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Abstract. Group file operations are a new, intuitive idiom for tools and mid-
dleware - including parallel debuggers and runtimes, performance measure-
ment and steering, and distributed resource management - that require scala-
ble operations over large groups of distributed files. The group file operation
idiom provides new semantics for using file groups as operands in standard
file operations, thus eliminating costly iteration. A file-based idiom promotes
conciseness and portability, and eases adoption. With explicit semantics for
aggregation of group data results, the idiom addresses a key scalability barri-
er. We have designed TBON-FS, a new distributed file system that provides
scalable group file operations by leveraging tree-based overlay networks
(TBONS) for scalable distribution of group file operation requests and aggre-
gation of group status and data results. Using a prototype TBON-FS system,
we have integrated group file operations into several tools. Our experience
verifies the group file operation idiom is intuitive and easily adopted, and im-
proves performance at scale.
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1 Introduction

The size of distributed systems continues to expand at a rapid pace to meet the compu-
tational demands of the world. High-performance computing (HPC) systems currently
exist having processor counts in the hundreds of thousands [22], and several imminent
systems will have counts in the millions. Similarly, large companies have tens of thou-
sands of workstations and servers located across local- and wide-area networks. The
emergence of cloud computing to harness the power of Internet hosts has also resulted
in distributed host groups on the order of thousands and millions, and groups consisting
of billions are not unrealistic. Developers of tools and middleware for these large-scale
distributed systems face the daunting task of enhancing or redesigning their software to
operate at scale. These tasks are often hindered by system designs that narrowly focus
on running applications while ignoring the requirements for tools and middieware.
Several classes of tools and middleware share a requirement for performing opera-
tions on groups of distributed files. Distributed system management tools update or
view software or configuration files across large groups, and middleware such as dis-
tributed monitoring uses process and host information found in files on each monitored
system. Distributed computing middleware may require distributing applications or
data as files to groups of hosts, and collecting groups of result files. Many HPC envi-
ronments use a file abstraction for control and inspection of processes (e.g., the /proc
file system on Plan 9, various UNIX implementations, and Linux), where control and
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inspection involves operating on files associated with a single process. Application
runtime environments [31[6] control distributed process groups, resource [17][19][32]
and performance monitors [18][25] perform group process and host inspection, and dis-
tributed debuggers [9] and computational steering environments [20] require both
group control and inspection. Unfortunately, little regard has been paid at the overall
system level to support the group operation requirements of tools and middleware. As
a result, each tool is forced to support the required group operations, leading to replica-
tion of effort and limiting the generality of these techniques and adoption by others.

Our work addresses the need for a common, scalable infrastructure for operating on
large groups of distributed files using a new idiom, group file operations, that provides
a simple, intuitive interface. The cornerstone of the idiom is a new gopen operation
that creates a group file handle for use with existing file operations (e.g., read and
write). The key benefit of the group file operation idiom is eliminating explicit itera-
tion when applying the same operation to a group of files. A file-based idiom also pro-
motes conciseness and portability for group operations. File operations are well-under-
stood and intuitive, and support in programming languages and operating systems is
ubiquitous. Also, file operations are data format agnostic and work on files containing
binary data, text, or both.

Despite the benefits, introducing group semantics for existing file operations while
maintaining intuitive behavior presents several unique challenges. In particular, we ad-
dress the interface and scalability issues associated with group status and data operands.
Our approach is to define intuitive group semantics for existing file operation interfaces
and only make extensions when necessary.

Unfortunately, the group file operation idiom alone does not provide scalability
when operating on large groups of distributed files. The mechanisms underlying group
file operations must be scalable. To this end, we have designed TBON-FS, a new dis-
tributed file system that provides scalable group file operations by leveraging tree-
based overlay networks (TBONs) for scalable distribution of group file operation re-
quests and aggregation of group status and data results.

TBON-FS provides scalable group file access to a large set of independent file serv-
ers from a single client. The single-client multiple-server model is distinctly different
from existing parallel and distributed file systems. Parallel file systems [7][29][30] en-
able large sets of cooperating clients to access large shared datasets that span few to
many servers, Distributed file systems [13][28][31] provide many independent clients
access to shared files exported from a small set of servers. Current distributed and par-
allel file systems focus on scaling the number of simultaneous clients, while TBON-FS
instead focuses on scaling the number of independent servers that can be accessed con-
currently from a single client. Group file operations mix properties of both distributed
and parallel file systems. Similar to distributed file systems, a client accesses files lo-
cated on independent servers. Akin to parallel file systems, a single operation may re-
quire access to multiple servers. Due to the differences in client-server model, no exist-
ing distributed or parallel file system makes sense as a starting point for TBON-FS.

Using our newly defined group semantics for existing file operations, file system
interface extensions, and a TBON-FS prototype system, we demonstrate our techniques
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by integrating group file operations into several tools: parallel versions of common
UNIX utilities including grep, tail, and top, a simple parallel debugger similar to
mpigdb [6], and the Ganglia Distributed Monitoring System [17]. These demonstrations
have validated our assumptions regarding the usefulness and expressive power of the
group file operation idiom for tools and middleware. Further, our evaluations show the
potential for increasing the scalability of group file operations.

The rest of the paper is organized as follows. Section 2 introduces the abstractions
and semantics of the group file operation idiom, and our solutions for handling group
operands. Section 3 presents the design and architecture of scalable TBON-FS. In Sec-
tion 4, we describe the integration of group file operations and TBON-FS into several
tools, and evaluate the performance and scalability benefits. Section 5 discusses related
work, and the paper concludes with a summary of current and future work in Section 6.

2 Group File Operations

The group file operation idiom provides an intuitive interface for operating on groups
of distributed files. A file-based idiom has benefits that include programmer familiarity,
conciseness, and portability. This section describes the group abstractions and opera-
tional semantics for our new idiom. First, we examine the creation of file groups using
directories and the new gopen operation that enables group file operations. Second, we
discuss the general semantics of group file operations, focusing on the use of aggrega-
tion to address the issue of group operands. Finally, we comment on a few open issues
with regard to group file operation abstractions and semantics. Section 3 describes how
to provide scalable mechanisms in support of our new idiom.

2.1  Group File Abstractions

Directories are a natural and existing file system abstraction for grouping, and existing
directory operations provide straightforward definition and management of file groups.
To create a group, one simply creates a directory to contain the group. To add or remove
members, files are added to or removed from the directory. Groups can consist of newly
created files, existing files, or both., Symbolic links can be used to add existing files
without moving or copying. When a group is no longer needed, the directory and con-
stituent files may be removed.

Using directories as file groups, we require an abstraction for operating on all files
in a group. The file descriptor abstraction is used by many file system operations to
name a target file. Thus, a similar abstraction where a descriptor names a group of files
is intuitive and compatible with existing interfaces. As file descriptors are created using
open, we define a new group open operation, gopen, that uses the same function sig-
nature as open and returns a group file descriptor (gfd) for operating on all files within
a named directory. Table 1 shows the interface for gopen.

Similar to open, gopen returns a valid gfd only if the user has permission to open
all files in the directory using the specified access flags. The gfd can be used in file sys-
tem operations that have a file descriptor operand (e.g., read and write), although
the semantics of these operations may differ from the POSIX specification. We discuss
the semantic differences of group file operations in the following subsection.
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Table 1 New Group File Operations: Interface & Description

int gopen(const char* dirname, int flags)
Opens all files in directory dirname using specified access £1ags and returns a group file descriptor.

int gsize(int gfd)
Returns the number of files in the group specified by g£d.

int gfiles(int gfd, char** files)
Fills user-allocated array £i1es with character strings naming all files in the group specified by gfd.

int gindex(int gfd, const char* file)
Returns the index within group results of the named £ile for the group specified by g£d.

int gstatus(int gfd, int* status array)
Fills user-allocated status_axrray with the individual member status results of the last group file
operation on the specified g£d. Returns positive number indicating number of individual errors.

int gloadaggr (const char* library, const char* function)
Loads the named aggregation function located in the shared object file 1ibrary. Returns a new
unique identifier for the aggregation that can be used with gbindaggr.

int gbindaggr(int gfd, FileOp fop, AggrType typ, int ag)
Binds the loaded aggregation ag to the file operation £op for the group gfd. Aggriipe is an enumera-
tion indicating status or data aggregation. If g£d equals -1, the binding is a default for future groups.

Onece a gfd has been obtained, there is no requirement that the directory used to de-
fine the group cannot be modified or removed. As such, a gfd represents the set of files
in the directory at the time of the gopen. Tools acting on dynamic file group views can
take advantage of this aspect by reusing a directory to create a new group after adding
or removing files. In allowing the underlying directory to change, new operations are
required for querying a gfd to obtain group information. Table 1 presents three new op-
eration interfaces, gsize, gfiles, and gindex, for retrieving the group size and in-
formation about member files.

2.2  Group File Operation Semantics

By reusing the file descriptor abstraction for file groups, group file operations can use
common, well-understood file system interfaces. However, existing interfaces are de-
signed for operating on single files, not file groups. Thus, we define new, intuitive
group semantics for these operations using the following guiding principles:
1. Maintain POSIX interfaces, making extensions or additions only when necessary.
2. Choose default group semantics for existing interfaces that are intuitive and handle the
common case well. ‘
3. Allow users to easily define and use custom data aggregation when the default semantics
do not meet their needs.
4. Summarize group results whenever possible to improve performance and scalability, yet
provide methods for users to view detailed group results as necessary.

Intuitive behavior is achieved when the actions performed by a group file operation
appear equivalent to applying the operation individually to each member file. Current
file system call interfaces have one or more parameters and a status (return) code. Input
parameters are the simplest to map to group behavior. Intuition suggests that the same
input values should be used for operating on each group member. For example, data
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provided as input to a group write operation should be written to each member file.
In contrast, each member operation will produce separate status and possibly data re-
sults. To provide intuitive behavior for group results, individual results should be avail-
able to users. However, there are two challenges to providing individual results. First,
group results must be returned to users using an interface designed for a single result.
Second, group results grow linearly in the size of the group, which can lead to perform-
ance and scalability problems when processing data and status results for large groups.
Our solution to both of these problems is to aggregate group results.

Aggregation combines individual pieces to form a whole. Depending on the situa-
tion, a tool may require various levels of data resolution for group results. It may be in-
terested in all individual results or only a single summary result. To support scoping of
group results, we explicitly incorporate data aggregation into group file operation se-
mantics. We provide default aggregations that fit existing interfaces and are suitable for
common usage, and allow users with alternative needs to specify custom data aggrega-
tion of group results. For convenience, a small, general set of pre-defined aggregations
is provided that represents common functions for processing group results. The initial
set includes six summary aggregations (AVERAGE, EQUAL, MAX, MIN, SUM, and
ZERO) and a CONCATENATE aggregation that combines individual results into an
array. In Section 3 we describe the characteristics of aggregations and discuss their def-
inition by users.

It is important to note that adding aggregation semantics to file system interfaces
would not have a clear advantage over a tool post-processing group results if the aggre-
gation was executed on a single machine. However, when aggregations that reduce data
are used in distributed environments, performing the aggregation in a distributed man-
ner often reduces the centralized processing, memory, and network overhead. Aggrega-
tions that summarize group results provide the most performance improvement when
distributed, while techniques that provide complete information about individual results
(e.g., data compression based on equivalence classes) can still be beneficial by elimi-
nating the processing and network transmission of duplicate data.

For our default group file operation semantics, we require aggregations that permit
group status and data results to be returned to users via existing interfaces. Current in-
terfaces share a convention for returning status results using a single integer value that
indicates success or failure. To fit these interfaces, we have chosen default aggregations
that produce a single summary group status result for each existing operation; our choic-
es are shown in Table 2. In using summary aggregations, we lose information about in-
dividual status results. To rectify this deficiency, we have defined a new gstatus op-
eration, described in Table 1, to allow users to query individual results. We expect that
in the common case, users will only use gstatus when the summary result indicates
unexpected behavior. For example, an anomalous status value for a group read would
be less than the expected sum (nbytes x gsize {gfd)). Observing such a value might
prompt a user to query individual results to see which members did not read the request-
ed amount.

A notable form of unexpected behavior comes as the result of one or more of the
individual operations returning error codes. If the pre-defined summary aggregations
were not aware of the possibility of error values, summary group results could be cor-



Group File Operations for Scalable Tools and Middleware 6.

- Table 2 Default Summary Aggregations for Group Status Results

Group File Operations Status Aggregation
close ftruncate ZERO .
fchmod fchown Return zero when all group member operations are successful.

fstat fsync

pread pwrite SUM
read write Return the total number of bytes read or written
readv  writev _ across all group members.
EQUAL
lseek Return the common offset when all individual file offsets are

equal. Otherwise, return the invalid offset value.

rupted. For example, in the SUM aggregation, adding negative error codes to the com-
puted value would produce an invalid group status. Therefore, our default semantics for
all group file operations require that a generic error ¢ode is returned as the summary sta-
tus value when any members return an error, indicating that gstatus should be used
to identify faulty members. Thus, all group status aggregations, both pre-defined and
user-defined, must be error-aware.

To handle group data results, we observe that current interfaces use pointer oper-
ands to indicate a destination buffer. It is straightforward to specify group semantics
that require buffers to be allocated large enough to hold an array of individual results.
We can then use a default CONCATENATE aggregation that combines individual re-
sults into an array, with individual results accessible using a member file’s index as re-
turned by the new gindex operation. Note that concatenation is by no means the most
scalable of aggregations, but it is intuitive and functional for arbitrary data (e.g., binary
data structures and text). Tools that know the format of output data a priori are unlikely
to use concatenation. Rather, we expect them to use custom aggregation to improve per-
formance and scalability.

We have defined two new operations in support of specifying custom aggregations,
gloadaggr and gbindaggr, as shown in Table 1. The former is used to load new
aggregations for use with group file operations, while the latter binds status and data ag-
gregations to a specific group file operation. Aggregations can be bound to group file
operations for a particular group or as a default for future groups.

To illustrate the use of default and custom aggregation of group results, we describe
an example using read on a group of /proc/loadavg files from many distributed
Linux hosts. These files contain text indicating the one-, five-, and fifteen-minute sys-
tem loads. We assume the tool is interested in the average loads. Figure 3a shows pseu-
do-code for the example using default aggregation, while Figure 3b shows how custom
aggregation may be used. With default aggregation, the tool performs the group read
and then iterates over the result array to scan and compute the averages. With custom
aggregation, the tool uses a load average calculation when performing the group read,
and the computed averages are directly extracted from the result buffer. Using custom
aggregation, the iteration over individual results is eliminated, as is the requirement for
a memory allocation whose size increases linearly in the group size.
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int gfd = gopen(“loadavg grp”, O_RDONLY);
int gsz = gsize{gfd);

// Collect individual system load averages
int buf_size = gsz * LOADAVG_FILE_SZ;
void* buf = malloc(buf_ size};
int rc = read({gfd, buf, LOADAVG FILE_SZ);
" if( rc != buf_size )} handle_error_ condition(gfd, rc);
close (gfd);
// Compute overall averages '
double avg_one = 0.0, avg_five = 0.0, avg fifteen = 0.0;
for( i = 0; 1 < gsz; i++ ) {
double one, five, fifteen = 0.0;
char* data = ((char*)buf) + (i * LOADAVG_FILE_SZ);
sscanf (data, “%f %f %f”, one, five, fifteen);
avg_one += one;
avg_five += five;
avg_fifteen += fifteen;
}
avg_one /= gsz;
avg _five /= gsz;
avg fifteen /= gsz;

(a) Default Data Aggregation

int gfd = gopen(“loadavg_grp”, O_RDONLY);

// Load and Bind Custom Aggregation
int ag = gloadaggr (“tool aggr.so”, “calc_load_avgs”};
int rc = gbindaggr{gfd, OP_READ, DATA AGGR, ag);

// Collect and aggregate load averages
unsigned buf size = 3 * sizeof (double);
void* buf = malloc(buf_ size);

rc = read(gfd, buf, LOADAVG_ FILE_SZ);
close (gfd):

double* avgs = ({(double*) buf;
double avg one = avgs([0];
double avg_five = avgs(l}];
double avg_fifteen = avgs{2];

(b) Custom Data Aggregation

Figure 1 Group read Example: Default vs. Custom Data Aggregation

2.3  Open Issues

Although intuitive, using existing operations for defining file groups still requires iter-
ation when adding or removing files. For tools that create groups of files occasionally,
this may not be a problem that limits performance. However, tools that create groups
often or manuge highly dynamic views of the same group are likely to be limited. We
are investigating more scalable methods of group definition and management, such as

using regular expressions to add or remove files sharing similar paths or names.

In Table 2, we have not exhaustively addressed group semantics for all POSIX file
operations that operate on file descriptors. Two particularly interesting sets of opera-
tions we are studying with respect to group semantics are communication (e.g., sock-
et and pol1l) and asynchronous I/O operations. Similarly, the semantics of passing a

group file descriptor to mmap are intriguing.
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3 TBON-FS: Scalable Group File Operations

The previous section introduced the key abstractions and semantics of our new idiom,
group file operations. We now describe TBON-FS, a new distributed file system de-
signed for scalable group file operations on thousands of distributed files. First, we
present the TBON-FS architecture, focusing on how it addresses the key scalability bar-
riers for group file operations. Second, we discuss design issues for TBON-FS at the
client and server side. Third, we address concerns for introducing aggregation to file
system operations. Finally, the prototype TBON-FS system used for the evaluation pre-
sented in Section 4 is summarized.

3.1 TBON-FS Architecture
The group file operation idiom is essential for eliminating explicit iteration when per-
forming the same operation on a group of files, yet the underlying mechanisms also
must be scalable. The two key scalability barriers for group file operations are distribu-
tion of group operation requests and collection of group status and data results. The cen-
tral component of the TBON-FS architecture for addressing these barriers is a tree-
based overlay network (TBON). TBONs provide outstanding scalability for one-to-
many multicast communication and many-to-one data aggregation [1]{2][15][26][27].
As shown in Figure 2, TBON-FS employs a TBON for communication and aggre-
gation of data sent between a single client and thousands of independent servers. The
processes at the TBON vertices assist to distribute and parallelize the communication
and computation for group file operations. Using aggregation to process group results,

TBON-FS can significantly reduce the computation required at the client. Necessarily, -

proper load distribution at scale requires a tree topology with sufficient fan-out and
depth, and client load reduction is fully dependent upon the aggregations used.

Using a TBON also helps to improve the scalability of information management.
By enforcing a policy where neither the client nor servers maintain global state, TBON-
FS avoids any storage overhead that might grow linearly in the number of servers or
group members. Instead, servers maintain only local knowledge about the mounted files
and file groups, and the client simply contains summary information such as the number
of mounted servers and the size of each file group. Additionally, each client and server
requires only a local handle for communication with the TBON, and are agnostic to its
topology.

3.2  Client Design Issues

On the client side, the two main design issues are how to present the mounted files from
thousands of servers within the local file system name space and whether TBON-FS
functionality should be implemented as a real file system or at the user level.

From the client perspective, TBON-FS provides the abstraction of a global mount,
combining many remote server file system hierarchies under a single, local mount
point. To avoid naming conflicts resulting from the same directories or files being
mounited across many servers, the default layout for TBON-FS places each server’s hi-
erarchy into a directory named after the server. Unlike traditional distributed file sys-
tems where mounts are performed by an administrative user, TBON-FS is intended for
management by regular users. User-initiated mounts are widely supported for adding
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Figure 2 TBON-FS Architecture
An application read is a system call to the Virtual File System (VFS) layer, which maps to the
TBON-FS file system. Requests are passed to a TBON-FS client process through a character
device (/dev/tbonfs). The client forwards requests to servers via a TBON. The servers pro-
vide a simple file operation proxy service by transforming requests into local file system opera-
tions. Operation results are sent back to the client using the TBON, which aggregates results.

the contents of portable storage devices to the current file name space, so a similar ap-
proach can be used for TBON-FS, Once mounted, a TBON-FS client can use group file
operations on the remote files as previously described in Section 2.

To evalusdte the choice between implementing TBON-FS client side functionality
as a file system or at the user level, we note the primary advantages and disadvantages
of each approach, then conclude with our preference.

In a pure user level approach, functionality can be implemented within a library that
is linked with clients. The library must contain functions for mounting and navigating
the TBON-FS name space, as well as functions supporting single file and group file op-
erations. The primary advantage of a user level approach is ease of implementation, as
operating system development environments are often restricted to a specific program-
ming language and a limited set of runtime support functions for necessary operations
such as memory allocation. At the user level, developers can use familiar software lan-
guages, runtime support libraries, development environments, and tools to enable rapid
prototyping, testing, and debugging. Although straightforward to implement, this ap-
proach does not provide the complete look or feel of a real distributed file system, since
only clients written to use the library can mount and operate on remote files. Thus, the
use of existing software utilities such as grep to search files or a command shell to nav-
igate the file system and run local or remote programs on the remote files is prohibited.

Implementation of TBON-FS as a real file system avoids the key problems of the
user level library approach by enabling the use of existing software with remote files
and allowing multiple clients to share the same mounted file system. Furthermore, using
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a framework such as FUSE [33], a majority of file system functionality can be imple-
mented at the user level to ease in development and testing. However, the primary dis-
advantage is that the file system call interfaces need to be extended to include the new
group file operations. From a practical perspective, such interface extensions are
straightforward. Unfortunately, gathering support in the real world to extend operating
system interfaces is a much harder problem.

Developers of operating system extensions must show that the changes are benefi-
cial to a wide community and will not adversely affect the performance and functional-
ity of existing software. In this paper, we show the benefit to the community through
real and useful application of the group file operation idiom. For the latter concern, we
have designed an extension to the Linux Virtual File System (VFS) layer that transpar-
ently provides support for group file operations with both existing, group-unaware file
systems and new, group-aware file systems such as TBON-FS. The extension requires
no changes to existing file systems, and has almost negligible impact on single file op-
erations, requiring only a simple check to determine if the file identifier represents a sin-
gle file'or a group. As the Linux VFS layer is similar in design to the equivalent file
system abstraction layers of other current UNIX operating systems, the extension
should be widely portable.

Our design for extending the Linux VFS to support group file operations is shown
in Figure 3. The current VFS design supports only the traditional single file case, as
shown in Figure 3a. Application-level file operations correspond to Linux system calls,
which in turn call functions within the VFS layer. The VFS layer determines which file
system contains the target file, looks up the address of the function within the file sys-
tem that implements the current file operation, and calls the function.

Our extension, shown in Figure 3b, supports the group file case by first checking if
a file identifier represents a group or single file, then mapping to the appropriate under-
lying group file or single file implementation. If the underlying file system does not pro-
vide functions for operations on group files, as is the case for existing, group-unaware
file systems, a new generic function within the VFS layer will be called. These generic
group file operations simply iterate over each group member, calling the underlying file
system’s single file operation. From a performance perspective, the generic group file
operation functions can provide benefit over user-level group operations by eliminating
the per file system call overhead of switching from user to system level.

We believe that extending the operating system to support group file operations and
implementing TBON-FS as a real file system is the cleanest and most advantageous op-
tion. Further, we assert that direct operating system support for group file operations can
benefit even single-host applications. Many utilities such as grep, top, and recursive
application of chmod or chown target groups of files in one or more directories, and
can be modified to use group file operations. Also, distributed and parallel file systems
may be able to improve performance when operating on file groups by using explicit
group file operation implementations to avoid serial interactions with servers.

3.3  Server Design Issues

TBON-FS servers provide a proxy service for accessing the file systems already present
on each server, similar to NFS [28]. Client requests for single file and group file oper-
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User Level " read P : ~read’
s . i e A y .
System Calls - sys_read. - - sys.read
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~(a) Current VFS (b) Extended VFS

Figure 3 Linux Virtual File System (VFS) Design
(a) User level file operations correspond to Linux system calls, which in turn call functions within
the Virtual Filc System (VFS) layer. The VFS layer maps operations to the appropriate file sys-
tem. (b) The current VFS design supports only the single file case. Our extension introduces the
group file case. The design will allow use of group file operations with both Group-Unaware
(e.g., existing) and Group-Aware file systems.

ations are transformed to one or more local file operations, and status and data responses
are passed to the TBON for aggregation. The primary design issues for the TBON-FS
server are support for concurrent clients and whether to provide service at the user or
operating system level.

When shared among many clients, a server process needs elevated privilege to serv-
ice requests from clients representing muitiple users. The server also is responsible for
verifying client credentials to prevent unauthorized access to files. As a result, support-
ing concurrent clients introduces complexity to develop a secure server and properly
isolate failures among clients. With TBON-FS, the expectation is that a specific user
mounts the file system and sharing among multiple users is not necessary. By running .
server processes as a specific user, TBON-FS can rely on existing operating system and
file system support for authentication and file access control.

Often, the choice to provide server functionality at the operating system versus the
user level is done to improve performance, as client requests can be handled without the
overhead of context switches to a user level server process. The same reasoning is ap-
plicable to TBON-FS. However, a user level server is casier to develop and test, at the
cost of potentially reduced performance. Furthermore, a user level server is easier to de-
ploy in existing distributed environments, as no operating system changes are required.
For these reasons, we prefer a user level server.
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3.4 Aggregation Considerations

The final design issue for TBON-FS concerns the definition and use of aggregations.
The inclusion of aggregation semantics in group file operations is tightly correlated
with the notion of using a TBON. However, the use of aggregation can not be specific
to TBON-FS if we wish to justify extending operating systems with interfaces for load-
ing and binding of aggregations. Currently, the new gloadaggr and gbindaggr
system calls do not specify the interface to aggregation functions. Instead, they simply
allow for finding a function pointer to the compiled code of an aggregation within a
shared library. Future file systems supporting group file operations can thus specify
- their own aggregation interfaces as appropriate. For TBON-FS, aggregation definitions
need to be compatible with tree-based computation, and therefore must support compo-
sition (i.e., the output of an aggregation may be passed as an input to another instance
of that aggregation function).

3.5 Prototype System

In implementing the TBON-FS prototype system, our goal has been rapid development
and testing. The prototype provides a framework for evaluating group file operations
with respect to applicability and ease-of-use within tools and middleware. In this vein,
we chose to implement the prototype as a user level shared library that is linked with
client applications and a user level proxy file server. MRNet [26] is our TBON infra-
structure for communication and aggregation between the client library and servers.

The client library implements the operations defined in Table 1, as well as group
versions of the standard read, write, and 1seek file system calls. In addition, the
library contains functions for mounting and unmounting TBON-FS. The server imple-
ments the proxy service previously described, and contains functions for handling re-
quests generated for the group file operations supported by the client.

The MRNet infrastructure is instantiated when a user mounts TBON-FS. The name
of a file listing the remote server directories is passed as the device operand to mount,
and the TBON topology to use is specified in a file whose name is passed as part of the
file system options. During infrastructure instantiation, MRNet communication proc-
esses are started at internal TBON vertices, servers are launched at the leaves, and the
overlay communication is established. For each new file group defined using gopen,
a set of MRNet streams are created including a group control stream, a group file oper-
ation request stream, and streams for aggregating group status and data results. The re-
quest stream is used for multicasting group file operation requests to servers. One result
stream is created for each status and data aggregation that is set as the default for any
group file operation. The control stream supports the new group operations from Table
1. TBON-FS aggregations are written to conform to the MRNet filter specification [34].

4 Evaluation

Our goal for evaluating group file operations and our prototype TBON-FS system is to
demonstrate the power of the idiom and the benefits of aggregation at scale. In Section
4.1, we demonstrate the ease in creating new tools for large scale distributed systems by
developing paralle! versions of three simple, yet powerful Linux command-line tools:
pgrep, ptail, and ptop. Section 4.2 shows how we improve upon the usability of




Group File Operations for Scalable Tools and Middlewaie 13.

an existing parallel debugger with a simple tool using group file operations and custom
aggregation. Finally, Section 4.3 relays our experience in quickly integrating group file
operations into the Ganglia Distributed Monitoring System [17].

All experimental results were collected on Thunder, a 1024-node Linux cluster at
Lawrence Livermore National Laboratory. The cluster uses a Quadrics QsNetH Elan4
interconnect, and each node has four 1.4GHz Intel Itanium2 processors and 8GB of
memory. Due to job resource limits, we could use up to 493 nodes at a time. To over-
come this limit, we ran all experiments with four TBON-FS servers on each node. We
used five topologies: 1x24x24 (576 servers), 1x28x28 (784 servers), 1x32x32 (1024
servers), 1x8x10x16 (1280 servers), and 1x6x16x16 (1536 servers).

4.1 Parallel UNIX Tools

4.1.1  Parallel grep

One of the most useful utilities provided by UNIX and Linux machines is grep.
System administrators use grep for various tasks including searching configuration
files, scanning system and application logs for interesting or alarming events, and gath-
ering system or process information. Leveraging grep on distributed files provides the
ability to spot configuration differences, correlate distributed events, and monitor sys-
tem resource use. Thus, we have developed pgrep. Currently, pgrep supports simple
textual search strings, as opposed to regular expressions. For scalable results, a line-
based equivalence aggregation is used that keeps track of the constituent host files. Line
numbers can be prepended, in which case equivalence matches the line number and text.

Table 3 compares pgrep on distributed files to standard grep on files served by
NFS for the same number of files searched. In each experiment, we measured the com-
pletion latency in seconds, output line count, and output size. We searched files backed
by both disk and memory, and used searches that returned few or many unique matches.
Disk File - Many Matches searched for the abundant string *udp’ in the /etc/serv-
ices file. Disk File - Few Matches searched for "Kernel’ to retrieve the single kernel
boot command line from the /var/log/dmesg file containing system startup messag-
es. Memory File - Many Matches searched /proc/meminfo for 'MemFree’. Since the
amount of free memory is highly variable at runtime, this search returns many unique
lines. Memory File - Few Matches searched-for "MemTotal’ in /proc/meminfo. This
search returns a single line that is typically the same across all hosts in a homogenous
environment, although our experiments show that there are at least two different totals
for Thunder.

In all cases, grep exhibits linear scaling in completion time, number of output
lines, and output size. Due to pgrep’s equivalence aggregation, the number of output
lines is simply the number of unique lines across all hosts. The output size for pgrep
is dominated by a linear factor representing the list of constituent host files prepended
to each matched line, since we do not yet compress host file lists into ranges. In all cas-
es, pgrep’s output is smaller in size and easier to interpret than grep, and provides
up to an order of magnitude reduction in cases with significant similarity across files.
For pgrep, completion time includes the time to initialize the file group using gopen
and gbindaggr, read the files, and print the aggregated results. We report total time
and the individual component times. The time for the group read provides insight into
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Table 3 pgrep vs. grep

; Fi Disk File
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(5]
n

the scalability of our equivalence aggregation. We observe sub-linear completion time
for all experiments except the two largest scales for Disk File - Many Matches, where

. the aggregation of host file lists dominates. In total completion time, we see a measur-
able increase when the depth of our TBON increases from two to three between the
1024 and 1280 scales.

4.1.2 Parallel tail

The tail utility with the "-f" option is often used to follow system log activity in
real-time. Packages have been developed that enhance the functionality of tail to in-
clude monitoring multiple files [21] and multiple hosts [16], and to highlight interesting
lines of output [12][21]. Combining all three of these enhancements, we have developed
ptail for following large groups of distributed files. To improve correlation of events
across hosts and reduce output, we extended the line equivalence aggregation used for
pgrep with an option to strip host-specific information (e.g., hostname and process
ids) from lines using the standard syslog message format. Correlation of events
across distributed hosts can be beneficial for applications such as identifying miscon-
figured network services (e.g., multiple clients of the service notice a problem and gen-
erate an error) and security (e.g., distributed intrusion or denial-of-service attacks). To
evaluate ptail, we wrote a simple synthetic log file generator that allows us to control
the rate of log entries and the percentage of entries that are equivalent across hosts.
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Figure 4 ptail Scalability

Figure 4 shows the client CPU utilization of ptail and compares the number of
output lines to the aggregate number of lines generated during a 60-second run for a file
group of size 1536. We tested high log rates from 50 up to 300 per-minute per-host, and

" equivalence percentages of 0%, 50%, and 100%. The results show that ptail is able
to significantly reduce the number of output lines, up to three orders of magnitude for
100% equivalence. Since equivalence for log entries implies correlated events, this re-
duction should improve greatly the ability of users or tools to analyze the logs. In the
case of no equivalence across hosts, the number of output lines is still reduced from the
number generated due to the fact that several identical messages are generated per sec-
ond on a single host. Across all experiments, the client CPU utilization remains fairly
close for 100% and 50% equivalence, with a noted increase for the 0% worst-case sce-
nario due to the extra processing needed to output a large number of log entries.

4.1.3 Parallel top

For many administration tasks, it is useful to know the processes that are using the
most resources. The top utility is a simple yet powerful method for displaying real-
time resource utilization by processes on a single host. Unfortunately, we know of no
existing tool that provides the same functionality for a large set of distributed hosts and
processes. Hence, we created ptop. As with standard top for Linux, ptop gathers in-
formation from files in the proc file system. Aggregation is used to summarize across
hosts and support the sorting and filtering capabilities of top. To provide greater in-
sight into the use of distributed resources, we also provide two new grouping facilities
that enable display of summary information for groups of processes with the same com-
mand name, both for a specific user and across all users. When grouping processes, the
user has the option of viewing total, average, or maximum resource utilization from any
group. With ptop, users can answer many interesting questions: what parallel applica-
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Figure 5 ptop Scalability: Server CPU Utilization and Group read Time

tion is using the most physical pages of memory, how many bash shells are running
on all system nodes, which one of my processes is using the most CPU, and how many
users are playing solitaire or surfing the web?

To evaluate ptop, we measured average latency to collect and aggregate process
information and average CPU utilization of the TBON-FS servers. We ran ptop for 60
seconds with and without command grouping, using delay intervals of 5, 10, and 30 sec-
onds (the standard top default interval is 5 seconds) and specifying that the top 35 or
100 processes should be displayed. We observed no measurable difference between the
results for displaying 35 or 100 processes, so we present those for 100. Similarly, results
with and .without command grouping were indistinguishable, so .we show only the
grouping case. As shown in Figure 5, ptop is able to aggregate resource utilization for
file groups consisting of hundreds of thousands of distributed processes (several hun-
dred processes per host) using the same default delay interval as t op. Further, the time
to perform the collection and aggregation scales logarithmically compared to the file
group size. We also note that the TBON-FS server CPU utilization was under 0.5% us-
ing the 30 second interval for all experiments, which suggests that ptop could be run
continuously for low-impact, real-time monitoring.

4.2  Parallel GDB Debugger

When MPI applications are run at larger scales, new problems often develop. A parallel
debugger may be critical in diagnosing and correcting bugs or logic errors. mpigdb [6]
is a facility provided with MPICH for running a parallel debug session consisting of .
multiple independent GDB debuggers, each controlling one MPI process rank (logical
process id). Users issue normal GDB commands that are sent to each GDB for execu-
tion, and the resulting output is annotated by rank, collected, and grouped by line-equiv-




Group File Operations for Scalable Tools and Middleware 7.

alence for display. mpigdb uses the MPD (MPICH multipurpose daemon) [6] ring in-
frastructure for control and user command distribution, and a binary tree overlay among
the MPD processes to collect GDB/application output.

The line-based equivalence comparison used by mpigdb often results in unintelligi-
ble results for large groups, due to interleaved, multiple-line responses (e.g. stack traces
and code listings) and variances caused by host-specific information (e.g. program and
variable addresses). Additionally, although a tree structure is used for collection of out-
put, there is no extensible mechanism for aggregation as is available in TBON-FS. As
a result, the entire set of output must be collected to the root process before the equiva-
lence comparison is performed. Unfortunately for mpigdb, this equivalence computa-
tion has O(NG) behavior, where N is the number of processes and G is the number of
equivalence groups. The presence of host-specific information often leads to G being
equal to N, and thus exponential time for equivalence grouping.

To overcome these deficiencies, we investigated the benefits of using a more pow-
erful aggregation amenable to use with TBONs. If mpigdb could be extended to provide
aggregation of output at each tree process, or alternatively adopt an infrastructure such
as TBON-FS, use of this aggregation should result in both performance and usability
benefits. We developed a new aggregation providing response-based equivalence,
where multiple-line responses are treated as a single comparison entity. The aggrega-
tion also filters out host-specific addresses from the output.

To test our aggregation on real GDB output, we implemented a new facility within
TBON-FS that launches a user-specified program on all servers and captures the stand-
ard input, output, and error streams as a group file descriptor. Writing to the gfd pro-
vides input to the individual programs, and the resulting output can be read from the gfd.
Using a Linux cluster located within our department, we conducted a qualitative study
of the interactivity and intelligibility of command output for our new tool for running
parallel GDBs versus mpigdb while debugging a 100 process MPI application. Both

provided interactive behavior at this small scale. However, for multiple line responses -

such as stack traces, the output from mpigdb became unintelligible past 32 processes,
and was difficult to understand at much smaller numbers due to the interleaving of stack
frames. Since our tool removed program addresses and treated entire stack traces as a
comparison entity, we were able to easily identify equivalent group behavior.
4.3  Ganglia Distributed Monitoring System
Ganglia supports host resource monitoring for local-area clusters and wide-area grids.
It uses a TBON architecture consisting of gmetad cluster/grid aggregator processes,
where each leaf gmetad records summary and host information for a cluster, and
gmetads at higher-level tree nodes record grid summaries. Within a cluster, a gmond
monitor running on each host collects local resource utilization and regularly multicasts
updates to fellow gmonds in the cluster. The gmetad for a specific cluster queries a rep-
resentative of the set of gmonds to collect the latest resource use for all cluster hosts.
On Linux hosts, the gmonds read /proc files to gather resource utilization.

With no previous knowledge of the Ganglia software internals, we integrated group
file operations into version 3.0.4 in a span of a few weeks. We unified the Ganglia ar-
chitecture to be completely tree-based by removing the requirement for multicast
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among cluster hosts. As the size of a cluster grows, the use of multicast causes each host
in the multicast group to incur a linear increase in network load and memory storage of
group state [17]. The updated version, Ganglia-tbonfs, replaces the gmonds with
TBON-FS servers and uses custom aggregations that store metric data to local round-
robin databases at internal TBON processes, mimicing the behavior of gmetads. To sup-
port the web-based interface and its recursive grid/cluster/host views, we developed ag-
gregations that enabled retrieval of summary or host state as XML documents and
graphs created from the round robin databases.

5 Related Work

As discussed in Section 1, TBON-FS uses ideas from both distributed and parallel file
systems, but has a radically different client-server model that focuses on scaling the
number of independent servers that can be accessed concurrently from a single client,
rather than increasing the number of concurrent clients or files that can be served.

Gropp and Lusk {11] used parallel versions of command-line utilities for scalable
management of massively paralle! processors where each node runs a full UNIX envi-
ronment. The C3 tools [4] are a recent implementation of parallel commands with the
same goal. Our parallel UNIX tools share the same motivation for scalable distributed
system administration. Unfortunately, the previous tools do not address one of the key
scalability issues for group operations, the aggregation of group results to aid in analysis
or presentation. Instead, both annotate output with the originating host and expect users
to post-process results when aggregation is desired. Thus, these tools could benefit from
the integration of a TBON infrastructure to eliminate redundancy in output and summa-
rize group behavior, as we have done with our paralle! tools built on top of TBON-FS.

Due to its simplicity and power, many efforts have extended grep for parallel op-
eration on distributed data. Dean and Ghemawat [8] exploited the highly data parallel
nature of search in a version of grep based on MapReduce to scan a terabyte of dis-
tributed data using 1700 machines in parallel. It is unclear if any attempt was made to
aggregate matching lines of output as part of the reduce phase. The Trellis-SDP data
parallel programming system [10] gives an example of how to program a parallel grep
of distributed files and collect the results to a master process, but does not address so-
lutions for scalable presentation of results when a large number of matches are found.
Biogrep [14] matches sets of genetic patterns against large genetic sequence databases,
and uses threads to parallelize the work on multiprocessor systems. If the sequence da-
tabases were distributed, a version of Biogrep based upon group file operations and
TBON-FS may help to further reduce the latency of genetic pattern matching.

Group file operations and TBON-FS are related to the Google MapReduce system
[8], as both the map and reduce operations are forms of distributed aggregation of file
data. For MapReduce, it is assumed that input comes from a single large data set that is
partitioned into many small fixed-size chunks located across hundreds or thousands of

. Google File System servers, Simply treating chunks as files permits a MapReduce op-
eration to be cast as a group file operation where both map and reduce are implemented
as a single aggregation. The MapReduce system is tightly bound to the Google File Sys-
tem, as group file operations are currently tightly bound to TBON-FS. Group file oper-
ations are similar in spirit to the Sawzall [24] and PigLatin [23] programming languages
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in the desire to expose data parallelism in a simple interface while hiding the details of
the underlying parallel processing system. Unlike these languages, group file operations
are based on file system interfaces that are already familiar to developers.

6 Conclusion and Futufe Work

Group file operations are a new, intuitive idiom for operating on large file groups. The
idiom eliminates explicit iteration over group members, thus permitting scalable mech-
anisms for accessing large distributed file groups. We have designed TBON-FS, a new
distributed file system, to support scalable group file operations by employing a TBON
for distributed communication and aggregation. Using a prototype TBON-FS system,
we integrated group file operations into several new tools and one existing middleware
system. Our experimental and qualitative observations demonstrate the applicability,
ease of use, and benefit for scalable operations on large groups of distributed files.
The prototype TBON-FS system, in its limited form, was useful for demonstrating
the potential of scalable group file operations. Yet, there is still much work to be done.

As discussed in Section 2.3, we would like to investigate the use of group files with -

more file operations. This will likely lead to an even wider range of applications that
can benefit from group file operations. We wish to explore our ideas for group file op-
erations and TBON-FS within the context of a real client file system for Linux. Using
areal file system will allow us to validate our extended Linux VFS design, measure the
impact on existing file systems, and observe performance for single file and group file
operations. Soon, we will begin evaluating the addition of group file operations to To-
talView, the most popular debugger for parallel applications. We aim to improve the
scalability of TotalView for use on the largest of current HPC systems and applications.
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