transition occurs at each intermediate configuration, and finally
to reach a configuration such that the PA A is in its accepting state.

If Alg. 1 returns false, then there does not exist two tuples of locks histories.
This occurs if either one (or both) of the PDSs does not have a path that
can drive the PDS A to the accepting state, and thus it is not possible for an
interleaved execution of Π to drive PA A to the accepting state. Otherwise,
there must not exist two tuples that are in the Compatible relation. From the
definition of Compatible, there must be some phase such that the lock histories
are incompatible, and thus no interleaved execution exists.

The generalization to an arbitrary number of PDSs proceeds similarly. ut



A Decision Procedure 21

D.2 Proof of Thm. 3

Proof. The proof proceeds as follows: (i) show by induction that Alg. 1 and Alg. 2
compute the same lock-history tuples for related PDS paths; and (ii) combine
the previous step with the proof of correctness for WPDSs. We use the following
definitions.

1. P = (P,Act, Γ,∆, c0) is a PDS
2. A = (Q, Id, Σ, δ) is a PA

3. PA =
(
PA, ∅, Γ,∆A, 〈(p0, q1, L̂H0), γ0〉

)
is the (unlabeled) PDS that results

from combining P with A as defined in §6.1
4. W =

(
(P ×Q, ∅, Γ,∆W , 〈(p0, q1), γ0〉),S, f

)
is the WPDS that results from

combining P with A as defined in §7
5. ρP = [rP1 , . . . , r

P
n ] is a rule sequence from P

6. ρA = [rA1 , . . . , r
A
n ] is a rule sequence from PA

7. ρW = [rW1 , . . . , rWn ] is a rule sequence from W
8. val(ρW) = f(rW1 )⊗ . . .⊗ f(rWn ) is the weighted valuation of ρW

9. inflate(cx−1z
x−1, x) = cx−1z

x−1;
{
〈LH, LH, LH

|Q|−x
0 〉 | LH ∈ LH

}
z|Q|−x

10. deflate(c|Q|−1z
|Q|−1, x) ={

〈LH1, . . . , LHx, LHx+1〉 | 〈LH1, . . . , LHx, LHx+1, . . . , LH|Q|−1〉 ∈ c|Q|−1

}
zx−1

Item 9 defines the inflate function that takes a monomial of arity m and transforms
it into a monomial of arity |Q| − 1. This is necessary for comparing the result
of executing a rule sequence ρA of PA with executing a rule sequence ρW of W
because ρW might not have performed |Q| − 1 phase transitions. The function
inflate “appends” the empty lock history LH0 to the end of the monomial cx−1z

x−1.
This coincides with the fact that a path from the initial configuration of PA only
modifies the lock-history tuple entries for the phases that it has been in or is
currently executing in. The function deflate simply undoes the result of inflate,
i.e., cx−1z

x−1 = deflate(inflate(cx−1z
x−1, x), x).

Let cA0 →∗ρA c
A denote that PA makes a transition to a configuration cA from

configuration cA0 when executing rule sequence ρA. Similarly, let cW0 →∗ρW cW

denote that W makes a transition to a configuration cW from configuration cW0
when executing rule sequence ρW . We show the following:

cA0 →∗ρA 〈(p, qx, L̂H), u〉 ⇔ cW0 →∗ρW 〈(p, qx), u〉 ∧ 〈LH0, L̂H〉 ∈ inflate(val(ρW), x).

The proofs in both directions are by induction on the length of a rule sequence.
Show ⇒.
For rule sequence ρA = [rA1 , . . . , r

A
n ], assume that cA0 →ρA 〈(p, qx, L̂H), u〉. We

show how to construct a rule sequence ρW = [rW1 , . . . , rWn ] such that (i) cW0 →ρW

〈(p, qx), u〉 and (ii) 〈LH0, L̂H〉 ∈ inflate(val(ρW), x). For each case, we rely on the
fact that the generalized relational product always composes on the rightmost
tuple-component in the left-hand-side operand. This allows us to show that the
“effect” of extending weights when firing a rule sequence of W mimics the explicit
change in the control state of PA that occurs when firing a rule sequence of PA.
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– Base case: n = 1.

For the base case, there is only one rule: rA1 =
〈(p0, q1, L̂H0), γ0〉 ↪−→〈(p, qx, L̂H), u〉. From the definition of PA, there
must be the rule rP1 = 〈p0, γ0〉

a
↪−→〈p, u〉 in the original PDS P, and a

transition (q1, i, a, qx) ∈ δ. Thus, by the definition of W, there must be the
rule rW1 = 〈(p0, q1), γ0〉 ↪−→〈(p, qx), u〉. We perform a case analysis on rA1 to
show that 〈LH0, L̂H〉 ∈ inflate(val(rW1 ), x).
1. If x = 1, then

(a) L̂H = L̂H0[1 7→ post(L̂H0[1], a)] = 〈post(LH0, a), LH
|Q|−1
0 〉

(b) f(rW1 ) =
{
〈LH, post(LH, a)〉 | LH ∈ LH

}
z0

(c) inflate(val([rW1 ]), 1) =
{
〈LH, post(LH, a), LH

|Q|−1
0 〉 | LH ∈ LH

}
z|Q|−1

(d) 〈LH0, L̂H〉 ∈ inflate(val([rW1 ]), 1)
2. Otherwise x = 2, then

(a) L̂H = L̂H0[2 7→ ptrans(L̂H0[1])] = 〈LH0, ptrans(LH0), LH
|Q|−2
0 〉

(b) f(rW1 ) =
{
〈LH, LH, ptrans(LH)〉 | LH ∈ LH

}
z1

(c) inflate(val([rW1 ]), 2)
{
〈LH, LH, ptrans(LH), LH

|Q|−2
0 〉 | LH ∈ LH

}
z|Q|−1

(d) 〈LH0, L̂H〉 ∈ inflate(val([rW1 ]), 2)
– Inductive step.

Now consider the rule sequence ρAn = [rA1 , . . . , r
A
n−1, r

A
n ], and assume that for

the first n− 1 rules of the sequence, cA0 →∗ρAn−1
〈(p, qx, L̂H), γu〉. Furthermore,

let us use the notation L̂H = 〈LH1, . . . , LHx, LHx+1
0 , . . . , LH

|Q|
0 〉 so that we

can deconstruct the L̂H tuple. (Note that it must be the case that at all
tuple indices greater than x the lock history is LH0 by construction.) By
the induction hypothesis we have the following: there exists a rule sequence
ρWn = [rW1 , . . . , rWn−1] such that cW0 →∗

ρWn−1
〈(p, qx), γu〉 and 〈LH0, L̂H〉 ∈

inflate(val(ρWn−1), x). In addition, the following holds: 〈LH0, LH1, . . . , LHx〉 ∈
deflate(inflate(val(ρWn−1), x), x)

Let rAn = 〈(p, qx, L̂H), γ〉 ↪−→〈(p′, qy, L̂H
′
), u′〉, then cA0 →∗ρAn

〈(p′, qy, L̂H
′
), u′u〉. From the definition of PA, there must exist a rule

〈p, γ〉 a
↪−→〈p′, u′〉 ∈ ∆ and transition (qx, i, a, qy) ∈ δ. Thus, from the

definition of W, there exists a rule rWn = 〈(p, qx), γ〉 ↪−→〈(p′, qy), u′〉 ∈ ∆W ,
and cW0 →∗ρWn 〈(p

′, qy), u′u〉, which satisfies condition (i) above. To show that

condition (ii) above is satisfied, i.e., that 〈LH0, L̂H
′
〉 ∈ inflate(val(ρWn ), y), we

perform a case analysis on the rule rAn = 〈(p, qx, L̂H), γ〉 ↪−→〈(p′, qy, L̂H
′
), u′〉.

1. If x = y, then
(a) L̂H

′
= L̂H[x 7→ post(L̂H[x], a)] = 〈LH1, . . . , post(LHx, a), LHx+1

0 , . . . , LH
|Q|
0 〉

(b) f(rWn ) =
{
〈LH, post(LH, a)〉 | LH ∈ LH

}
z0

(c) 〈LH0, LH1, . . . , LHx〉 ∈ deflate(inflate(val(ρWn−1), x), x), by the induc-
tion hypothesis
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(d) 〈LH0, LH1, . . . , post(LHx, a)〉 ∈ deflate(inflate(val(ρWn−1), x), x)⊗f(rWn )
(e) inflate(val(ρWn ), x) = inflate(val(ρWn−1)⊗ f(rW1 ), x)

(f) 〈LH0, L̂H
′
〉 ∈ inflate(val(ρWn ), x)

2. Otherwise y = x+ 1, and
(a) L̂H

′
= L̂H[y 7→ ptrans(L̂H[x])] = 〈LH1, . . . , LHx, ptrans(LHx), . . . , LH

|Q|
0 〉

(b) f(rWn ) =
{
〈LH, LH, ptrans(LH)〉 | LH ∈ LH

}
z1.

(c) 〈LH0, LH1, . . . , LHx〉 ∈ deflate(inflate(val(ρWn−1), x), x), by the induc-
tion hypothesis

(d) 〈LH0, LH1, . . . , LHx, ptrans(LHx)〉 ∈ deflate(inflate(val(ρWn−1), x), x) ⊗
f(rWn )

(e) inflate(val(ρWn ), y) = inflate(val(ρWn−1)⊗ f(rW1 ), y)

(f) 〈LH0, L̂H
′
〉 ∈ inflate(val(ρWn ), y)

Show ⇐.
For a rule sequence ρWn = [rW1 , . . . , rWn ], assume that cW0 →ρW 〈(p, qx), u〉 and
that 〈LH0, L̂H〉 ∈ inflate(val(ρWn ), x). We show how to construct a rule sequence
ρA = [rA1 , . . . , r

A
n ] such that cA0 →∗ρA 〈(p, qx, L̂H), u〉. The proof is by induction

on the length n of the rule sequence.

– Base case: n = 1.

For the base case, there is only one rule: rW1 = 〈(p0, q1), γ0〉 ↪−→〈(p, qx), u〉.
From the definition of W , there must exist the rule rP1 = 〈p0, γ0〉

a
↪−→〈p, u〉 ∈

∆, and a transition (q1, i, a, qx) ∈ δ. Thus, by the definition of PA, there
must be a rule rA1 = 〈(p0, q1, L̂H0), γ0〉 ↪−→〈(p, qx, L̂H

′
), u〉. We perform a case

analysis on rW1 to show that 〈LH0, L̂H〉 ∈ inflate(val([rW1 ]), x)⇒ L̂H
′

= L̂H.
1. If x = 1, then

(a) f(rW1 ) =
{
〈LH, post(LH, a)〉 | LH ∈ LH

}
z0

(b) 〈LH0, post(LH0, a), LHQ−1
0 〉 ∈ inflate(val([rW1 ]), x)

(c) L̂H
′

= L̂H0[1 7→ post(L̂H0[1], a)] = 〈post(LH0, a), LH
|Q|−1
0 〉.

(d) L̂H
′

= L̂H
2. Otherwise x = 2, then

(a) f(rW1 ) = c1z
1 =

{
〈LH, LH, ptrans(LH)〉 | LH ∈ LH

}
z1.

(b) 〈LH0, LH0, ptrans(LH0), LH
|Q−2|
0 〉 ∈ inflate(val([rW1 ]), 2).

(c) L̂H
′

= L̂H0[2 7→ ptrans(L̂H0[1])] = 〈LH0, ptrans(LH0), LH
|Q|−2
0 〉.

(d) L̂H
′

= L̂H

– Inductive step.

Now consider the rule sequence ρWn = [rW1 , . . . , rWn−1, r
W
n ], and assume

that for the first n − 1 rules of the sequence, cW0 →∗ρWn−1
〈(p, qx), γu〉. Let

rWn = 〈(p, qx), γ〉 ↪−→〈(p′, qy), u′〉, then cW0 →∗ρWn 〈(p
′, qy), u′u〉. By the induc-

tion hypothesis we have the following: for 〈LH0, L̂H〉 ∈ inflate(val(ρWn−1), x),



24 Nicholas Kidd, Peter Lammich, Tayssir Touili, and Thomas Reps

there exists a rule sequence ρAn−1 = [rA1 , . . . , r
A
n−1] such that cA0 →∗ρAn−1

〈(p, qx, L̂H), γu〉. Furthermore, let L̂H = 〈LH1, . . . , LHx, LHx+1
0 , . . . , LH

|Q|
0 〉;

then 〈LH0, LH1, . . . , LHx〉 ∈ val(ρWn−1).
From the definition of W, there must exist a rule 〈p, γ〉 a

↪−→〈p′, u′〉 ∈ ∆
and transition (qx, i, a, qy) ∈ δ. From the definition of PA, there must ex-

ist a rule rAn = 〈(p, qx, L̂H), γ〉 ↪−→〈(p′, qy, L̂H
′
), u′〉 ∈ ∆A, and cA0 →∗ρWn

〈(p′, qy, L̂H
′
), u′u〉. We perform a case analysis on rWn to show that 〈LH0, L̂H〉 ∈

inflate(val(ρWn ), x)⇒ L̂H
′

= L̂H.
1. If x = y, then

(a) f(rWn ) =
{
〈LH, post(LH, a)〉 | LH ∈ LH

}
z0

(b) 〈LH0, LH1, . . . , LHx〉 ∈ val(ρWn−1), by the induction hypothesis
(c) 〈LH0, LH1, . . . , post(LHx, a)〉 ∈ val(ρWn−1)⊗ f(rWn )
(d) 〈LH0, LH1, . . . , post(LHx, a)〉 ∈ val(ρWn )
(e) 〈LH0, LH1, . . . , post(LHx, a), LHx+1

0 , . . . , LH
|Q|
0 〉 ∈ inflate(val(ρWn ), x)

(f) L̂H
′

= L̂H[x 7→ post(L̂H[x], a)] = 〈LH1, . . . , post(LHx, a), LHx+1
0 , . . . , LH

|Q|
0 〉

(g) L̂H
′

= L̂H
2. Otherwise y = x+ 1, and

(a) f(rWn ) = c1z
1 =

{
〈LH, LH, ptrans(LH)〉 | LH ∈ LH

}
z1

(b) 〈LH0, LH1, . . . , LHx〉 ∈ val(ρWn−1), by the induction hypothesis
(c) 〈LH0, LH1, . . . , LHx, ptrans(LHx)〉 ∈ val(ρWn−1)⊗ f(rWn )
(d) 〈LH0, LH1, . . . , LHx, ptrans(LHx)〉 ∈ val(ρWn )
(e) 〈LH0, LH1, . . . , LHx, ptrans(LHx), . . . , LH

|Q|
0 〉 ∈ inflate(val(ρWn ), x)

(f) L̂H
′

= L̂H[y 7→ ptrans(L̂H[x])] = 〈LH1, . . . , LHx, ptrans(LHx), . . . , LH
|Q|
0 〉

(g) L̂H
′

= L̂H

We have proved that the multi-arity relations that annotate the rules of W
simulate the change in control state of the rules of PA, and vice versa. This,
combined with the proofs of correctness of algorithms for solving reachability
problems in PDSs [11, 12] and WPDSs [4, 19], proves that Alg. 2 computes the
same result as Alg. 1, and thus completes the proof of correctnes. ut


