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Abstract
As commodity operating systems become more reliable and
fault-tolerant, the availability of a system will be determined
not by when it crashes, but instead by when it must be shutdown
and rebooted due to software maintenance [12, 21]. While many
system components can be upgraded on-line, critical low-level
components, such as device drivers and other kernel extensions,
cannot be updated without rebooting the entire operating sys-
tem.

In this paper, we present Live Update, a mechanism that
allows device drivers to be updated without rebooting the sys-
tem. Unlike other on-line update mechanisms, our system sup-
ports existing drivers “as is”. Thus, thousands of existing device
drivers can be updated transparently. In experiments we show
that Live Update can upgrade existing drivers without rebooting
and that the system imposes very little performance overhead.

1 Introduction
Commodity operating systems, such as Linux and Win-
dows, are becoming more reliable. Each successive re-
lease provides more functionality with fewer crashes than
the previous [21, 20, 5]. This reliability trend is enabled
by a combination of natural maturity and recent technolo-
gies that eliminate bugs automatically [7, 2] or that tol-
erate failure when it occurs [29, 9, 18, 25]. However,
even with these improvements, operating systems require
scheduled downtime for maintenance of certain compo-
nents [21, 12]. For example, components the OS itself
depends on, such as storage drivers, generally cannot be
replaced without rebooting. Thus, scheduled downtime
promises to be the ultimate limiter of system availabil-
ity because operating systems cannot replace all running
code on-line.

This problem is compounded by the increasing rate of
software updates. Previously, manufacturers had to dis-
tribute a CD or floppy disk to release an update. Now,
Internet services such as Windows Update [19], Ap-
ple’s Software Update [1], and Red Hat Network [23]
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greatly lower the cost and complexity of releasing up-
dates. While improving the average quality of running
software, frequent software updates may in fact decrease
the availability of many systems when updates need to
reboot the system [26].

Device drivers represent a large portion of this prob-
lem because they are both critical to OS operation and
frequently updated. For example, Linux IDE storage
drivers, needed by the OS for virtual memory swapping,
were updated more than 67 times in three years. Further-
more, updating device drivers is inherently risky, because
a faulty device driver may prevent the system from boot-
ing. To achieve high availability, operating systems must
be able to replace critical device drivers without reboot-
ing the entire system.

This paper presents a new mechanism, called Live Up-
date, that updates device drivers in place without reboot-
ing the operating system. Our mechanism uses shadow
drivers [28] to reinitialize the updated driver transpar-
ently to the operating system and applications. In addi-
tion, the shadow driver transfers the state of the old driver
to the new driver automatically, ensuring that driver re-
quests will continue to execute correctly after the up-
date. Live Update improves availability by updating
drivers without rebooting the OS, updating drivers with-
out restarting applications that use an updated driver, and
rolling back driver updates that do not work.

Updating drivers on-line presents three major chal-
lenges. First, there are thousands of existing drivers,
many of which will eventually require an update. To
make Live Update practical, we need to be able to update
these drivers without any work on the part of the drivers’
authors. Previous systems for updating modules on-line
require that a skilled programmer write code to transfer
data between the old and new modules [8, 6, 15, 22].
In contrast, our system uses the pre-existing driver inter-
face to transfer state between driver versions, allowing
it to update drivers on-line without driver modifications.
Second, an updated device driver may not be compati-
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ble with the running version and could cause applications
or the OS to crash. Thus, Live Update must ensure that
an update is safe and does not contain incompatibilities
that could compromise system reliability. Lastly, device
drivers can be critical to overall system performance, so
the update mechanism must impose little overhead when
not actively applying an update.

We implemented Live Update for sound, network, and
storage drivers in a version of the Linux operating system.
Our results show that Live Update (1) minimally impacts
system performance, (2) allows transparent, on-line up-
grade between a wide range of driver versions, and (3)
can be used without changing existing drivers.

The rest of this paper describes the design, imple-
mentation and performance of Live Update. The follow-
ing section reviews previous approaches to updating code
on-line. Section 3 discusses the unique issues that arise
when updating device drivers. Section 4 describes the
design and implementation of Live Update. Section 5
presents experiments that evaluate the effectiveness and
performance of our system, and Section 6 summarizes
our work.

2 Related Work
Updating code on-line has long been a goal of high avail-
ability systems. Live Update focuses on updating a sin-
gle OS component type, the device driver. By focus-
ing on driver updates, we can leverage the properties of
drivers to transparently resolve a major source of down-
time while maintaining a low runtime overhead. Previ-
ous approaches differ from our work in terms of the pro-
grammer’s responsibility and the update mechanisms and
granularity. We discuss each of these in turn.

In terms of responsibility, previous on-line update
systems typically require a programmer to provide code
to facilitate the update. Some systems use compiler sup-
port for updating programs [17, 15]. While the program
code itself need not change, a programmer must provide
a function to translate data formats when they change.
Other systems require that updatable code use special
calling conventions [8], inherit from an “updatable” base
class [16, 22], use an “updating” framework [27], or iden-
tify safe update locations in the code [14]. By leveraging
the properties of the code being updated, a system can
reduce the programmer’s role. For example, one system
updates event handlers by running old and new versions
in parallel until their outputs converge [10]. However,
this approach still requires that a programmer write code
to transfer the configuration of a handler.

In contrast, our system can update existing, unmodi-
fied modules without code specific to an individual mod-
ule. We leverage the common interfaces of device drivers
to automatically capture and transfer their state between

versions. By centralizing the code for update in an op-
erating system service, we eliminates the need to modify
existing drivers.

In the past, two major mechanisms have been used to
update code. The system can launch a copy of a running
process with the new code, on the same hardware [13] or
on additional hardware [24], and then copy in the state
of the existing process. Or, the system can retain run-
ning code and redirect callers of an updated procedure
to the new version. Redirection has been provided by
programming frameworks that incorporate wrapper func-
tions [8, 11, 27], class hierarchies mandating dynamically
dispatched functions [16, 22, 6], and compilers that pro-
duce only indirect function calls [17, 15]. Live Update
similarly redirects callers at updated drivers using wrap-
per functions. However, Live Update redirects calls both
into and out of drivers to prevent a driver from calling the
OS during an update, thereby concealing the update from
the OS itself.

Previous systems have enabled update with varying
granularity. Several systems replace single functions or
lists of functions on-line [17, 8, 15]. Object-oriented ap-
proaches update an entire class [16, 6, 22]. Update mech-
anisms for modularized systems replace a single module
at a time [27]. Because device drivers consist of mul-
tiple modules joined by internal interfaces, Live Update
replaces entire drivers. This approach allows changes in
the interfaces between driver modules, which increases
the variety of updates that can be applied on-line.

Partial reboots, which avoid the need to reboot an en-
tire system, have been proposed as a general technique
for building highly available fault-tolerant systems [3, 4].
Partial reboots of device drivers avoid a whole-system re-
boot when a driver fails [29, 28]. Unlike previous work,
where partial reboots were used to repair failed compo-
nents, our system uses partial reboots to update compo-
nents instead. The system shuts down the current driver
and starts the new driver transparently to the driver’s
callers.

3 Issues
Device drivers have unique characteristics that influence
the design of an on-line update system. Drivers are com-
monly implemented as a set of modules that can be dy-
namically loaded into the OS kernel. They are orga-
nized into classes that share a common programming in-
terface. The common interface allows the kernel and ap-
plications to access the device without being aware of the
device’s specific characteristics. For example, all sound
card drivers share a common interface, allowing a sound-
playing application to access the sound card without hav-
ing to manage the card itself.

The need to update existing unmodified driver code
raises several design issues. First, the update system must
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rely on the existing capabilities of drivers, such as dy-
namic loading, to initialize the new driver. As well, the
update system must be responsible for transferring driver
state because there is no code in existing drivers to trans-
fer state between driver versions.

Second, because drivers assume exclusive access to
devices and require access to the device to initialize, the
old driver must be disabled while the new driver initial-
izes. Thus, the device is unavailable during an update.
Any portion of the update process that depends on a de-
vice being present (e.g., loading the new driver off a disk
when updating the disk driver) must be performed before
the old driver is disabled.

Finally, an updated driver may offer substantially dif-
ferent services or support different interfaces. For exam-
ple, a new version of a driver may remove functions or
capabilities provided by the prior version. The update
system must be able to detect this situation and disallow
the update.

4 Live Update: Design and Implementa-
tion

Live Update reflects a systems-oriented approach to up-
dating device drivers on-line. Rather than relying on
drivers to update themselves, Live Update is a service that
updates drivers on their behalf. Three principles guide the
design:

1. No new code. It is impractical to write new code for
each driver.

2. Be transparent. Updates to drivers should be invis-
ible to applications, the operating system, and even
drivers.

3. Safety first. The system may disallow an update if it
is not compatible with running code.

Our system must work with existing drivers because it is
too hard, expensive, and error-prone to add on-line update
support to drivers. With a systems-oriented approach, a
single implementation can be deployed and used imme-
diately with a large number of existing drivers. Thus, we
centralize the update code in a single system service. As
a common facility, the update code can be thoroughly ex-
amined and tested for faults. In contrast, practical experi-
ence has shown us that many drivers do not receive such
scrutiny, and hence are more likely to fail during an up-
date.

These principles limit the applicability of Live Up-
date. Our solution only applies to drivers that can load
and unload dynamically. If the driver cannot, then Live
Update cannot replace the driver. Furthermore, our de-
sign only applies to drivers that share a common calling

interface. A driver that uses a proprietary or ad-hoc inter-
face cannot be automatically updated without additional
code specialized to that driver. Finally, if the new driver
supports dramatically different capabilities, then the up-
date will fail because the scale of change cannot be hid-
den from the OS and applications.

Because of these limitations, we consider Live Up-
date to be an optimization and preserve the possibility of
falling back to a whole-system reboot if necessary.

4.1 Design Overview

Our system updates a driver by loading the new code into
memory, shutting down the old driver, and starting the
new driver. During the update, the Live Update system
impersonates the driver, ensuring that its unavailability is
hidden from applications and the OS. As the new driver
starts, the system attaches it to the resources of the old
driver and verifies that the new driver is compatible with
the old driver. If it is not compatible, then the system can
roll back the update. In essence, Live Update replaces the
driver code and then reboots the driver.

In a whole-system reboot, the ephemeral state of a
driver is lost. When only the driver is rebooted, though,
the new driver must preserve the ephemeral state of the
old driver, such as configuration parameters, so that appli-
cation and OS requests can be processed correctly. Fur-
thermore, the reboot must be concealed from applica-
tions, as they are generally unprepared to handle driver
failures. Rather, they are written with the conventional
failure model that drivers and the operating system either
fail together or not at all, and therefore do not attempt to
handle a driver failure.

Live Update uses shadow drivers [28] to safely re-
boot an updated device driver without impacting applica-
tions or the OS. A shadow driver is a kernel agent that is
responsible for (1) rebooting a device driver, (2) restor-
ing the driver’s state after a reboot, and (3) concealing
the driver reboot from the OS and applications. Shadow
drivers operate in two modes: passive and active. In pas-
sive mode, the shadow driver observes all communica-
tion between the driver and the kernel. During a driver
reboot, the shadow switches to active mode, in which it
shuts down and restarts the driver while impersonating
the driver to the OS. Shadow drivers are normally in pas-
sive mode and only switch to active mode during a reboot.

A shadow driver is a “class driver,” aware of the in-
terface to the drivers it shadows but not of their imple-
mentations. A single shadow driver implementation can
reboot any driver in the class. Hence, an operating system
can leverage a few implementations of shadow drivers to
reboot a large number of device drivers. In addition, im-
plementing a shadow driver does not require a detailed
understanding of the internals of the drivers it shadows.
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Update Steps
1. Capture driver state
2. Load new code
3. Impersonate driver
4. Disable/unload old driver
5. Initialize new driver
6. Transfer driver state
7. Enable new driver

Table 1: Live Update process for updating a device driver.

Rather, it requires only an understanding of those drivers’
interactions with the kernel.

Table 1 lists the steps of updating a driver. The pro-
cess begins when a driver is initially loaded and the sys-
tem starts capturing its state and ends after the driver re-
boots and the new driver begins processing requests. We
now describe each of the update steps in more detail.

4.2 Capturing Driver State

The state of a device driver consists of the state it receives
from hardware and the state it receives from the kernel.
From hardware, a driver receives persistent data and en-
vironmental parameters, such as the speed of a network
link, which need not be explicitly preserved when a driver
is updated. From the kernel, the driver receives configura-
tion and I/O requests. While configuration changes must
persist across an update, completed I/O requests are for-
gotten by drivers and have little impact on future requests.
Hence, they need not be retained after a driver update. As
a result, the state of a driver is determined by the history
of configuration requests it receives and the requests it is
currently processing.

Live Update captures the state of a device driver by
observing the communication between the driver and the
kernel. When a driver loads, Live Update interposes
wrappers on all function calls between the driver and the
kernel. The wrappers serve two purposes: they provide
taps that mirror communication to the shadow, and they
provide a layer of indirection between a driver and the
kernel that allows Live Update to redirect calls to a new
driver. We discuss redirection in Section 4.6. From the
taps, the shadow records information necessary to un-
load the old driver and initialize the new driver to a point
where it can process requests correctly.

Each function call between the driver and the kernel
invokes a tap. The tap first calls the function and then
calls the shadow with the function’s parameters and re-
sult. From this communication, the shadow tracks the
kernel objects currently in use by a driver in an object
tracker. For example, the shadow records the I/O mem-
ory regions used by the driver. The shadow also records
open connections to the driver and pending requests that

Disk Device 
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Disk Drive
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Figure 1: A shadow driver captures the old driver state by
monitoring its communication with the kernel while a new
driver version is pre-loaded into memory.

the driver is processing. To capture the configuration of
the driver, the shadow logs requests that set the driver’s
options or parameters. From the information in the object
tracker and log, the shadow driver can restore the driver’s
internal state after a reboot. A sample shadow driver cap-
turing driver state is shown in Figure 1.

4.3 Loading Updated Drivers
A system operator begins an update by loading the new
driver code. As discussed in Section 3, the services of
a driver are not available while it is rebooting. To avoid
circular dependencies that could arise if updates require
the services of the driver being updated, an operator must
pre-load the new driver version into memory. As a result,
the system can update disk drivers that store their own
updates.

Live Update logically replaces entire drivers. When a
driver consists of multiple independent modules, though,
the system only replaces modules whose memory im-
ages change. In addition to updated modules, the system
reloads modules that call into updated modules, in order
to link them against the new code. As an optimization,
Live Update reuses unchanged modules from memory.
By replacing the entire driver, the interfaces between a
driver’s modules can be updated.

Figure 1 shows the new version loaded in memory
alongside the existing version. Once the new code is in
memory, an operator notifies Live Update to replace the
driver. Because both versions are in memory during an
update, the system can revert to the old driver if the up-
date fails.

4.4 Impersonating the Driver
When an operator triggers an update, the shadow driver
switches to active mode. The taps block direct communi-
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Figure 2: A shadow driver handling kernel requests during
an update .

cation between the kernel and the driver and instead route
all requests to the shadow. The shadow driver acts as the
kernel to the driver and as the driver to the kernel, and the
details of updating a driver are left to the shadow. Com-
munication in active mode is illustrated in Figure 2.

In active mode, the shadow impersonates the driver
by handling requests on the driver’s behalf. The shadow
may suspend some callers, but because drivers may take
significant time to start, the shadow cannot suspend all
callers without negatively impacting applications. De-
pending on the type of request, the shadow itself re-
sponds, either using information from the log or by queu-
ing the request and returning to the caller immediately.
The shadow driver later submits queued requests to the
driver after the reboot completes. Thus, the shadow
masks the unavailability of the driver, ensuring that the
OS and applications continue to execute correctly.

4.5 Unloading the Old Driver

While impersonating the driver, the shadow begins the
driver reboot by shutting down the old driver. The shadow
disables the driver, waits for kernel threads to finish using
the driver, and then releases the driver’s resources on its
behalf. Thus, even a driver with bugs in its unload code
can be updated safely.

The shadow releases the majority of the kernel objects
it tracked. A few objects – those that the kernel uses to
call the driver – must be retained in order to conceal the
driver’s reboot from the kernel. For example, the shadow
retains function pointers used by the kernel to call the
driver.

In addition to releasing kernel objects, the shadow re-
sets the old driver to its initial state so it can be used for
rolling back an update. The shadow copies back the old
driver’s initial code and data from clean versions saved
when the driver was loaded. This process resets the old

driver to the same state as the new driver, allowing it to
be restarted if the update fails.

4.6 Initializing the New Driver

Once the old driver is unloaded, the shadow driver initial-
izes the new driver with the same sequence of calls that
the kernel makes when initializing a driver. By making
these calls itself, the shadow conceals the driver’s initial-
ization from the kernel proper. As the driver initializes,
it calls into the kernel to register and acquire resources.
Taps direct these calls to the shadow, which handles the
calls on the kernel’s behalf by connecting the new driver
to the old driver’s resources and registration. For exam-
ple, when a driver calls to register itself with the kernel,
the shadow updates the existing driver object in the kernel
to reference the new driver instance.

The shadow faces two major challenges in initializing
the new driver: identifying and updating the existing ker-
nel objects that the new driver requests, and ensuring that
the new driver is compatible with the old driver. We now
discuss each of these challenges in detail.

4.6.1 Updating References

When the new driver requests a resource from the kernel
or provides a resource to the kernel, the shadow driver
must locate the corresponding resource belonging to the
old driver. Once located, the shadow updates the resource
to reference the new driver and returns it to the driver.
The shadow must locate the corresponding resource from
the old driver, and then safely update it to reference the
new driver.

In most cases, drivers uniquely identify their kernel
resources, which allows the shadow to locate the old
driver’s corresponding resource. For example, drivers
provide a unique name, device number, or MAC address
when registering with the kernel, and unique memory ad-
dresses when requesting I/O regions. The shadow uses
the unique identifier and resource type to locate the old
driver’s resource in the object tracker.

Once located, the shadow updates the kernel resource
to reflect differences between the old and new driver. For
example, the new driver may provide additional functions
or capabilities. Typically, the shadow relies on the indi-
rection provided by wrappers to leave kernel objects un-
changed. For example, the shadow updates wrappers to
point to the new driver’s functions instead of changing
function pointers in the kernel. Otherwise, the shadow
updates the kernel object directly.

In some cases the driver passes a resource to the ker-
nel without unique identification. The shadow updates
these references after the new driver finishes initializing
by repeating the calls to the driver that generated the re-
source in the first place. For example, when the kernel
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opens a connection to a sound card driver, the driver re-
turns a table of function pointers with no identifying de-
vice name or number. To transfer these function tables
to the new driver, the shadow calls into the new driver
to re-open every connection. The new driver returns its
function table, allowing the shadow to update the con-
nection’s table to point to the new driver.

4.6.2 Detecting Incompatibilities

A major problem when updating unmodified code is en-
suring that an update is compatible with the running code.
If an update is not compatible, then applying it may cause
the OS and applications to fail. Incompatibilities arise
when a new driver version implements different functions
(e.g., higher-performance methods), different interfaces
(e.g., a new management interface), or different options
for an existing function. Complicating matters, applica-
tions may expose incompatibilities long after a new driver
starts, for example, when an application attempts to use
capabilities that it queried from the old driver. To avoid
update-induced failures, the shadow must detect whether
the update could cause callers to function incorrectly.

Drivers express their capabilities in two ways. When
a driver passes a function table to the kernel, the set of
functions in the table describe the abilities of the driver.
Drivers also express their capabilities through feature
fields. For example, network drivers pass a bit-mask of
their features to the kernel, which includes the ability
to offload TCP checksumming and do scatter/gather I/O.
The shadow considers an update compatible only if a new
driver provides at least the same capabilities as the old
driver.

The shadow checks compatibility when transferring
references to the new driver. For example, when a new
driver registers and provides a table of function point-
ers, the shadow checks whether it implements at least the
functions that the old driver provided. If so, the shadow
updates the wrapper functions to reference the new driver.
The shadow also checks whether the new driver provides
at least same interfaces to the kernel as the old driver.
For a driver with features that can be queried by applica-
tions, the shadow explicitly queries the new driver’s fea-
tures during an update and compares them against the old
driver’s features.

Live Update can either roll back an incompatible up-
date, or continue with the update and fail any request that
would reveal the incompatibility. These options allow an
operator to prioritize an important update (for example,
one that prevents unauthorized use of the system) over
compatibility. Lower-priority incompatible updates can
still be applied with a whole-system reboot.

For some driver updates, these rules are overly con-
servative. For example, if a driver provides a function or
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Figure 3: After an update, the kernel calls into the new
driver while the old driver remains in memory in case the
update must be rolled back.

capability that is never used, an update need not provide
that function. However, it is impossible for the shadow to
know if an application will ever try to call the function in
the future, and hence we use conservative checks.

4.7 Transferring Driver State
While previous on-line update systems require applica-
tions to transfer their own state between versions, Live
Update transfers driver state automatically, without the
involvement of driver writers. As previously discussed,
a shadow driver captures the state of a driver by moni-
toring its communication with the kernel. Once the new
driver has initialized, the shadow driver transfers the old
driver’s state into the new driver using the same calls into
the driver that it previously monitored. The shadow re-
opens connections to the driver, replays its log of con-
figuration requests, and resubmits requests that were in-
progress when the driver was updated. Once the shadow
completes these calls, the new driver can process new re-
quests as the old driver would have prior to updating.

4.8 Enabling the New Driver
After the reboot completes, the shadow switches back
to passive mode and restores direct communication, en-
abling the new driver to begin processing requests. At
this time the shadow submits any requests that it queued
during the update. An operator may leave the old ver-
sion in memory if she desires the opportunity to later roll
back the update. Or, she may discard the old driver once
the update completes. The system state after an update is
shown in Figure 3.

4.9 Implementation Summary
Live Update updates device drivers by replacing their
code and rebooting the driver. Before an update, it loads
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Class Driver Device
Sound emu10k1 SoundBlaster Live! sound card

audigy SoundBlaster Audigy sound card
es1371 Ensoniq sound card

Network e1000 Intel Pro/1000 Gigabit Ethernet
3c59x 3COM 3c509b 10/100 Ethernet
pcnet32 AMD PCnet32 10/100 Ethernet

Storage ide-disk IDE disk

Table 2: The three classes of shadow drivers and the Linux
drivers tested. We present results for the boldfaced drivers
only, as the others behaved similarly.

driver code into memory to avoid circular dependencies.
During an update, shadow drivers hide the driver’s un-
availability from applications and the OS by handling re-
quests on the driver’s behalf.

Live Update calls existing driver interfaces to initial-
ize the new driver and transfer the state of the current
driver. As the new driver initializes, the shadow driver
connects it to the resources of the old driver. The shadow
reassigns kernel structures referencing the old driver to
the new driver. Once the new driver has initialized, the
shadow driver transfers in the state of the old driver by
replaying its log of configuration requests and by re-
opening connections to the driver. Finally, the shadow
dynamically detects whether the new and old drivers are
compatible by comparing the capabilities of the new and
old drivers. If the new driver is not compatible, either
the update or the action that would reveal the incompat-
ibility can be canceled. Essentially, Live Update takes
a systems-oriented approach to updating device drivers
and provides a centralized service to update unmodified
drivers.

5 Evaluation
We implemented Live Update in the Linux 2.4.18 oper-
ating system kernel. Based on a set of experiments us-
ing existing, unmodified device drivers and applications,
our results show that Live Update (1) can apply most re-
leased driver updates, (2) can detect when an update is
incompatible with the running code and prevent applica-
tion failures by rolling back the update, and (3) imposes
only a minimal performance overhead.

The experiments were run on a 3 GHz Pentium 4 PC
with 1 GB of RAM and a single 80 GB, 7200 RPM IDE
disk drive. We built and tested three shadow drivers for
three device-driver classes: sound card, network interface
controller, and IDE storage device. To ensure that Live
Update worked consistently across device driver imple-
mentations, we tested it on seven different Linux drivers,
shown in Table 2. Although we present detailed results
for only one driver in each class (emu10k1, e1000, and
ide-disk), behavior across all drivers was similar.

Driver Module # of updates # Failed
emu10k1 emu10k1 10 0

ac97 codec 14 0
soundcore 6 0

e1000 e1000 10 1
ide-disk ide-disk 17 0

ide-mod 17 0
ide-probe-mod 17 0

Table 3: Tested drivers, their modules, the number of
updates applied to each module independently, and
the number of updates that failed.

.

Of these three classes of drivers, only IDE storage
drivers require a full system reboot in Linux to be up-
dated. However, updating members of the other two
classes, sound and network, disrupts applications. Live
Update improves the availability of applications using
these drivers, because they need not be restarted when
a driver is updated.

In the rest of this section, we answer two questions
about our Live Update implementation:

1. Effectiveness. Can Live Update transparent update
existing drivers, and can it detect and roll back in-
compatible updates?

2. Performance. What is the performance overhead of
our mechanism during normal operation (i.e., in the
absence of updates), and are updates significantly
faster than rebooting the whole system?

5.1 Effectiveness

To be effective, the Live Update system must hide up-
dates from the applications and the OS, apply to most
driver updates, and be able to detect and handle incom-
patible updates.

Because Live Update depends on shadow drivers to
conceal updates, it shares their concealment abilities.
Previous work on shadow drivers [28] demonstrated that
shadow drivers could conceal driver reboots from all
tested applications in a variety of scenarios. We therefore
only examine the latter two requirements: whether Live
Update can apply existing driver updates and whether it
can detect and roll back incompatible updates.

Applicability to Existing Drivers

We tested whether Live Update can update existing
drivers by creating a set of different versions of the
drivers. We compiled past versions of each driver, which
we obtained either from the Linux kernel source code or
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from vendors’ web sites. For drivers that consist of mul-
tiple modules, we created separate updates for each mod-
ule and updated the modules independently. Because the
driver interface in the Linux kernel changes frequently,
we selected only those drivers that compile and run cor-
rectly on the the 2.4.18 Linux kernel. Table 3 show the
modules comprising each of our tested drivers and the
number of updates for each module.

We applied each driver update from oldest to newest
while an application used the driver. For the sound driver,
we played an mp3 file. For the network drivers, we
performed a network file copy, and for the IDE storage
driver we compiled a large program. For each update,
we recorded whether the driver was successfully updated
and whether the application and OS continued to run cor-
rectly. If the update process, the application or OS failed,
we consider the update a failure.

The results, shown in Table 3, demonstrate that Live
Update successfully applied 90 out of 91 updates. In
just one case, when updating the e1000 driver from ver-
sion 4.1.7 to 4.2.17, the shadow was unable to locate the
driver’s I/O memory region when the new driver initial-
ized. This is because the new driver used a different
kernel API to request the region, which prevented the
shadow from finding the region in the object tracker. The
new driver failed to initialize, causing Live Update to roll
back the update. The file-copy application, however, con-
tinued to run correctly using the old driver.

This single failure of Live Update demonstrates
the complexity of transferring kernel resources between
driver versions. Shadow drivers use a unique identifier to
locate the resource of an old driver that corresponds to a
new driver’s request. For example, interrupt handlers are
identified by the interrupt line number. When implement-
ing shadow drivers, we chose unique identifiers for some
kernel resources that depend on the APIs for requesting
the resource. When a driver changes APIs, the shadow
cannot locate the old driver’s resources during an update.
Ideally, the identifier should be independent of the API
used to request the resource. In practice, this is difficult
to achieve within the existing Linux kernel API, where
there are many resources that can be accessed through
several different APIs.

Compatibility Detection

While we found no compatibility problems when ap-
plying existing driver updates, compatibility detection is
nonetheless critical for ensuring system stability. To test
whether the Live Update can detect an incompatible up-
date, we created a new version of each of our three drivers
that lacks a capability of the original driver. We created
emu10k1-test, a version of the emu10k1 driver that sup-
ports fewer audio formats. The shadow detects the sound

driver’s supported formats by querying the driver’s ca-
pabilities after it initializes. From the e1000 driver we
created e1000-test, a version that removes the ability to
do TCP checksumming in hardware. The driver passes a
bit-mask of features to the kernel when it registers, so this
change should be detected during the update. Finally, we
created ide-disk-test, a version of ide-disk that removes
the ioctl function. This change should be detected dur-
ing the update, when the driver registers and provides the
kernel with a table of function pointers.

For each test driver, we first evaluate whether compat-
ibility detection is necessary by updating to the test driver
with the compatibility checks disabled. Similarly to the
previous tests, we ran an application that used the driver
at the time of update. Next, we applied the same up-
date with compatibility checking enabled. For each test,
we recorded whether the system applies the update and
whether the application continued to run correctly.

With compatibility checking disabled, all three
drivers updated successfully. The sound application
failed, though, because it used a capability of the old
driver that the new driver did not support. The disk
and network applications continued to execute correctly.
The kernel checks the driver’s capabilities on every call
to disk and network drivers, so it gracefully handles the
change in drivers. In contrast, with compatibility check-
ing enabled, Live Update detected all three driver updates
as incompatible and rolled back the updates. The appli-
cations in these tests continued to run correctly.

These tests demonstrate that compatibility checking
is important for drivers whose capabilities are exposed to
applications. The sound application checks the driver’s
capabilities once, when starting, and then assumes the ca-
pabilities do not change. In contrast, only the kernel is
aware of the network and disk drivers’ capabilities. Un-
like the sound application, the kernel checks the driver ca-
pabilities before every invocation of the driver, and hence
the compatibility check during update is not important.

5.2 Performance

Because updates are infrequently applied, an on-line up-
date system must not degrade performance during the in-
tervals between updates. Live Update introduces over-
head from its taps, which interpose on every function
call between the kernel and drivers, and from the shadow
driver, which must track and log driver information. In
addition, updates must be applied quickly to achieve high
availability.

To evaluate performance cost of Live Update, we pro-
duced two OS configurations based on the Linux 2.4.18
kernel:

1. Linux-Native is the unmodified Linux kernel.

8



Device Driver Application Activity
Sound • mp3 player (zinf) playing 128kb/s audio

(emu10k1 driver) • audio recorder (audacity) recording from
microphone

Network • network send (netperf) over TCP/IP
(e1000 driver) • network receive (netperf) over TCP/IP

Storage • compiler (make/gcc) compiling 788 C files
• database (mySQL) processing the Wisconsin

Benchmark

Table 4: The applications and workloads used for testing
Live Update performance.
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Figure 4: Comparative application performance on Linux-
LU relative to Linux-Native. The X-axis crosses at 80%.

2. Linux-LU is a version of Linux that includes shadow
drivers and Live Update.

We selected a variety of common applications that use
our three device driver classes and measured their perfor-
mance. The application names and behaviors are shown
in Table 4.

Different applications have different performance
metrics of interest. For the sound driver, we measured the
available CPU while the programs ran. For the network
driver, throughput is a more useful metric; therefore, we
ran the throughput-oriented network send and network re-
ceive benchmarks. For the IDE storage driver, we mea-
sured elapsed time to run the applications in Table 4. We
repeated all measurements several times and they showed
a variation of less than one percent.

Figure 4 shows the performance of Linux-LU relative
to Linux-Native. The figure makes clear that Live Up-
date imposes only a small performance penalty compared
to running on Linux-Native. Across all six applications,
performance on Linux-LU averaged 99% of the perfor-
mance on Linux-Native, demonstrating that Live Update
imposes little overhead.

The overhead of Live Update can be explained in
terms of frequency of communication between the driver

and the kernel. On each driver-kernel call, the shadow
driver may have to log a request or track an object. For
example, the kernel calls the driver approximately 1000
times per second when running audio recorder, each of
which causes the shadow to update its log. For the
most disk-intensive of the IDE storage applications, the
database benchmark, the kernel and driver interact only
290 times per second. On the other hand, the network
send benchmark transmits 45,000 packets per second,
causing 45,000 packets to be tracked. While throughput
decreases only slightly, the additional work increases the
CPU overhead per packet by 34%, from on 3µs on Linux-
Native to 4µs on Linux-LU.

Another important aspect of performance is the du-
ration of time when the driver is not available during an
update. For each of our three drivers, we measured the
delay from when the shadow starts impersonating the de-
vice driver until it enables the new driver. The delay for
the e1000 and ide-disk drivers was approximately 5 sec-
onds, almost all of which is due to the time the driver
spends probing hardware1. The emu10k1 updates much
faster and is unavailable for only one-tenth of a second.
In contrast, rebooting the entire system can take minutes
when including the time to restart applications.

In this section we showed that Live Update could im-
prove availability by updating device drivers without re-
booting the OS. For drivers that the OS can replace on-
line, such as sound and network drivers, Live Update was
able to update the driver without impacting running ap-
plications. We also showed that Live Update was able to
automatically roll back updates that failed due to compat-
ibility problems. Furthermore, the overall performance
impact of Live Update during normal operation is negli-
gible, suggesting that it could be used across a wide range
of applications and environments where high availability
is important.

6 Conclusions
While operating systems themselves are becoming more
reliable, their availability will ultimately be limited by
scheduled maintenance required to update system soft-
ware. In this paper we presented a system for updating
device drivers on-line that allows critical system drivers,
such as storage and networking drivers, to be replaced
without impacting the operating system and applications,
or more importantly, availability.

Live Update leverages shadow drivers [28] to update
driver code in-place with no changes to the driver itself.
The system loads the new driver code, reboots the driver,
and transfers kernel references from the old driver to the
new driver. To ensure that applying an update will not re-

1The e1000 driver is particularly slow at recovery. The other net-
work drivers we tested recovered in less than a second.
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duce reliability due to changes in the driver, Live Update
checks the new driver for compatibility, and can rollback
incompatible updates. In testing, we found that Live Up-
date could apply 99% of our existing driver updates and
had almost no impact on performance.
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structuring in an experimental operating system. In
Proceedings of the 3rd International Conference on
Software Engineering, pages 295–304, May 1978.

[12] J. Gray. Why do computers stop and what can be
done about it? Technical Report 85-7, Tandem
Computers, June 1985.

[13] D. Gupta and P. Jalote. On-line software ver-
sion change using state transfer between processes.
Software–Practice and Experience, 23(9):949–94,
Sept. 1993.

[14] S. Hauptmann and J. Wasel. On-line maintenance
with on-the-fly software replacement. In Proceed-
ings of the 3rd International Conference on Con-
figurable Distributed Systems, pages 70–80, May
1996.

[15] M. Hicks, J. T. Moore, and S. Nettles. Dynamic
software updating. In Proceedings of the ACM
SIGPLAN ’01 Conference on Programming Lan-
guage Design and Implementation, pages 13–23,
June 2001.
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