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Abstract

A code sandwich consists of before, after, and body code. Typically, the before
code makes some change, the body code works in the context of the change, and the
after code undoes the change. A code sandwich must guarantee that its after code
will execute if its before code has executed, even if exceptions arise. This pattern is
common to many programming situations, and most modern languages have some
language-level support for expressing it.

We survey support for code sandwiches in several programming languages
and proposed language extensions. We explain why such support can improve a
program, consider related features, and discuss desirable properties that a language
can provide its programmers. We relate these properties to Jyro, our code sandwich
extension to Java. We examine two large, mature open-source programs, find
numerous sandwich-related bugs and readability issues, and demonstrate how they
might be avoided using our Jyro implementation.

1 Introduction
Most programmers have encountered a situation like the following:

1 // L is a mutex lock
2 lock( L );
3 /* do work */
4 unlock( L );

In the above code snippet, lines 2 and 4 are semantically linked: they perform dual
operations on a single resource. In any well-behaved program, these operations occur
only in ordered pairs. A lock must always be followed by an unlock, and an unlock
may only occur after a corresponding lock. However, the link between these operations
is invisible to the compiler. The programmer must ensure that such implicitly-linked
operations occur at correct times, in a correct order.

This responsibility is complicated by the code represented by line 3 in the above
example. Even a well–behaved program may do an arbitrary amount of work between
calls to lock and unlock. The two calls may be separated visually by many pages
of code. Worse, the intervening code may contain control flow (such as a break
statement) that bypasses the call to unlock, creating an opportunity for the program
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to miss the unlocking step. Furthermore, if the language supports exceptions, this
problematic control flow may be invisible to the programmer.

Such situations arise whenever a program manipulates shared resources. APIs for
locks, sockets, files, or database connections may require a program to explicitly close or
release a resource that it previously acquired. In a language without garbage collection,
the programmer is responsible for allocating memory before its use and releasing it after
its use. In general, a variety of programming tasks call for a program to make a change,
operate in the context of that change, and then undo the change. We call such situations
code sandwiches. Section 2 defines this term formally and gives additional background,
while Section 3 considers related prior work.

Several modern languages have evolved programming mechanisms to help program-
mers write safe, defensive code in the situations described above. These typically allow
a programmer to make explicit the connection between code that makes a change and
code that reverses the change. In Section 4, we review such mechanisms in several
languages and proposed language extensions. Each has its strengths and weaknesses;
we examine the trade-offs in Section 5. Our goal is to characterize the design space for
such language features, in the hope that future language designers will make design
choices with open eyes. We also hope to provide a common basis for discussing these
mechanisms.

As an example of “sandwich-aware” language design, we have extended Java with
explicit support for code sandwiches. We describe our language extension, Jyro, in
Section 6. Section 7 relates our experience using a prototype Jyro implementation to fix
numerous bugs and readability issues in complex, real-world applications. Section 8
concludes.

2 Code Sandwiches
Informally, think of a code sandwich as three “pieces” of code: code that makes a
change, code that operates in the context of that change, and code that reverses the
change. More formally,

Definition 1 A code sandwich is a triple formed of three segments of source code,
called before, body, and after, with two properties:

• body code executes between the before and after code.

• Correct program behavior requires that, for any before code that executes, the
associated after code also executes.

In the terminology of control flow analysis, we say that after code must postdominate
its associated before code. If a sandwich does not meet this condition, we call it
defective:

Definition 2 If there exists a path through the body of a code sandwich that causes the
after code to be skipped, then the program has a code sandwich defect.
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Code sandwiches appear in many programming situations. Several common ex-
amples relate to the acquisition and release of scarce resources, such as locks, file
descriptors, or socket connections. In more general cases, any temporary change of
program state may require a code sandwich. For example, a GUI-based program may
temporarily ignore user inputs, or an OS kernel may temporarily disable hardware
interrupts. Failure to restore earlier state in these cases will cause serious bugs.

Defective code sandwiches arise most frequently in the presence of exceptions and
their associated invisible control flow. Indeed, special language features to manage code
sandwiches arise chiefly in languages that support exceptions (see Section 4).

However, exceptions are not the only cause of defective code sandwiches. Whenever
changes are made to body code, new control paths may arise that bypass the after code.
In the simplest case, a maintainer need only add a return statement to a sandwich’s
body to introduce a new defect, which may lead to silent errors. When the body code
is large and before and after are widely separated, such mistakes can be hard to detect
visually.

Errors caused by defective sandwiches are not always catastrophic. A resource leak
will rarely crash a program, though it may cause a slowdown [24]. Thus, such bugs
may be difficult to find with standard debugging tools. In some cases, specialized tools
may be used to detect these defects statically [19]. However, we prefer to give the
programmer some reliable way to avoid mistakes in the first place.

3 Related Work
The SABER analysis of Reimer et al. [19] detects several types of faults, including
code sandwich faults. Sandwich defects are violations of “Must call X after Y” rules.
SABER finds such defects in three of the four stable commercial Java applications they
test, heightening our concern that poor language support breeds sandwich-related bugs.

Weimer and Necula [25] create an analysis to find resource management bugs in the
presence of exceptions. The analysis looks for cases where exceptional control flow
can cause a resource, such as a file handle or socket connection, to be leaked. They run
their analysis across more than two dozen mature Java applications and find exception-
handling errors in all but one. In response to these results, the authors propose a Java
language extension, compensation stacks, which we discuss further in Section 4.9.1.
This extension is partly modeled on a theory of compensating transactions in databases
[14].

AspectJ and other aspect-oriented programming (AOP) languages let the program-
mer define executable advice on sets of method calls, constructors, field accesses, and
similar actions [12, 13]. One can implement a superset of the code sandwich support
we discuss using the before, after, and around advice forms. However, when a
code sandwich is local to a particular scope, object, or context, such use is an abuse
of a system meant to centralize specification of cross-cutting concerns. For example,
sandwiches often describe opening and closing files, but when writing to a file is the
primary purpose of a function, treating the matched open/close operations as an aspect
may be inappropriate. Rich language support for code sandwiches simplifies writing
aspects just as it simplifies writing traditional methods and objects. Thus we suggest

3



that AOP and language support for code sandwiches are mutually compatible but mostly
orthogonal.

4 Overview of Existing Techniques
A language may provide three special features to help programmers avoid code sandwich
defects:

• Inevitability: The language may provide a means to make after code inevitable
once execution reaches a certain program point. This can make sandwich code
“correct by construction”: a programmer using this feature can be certain that
after code will never fail to run.

• Syntactic linkage: The language may provide a mechanism to explicitly associate
before and after code, usually with special syntax. Such a mechanism promotes
program understanding and eases maintenance. The link between before and after
code becomes visible to both the programmer and the compiler.

• Encapsulation: The language may provide a means to encapsulate a common
code sandwich pattern and reuse it.

In this section, we survey how a variety of modern languages offer one or more of
these features.

4.1 C++: Destructors and RAII
C++ associates constructor and destructor functions with class definitions. When a
stack-allocated C++ object falls out of lexical scope, its destructor is called immediately.
This is most obviously useful as a means to release memory explicitly allocated in the
class’s constructor. However, destructors can also guarantee release of other resources.
For example, the mutex locking code from Section 1 might be changed to the following:

1 // L is a mutex lock
2 {
3 scoped_lock S( L );
4 /* do work */
5 }

Here, scoped_lock is a class whose constructor locks the given mutex and whose
destructor unlocks the same. Thus L is locked on line 3 and unlocked on line 5 when
the object S goes out of scope [23]. This idiom for resource management is referred to
as Resource Acquisition Is Initialization, or RAII.

RAII provides the three language features discussed above. In typical usage, a
sandwich’s before and after code reside in the constructor and destructor of a single
class. This creates a clear syntactic link between the two. The language guarantees that
the destructor will run when control exits its containing scope, even if this happens as a
result of a propagating exception. Thus, the after code is inevitable. Lastly, because
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RAII builds upon classes, C++ provides strong support for encapsulating sandwiches as
reusable components.

(Variations on this form of syntactic linkage are possible, though rare. A programmer
could put before code elsewhere, and only use the after-inevitability guarantees provided
by the destructor.)

Boehm [2] points out that the RAII idiom is restricted to languages where destructors
run at well-defined times. It does not translate cleanly to garbage-collected languages
like Java, where finalizers run at the whim of a separate garbage collection thread and
therefore may be significantly delayed. Some kinds of cleanup code may endure garbage
collection delays without serious problems. For example, a cleanup routine that closes
a temporary file may not need to run as soon as possible after the program finishes
interacting with the file. For thread synchronization via mutex unlocking, however,
cleanup code must run immediately.

4.1.1 C++: Special Cases

Several standard C++ classes constitute resource management sandwiches, all of which
can be built using the language primitives already described. The auto_ptr template
class behaves like a pointer but also encapsulates unique ownership of allocated mem-
ory. This memory is freed in auto_ptr’s destructor unless ownership has already
been transferred elsewhere. Similarly, file stream classes open the file named in the
constructor, then close it in the destructor.

File streams demonstrate that a sandwich encapsulation may provide nontrivial
functionality (e.g., formatted input and output routines) for use within the sandwich
body. A sandwich encapsulation need not be limited to providing only begin and end
code. Because this additional functionality is only available within the scope of the
body, run-time errors such as writing to a closed file can be prevented at compile time.
However, as we will see with Python (Section 4.5), alternate designs can provide a
scope-limited, sandwich-managed object which is distinct from the sandwich proper.

4.2 Java: The finally Keyword
Java specifies try/catch blocks for exception-prone code [10]. A try block may be
followed by an optional finally block. The language guarantees that the code in the
finally block will execute regardless of how the try block exits (either normally or
through an exception).

Our running mutex example might be expressed in Java as:

1 // L is a mutex lock
2 lock( L );
3 try {
4 /* do work */
5 } finally {
6 unlock( L );
7 }
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boolean locked = false;
Lock commitLock;
try {

locked = commitLock.obtain( /* args */ );
return /* complex expression */ ;

} finally {
if (locked) { commitLock.release(); }

}

Figure 1: Java’s try/finally in practice. Example taken from Lucene.

The before code (here, the lock operation on line 2) might appear either within the
try block or above it, depending on the situation. In either case, there is no explicit
syntactic linkage between before and after, and no convenient means for encapsulation
or reuse of common patterns. The finally block only provides inevitability.

Figure 1 shows an example in which finally is used to release acquired resources.
Note the use of the flag value locked, which indicates the success of the exception-
prone call to commitLock.obtain. In this example, the after code first checks the
flag to determine if the release method should be called.

4.2.1 Java: Special Cases

Java’s synchronized keyword handles the common case of low-level mutex locking
for thread synchronization. This keyword provides a syntactic convenience for lexically
scoped, exception-safe mutex locking. Manual locking, as in the example we show
above, is still necessary for programmers interacting with the lock structures in the
java.util.concurrent package, or with custom lock structures.

The Java privileged code API [8] provides a mechanism for code to temporarily
increase its security privileges. Privileged actions are often specified as anonymous
inner classes, using the following pattern:

AccessController.doPrivileged(
new PrivilegedAction() {

public Object run() {
/* work to do while privileged */

}
});

This is an example of library-based support for a common code sandwich pattern.
In this case, before is the action of enabling privileged mode, and after is the action of
disabling it. The user of the java.security library specifies the body code in the
run method of a PrivilegedAction object.

In older versions of the JDK, privileged actions were started and stopped using
explicit calls to beginPrivileged and endPrivileged. The prescribed pattern
for using these two functions safely was a try/finally block [9]. Changing to
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doPrivileged simplifies JIT compilation by making privilege boundary crossings
easier to identify. Unfortunately, inner classes impose verbose syntax and variable-
access restrictions that can make using the new API cumbersome [16].

4.3 D: Scope-Guarded Statements
D is a language proposed as a replacement for C and C++ in the systems and appli-
cations domain [5]. It has C-like syntax, and has support for both RAII patterns and
try/finally constructs. Furthermore, D has a third kind of code sandwich support:
the scope guard syntax. A scope-guarded statement takes one of three forms:

scope (exit) [statement]
scope (success) [statement]
scope (failure) [statement]

In each case, the given statement is not executed until control exits from the
containing lexical scope. A statement guarded by success is only executed if the
containing scope exits normally (i.e., not because of an exception). Conversely, the
failure guard specifies that the statement should only be executed if the containing
scope exits due to a propagating exception. The exit guard executes the statement in
either case.

Using scope guards, our earlier example becomes

1 // L is a mutex lock
2 {
3 lock( L );
4 scope (exit) unlock( L );
5 /* do work */
6 }

The mutex will be unlocked when control reaches line 6.
Scope-guarded statements execute in reverse order from when they were encountered.

This corresponds to the behavior of C++ destructors: when several C++ objects go out
of scope at the same time, they are destructed in reverse order of their declarations.

Use of scope guard statements can obviate the need for flags that arises in the context
of finally blocks (see Figure 2). In addition, the failure and success guards
allow cleanup statements to be sensitive to the success or failure of body code.

The scope guard syntax provides an inevitability mechanism for after code. It does
not create an explicit syntactic linkage between before and after code. However, the
programmer is free to place the before and after code next to each other to make the
association clear to the code reader. This contrasts with try/finally constructs,
where before and after code are visually separated by body code. Scope guards do not
provide encapsulation.

In some cases, the scope guard pattern can be implemented using the existing
features of another language. Nasonov [17] proposes a library-based implementation
of scope (exit) as an extension of the C++ Boost libraries. As of this writing, the
review status of the extension is “pending.” [3]
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Lock commitLock;
{

commitLock.obtain( /* args */ );
scope (exit) commitLock.release();
return /* complex expression */ ;

}

Figure 2: Scope guard statements in D. Example rewritten from Figure 1.

4.4 C#: The using Statement
C# finalizers1 run under control of the garbage collector, not the programmer, and
therefore are inappropriate for encapsulating sandwich after code. Instead, C# offers
the System.IDisposable interface and the using statement to define and invoke
cleanup actions:

1 // L is a mutex lock
2 using (ScopedLock lock =
3 new ScopedLock( L )) {
4 /* do work */
5 }

Here ScopedLock is a class whose constructor locks the given mutex. Scoped-
Lock must implement the System.IDisposable interface, which requires a sin-
gle void Dispose() method. The using statement binds a local variable to
an IDisposable-implementing value and invokes its Dispose method when the
using block completes. In this example, ScopedLock.Dispose should unlock
the mutex. The using statement will invoke lock.Dispose on line 4, when the
block terminates.

C# using statements are exception-safe: the Dispose method will be called
regardless of how the using statement terminates. In fact, the C# language specification
[6] clarifies the behavior of using by rewriting examples into a try blocks with
finally clauses similar to that shown in Figure 1.

As a syntactic convenience, a using statement may bind several variables in se-
quence; this is equivalent to nested using statements. An anonymous IDisposable
value may also be used if no bound name is required:

// L is a mutex lock
using (new ScopedLock( L )) {

/* do work */
}

It is worth noting that Dispose methods and finalizers have no special relationship
imposed at the language level. Neither implicitly calls the other, and there is no guarantee

1Earlier versions of the C# specification used the term “destructor.” This has since been abandoned due to
confusion with C++ destructors, which have similar syntax, but run at deterministic times [6].
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that a using-bound value will be garbage-collected promptly when the using block
completes. Coordinating resource release between finalizers and Dispose methods is
entirely the programmer’s responsibility.

In the language of code sandwiches, we can say that C# provides inevitability and
encapsulation, and permits but does not enforce syntactic linkage. The programmer
may choose to put the before code inside the constructor of the IDisposable object,
as in our ScopedLock example. However, since a single IDisposable object may
be used with multiple using blocks, the programmer may prefer to put before code
somewhere other than the constructor.

4.5 Python: Context Managers
Python 2.5 introduces a type of object called a context manager and an associated
keyword with. This new feature “allows common try. . .except. . .finally usage
patterns to be encapsulated for convenient reuse.” [20] A context manager is an object
that defines a before function named __enter__ and an after function named __-
exit__ [21]. Context managers are invoked by the with statement as follows.

# L is a mutex lock
with ScopedLock( L ):

body

Here ScopedLock is assumed to be the constructor for a context manager for
locks. Code is executed in the expected order: first __enter__ executes, then the
body code, then __exit__. The exit function is guaranteed to run even if the body
code throws an exception.

Python context managers are similar to C# IDisposable objects. Both provide
inevitability: they guarantee that their after code always executes. Both provide encap-
sulation by means of specially handled objects. Python provides a more obvious means
of syntactic association via the pairing of __enter__ and __exit__.

4.5.1 Context Managers as Single-Value Generators

Python defines an additional shortcut for creating context manager objects using genera-
tor functions. A generator function that yields exactly once can be treated as a context
manager. For example, the following is a complete implementation of ScopedLock
in a single function:

1 @contextmanager
2 def ScopedLock(mutex):
3 mutex.lock()
4 yield
5 mutex.unlock()

The @contextmanager decorator on line 1 converts ScopedLock from being
a generator function that yields a single value into a complete object with __enter__-
and __exit__ methods. The __enter__ method includes all execution before the
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yield, while __exit__ performs all code after the yield. From the perspective
of a library developer creating such a sandwich, yield marks the location where a
caller’s body code would be injected.

This provides a novel way to share state between before and after code: the two
code segments share the local context of a single function, with no need for private
object fields or global variables.

4.5.2 Scoped Name Binding

An extended with syntax offers scoped name binding similar to, but more general than,
that offered by C#:

# L is a mutex lock
with ScopedLock( L ) as crit:

body

This binds crit to the value returned by ScopedLock.__enter__ (or pro-
vided by yield) while the body runs. This bound value need not be the context
manager itself: it can be any arbitrary value. For example, a file context manager might
create and return an opened file object from __enter__ for use within the body, with
the file and the file context manager being distinct objects. C# can only bind a name
to the IDisposable object itself, and therefore would require that the file context
manager and file be one and the same.

4.6 Common Lisp
The code sandwich problem takes on a different aspect in a functional language. Pro-
grammers may find it convenient to encapsulate before, after, or body code in anonymous
functions or closures, depending on the features provided by their language.

Common Lisp is a functional language with anonymous functions, closures, and an
integrated macro system. It gives the programmer power sufficient to write custom flow
control.

Standard in Common Lisp is the unwind-protect operator. This operator takes
one or more Lisp forms as arguments. The first form is the protected form, and every
subsequent form is a cleanup form. When the protected form exits, no matter the
cause of exit, the cleanup forms will run. The semantics of unwind-protect do not
guarantee that every cleanup form will run if one terminates abruptly; this guarantee
requires nested unwind-protects [18].

(unwind-protect
(progn

(obtain-lock lock)
(do-work))

(release-lock lock))

Since Common Lisp permits macro definitions, such cases are often handled by
specific macros exported by the relevant library. For example, with-open-file

10



opens a file, invokes user actions, and then closes the file after those actions, in the
manner of unwind-protect. So, acquiring a lock through some library may be as
simple as

(with-lock (lock)
(do-work))

4.7 O’Caml
O’Caml admits both functional and object-oriented coding paradigms. It does not have
explicit language support for code sandwiches. However, we can develop a library-based
pattern for code inevitability as follows:

1 let doWithCleanup after body =
2 let result =
3 try
4 body ()
5 with problem ->
6 after (Some problem);
7 raise problem
8 in
9 after None;

10 result

The above defines a function doWithCleanup that takes two arguments: an after
function and a body function. Any exceptions raised while calling body are temporarily
caught (on line 5) and then re-raised after the after call finishes. If no exceptions
arise, then the after call runs on line 9 after the body completes. Calls to after
include the exception being thrown, if any, allowing specialized cleanup depending on
the outcome.

We can specialize this generic function to create a code sandwich wrapper for the
mutex locking pattern:

let withLocked mutex =
Mutex.lock mutex;
let after _ = Mutex.unlock mutex in
doWithCleanup after

Note the use of function currying in this construct. By placing the after argument
first when defining doWithCleanup, we allow specialized wrappers such as with-
Locked to provide cleanup code while still leaving the sandwich body unspecified.
Under this arrangement, we can pass any body function to the return value of with-
Locked L, where L is a mutex, and this body function will be called with the lock
held.
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4.8 Scheme
Scheme is a dialect of Lisp with support for continuations. A procedure call’s dynamic
extent is the time between when it is entered and when it completes. Continuations
allow calls to be reentered after they return, so a call’s dynamic extent may include more
than one span of time.

Such behavior complicates Scheme’s support for code sandwiches. Since R5RS
[11], Scheme has included the dynamic-wind operator. This operator can directly
wrap locking and unlocking functions:

(dynamic-wind
(acquire-lock lock)
(do-work)
(release-lock lock))

The dynamic-wind operator ensures that a call to before precedes every entry
to the dynamic extent of body, and a call to after follows every exit [22]. In the lock
example, dynamic-wind provides mutual exclusion even if do-work’s dynamic
extent is reentered. Since mutual exclusion is often needed, the author of a locking
library is likely to export an equivalent macro, just as in Common Lisp.

4.9 Proposed Java Extensions
4.9.1 Compensation Stacks

Weimer and Necula perform path analysis on a large corpus of Java code and show that
resource handling bugs are common. They then propose a novel language extension as
a solution [24, 25]. Their system allows the programmer to describe a compensation for
a segment of code. A compensation is a set of statements that reverses the effect of the
code it is attached to, such as by releasing a lock or closing a file.

Compensations are stored in special structures called compensation stacks, which
are first-class objects in the extended Java language. Compensations stored in a stack
are executed when a run function is called on the stack. Compile-time analysis ensures
that no compensation stack goes out of scope unless all its compensations have run,
thereby ensuring that no action is taken without its associated compensation eventually
executing.

Compensation stack use is as follows:

// L is a mutex lock
CompensationStack S =

new CompensationStack();
try {

compensate { lock( L ); }
with { unlock( L ); } using (S);
/* do work */

} finally { S.run(); }
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The compensation stack approach differs from the approaches presented above in
that a compensation stack is not inherently tied to the call stack or to scope nesting
structure. Being objects in the language, compensation stacks may be passed to or
returned from functions, and cleanup actions may be stored into them in any context.
The potential power of this approach is discussed in Weimer’s original papers; we note
it here as a potential point in the design space.

Weimer’s proposal includes syntactic sugar to simplify the case where lexically
scoped cleanups are all that is desired. Thus, our above example is more verbose than
strictly necessary.

4.9.2 Java with Closures

Bracha et al. [4] propose to extend the Java language with explicit closures. This would
provide another way to express code sandwiches in Java. Following a pattern similar to
our O’Caml pattern above, we arrive at the following function for exception-transparent
locking, which is very similar to one suggested by Bracha et al. [4]:

public static
<T, throws E extends Exception>
T withLock(Lock L, {=>T throws E} body)

throws E {
L.lock();
try {

return body.invoke();
} finally {

L.unlock();
}

}

Here, before and after share the body of a single function, with inevitability achieved
through the use of a try/finally block. The function may then be called, with the
second argument being a closure representing the body of the code sandwich:

withLock(L, {=>
/* body code */

});

In this example, the code sandwich pattern is encapsulated within a function. The
before and after code do not have explicit syntactic linkage, but they are near enough to
one another for the programmer to see their relationship easily.

4.10 C: GDB Cleanup Chains
Although C has no exceptions, Section 2 notes that any non-sequential control flow
can create code sandwich defects. Furthermore, C does offer a low-level mechanism
for interprocedural control flow: setjmp and longjmp. A call to setjmp preserves
the current stack context and registers in a program-supplied buffer. Passing the same
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buffer in a later call to longjmp restores this stack context, jumping back to the earlier
setjmp call even across function boundaries. One common use of setjmp/longjmp
is to return execution to a top-level event dispatch or command processing loop. The
application calls setjmp at the top of this loop. If processing of an event or command
fails, the application uses longjmp to abandon the current task and quickly return to
the dispatch loop for the next operation.

When used carefully and correctly, setjmp approximates try/catch while
longjmp approximates throw. However, there is nothing to approximate finally,
so resource leaks and other code sandwich defects seem unavoidable in code that
uses this style. Avoiding leaks requires a combination of library support and careful
adherence to coding guidelines.

The GNU Debugger (GDB) illustrates the extraordinary effort needed to get C
sandwiches right. GDB uses setjmp/longjmp to return to its command processing
loop as described above. Cleanup actions that should be performed when returning
to this loop are collected in cleanup chains, which behave as stacks. Typical cleanup
actions include releasing allocated memory and closing opened files. If GDB used
mutex locks, we might find the following code:

1 // L is a mutex lock
2 lock( L );
3 cleanup *old = make_cleanup( unlock, L );
4 /* do work */
5 do_cleanups( old );

The make_cleanup call on line 3 records the old depth of a hidden global chain
(stack) of cleanup actions. It also pushes an additional cleanup action onto this chain by
providing a function handle (unlock) and an argument to be passed to that function (L).
If the sandwich body code on line 4 completes without error, then the do_cleanups
call on line 5 executes all saved cleanup actions down to the old cleanup chain depth
recorded earlier. A distinct do_cleanups call in the main command processing loop
(not shown) takes care of running cleanup actions after a longjmp.

Cleanup chains are GDB-specific. Other applications may differ, but would need
a similar mechanism if they intended to use setjmp/longjmp in a similar manner.
Cleanup chains provide inevitability assuming that the top-level dispatch loop calls
do_cleanups correctly. Syntactic linkage is implicit, much like D’s scope guards:
programmers may put before and after code next to each other, such as on lines 2 and 3
of the above example, but there is no syntactic requirement to do so. Cleanup chains
offer no encapsulation.

4.11 LATEX
Though not a general-purpose programming language, the LATEX markup language has
explicit support for code sandwich patterns in the form of environments [15]. From
the user’s perspective, there are two commands of importance: \begin{envname}
and \end{envname}. The user specifies a new environment by passing the name of
that environment to begin, and closes the environment by passing the same name to
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end. These operations correspond to pushing and popping from an environment stack.
Matched behavior is enforced: the user may only call end with the name of the current
top of the environment stack, or the input will be rejected as invalid.

Thus LATEX gives a guarantee of inevitability at “run time” (i.e., document gen-
eration time). The programmer who writes a begin clause may be certain that the
corresponding end will be reached if the document is valid. However, end must be
called explicitly, with a particular argument. This makes the LATEX language unique
among the languages reviewed in this section: although after code must be called
explicitly by the programmer, inevitability is still ensured.

5 Comparison of Existing Techniques
We now consider similarities and differences in code sandwich support for the languages
discussed above.

5.1 Common Themes
The following points are common to all the approaches reviewed in Section 4.

• Of the three features discussed at the beginning of Section 4, inevitability recurs
in every instance. This feature is clearly in high demand, particularly in languages
supporting exceptions.

• Code sandwiches tend to have well-defined lifetimes: most code sandwiches
require that after code run at a deterministic time. Each of the languages and
extensions in our review provides this feature.

• When several code sandwiches are nested, they are organized into stacks. In most
languages, they are associated with the call stack or with lexical scoping. Weimer
[24] argues that this association may be too limiting, and his proposal separates
compensation stacks from the lexical stack.

5.2 Syntactic Linkage and Encapsulation
Explicitly associating before and after code can be useful for both the programmer and
the compiler: each benefits from the unambiguous connection between the two code
segments. In an object-oriented language, it is natural to connect related functions or
operations by grouping them and their shared state into a single class. This approach
produces patterns such as C++ RAII objects and Python context managers. These
objects provide the additional benefit of reusability: with the before and after code
encapsulated into a single, reusable object, the programmer is saved the work of writing
these code segments repeatedly.

Encapsulation within objects comes at the price of defining and allocating the
objects. One criticism of the RAII idiom is that new objects must be defined and created
whenever an inevitable after segment is required. This can be especially problematic
in C++, where classes may only be defined at global scope. The compensation stack
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approach provides syntactic linkage without encapsulation, and the D scope guard
syntax is similar. In both, before and after are adjacent to one another, making their
association clear (at least to the programmer). But they remain statements, not functions
or classes, and thus do not form reusable sandwich encapsulations.

Table 1 summarizes the common code sandwich idioms that were presented in
Section 4.

5.3 Sharing State
Before and after code segments typically manipulate the same memory. In our running
mutex examples above, this shared state consists of the lock object. The means by which
before and after share state affects how easily programmers can use a language’s code
sandwich mechanisms.

When before and after are two methods of a single object, it is natural to share state
using data fields in that object. We find this approach used with RAII (in C++) and
with context managers (in Python and C#). When before and after are functions that
do not share a single object’s context, then state sharing must be done either by global
variables (as in LATEX) or by matching arguments (as in Lisp). When before and after
appear as immediate statements in a shared lexical context, as in Java or D, then the
state sharing mechanism is the variables in that shared context. Such a shared context
also exists between the two halves of a Python generator function or a Java closure.

Table 2 summarizes the state sharing mechanisms in the languages reviewed above.

5.4 Exceptions
One of the chief functions of explicit code sandwich support is to ensure that after code
runs if an exception propagates out of the body code. Language designers must also
address the possibility of exceptions in before and after code.

5.4.1 Exceptions in before

A language must specify what happens if an exception escapes a before segment. Does
the associated after code run? If so, then it may become necessary for the after code to
explicitly check whether the before code succeeded, as in Figure 1. In many languages,
after code is specified to only run if before code succeeds. Thus, in C++, an object only
becomes eligible for destruction after its constructor has completed. However, we have
noticed that many C++ programmers are unsure about this behavior.

5.4.2 Exceptions in after

The case of exceptions thrown during cleanup actions can be tricky. Languages typically
allow only one exception to be propagating at any time. An after segment may run in
response to an exception, and yet it may encounter an exception itself. For example, an
after segment that attempts to flush a file buffer and close the file may itself cause an
exception if I/O fails.
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Table 2: Variation of code sandwich solutions: how before and after code share state.

Language/Extension Sharing Mechanism

C++ / RAII Fields of shared class
try/finally Scope of local context
D scope guards Scope of local context
C# using statement Fields of shared class
Python CM – basic Fields of shared class
Python CM – generator Scope of shared function
Common Lisp Arguments passed to after
O’Caml Arguments passed to before, after
Scheme Arguments passed to before, after
Compensation Stacks Scope of local context
Java with Closures Scope of shared function
C cleanup chains One argument passed to after
LATEX begin/end Global variables only

C++ aborts a program that throws an exception from a destructor if that destructor
ran due to exception-triggered stack unwinding. In Java, a finally block may throw
an exception; any exception that was previously propagating is “swallowed” and its
information lost. Python’s context managers also swallow exceptions if a new exception
arises in a context manager’s __exit__ function.

A related issue is whether or not an after action can determine whether it is executing
because of an exception or because of normal execution. C++ provides a library function
uncaught_exception that dynamically checks whether an exception is propagat-
ing. We are aware of no such mechanism in Java. The D scope(failure) (and
scope(success)) guards allow cleanup actions to be invoked only in exceptional
(or normal) executions.

5.5 Style
Style is subjective, so comparing the style of languages is challenging. However, there
are several concrete stylistic choices that must be made when adding explicit code
sandwich support to a language.

Adjacency Do before and after code appear next to each other in the source, or are
they separated by the body?

Locality Do the before and after code appear next to the body code, or are they in a
separate place?

Verbosity Is code sandwich support easy for programmers to use, reuse, and under-
stand?
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Table 3: Variation of code sandwich solutions: adjacency (of before and after code) and
locality (of before and after with respect to body code). See Section 5.5. Data in this
table are based on the usage patterns presented in Section 4.

Language/Extension Adjacency Locality

C++ / RAII Potentially adjacent not local
try/finally Not adjacent surrounds body
D scope guards Potentially adjacent above body
C# using statement Potentially adjacent not local
Python CM – basic Potentially adjacent not local
Python CM – generator Always adjacent not local
Common Lisp Not adjacent surrounds body
O’Caml Potentially adjacent not local
Scheme Not adjacent surrounds body
Compensation Stacks Always adjacent above body
Java with Closures Potentially adjacent not local
C cleanup chains Potentially adjacent above body
LATEX begin/end Not adjacent surrounds body

Table 3 considers each of our example languages in terms of adjacency and locality.
We have listed destructors and context managers as “potentially adjacent” because it is
up to the programmer whether the before and after functions appear next to each other
in the code. We characterize certain solutions “not local” when their before and after
segments are not given explicitly in the context of the body. This is not necessarily a
bad thing, since whenever the programmer must do something explicitly, he has the
opportunity to forget to do it.

Verbosity is difficult to quantify. In Section 7, we show Java examples where
complete exception safety requires deeply nested try/finally constructs. Other so-
lutions, such as C#, provide syntactic sugar to help limit nesting depth (see Section 4.4).

Several commentators, including Boehm [2], have raised a stylistic complaint against
C++ destructors: that a closing brace may execute arbitrary code via destructor invo-
cation. Many of the other designs we review above are subject to the same criticism.
In the limit, it would be possible to use a feature like D’s scope guarded statements to
write an entire function in reverse order of its actual execution. As with most matters of
style, there is no universally accepted solution. All language features can be misused,
and good taste is not a statically-enforceable property.

6 Jyro: Explicit Support in Java
A language’s code sandwich constructs influence how programmers structure, write,
and reason about their code. To demonstrate this difference we implement Jyro, a small
extension to Java, and provide examples where code sandwiches are significantly easier
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to read and write in Jyro than in Java.

6.1 Proposed Syntax and Semantics
Jyro is built atop JastAddJ [7], an extensible Java compiler. Jyro adds the keyword
within, which introduces a syntactic block that uses encapsulated code sandwiches.
The syntax for within is similar to C#’s using syntax. For example, consider the
use of a critical region class designed for Jyro:

// L is a mutex lock
within (new Locked( L )) {

/* body code */
}

The class Locked in this code must implement one of two interfaces: Sand-
wich (proposed here) or java.io.Closeable (already in standard Java). The
Sandwich interface consists of two public methods:

• void before();

• void after();

The Jyro compiler introduces a hidden variable tmp to hold the value of the expres-
sion in within’s parentheses. If Locked implements Sandwich, then Jyro compiles
the above within block as:

{
final Locked tmp = new Locked( L );
tmp.before();
try {

/* body code */
} finally {

tmp.after();
}

}

The standard java.io.Closeable interface provides a void close()
method. Many classes in java.io implement Closeable; all such classes expect a
call to close to postdominate their constructor. If Locked implements Closeable
and not Sandwich, then Jyro compiles our example as:

{
final Locked tmp = new Locked( L );
try {

/* body code */
} finally {

tmp.close();
}

}
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The guard of within may be any expression, not just an allocation. Optionally, the
guard may introduce a named variable to hold the Sandwich or Closeable object,
so the body can access other the fields and methods of that object. Thus:

within (Locked crit = createLock( L )) {
/* body code */

}

Jyro compiles this as the following:

{
final Locked tmp = createLock( L );
Locked crit = tmp;
tmp.before();
try {

/* body code */
} finally {

tmp.after();
}

}

Observe that any assignment to crit within the body will not change the object on
which after is called.

6.2 Classification by Features
Regarding the desiderata of Section 5, the within construct provides inevitability
with a well-defined lifetime tied to the lexical stack. A class that implements Sandwich
has explicit syntactic linkage of before code with after code. Classes that implement
Closeable have weaker linkage; the close method is generally meant to postdomi-
nate the constructor. In either case, encapsulation is strong as before and after code are
bound in a single class from which many instances can be created.

Fields in the Sandwich- or Closeable-implementing object allow state sharing
between before and after code, much like C++ or C#. Exceptions in before code
propagate to the caller without running after code. Exceptions in after code also
propagate to the caller, but will swallow any exception that might already have been
propagating up from the body. This is similar to exception-swallowing in Python and
standard Java.

Jyro allows adjacency in definitions of before and after code. Jyro does not pro-
vide locality: an encapsulated sandwich class is typically defined far away from the
body code. Verbosity is good: Jyro is syntactically concise, especially when a single
Sandwich or Closeable implementation is reused in many places. Section 7.1
shows that Jyro would eliminate thousands of lines from a large, complex, real-world
application.

Of the languages reviewed in Section 4, Jyro is most similar to C#. The chief
difference is that Jyro’s Sandwich interface specifies two functions, representing both
before and after code, in contrast to C#’s Dispose method, which only represents
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after code. Our goal in proposing Jyro is to explore the design space of code sandwich
support, not to assert the superiority of one approach over another.

7 Jyro Case Studies
To assess the utility of a structure like within, we reworked portions of two large,
complex Java applications to use Jyro.

Azureus is a popular open-source BitTorrent client written in about 340,000 lines
of Java. Azureus often handles network connections and files, and its authors have
clearly attempted to handle the implicit code sandwiches associated with managing
these resources. These attempts often cause confusing, deeply-nested try/finally
blocks. Despite these efforts, numerous code sandwich bugs remain. Jyro’s within
syntax both simplifies confusing sections and makes many current bugs easy to correct.

Lucene [1] is a high-performance open-source library for text search engines. Lucene
is about ten thousand lines long and is a fairly mature project; we found few code
sandwich bugs. The sandwich bug analysis of Weimer and Necula [25] detected only
two possible bugs, one in a test case and one reachable only if a core Java library was
buggy and several exceptions occurred. However, we found several places where Jyro’s
within syntax makes Lucene code significantly easier to read and understand.

7.1 Monitor Class
In Azureus the class AEMonitor implements thread-queuing synchronization. Azureus
contains over 1100 calls to AEMonitor.enter. Each is protected by a finally block
containing just a call to AEMonitor.exit. These calls often surround only one or
two statements, but Azureus contains cases where matching enter and exit calls
surround over 200 lines.

It is clear from usage that these calls are the before and after of a code sandwich,
although this is nowhere documented in Azureus. Still, this was handled correctly in
every case we examined, but at a mild cost to code complexity:

mon.enter();
try {

/* body code */
} finally {

mon.exit();
}

In Jyro, it is trivial to rewrite AEMonitor as a class that implements Sandwich.
Every use of the class is then simplified:

within (mon) {
/* body code */

}

Rewriting uses of AEMonitor in this manner eliminates over 3000 lines of Azureus
code and guarantees that correct sandwiches will remain correct in the future.
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7.2 File Stream Bugs
Azureus handles many files and network streams, so they are frequently opened and
closed throughout its code. Azureus’s authors clearly try to close every file they open,
even when exceptions are thrown, but mildly complicated situations often confound
their efforts.

For example, the following code (heavily condensed here for space) appears within
the AEJarReader class:

1 InputStream is = null;
2 JarInputStream jis = null;
3 try {
4 is = getStream(name);
5 jis = new JarInputStream(is);
6 /* ... read streams ... */
7 } catch (Throwable e) {
8 Debug.printStackTrace( e );
9 } finally {

10 try {
11 if ( jis != null ){
12 jis.close();
13 }
14 if (is != null){
15 is.close();
16 }
17 } catch (Throwable e) {
18 }
19 }

The bug in the above code is easily overlooked, and is found throughout Azureus. If
jis.close throws an exception on line 12, its surrounding try block will be aborted
and is.close on line 15 will not execute. We can correct this problem as follows in
plain Java:

1 try {
2 try {
3 InputStream is = getStream(name);
4 try {
5 JarInputStream jis =
6 new JarInputStream(is);
7 /* ... read streams ... */
8 } finally {
9 jis.close();

10 }
11 } finally {
12 if (is != null) {
13 is.close();
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14 }
15 }
16 } catch (Throwable e) {
17 Debug.printStackTrace( e );
18 }

The call to is.close on line 13 requires a guard because its constructing function
may return null on line 3. The call to jis.close on line 9 needs no guard because
the new object allocation on line 5 cannot return null.

The corrected code above is so complicated that the author may have intentionally
ignored the bug for the sake of clarity. Using Jyro yields code that is not only correct
but also easier to read, write, and think about:

try {
InputStream is = getStream(name);
if (is != null) {

within (is) {
within (JarInputStream jis

= new JarInputStream(is)) {
/* ... read streams ... */

}
}

}
} catch (Throwable e) {

Debug.printStackTrace( e );
}

This type of bug appears repeatedly in Azureus, even though the authors clearly
intend to satisfy code sandwich requirements when exceptions are thrown. These bugs
indicate that either programmers have difficulty reasoning about exceptions or that
programmers find the try/catch/finally statement to be specifically confusing.
In either case, the within statement makes it easier to get such code right.

7.3 Sandwich Nesting
Now consider a more extreme (but not artificially-constructed) example where code in
Jyro is preferable to the same code in Java. Consider first a trimmed section of code
from Azureus’s CorePatchChecker class:

try {
InputStream is =

new FileInputStream("Azureus2.jar");
InputStream pis =

new FileInputStream(/*filename*/);
OutputStream os =

new FileOutputStream("t.jar");
new JarPatcher(is, pis, os);
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is.close();
pis.close();
os.close();

} catch (Throwable e) {
Debug.printStackTrace( e );

}

This code is rife with code sandwich defects. We first rewrite the code in pure Java
using only try/finally:

try {
InputStream is =

new FileInputStream("Azureus2.jar");
try {

InputStream pis =
new FileInputStream(/*filename*/);

try {
OutputStream os =

new FileOutputStream("t.jar");
try {

new JarPatcher(is, pis, os);
} finally {

is.close();
}

} finally {
pis.close();

}
} finally {

os.close();
}

} catch (Throwable e) {
Debug.printStackTrace( e );

}

Contrast with a Jyro version that is shorter than even the original, buggy Java code:

try {
within (InputStream is =

new FileInputStream("Azureus2.jar"))
within (InputStream pis =

new FileInputStream(/*filename*/))
within (OutputStream os =

new FileOutputStream("t.jar")) {
new JarPatcher(is, pis, os);

}
} catch (Throwable e) {

Debug.printStackTrace( e );
}
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7.4 Wrapper Reuse
Lucene contains classes designed to act as Sandwich objects act in Jyro. Pure Java makes
this usage cumbersome. The abstract inner class Lock.With in Lucene contains two
key functions, the abstract method doBody, and the method run. A simplified excerpt
from Lucene demonstrates its normal usage of this class:

new Lock.With(lock, timeout) {
public Object doBody()

throws IOException {
/* body code */

}
}.run();

That is, “make a dummy instance of the abstract class Lock.With with the follow-
ing block to implement doBody, and run this instance.” This pattern is similar to the
access pattern for the Java privileged code API, discussed in Section 4.2.1. It appears
six different times in the Lucene sources.

Jyro is built to handle exactly such cases. After a simple rewrite of the Lock.With
class to implement the Sandwich interface, the above code reduces to:

within(new Lock.With(lock, timeout)) {
/* body code */

}

This code is easier to understand, involves less boilerplate code, and is more com-
prehensible to programmers who may be uncomfortable with anonymous inner classes.

8 Conclusions
Prior work has demonstrated the existence and importance of code sandwich defects
in real world programs. Programmers and language designers have developed varying
conventions and language support that aid the creation and understanding of code
sandwich patterns. In many cases, sandwich support is not designed into languages but
rather repeatedly evolves as an idiomatic use of other primitives. The results may not be
what language designers would have intended had they considered their options more
directly. In our review of these approaches, we explore their similarities and differences,
and we offer a common framework for comparing them.

Armed with our understanding of code sandwich patterns, we define and implement
Jyro, a small extension to Java with language-level support for encapsulated, reusable
code sandwiches. We assess Jyro’s utility by applying it to two large, mature, real-
world Java programs, and find numerous examples of incorrect or unreadable code
that can be fixed or improved. Future language designers would do well to make
carefully-considered choices among the design alternatives we have identified.
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