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Abstract

A program slice, P′, is the part of a program, P, that may affect the value of a set of variables, V , at a program
point, p. Informally, P′ is well-behaved if it calculates the same values for V at p as P. A well-behaved slice exhibits
good behavior. A static slice must be well-behaved for every input while a dynamic slice must be well-behaved for
just one input.

A union slice is the union of several dynamic slices calculated with respect to different inputs but the same V and
some occurrence(s) of p in the program’s execution history. A realizable slice is a union slice calculated with respect
to all initial states. A realizable slice is, in general, not computable.

Well-behaved union slices allow reasoning about program behavior on sets of inputs, but existing union slicing
algorithms may yield ill-behaved slices, i.e., for some input among those used to construct the dynamic slices, the
union slice will calculate incorrect values for V .

We find that bad behavior of union slices is an artifact of the particular dynamic slicing algorithm, full slicing,
used to calculate the individual slices. Full slicing is the name given to the originally proposed version of dynamic
slicing, to distinguish this version from other variants of dynamic slicing that have arisen since. In contrast, the unions
of relevant slices do yield well-behaved slices.

We propose a generalization of full and relevant slices, effective slices, that can be used to calculate unions
of dynamic slices that are more precise than the unions of relevant slices, but still well-behaved. We extend the
generalization to scant slices. We show that the nodes in the set differences between unions of different kinds of
slices have certain properties useful in debugging.

1 Introduction
A program slice [15], P′, is a subset of a program, P. Slicing algorithms are generally defined on an intermediate,
graph-based representation of P. P′ is then a subset of the nodes of P. A program slice is calculated with respect
to a slicing criterion. The slicing criterion is a way of focusing an analysis of the program precisely and narrowly.
Generally, a slicing criterion specifies at least a program point, p, and a set of variables, V .

Slices can be static or dynamic. A static slice must be correct for any initial state of the program. A dynamic slice
must be correct for just one initial state. The slicing criterion for a dynamic slice includes a specification of the initial
state, σ . In more precise slicing algorithms, the particular execution instance, pi, of p is specified. The superscript
indicates the position in the execution history, i.e., the sequence of instructions, for a given input state. An execution
slice is the set of all nodes in the execution history. Since it contains all nodes executed for a given initial state it must
be correct for that initial state; an execution slice is a dynamic slice, albeit a conservative one.

∗Supported in part by AFOSR Grant FA9550-07-1-0210 and NSF Grants CCF-0621487, CCF-0701957, and CNS-0720565. Any opinions,
findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of AFOSR,
NSF, or other institutions.
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P Prec0 Prec1
1 if(n == 0)
2 x = 3; x = 3;

else
3 x = 3; x = 3;
4 z = x;

V = {x} V = {x}Criterion
p = 4 p = 4

Figure 1: Example showing a program with two precise slices

There are several definitions of correctness for program slicing. Weiser’s original definition requires that the slice
calculate the same values for V at p as the program itself. This definition requires that the slice be executable, i.e., that
it be a program. A closure slice is a slice that contains all nodes that might have an effect on the criterion but which
may not be executable. Amorphous slicing techniques [10, 11] transform a closure slice to an executable slice while
preserving correct semantics. Additionally, this definition implies that the slice must be a backward slice, i.e., a set of
nodes that precede p in program execution. A forward slice is a slice consisting of nodes that follow p during program
execution. There is no analogous definition of correctness for forward slicing [5]. We call a slice that satisfies Weiser’s
criterion well-behaved.

A union slice [3, 14] is the union of dynamic slices where V and p are held constant but σ is allowed to vary. The
criterion for a union slice thus includes not just one initial state, but rather a set of initial states. In earlier work [3],
only the dynamic slice for the final instance of p was used to form the union. In later work [14], all instances are used.
A realizable slice is a union slice calculated with respect to all inputs.

A precise slice is a minimal set of nodes that are correct for all possible executions for a particular slicing criterion.
Precise slices are in general undecidable, but are contained in the corresponding static slice. We observe that a program
may have multiple precise slices. Figure 1 shows such an example. Here the then branch and the else branch are
identical so either is a minimal slice.

Well-behaved union slices, i.e., union slices that are well-behaved for every initial state used to construct the slice,
have applications where a subset of initial states are of interest. For example, several inputs may be found to trigger
just one bug [2]. In correcting the bug, it is useful to examine the well-behaved union of the dynamic slices for each
initial state. However, union slices in general are not well-behaved [9, 13], i.e., they may yield incorrect values for one
of the initial states used in forming the slice. A realizable slice may be ill-behaved as well.

Union slices are defined in terms of full slices, the original dynamic slices. We have observed that the unions of
relevant slices [1], a variant of dynamic slices, are well-behaved regardless of the differences between their slicing
criteria. Semantic effect, a concept introduced in the context of static slicing, allows to distinguish between relevant
and full slices, and explain bad behavior of union slices. We develop the concept of effective slicing, a generalization
of relevant and full slicing. We show that the unions of effective slices are more precise than the unions of relevant
slices yet well-behaved, unlike the unions of full slices. We introduce another form of slicing, scant slicing, which
extends our generalization further. We explore what it means for a node to be in the union of one kind of slice but not
another, and suggest some uses for these difference sets in debugging.

2 Unions of Full Slices
Dynamic slicing algorithms vary in precision: some track dependencies, while other only record which nodes of a
program were executed [17]. In the rest of the paper, we assume a fairly precise dynamic slicing algorithm that
records which definition of a variable reaches a use of that variable each time a node is reached during execution of
the program.

Different execution instances of the same node are distinguished by a superscript. The value of the superscript is
the position of the execution instance of the node in the execution history. In the execution slice for input 2, E2, in
Figure 2, node (6) is the fifth node to be reached in the execution of the program; this execution instance is uniquely
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P X1 F1 X2 F2 U R1 R2
1 read(n); read(n); read(n); read(n); read(n);
2 x = 1; x = 1; x = 1; x = 1; x = 1; x = 1;
3 y = 2; y = 2; y = 2; y = 2; y = 2; y = 2;
4 if (n == 1) if (n == 1) if (n == 1) if (n == 1) if (n == 1)
5 y = 1; y = 1; y = 1;
6 if (y == 2) if (y == 2) if (y == 2) if (y == 2) if (y == 2) if (y == 2) if (y == 2)
7 x = 2; x = 2; x =2; x = 2; x = 2;
8

V = {x} V = {x} V = {x} V = {x} V = {x} V = {x} V = {x}
Criterion p = 87 p = 87 p = 87 p = 87 p = 87 p = 87 p = 87

n = 1 n = 1 n = 2 n = 2 n = {1, 2} n = 1 n = 1

Figure 2: Example program showing the execution slice (X1) and a full slice (F1) of the program on input 1, the
execution slice (X2) and a full slice (F2) of the program on input 2, the union slice (U) for inputs 1 and 2, and a
relevant slice for input 1 (R1)

identified as 65.

2.1 Unions of Full Slices are Ill-behaved
Figure 2 shows an example where the union of two full slices, themselves well-behaved, is ill-behaved. X1 is the
execution slice for input 1. In calculating the full slice, the definition of x that reaches node (8) is located and its
dependencies are calculated. Since node (7) is not executed, the definition at node (2) is used. It has no dependencies,
so the full slice, F1, is the singleton set, {2}.

X2 is the execution slice for input 2. Here node (7) is executed and so backward dependencies from node (7) are
calculated. Node (7) is control dependent on node (6) and the assignment to y at node (3) is the one that reaches the
conditional at node (6), so the slice is the set {3,6,7}.

Full slicing algorithms yield well-behaved slices.

Proof. Let F be a full slice for initial state σ . Let P be the original program. If F is not well-behaved there must be
some first node, e, on which the execution of F differs from P and affects the slicing criterion. There must be some
node in P \F that causes the difference in execution. If the node is in F then e is not the first node to have different
behavior and so there is a contradiction. Call this node d. But d must be in F since it affects e during execution of P
on σ .

However, the union of full slices may be ill-behaved. In the example the union of the two slices, {2,3,6,7}, is
ill-behaved on input 1. For both inputs, the slice did not contain the read statement at node (1). Yet the value of x
at node (8) is determined by the input and is different depending on whether the input value is 1 or 2. Clearly, some
nodes that matter to the value of x at node (8) are omitted in full slicing.

Unions of full slices taken with respect to the same initial state but different execution instances of p are also
ill-behaved. Figure 3 is a slightly modified version of our previous example where n is a loop variable rather than an
input variable. The full slices taken with respect to the two different execution instances of the same node are almost
identical to those taken with respect to the two different inputs in the previous example. The only difference is that
node (1) is included in the full slices for the example in Figure 3 because the other nodes are control dependent on it.
Although the individual slices are well-behaved for their execution instance, their union is not, just as before.

2.2 Realizable Slices Are Ill-behaved
The program in Figure 2 has just two possible executions. One execution occurs exactly when n is 1; the other for
every other value of n. The realizable slice is computable in this case; it is exactly U. We have already shown that U
is ill-behaved. A realizable slice composed from the union of full slices on all initial states may be ill-behaved.
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P F1 F1
1 for (n = 1:2) { for (n = 1:2) { for (n = 1:2) {
2 x = 1; x = 1;
3 y = 2; y = 2;
4 if (n == 1)
5 y = 1;
6 if (y == 2) if (y == 2)
7 x = 2; x = 2;
8

V = {x} V = {x}
Criterion

p = 87 p = 814

Figure 3: Example program showing the full slice with respect to the same node at different execution instances. F1
is the full slice taken with respect to node (8) on the first iteration of the loop, F2 on the second

P S1 S2
1 x = 2; x = 2;
2 y = 2; y = 2;
3 . . .
4 x = 1; x = 1;
5 y = 3; y = 3;
6 z = x * y; z = x * y; z = x * y;
7

Criterion V = {z} V = {z}
p = 7 p = 7

Figure 4: Example program showing two well-behaved slices for the same slicing criterion

3 Semantic Effect
Good behavior in dynamic slices does not guarantee good behavior in their union. A similar problem arises in static
slicing. It has been observed [12, 13] that Weiser’s criterion allows multiple correct static slices. In fact, a correct,
although computationally expensive algorithm, is one that enumerates every subset of P and selects any subset that
calculates the correct values for V at p. A slice calculated in this way may be misleading. One expects that the nodes
of P′ should be those that affect the value of V at p when P executes, but it is possible that P′ is a program that
only coincidentally yields the correct values for V at p [12]. Figure 4, adapted from Kumar and Horwitz, shows two
well-behaved slices taken with respect to the same slicing criterion. The assignments to x and y at nodes (1) and (2)
are killed by the assignments at nodes (4) and (5). S1 is a well-behaved slice since it will always calculate the same
value for z at node (7) as P. However, S2 is a more useful slice, since it contains the assignments to x and y that reach
the computation of z in P.

Kumar and Horwitz [12] define correctness in terms of semantic effect. A correct slice is a slice that contains a
superset of the nodes that have a semantic effect on the slicing criterion. A node has a semantic effect on the slicing
criterion if changing the node in a prescribed way might cause the value of a variable in V at p to change. Semantic
effect is decided based only on the data and control dependencies in the program; without any additional information
from, e.g., symbolic evaluation. By this definition, S1 is an incorrect slice, since it does not include nodes (5) and (6).
The algorithm which Kumar and Horwitz describe yields closure slices but does not guarantee that they be executable.
We call slices that are executable and correct by Kumar and Horwitz’s definition intentionally well-behaved, since they
do not produce the correct values by accident.

The notion of semantic effect has not previously been used with respect to dynamic slicing. However, variants of
dynamic slicing can be distinguished by examining their algorithms through the lens of semantic effect. In particular,
relevant slicing and full slicing differ only in how semantic effect is decided.
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3.1 Relevant Slicing
Relevant slicing [1] is a variant of dynamic slicing. A relevant slice is a superset of the corresponding dynamic slice.
In the formalization of Binkley et al. [4], full slicing is weaker than relevant slicing. Full slices include only nodes
with a positive effect, i.e., nodes that may transitively or directly affect the slicing criterion. Relevant slices also
include nodes with a negative effect, i.e., that cause a statement that otherwise might affect the slicing criterion not to
execute. Relevant slicing was motivated by the observation that bugs may be caused by errors of omission as well as
commission.

Figure 2 shows R1, a relevant slice for input 1. A relevant slicing algorithm would determine that the value of
x at node (8) has a potential dependence on node (6) via node (7), since, had the conditional at node (6) evaluated
differently, the assignment to x at node (7) might have been reached. Therefore, node (6) is included in the relevant
slice. Node (6) is data dependent on node (5) which is control dependent on node (4), itself data dependent on node
(1). The entire relevant slice is {1,4,5,6}. Significantly, this slice includes the read statement, unlike the equivalent
full slice.

Relevant slicing algorithms are generally defined by modification to full slicing algorithms [8]. In the next section
we compare full and relevant slicing algorithms through the lens of semantic effect.

3.2 Semantic Effect in Dynamic Slicing
Unlike static slicing, dynamic slicing uses a record of the program’s execution. This record yields important negative
information, e.g., that a particular program point was not reached during execution or that a particular definition did
not reach a use. Such negative information is not available in static slicing, hence is not considered when deciding
semantic effect. In full and in relevant slicing, an unexecuted node may not have a semantic effect. However, they
differ in the way unexecuted nodes are taken into account in deciding the semantic effect of executed nodes. In full
slicing unexecuted nodes are ignored; in relevant slicing all unexecuted nodes are taken into account.

Figure 2 illustrates this difference. In the full slice for input 1 node (7) is ignored when deciding the semantic
effect of other nodes; in the relevant slice, R1, node (7) is taken into account. Consider what would happen if y were
assigned a different value at node (5). In that case, since the condition at node (6) is dependent on the definition of
y at node (5), the branch might go in the opposite direction. If it did, node (7) would be executed and a different
definition of x would reach node (8). In the full slice, since node (7) is ignored, this chain of possible changes in
program execution is seen as irrelevant, and so node (5) is not included in the slice. In the relevant slice, on the other
hand, node (7) is taken into account; this chain of possible changes in program execution is seen as significant and so
node (5) is included in the slice.

Agrawal et al. [1] suggest approximate relevant slicing as an alternative to relevant slicing where the presence of
pointers makes deciding semantic effect more difficult. In approximate relevant slicing, every conditional node that
occurs in the execution slice is judged to have a possible semantic effect. Approximate relevant slices are cheaper to
compute but less precise [8] than relevant slices.

3.3 Relevant Slice Unions are Well-Behaved
Since relevant slicing algorithms select a superset of the nodes that satisfy semantic effect with respect to all nodes in
the program, unions of relevant slices are well-behaved. This is the case regardless of how the criteria differ.

Proof. Let U be the union of relevant slices {R1, . . . ,Rn} taken with respect to criteria {C1, . . . ,Cn}. Assume that for
some Ce in {C1, . . . ,Cn} there is a first node reached during execution of U on which U executes differently from P
and where this execution affects the value of the slicing criterion. Call this node e. e can execute differently for one
of two reasons. There may be a node in U , e′, such that e′ executed differently in P and this difference caused e to
execute differently. If that is the case, then e is not the first node in U to execute differently and to affect the slicing
criterion, and there is a contradiction. So it must be the the case that there is a node in P and not in U , d, such that its
execution affected the execution of e. But there must be a node in P such that its execution prevented d from being
executed when P was executed on Ce, otherwise d would be included in Re and hence in U . Call this node c. c must
be included in Re, since c has a semantic effect on the slicing criterion through d. P and U must evaluate in the same
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way on c, since otherwise e is not the first node in P to evaluate differently and affect the slicing criterion. Therefore,
d is not reached by P. Therefore, U is well-behaved with respect to criteria {C1, . . . ,Cn}.

In the example in Figure 2, the union of the two relevant slices, R1 and R2, is the whole program, so R1 ∪ R2 is
vacuously well-behaved. Suppose, however, that relevant slices are constructed using the set of inputs {2,3,4,5}. In
each case, the program behaves exactly as for input 2. R2, R3, R4, and R5 are consequently equal. Call their union R.
We show how the general proof above can be applied to this concrete case. Take each node in R in turn and consider
whether it is possible for that node to be the first node reached during execution of R on any input in {2,3,4,5} that
behaves differently than in P when P is executed on the same input. Consider node (1). It cannot behave differently,
as it is a read statement and not dependent on any previous statement. The same argument applies to node (3) and
node (7), which are assignments of constants to variables. This leaves node (4) and node (6). If node (4) executes
differently, then node (2) must have affected it, since node (2) is the only node in P and not in R that precedes node
(4) in execution order. But node (2) did not affect node (4) since node (4) does not depend on the value of x. Finally,
consider node (6). Then, node (6) must have been affected by the execution of node (2) or node (5). The conditional
at node (6) does not depend on the value of x, so node (2) can be ignored. If node (5) is reached by P on any input
state in {2,3,4,5} then node (6) might execute differently in R than in P. But node (5) is control-dependent on node
(4), which was included in R2, R3, R4, and R5 because it had a semantic effect on the slicing criterion through node
(5). And, the conditional at node (4), when reached with initial state in {2,3,4,5}, evaluates to false, causing node (5)
not to be reached, otherwise node (5) would have been included in one of R2, R3, R4, or R5. Thus node (5) was not
reached during the execution of P on input 2. So R is well-behaved.

Since unions of relevant slices are well-behaved, a realizable slice constructed from relevant slices must be well-
behaved for every initial state.

3.4 Relation to Other Kinds of Slices
The union of relevant slices, R, for the same V and over all execution instances of p, but where the initial state, σ , is
allowed to vary, is a subset of the corresponding static slice, S. It is a subset of the union of execution slices, X , as
well. (S∩X)\R contains nodes that were executed, might have affected the slicing criterion, but certainly did not for
any of the initial states. For the example in Figure 2, the reader will observe that the static slice for x at node (8) is
the whole program. Node (2) occurs in the execution slices for inputs {2,3,4,5} but does not occur in the union of
relevant slices. It is excluded because, for these initial states, the assignment to x at node (2) is always killed by the
subsequent assignment at node (7).

Consider the example in Figure 2. For inputs {2,3,4,5}, R2 ∪ R3 ∪ R4 ∪ R5 contains more nodes than are needed
to ensure good behavior. This observation is the motivation for effective slicing, our generalization of full and relevant
slicing.

4 Effective Slicing
In effective slicing the set of nodes taken into account in deciding semantic effect, SE, is a superset of the executed
nodes. If SE is exactly the executed nodes, effective slicing is the same as full slicing. If SE is all nodes, effective
slicing is the same as relevant slicing. There exist cases where a set in between these two extremes is desirable.

4.1 Unions of Effective Slices
4.1.1 In Debugging

Consider the case where m inputs are known to trigger one bug. In that case, there are m initial states, {σ1, . . . ,σm}. If
the bug manifests in a single location, the well-behaved union of dynamic slices taken with respect to all inputs captures
all behaviors belonging to those inputs that are relevant to the bug. We have shown that the union of relevant slices
is well-behaved. It is also the case that the union of effective slices, where SE is the set of all nodes in

⋃
k∈{1,...,m}Xk

where Xk is the execution slice for initial condition σk, is well-behaved for any σ j in {σ1, . . . ,σm}.
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Proof. Let {E1, . . . ,En} be the set of effective slices taken with respect to input states {σ1, . . . ,σn}. The proof proceeds
just the same except for the d case. In that case, c must be included in Ee, unless d is not in SE. If c is in Ee then the
argument is the same as for relevant slicing. If not, then d was never executed for any σk in {σ1, . . . ,σn}. Thus, it can
not have been reached during the execution of P on σe, so again there is a contradiction.

Since SE may be significantly smaller than the whole program, the cost of pointer analysis in deciding semantic
effect may be significantly less than that for calculating precise relevant slices. A realizable slice of effective slices,
where SE is taken to be the union of all execution slices for every initial state, is well-behaved, unlike the union of full
slices, and more precise than the union of relevant slices.

4.1.2 Dynamic Slicing is not Monotonic

Beszédes et al. use the full slice with respect to the final occurrence of p in forming union slices for their work on
slicing C programs [3]. In subsequent work on Java programs [14], however, their slicer accumulates the nodes from
slices calculated with respect to multiple execution instances, which yields larger, hence better, union slices. From
the example in Figure 3 it is apparent that precise dynamic slicing in general is not monotonic in the execution order,
i.e., the slice with respect to one execution instance may be neither a superset nor a subset of the slice with respect
to a different execution instance. In forming union slices in order to approximate realizable slices, the union of the
dynamic slices for all occurrences of p will be larger than the dynamic slice for the final occurrence of p.

4.1.3 Difference with Union of Relevant Slices

E, the union of effective slices, is contained in R, the union of relevant slices. The nodes in R \E have a particular
kind of effect on the slicing criterion; they cause, transitively or directly, an assignment that would otherwise affect
the slicing criterion to be omitted, and this assignment is omitted in every execution slice. Consider the union of
effective slices for inputs {2,3,4,5} for the example in Figure 2. Node (5) is not reached for any execution slice, so
SE = {1,2,3,4,6,7}. Recall that the behavior of the program on each of these inputs is identical. Consider the nodes
in E2. Node (1) and node (4) have no semantic effect on the slicing criterion, since the assignment at node (5) is
ignored. Node (2) is excluded for the same reason it was excluded in calculating R2. Therefore, the effective slice for
input 2, hence the union of the effective slices for inputs {2,3,4,5}, is exactly equal to the full slice, F2. The union of
relevant slices for these inputs is exactly R2. The difference between R2 and F2 is {1,4}, the set of nodes that caused
the assignment at node (5) to be omitted for every initial state. Another way of stating the effect of the nodes in R\E
on the slicing criterion is that these nodes behaved the same way for the subset of initial states considered, and that
their effect was always negative.

This sort of information is useful in debugging. If the cause of a bug is that some action was not taken, then it is
the nodes in R\E that are responsible.

4.2 Unions of Full Slices
The union of full slices (F) is a subset of the union of effective slices (E) for the same set of initial states. F is not
well-behaved even for the initial states for which the slices were constructed. The nodes in E \F are nodes that had
only a negative effect, i.e, caused an assignment that otherwise would have affected the slicing criterion not to be
executed, but where the assignment occurred in an execution slice for at least one of the initial states.

This behavior arises in our motivating example (Figure 2) and in other situations like it. The condition at node
(4) evaluates differently depending on whether the input is 1 or 2. However, the effect in both cases is to cause an
assignment, that otherwise would have affected the value of the slicing criterion, to be omitted. It is clear that some
nodes in E \F must have had different behaviors for different initial states. If every node had behaved identically
and negatively, then these nodes would have been in R \E. It is not the case that all nodes had different behaviors;
a conditional may have multiple data dependencies, only one of which has a different behavior. However, if the
conditional is in E but not in F it is possible that all the assignment statements on which it is dependent will be omitted
from F .

In the following section we introduce our extension of effective slicing, scant slicing. The unions of scant slices
have a similar relationship to the unions of full slices as the unions of effective slices have to unions of relevant slices.
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Nodes with Effect

Uniform Non-uniform Uniform Non-uniform
Nodes in the Union of None Negative Negative Positive Positive

execution slices X X X X X
relevant slices X X X X
effective slices (where SE is the union of execution slices) X X X
full slices X X
scant slices X

Table 1: Nodes contained in the unions of different kinds of dynamic slices

4.3 Unions of Scant Slices
The union of scant slices (Sc) is a subset of the union of full slices (F). For a scant slice, SE is calculated as for an
effective slice. However, only edges that were followed on some execution are considered when calculating semantic
effect. A conditional that always evaluated in the same way has only one outgoing edge in SE. Consider the example
in Figure 2 for inputs {2,3,4,5}. For every execution, the true branch from node (6) was always taken. Therefore,
in deciding semantic effect, the edge from node (6) to node (8) is ignored. A similar argument applies with regard
to node (4). Therefore, node (1) has no semantic effect, since it cannot change the behavior of the conditional at
node (4). The assignment at node (2) is overwritten in every execution, hence node (2) has no semantic effect. The
assignment at node (3) can not affect node (6) since node (6) has only one outgoing edge. Node (4) has no semantic
effect, as it has only one outgoing edge. The same argument holds for node (6). Thus, the only node in the slice is (7),
the assignment to x that actually reaches node (8). A scant slice is not the same as a data slice, which includes only
assignment statements. Had there been a conditional in the program that had branched in both directions then it might
have been included in the slice.

The difference between F and Sc is analogous to the difference between R and E. Whereas, R\E contains nodes
with a uniform negative effect, F \ Sc contains nodes with a uniform positive effect. Table 1 characterizes the nodes
contained in the unions of the variants of dynamic slicing discussed in the paper.

5 Applications in Dynamic Dicing
Dynamic program dicing [6] is a technique for using the difference between two dynamically calculated slices. Dur-
ing program execution, one variable may have the correct value while another may be incorrect. The nodes in the
difference between the slice for the incorrect value and the slice for the correct value are likely to be nodes involved in
the cause of the error. This idea has been extended recently by Zhang et al. [16] who take into account local semantic
properties of nodes to exclude from a slice nodes that were necessary to calculate values that are known to be correct.

Dynamic dicing can be extended by using different kinds of slices and their unions. Consider, for example, the
execution of a single program. A program point may be reached multiple times during execution, but for only one
of those execution instances will a program display incorrect behavior. Consider the union of the effective slices for
all correctly executing instances of a slicing criterion, taking SE to be the union of execution slices. The nodes in the
union are all nodes involved in correct behavior. The difference between the full slice for the incorrectly executing
instance and the union of effective slices contains nodes that are likely to contribute to the incorrect behavior. They
are likely to cause incorrect behavior because they may have affected the slicing criterion in the incorrect execution,
yet they never occurred in a correct execution. Other combinations of different dynamic slicing methods and unions
of dynamic slices may also have interesting applications in dynamic dicing.

6 Related Work and Conclusion
That the unions of full slices are not well-behaved has been observed previously [9, 13]. Hall proposed simultaneous
dynamic slicing to address this problem [9]. Hall’s algorithm iteratively adds nodes to the union slice and does not
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explain why the unions of dynamic slices are not well-behaved. Conditioned slicing using a condition derived from
the disjunction of the initial states is well-behaved [7], but conditioned slicing tools require heavyweight analysis, may
be imprecise, and do not scale as well as dynamic slicing tools [17, 18]. Kumar and Horwitz [12] were the first to
formalize the concept of semantic effect, but did not apply it to dynamic slicing. Binkley et al. [5] use a semantic
meaning function that allows more formal reasoning about semantic effect. Chen and Cheung [6] discuss dynamic
program dicing, which takes the difference between the same kind of slice on different criteria, and Zhang et al. [16]
extend the idea of dynamic dicing by taking the semantics of individual nodes into account.

We exploit semantic effect to explain the underlying cause for the poor behavior of union slices. We observe that a
precise dynamic slicing algorithm may yield slices that contain nodes omitted from a precise static slicing algorithm.
We observe that the unions of relevant slices are well-behaved. We introduce effective slicing, a generalization of
relevant and full slicing, which yields more precise but still well-behaved slices. We introduce scant slicing, a variant
of effective slicing which takes into account the edges traversed in the program graph, rather than only the nodes
visited. We examine the set differences between the unions of different kinds of slices and show that the nodes in the
sets have certain properties that may prove useful in program understanding and maintenance.
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