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Abstract. This paper addresses the analysis of concurrent programs
with shared memory. Such an analysis is undecidable in the presence of
multiple procedures. One approach used in recent work obtains decid-
ability by providing only a partial guarantee of correctness: the approach
bounds the number of context switches allowed in the concurrent pro-
gram, and aims to prove safety, or find bugs, under the given bound. In
this paper, we show how to obtain simple and efficient algorithms for the
analysis of concurrent programs with a context bound. We give a general
reduction from a concurrent program P , and a given context bound K, to
a slightly larger sequential program P K

s such that the analysis of P K
s can

be used to prove properties about P . The reduction introduces symbolic
constants and assume statements in P K

s . Thus, any sequential analysis
that can deal with these two additions can be extended to handle con-
current programs as well, under the context bound. We give instances of
the reduction for common program models used in model checking, such
as Boolean programs, pushdown systems (PDSs), and symbolic PDSs.

1 Introduction

The analysis of concurrent programs is a challenging problem. While, in general,
the analysis of both concurrent and sequential programs is undecidable, what
makes concurrency hard is the fact that even for simple program models, the
presence of concurrency makes their analysis computationally very expensive.
When the model of each thread is a finite-state automaton, the analysis of such
systems is PSPACE-complete; when the model is a pushdown system, the anal-
ysis becomes undecidable [20]. This is unfortunate because it does not allow
the advancements made on such models in the sequential setting, i.e., when the
program has only one thread, to be applied in the presence of concurrency.

A high-level goal of our work in recent years has been to automatically ex-
tend analyses for sequential programs to analyses for concurrent programs. This
paper addresses this problem under a bound on the number of context switches.1

We refer to analysis of concurrent programs under a context bound as context-

bounded analysis (CBA). Previous work has shown the value of CBA: KISS [19],
a model checker for CBA with a fixed context bound of 2, found numerous bugs

1 A context switch is said to occur when execution control is passed from one thread
to another.



in device drivers; a study with explicit-state model checkers [15] found more bugs
with slightly higher context bounds. It also showed that the state-space covered
with each increment to the context-bound decreases as the context bound in-
creases. Thus, even a small context bound is sufficient to cover many program
behaviors, and proving safety under a context bound should provide confidence
towards the reliability of the program. Unlike the above-mentioned work, this
paper addresses CBA with any given context bound and with different program
abstractions (for which explicit-state model checkers would not terminate).

The decidability of CBA, when each program thread is abstracted as a push-

down system (PDS)—which serve as a general model for recursive programs with
finite-state data—was shown in [18]. These results were extended to PDSs with
bounded heaps in [3] and to weighted PDSs (WPDSs) in [11]. All of this work
required devising new algorithms. Moreover, each of the algorithms have certain
disadvantages that make them impractical to implement.

To explain the disadvantages, consider the analysis of program models with
finite-state data, such as Boolean programs [1].2 For such programs, the number
of valuations of variables is exponential in the number of variables. For practical
implementations, the use of symbolic techniques, such as BDDs, are crucial for
scalability. Similar models also arise in other work [24, 6] and BDDs are used
there as well.

With the algorithms of [18, 3], it is not clear if symbolic techniques can be
applied. Those algorithms require the enumeration of all reachable states of the
shared memory at a context switch. This can potentially be very expensive.
However, those algorithms have the nice property that they only consider those
states that actually arise during valid (abstract) executions of the model. (We
call this lazy exploration of the state space.)

Our recent paper [11] showed how to extend the algorithm of [18] to use
symbolic techniques. However, the disadvantage there is that it requires com-
puting auxiliary information for computing the reachable state space. (We call
this eager exploration of the state space.) The auxiliary information summarizes
the effect of executing a thread from any control location to any other control
location. Such summarizations may consider many more program behaviors than
can actually occur (whence the term “eager”).

This problem can also be illustrated by considering interprocedural analysis
of sequential programs: for a procedure, it is possible to construct a summary
for the procedure that describes the effect of executing it for any possible inputs
to the procedure (eager computation of the summary). It is also possible to
construct the summary lazily (also called partial transfer functions [14]) by only
describing the effect of executing the procedure for input states under which it is
called during the analysis of the program. The former (eager) approach has been
successfully applied to Boolean programs [1, 23], but the latter (lazy) approach
is often desirable in the presence of more complex abstractions, especially those

2 Boolean programs can be understood as imperative programs with only the Boolean
datatype.
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that contain pointers (based on the intuition that only a few aliasing scenarios
occur during abstract execution).

Contributions. This paper makes two main contributions. First, we give sim-
pler decidability results for CBA by reducing a concurrent program to a se-
quential program that simulates all its executions for a given number of context
switches. Hence, new algorithms do not have to be developed; instead, algorithms
for analyzing sequential programs can be used for CBA. In fact, for PDSs, we
obtain better asymptotic complexity than previous algorithms, just by using the
standard PDS algorithms (§4): we obtain algorithms that scale linearly with
respect to the size of the local state space; moreover, we show how to obtain
algorithms that scale linearly with the number of threads (whereas previous
algorithms scaled exponentially).

Our reduction introduces symbolic constants and assume statements. Thus,
any sequential analysis that can deal with these two additions can be extended
to handle concurrent programs as well (under a context bound).

These additions are only associated with the shared data in the program. This
implies that when only a finite amount of data is shared between threads of a
program (e.g., there are only a finite number of locks), any sequential analysis,
even of programs with pointers or integers, can be extended to perform CBA of
concurrent programs.

When the shared data is not finite, our reduction still applies. Numeric anal-
ysis, like [5], can be extended for CBA of concurrent programs. This shows the
benefit of our reduction towards obtaining new algorithms for CBA.

Previous results [3, 18] can be obtained as a direct instance of our reduction
without requiring new algorithms. We give instances of our reduction for Boolean
programs, PDSs, and symbolic PDSs. The former shows that the use of PDS-
based technology, which seemed crucial in previous work, is not necessary: the
standard interprocedural algorithms [21, 25, 8] can also be used for CBA.

Second, we show how to obtain a symbolic and lazy algorithm for CBA
on Boolean programs (§5). This combines the best of previous algorithms: the
algorithms of [18, 3] are lazy but not symbolic, and the algorithm of [11] is
symbolic but not lazy.

The rest of the paper is organized as follows: §2 gives an overview of our
reduction from concurrent to sequential programs; §3 specializes the reduction
to Boolean programs; §4 specializes the reduction to PDSs and symbolic PDSs;
§5 gives a lazy symbolic algorithms for CBA on Boolean programs; §6 shows
some early results with our algorithms; §7 discusses related work. Proofs can be
found in App. A.

2 An Overview of the Reduction

This section gives an overview of how we perform the reduction from concur-
rent programs to sequential programs under the context bound. This reduction
transforms the non-determinism in control, which arises because of concurrency,
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to non-determinism on data. (The motivation is that the latter problem is un-
derstood much better than the former one.)

The execution of a concurrent program proceeds in a sequence of execution

contexts, defined as the time between consecutive context switches during which
only a single thread has control. In this paper, we do not consider dynamic
creation of threads, and assume that a concurrent program is given as a fixed
set of threads, with one thread identified as the starting thread.

Suppose that a program has two threads, T1 and T2, and that the context
bound is 2K − 1. Then any execution of the program under this bound will
have up to 2K execution contexts, with control alternating between the two
threads, informally written as T1; T2; T1, · · · . Each thread has control for at most
K execution contexts. Consider three consecutive execution contexts T1; T2; T1.
When T1 finishes executing the first of these, it gets swapped out and its local
state, say l1, is stored. Then T2 gets to run, and when it is swapped out, T1 has
to resume execution from l1 (along with the global store, which T2 might have
changed).

The requirement of resuming from the same local state is one difficulty that
makes analysis of concurrent programs hard—during the analysis of T2, the local
state of T1 has to be remembered (even though it is unchanging). This forces
one to consider the cross product of the local states of the threads, causing
exponential blowup when the local state space is finite, and undecidability when
the local state includes a stack. The advantage of introducing a context bound
is that such a cross-product need not be considered. The algorithms of [18, 11,
3] scale polynomially with the size |L| of the local state space: the algorithms of
[18, 3] are O(|L|5), and [11] is O(|L|K). Our algorithm, for PDSs and Boolean
programs, is O(|L|). (Strictly speaking, in each of these, |L| is the size of the
local transition system.)

Previous approaches still have some flavor of being designed to remember the
local state. For analysis of programs with multiple procedures, the local state
consists of the program stack. To be able to remember a stack (or, more generally,
a set of stacks), previous work made use of PDS machinery. Our reduction shows
that PDS machinery is not essential, and that more standard interprocedural
analysis techniques [25, 8, 21], which do not manipulate the program stack, can
also be used for CBA.

Our key observation is the following: for analyzing the three execution con-
texts T1; T2; T1, we modify the threads so that we only have to analyze T1; T1; T2,
which eliminates the requirement of having to drag along the local state of T1

during the analysis of T2. For this, we assume the effect that T2 might have on the
shared memory, apply it while T1 is executing, and then check our assumption
after analyzing T2.

Consider the general case when each of the two threads have K execution
contexts. We refer to the state of shared memory as the global state. First, we
guess K − 1 (arbitrary) global states, say s1, s2, · · · , sK−1. We run T1, so that
it starts executing from the initial state s0 of the shared memory. At a non-
deterministically chosen time, we record the current global state s′1, change it to
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s1, and resume execution of T1. Again, at a non-deterministically chosen time,
we record the current global state s′2, change it to s2, and resume execution
of T1. This continues K − 1 times. Implicitly, this implies that we assumed
that the execution of T2 will change the global state from s′i to si in its ith

execution context. Next, we repeat this for T2: we start executing T2 from s′1.
At a non-deterministically chosen time, we record the global state s′′1 , we change
it to s′2 and repeat K − 1 times. Finally, we verify our assumption: we check
that s′′i = si+1 for all i between 1 and K − 1. If these checks pass, we have
the guarantee that Var

K
G can have a valuation s if and only if the concurrent

program can have the global state s in K execution contexts per thread.
The fact that we do not alternate between T1 and T2 implies the linear

scalability with respect to the local state. Because the above process has to be
repeated for all valid guesses, our approach scales as O(|G|K), where G is the
global state space, which is still polynomial because K is fixed. In general, the
exponential complexity with respect to K may not be avoidable because the
problem is NP-complete when the input has K written in unary [10]. However,
symbolic techniques can be used for a practical implementation.

Instead of designing a new algorithm for the above assume-guarantee process,
we show how to reduce it to the problem of analyzing a single thread. We add
more variables to the program, initialized with symbolic constants, to represent
our guesses. The switch from one global state to another is made by switching
the set of variables being accessed by the program. We verify the guesses by
inserting assume statements at the end.

The reduction. Consider a concurrent program P with two threads T1 and T2

that only has scalar variables (i.e., no pointers, arrays, or heap).3 We assume
that the threads share their global variables, i.e., they have the same set of global
variables. Let VarG be the set of global variables of P . Let 2K−1 be the bound
on the number of context switches.

The result of our reduction will be a sequential program P s. It has three
parts, performed in sequence: the first part T s

1 is a reduction of T1; the second
part T s

2 is a reduction of T2; and the third part, Checker, consists of multiple
assume statements to verify that a correct interleaving was performed. Let Li be
a label preceding the ith part. Thus, Ps has the form shown in the first column
of Fig. 1.

P s has K copies of VarG as its set of global variables. If VarG = {x1, · · · , xn},
then let Var

i
G = {xi

1, · · · , xi
n}. The initial values of Var

i
G are used to store the

ith guess si. It has an additional global variable k, which will take values between
1 and K +1. It tracks the current execution context of a thread: at any time P s

can only read and write to variables in Var
k

G. The local variables of T s
1 are the

same as those of T1, and similarly for T s
2 .

Let τ(x, i) = xi. If st is a program statement in P , let τ(st, i) be the state-
ment in which each global variable x is replaced with τ(x, i), and the local vari-

3 Such program models are often used in model checking, as well as for numerical
programs.
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Program P s st ∈ Ti Checker

L1 : T s
1 ;

L2 : T s
2 ;

L3 : Checker
if k = 1 then

τ (st, 1);
else if k = 2 then

τ (st, 2);
· · ·

else if k = K then

τ (st, K);
end if

if k ≤ K and ∗ then

k ++
end if

if k = K + 1 then

k = 1
goto Li+1

end if

for i = 1 to K − 1 do

for j = 1 to n do

assume (xi
j = vi+1

j )
end for

end for

Fig. 1. The reduction for general concurrent programs under a context bound 2K − 1.
In the reduction, ∗ stands for a nondeterministic Boolean value. Furthermore, the
variables Var

1
G are initialized to the same values as those in VarG for P , the rest of

the variables xi
j are initialized to the symbolic value vi

j , and k is initialized to 1.

ables remain unchanged. The reduction constructs T s
i from Ti by replacing each

statement st by what is shown in the second column of Fig. 1. The third column
shows Checker.

The fact that local variables are not replicated captures the constraint that
a thread starts executing from the local state it was in when it was swapped out
at a context switch.

The Checker enforces a correct interleaving of the threads. It checks that the
values of global variables when T1 starts its (i + 1)th execution context are the
same as the values produced by T2 when T2 finished executing its ith execution
context. (Because the execution of T s

2 happens after T s
1 , each execution context of

T s
2 is guaranteed to use the global state produced by the corresponding execution

context of T s
1 .)

The reduction ensures the following property: when Ps finishes execution,
the variables Var

K
G can have a valuation s if and only if the variables Var in P

can have the same valuation after 2K − 1 context switches.

Symbolic constants. One way to deal with symbolic constants is to consider all
possible values for them (eager computation). We show instances of this strategy
for Boolean programs (§3) and for PDSs (§4). Another way is to lazily consider
the set of values they may actually take on during the (abstract) execution of
the concurrent program, i.e., only consider those values that pass the Checker.
We show an instance of this strategy for Boolean programs (§5).

Multiple threads. If there are multiple threads, say n, then a precise rea-
soning for K context switches would require one to consider all possible thread
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schedulings, e.g., (T1; T2; T1; T3), (T1; T3; T2; T3), etc. There are O((n−1)K) such
schedulings. Previous analyses [18, 11, 3] enumerate explicitly all these schedul-
ings, and thus have O((n−1)K) complexity even in the best case. We avoid this
exponential factor as follows: we only consider the round-robin thread schedule
T1; T2; · · ·Tn; T1; T2; · · · for CBA. Because a thread is allowed to not perform
any steps during its execution context, CBA still considers other schedules. For
example, when n = 3, the schedule T1; T2; T1; T3 will be considered by CBA only
when K = 5 (in the round-robin schedule, T3 does nothing in its first execution
context, and T2 does nothing in its second execution context).

Setting the bound on the length of the round-robin schedule to nK allows
our analysis to consider all thread schedulings with K context switches (as well
as some schedulings with more than K context switches). Such a schedule has
K execution contexts per thread. The reduction for multiple threads proceeds in
a similar way to the reduction for two threads. The global variables are copied
K times. Each thread Ti is transformed to T s

i , as shown in Fig. 1, and Ps calls
the T s

i in sequence followed by the Checker. Checker remains the same (it only
has to check that the state after the execution of T s

n agrees with the symbolic
constants).

The advantages of this approach are as follows: (i) we avoid an explicit enu-
meration of O((n−1)K) thread schedules, thus, allowing our analysis to be more
efficient in the common case; (ii) we explore more of the program behavior with
a round-robin bound of nK than with a context-switch bound of K with all
schedules; and (iii) the cost of analyzing the round-robin schedule of length nK

is about the same (in fact, better) than what previous analyses take for exploring
one schedule with a context bound of K (see §4). These advantages allow our
analysis to scale much better in the presence of multiple threads than previous
analyses.

In the rest of the paper, we only consider two threads because the extension
to multiple threads is straightforward for round-robin scheduling.

Applicability of the reduction to different analyses. Certain analysis, like
affine-relation analysis (ARA) over integers, as developed in previous papers [12,
13], cannot make use of this reduction. The presence of assume statements makes
the ARA problem undecidable. However, any abstraction prepared to deal with
branching conditions can also handle assume statements.

It is harder to make a general claim as to whether most sequential analysis
can handle symbolic values. One place where symbolic values are used in se-
quential analysis is for the analysis of recursive procedures. Eager computation
of a procedure summary is similar to analyzing the procedure while assuming
symbolic values for the parameters of the procedure.

It is easy to see that our reduction applies quite easily to concurrent programs
that only share finite-state data. In this case, the symbolic constants can only
take a finite number of values. Thus, any sequential analysis can be extended for
CBA by simply enumerating all their values (or considering them lazily using
techniques similar to the ones presented in §5). This implies that sequential
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analyses of programs with pointers, arrays, and/or integers can be extended to
perform CBA of such programs when only finite-state data (e.g., finite number
of locks) is shared between the threads. This shows the value of our reduction
for creating new algorithms for CBA.

The reduction also applies when the shared data is not finite state, although,
in this case, values of symbolic constants cannot be enumerated. For instance, our
reduction can take a concurrent numeric program (defined as one having multiple
threads, each manipulating some number of potentially unbounded integers),
and produce a sequential numeric program. Then most numeric analysis, like
polyhedral analysis, can be applied on the program. Such analyses are typically
able to handle symbolic constants [5].

3 The Reduction for Boolean programs

Boolean Programs. A Boolean program consists of a set of procedures, repre-
sented using their control-flow graphs (CFGs). The program has a set of global
variables, and each procedure has a set of local variables, where each variable
can only receive a Boolean value. Each edge in the CFG is labeled with a state-
ment that can read from and write to variables in scope, or call a procedure. An
example is shown in Fig. 2.

For ease of exposition, we assume that all procedures have the same number
of local variables, and that they do not have any parameters. Furthermore, the
global variables can have any value when program execution starts, and similarly
for the local variables when a procedure is invoked.

n1

n4 n5

n6

x=0 x=1 y=x

n7

n8n2 n3
bar( ) bar( )

proc foo proc bar

n9

assume(y=1)

Fig. 2. A Boolean pro-
gram

Let G be the set of valuations of the global vari-
ables, and L be the set of valuations of the local vari-
ables. A program data-state is an element of G × L.
Each program statement st can be associated with
a relation [[st]] ⊆ (G × L) × (G × L) such that
(g0, l0, g1, l1) ∈ [[st]] when the execution of st on the
state (g0, l0) can lead to the state (g1, l1). For instance,
in a procedure with one global variable x1 and one lo-
cal variable x2, [[x1 = x2]] = {(a, b, b, b) | a, b ∈ {0, 1}}
and [[assume(x1 = x2)]] = {(a, a, a, a) | a ∈ {0, 1}}.

The goal of analyzing such programs is to com-
pute the set of data-states that can reach a program
node. This is done using the rules shown in Fig. 3

[1]. These rules follow standard interprocedural analyses [21, 25]. Let entry(f)
be the entry node of procedure f, proc(n) the procedure that contains node
n, ep(n) = entry(proc(n)), and exitnode(n) is true when n is the exit node of
its procedure. Let Pr be the set of procedures of the program, which includes
a distinguished procedure main. The rules compute three types of relations:
Hn(g0, l0, g1, l1) denotes the fact that if (g0, l0) is the data state at entry(n),
then the data state (g1, l1) can reach node n; Sf is the summary relation for
procedure f, which captures the net transformation that an invocation of the
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First phase Second phase

g ∈ G, l ∈ L, f ∈ Pr
R0

Hentry(f)(g, l, g, l)

Hn(g0, l0, g1, l1) n
st

−−→ m (g1, l1, g2, l2) ∈ [[st]]
R1

Hm(g0, l0, g2, l2)

Hn(g0, l0, g1, l1) n
call f()

−−−−−→ m Sf(g1, g2)
R2

Hm(g0, l0, g2, l1)

Hn(g0, l0, g1, l1) exitnode(n) f = proc(n)
R3

Sf(g0, g1)

g ∈ G, l ∈ L
R4

Rentry(main)(g, l)

Rep(n)(g0, l0) Hn(g0, l0, g1, l1)
R5

Rn(g1, l1)

Rn(g0, l0) n
call f()

−−−−−→ m l ∈ L
R6

Rentry(f)(g0, l)

Hn(g0, l0, g1, l1) n
call f()

−−−−−→ m l2 ∈ L
R7

Hentry(f)(g1, l2, g1, l2)

Hn(g0, l0, g1, l1)
R8

Rn(g1, l1)

Fig. 3. Rules for the analysis of Boolean programs.

procedure can have on the global state; Rn is the set of data states that can
reach node n. All relations are initialized to be empty.
Eager analysis. Rules R0 to R6 describe an eager analysis. The analysis pro-
ceeds in two phases. In the first phase, the rules R0 to R3 are used to saturate
the relations H and S. In the next phase, this information is used to build the
relation R using rules R4 to R6.
Lazy analysis. Let rule R′

0 be the same as R0 but restricted to just the main

procedure. Then the rules R0,R1,R2,R3,R7,R8 describe a lazy analysis. The
rule R7 restricts the analysis of a procedure to only those states it is called in.
As a result, the second phase gets simplified and consists of only the rule R8.

Practical implementations [1, 23] use BDDs to encode each of the relations
H, S, and R and the rule applications are changed into BDD operations. For
example, rule R1 is simply the relational composition of relations Hn and [[st]],
which can be implemented efficiently using BDDs.

Concurrent Boolean Programs. A concurrent Boolean program consists of
multiple Boolean programs, one per thread. The Boolean programs share their
set of global variables. In this case, we can apply the reduction presented in
§2, with slight changes, to obtain a single Boolean program: (i) the variable
k is modeled using a vector of log(K) Boolean variables, and the increment
operation implemented using a simple Boolean circuit on these variables; (ii)
the if conditions are modeled using assume statements; and (iii) the symbolic
constants are modeled using additional global variables that are not modified
in the program. Running any sequential analysis algorithm, and projecting out
the values of the Kth set of global variables from Rn gives the precise set of
reachable global states at node n in the concurrent program.

The worst-case complexity of analyzing a Boolean program P with |G| num-
ber of valuations of global variables and |L| number of valuations of local
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variables is O(|P ||G|3|L|2), where |P | is the number of program statements.
The complexity of analyzing a concurrent Boolean program Pc with n threads,
where each thread gets K execution contexts (with round-robin scheduling), is
O(|Pc||G|4K |L|2) (it has one extra factor of |G|K for choosing the initial values
of the symbolic constants).

Note that there is nothing special about the use of Boolean programs in our
reduction, except that the number of data-states is finite. Our reduction applies
to any model that works with finite-state data, which includes Boolean programs
with references [2, 16]. In such models, the heap is assumed to be bounded in size.
The heap is included in the global state of the program, hence, our reduction
would create multiple copies of the heap, initialized with symbolic values. Our
experiments (§6) used such programs.

Such a process of duplicating the heap can be expensive when the number of
heap configurations that actually arise in the concurrent program is very small
compared to the total number of heap configurations possible. The lazy version
of our algorithm (§5) addresses this issue.

4 The Reduction for PDSs

PDSs are also popular models of programs. The motivation for presenting the
reduction for PDSs is that it allows one to apply the numerous algorithms devel-
oped for PDSs to concurrent programs under a context bound. For instance, one
can use backward analysis of PDSs to get a backward analysis on the concurrent
program. In previous work [9], we showed how to precisely compute the error

projection, i.e., the set of all nodes that lie on an error trace, when the program
is modeled as a (weighted) PDS. Directly applying this algorithm to the PDS
produced by the following reduction, we can compute the error projection for
concurrent programs under a context bound.

Definition 1. A pushdown system is a triple P = (P, Γ, ∆), where P is a

finite set of states, Γ is a finite set of stack symbols, and ∆ ⊆ P × Γ × P × Γ ∗

is a finite set of rules. A configuration of P is a pair 〈p, u〉 where p ∈ P and

u ∈ Γ ∗. A rule r ∈ ∆ is written as 〈p, γ〉 →֒ 〈p′, u〉, where p, p′ ∈ P , γ ∈ Γ

and u ∈ Γ ∗. These rules define a transition relation ⇒P on configurations of P
as follows: If r = 〈p, γ〉 →֒ 〈p′, u′〉 then 〈p, γu′′〉 ⇒P 〈p′, u′u′′〉 for all u′′ ∈ Γ ∗.

We drop the subscript from ⇒P when it is clear from the context. The reflexive

transitive closure of ⇒ is denoted by ⇒∗. For a set of configurations C, we define

pre∗(C) = {c′ | ∃c ∈ C : c′ ⇒∗ c} and post∗(C) = {c′ | ∃c ∈ C : c ⇒∗ c′}, which

are just backward and forward reachability under ⇒.

Without loss of generality, we restrict the PDS rules to have at most two
stack symbols on the right-hand side [24].

The standard way of modeling control-flow of programs using PDSs is as
follows: the set P consists of a single state {p}; the set Γ consists of program
nodes, and ∆ has one rule per edge in the control-flow graph as follows: 〈p, u〉 →֒
〈p, v〉 for an intraprocedural edge (u, v); 〈p, u〉 →֒ 〈p, e v〉 for a procedure call at
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For each 〈p, γ〉 →֒ 〈p′, u〉 ∈ (∆1 ∪ ∆2) and for all pi ∈ P, k ∈ {1, · · · , K}:
〈(k, p1, · · · , pk−1, p, pk+1, · · · , pK), γ〉 →֒ 〈(k, p1, · · · , pk−1, p

′, pk+1, · · · , pK), u〉

For each γ ∈ Γj and for all pi ∈ P, k ∈ {1, · · · , K}:
〈(k, p1, · · · , pK), γ〉 →֒ 〈(k + 1, p1, · · · , pK), γ〉
〈(K + 1, p1, · · · , pK), γ〉 →֒ 〈(1, p1, · · · , pK), ej+1 γ〉

Fig. 4. PDS rules for Ps.

node u that returns to v and calls the procedure starting at e; 〈p, u〉 →֒ 〈p, ε〉 if
u is the exit node of a procedure. Finite-state data is encoded by expanding P

to be the set of global states, and expanding Γ by including valuations of local
variables. Under such an encoding, a configuration 〈p, γ1γ2 · · · γn〉 represents the
instantaneous state of the program: p is the valuation of global variables, γ1 has
the current program location and values of local variables in scope, and γ2 · · · γn

store the return addresses and values of local variables for unfinished calls.

A concurrent program with two threads is represented with two PDSs that
share their global state: P1 = (P, Γ1, ∆1),P2 = (P, Γ2, ∆2). A configuration of
such a system is the triplet 〈p, u1, u2〉 where p ∈ P, u1 ∈ Γ ∗

1 , u2 ∈ Γ ∗
2 . Define

two transition systems: if 〈p, ui〉 ⇒Pi
〈p′, u′

i〉 then 〈p, u1, u〉 ⇒1 〈p′, u′
1, u〉 and

〈p, u, u2〉 ⇒2 〈p′, u, u′
2〉 for all u. The problem of interest with concurrent pro-

grams, under a context bound 2K − 1, is to find the reachable states under the
transition system (⇒∗

1;⇒
∗
2)

K (here the semicolon denotes relational composi-
tion, and exponentiation is repeated relational composition).

We now show how to obtain a single PDS Ps = (Ps, Γs, ∆s), such that
reachability under this PDS simulates reachability under the above transition
system. Let Ps be the set of all K + 1 tuples whose first component is a number
between 1 and K, and the rest are from the set P , i.e., Ps = {1, · · · , K} × P ×
P × · · · × P . This set relates to the reduction from §2 as follows: an element
(k, p1, · · · , pK) ∈ Ps represents that the value of the variable k is k; and pi

encodes a valuation of the variables Var
i
G. When Ps is in such a state, its rules

would only modify pk.

Let ei ∈ Γi be the starting node of the ith thread. Let Γs be the disjoint union
of Γ1, Γ2 and an additional symbol {e3}. Ps does not have an explicit checking
phase. The rules ∆s are defined in Fig. 4.

We deviate slightly from the reduction presented in §2 by changing the goto

statement, which passes control from the first thread to the second, into a pro-
cedure call. This is to ensure that the stack of the first thread is left intact
when control is passed to the next thread. Furthermore, we assume that the
PDSs cannot empty their stacks, i.e., it is not possible that 〈p, e1〉 ⇒

∗
P1

〈p′, ε〉 or
〈p, e2〉 ⇒

∗
P2

〈p′, ε〉 for all p, p′ ∈ P (in other words, the main procedure should
not return). This can be enforced by introducing new symbols e′i, e

′′
i in Pi such

that e′i calls ei, pushing e′′i on the stack, and ensuring that no rule can fire on
e′′i .
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Theorem 1. Starting execution of the concurrent program (P1,P2) from the

state 〈p, e1, e2〉 can lead to the state 〈p′, c1, c2〉 under the transition sys-

tem (⇒∗
1;⇒

∗
2)

K if and only if there exist states p2, · · · , pK ∈ P such that

〈(1, p, p2, · · · , pK), e1〉 ⇒Ps
〈(1, p2, p3, · · · , pK , p′), e3 c2 c1〉.

Note that the checking phase is implicit in the statement of Thm. 1. (One
can also make the PDS Ps have an explicit checking phase, starting at node e3.)

Complexity. Using our reduction, one can find the set of all reachable config-
urations of the concurrent program in time O(K2|P |2K |Proc||∆1 + ∆2|), where
|Proc| is the number of procedures in the program4 (see App. A). Using back-
ward reachability algorithms, one can verify if a given configuration in reachable
in time O(K3|P |2K |∆1+∆2|). Both these complexities are asymptotically better
than those of previous algorithms for PDSs [18, 11], with the latter being linear
in the program size |∆1 + ∆2|.

A similar reduction works for multiple threads as well (under round-robin
scheduling), giving rise to a theorem similar to Thm. 1. Moreover, the complexity
of finding all reachable states under a bound of nK with n threads, using a
standard PDS algorithm, is O(K3|P |4K |Proc||∆|), where |∆| = Σn

i=1|∆i| is the
total number of rules in the concurrent program. This implies that when the
number of execution contexts per thread (i.e., the value K) is held fixed, our
analysis scales linearly in the number of threads.

This reduction produces a large number of rules (O(|P |K |∆|)) in the resultant
PDS, but we can leverage work on symbolic PDSs (SPDSs) [24] or weighted PDSs

[22] to obtain symbolic implementations. We show next how to use the former.

4.1 The Reduction for Symbolic PDSs

A SPDS is a triple (P , G, val), where P = ({p}, Γ, ∆) is a single-state PDS, G

is a finite set, and val : ∆ → (G × G) assigns a binary relation on G to each
PDS rule. val is extended to a sequence of rules as follows: val([r1, · · · , rn]) =
val(r1); val(r2); · · · ; val(rn). For a rule sequence σ ∈ ∆∗ and PDS configurations
c1 and c2, we say c1 ⇒σ c2 if applying those rules on c1 results in c2. The
reachability question is extended to computing the join-over-all-paths (JOP)
value between two sets of configurations:

JOP(C1, C2) =
⋃
{val(σ) | c1 ⇒σ c2, c1 ∈ C1, c2 ∈ C2}

PDSs and SPDSs have equivalent theoretical power; each can be converted
into the other. SPDSs are used for efficiently analyzing PDSs. For a PDS P =
(P, Γ, ∆), one constructs an SPDS as follows: it consists of a PDS ({p}, Γ, ∆′)
and G = P . The rules ∆′ and their assigned relations are defined as follows:
for each γ ∈ Γ, u ∈ Γ ∗, include rule 〈p, γ〉 →֒ 〈p, u〉 with the relation {(p1, p2) |
〈p1, γ〉 →֒ 〈p2, u〉 ∈ ∆}, if the relation is non-empty. The SPDS captures all

4 The number of procedures of a PDS is defined as the number of symbols appearing
as the first of the two stack symbols on the right-hand side of a call rule.
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state changes in the relations associated with the rules. Under this conversion:
〈p1, u1〉 ⇒P 〈p2, u2〉 if and only if (p1, p2) ∈ JOP({〈p, u1〉}, {〈p, u2〉}).

The advantage of using SPDSs is that the relations can be encoded using
BDDs, and operations such as relational composition and union can be per-
formed efficiently using BDD operations. This allows scalability to large data-
state spaces [24]. (SPDSs can also encode part of the local state in the relations,
but we do not discuss that issue in this paper.)

The reverse construction can be used to encode an SPDS as a PDS: given
an SPDS (({p}, Γ, ∆), G, val), construct a PDS P = (G, Γ, ∆′) with rules:
{〈g1, γ〉 →֒ 〈g2, u〉 | r = 〈p, γ〉 →֒ 〈p, u〉, r ∈ ∆, (g1, g2) ∈ val(r)}. Then
(g1, g2) ∈ JOP({〈p, u1〉}, {〈p, u2〉}) if and only if 〈g1, u1〉 ⇒

∗ 〈g2, u2〉.

Concurrent SPDSs. A concurrent SPDS with two threads consists of two
SPDSs S1 = (({p}, Γ1, ∆1), G, val1) and S2 = (({p}, Γ1, ∆1), G, val1) with the
same set G. The transition relation ⇒c= (⇒∗

1;⇒
∗
2)

K , which describes all paths
in the concurrent program for 2K − 1 context switches, is defined in the same
manner as for PDS, using the transition relations of the two PDSs. Let 〈p, e1, e2〉
be the starting configuration of the concurrent SPDS. The problem of interest
is to compute the following relation for a given set of configurations C:

RC = JOP(〈p, e1, e2〉, C) =
⋃
{val(σ) | 〈p, e1, e2〉 ⇒

σ
c c, c ∈ C}.

A concurrent SPDS can be reduced to a single SPDS using the constructions
presented earlier: (i) convert the SPDSs Si to PDSs Pi; (ii) convert the concur-
rent PDS system (P1,P2) to a single PDS Ps; and (iii) convert the PDS Ps to
an SPDS Ss. The rules of Ss will have binary relations on the set GK (K-fold
cartesian product of G). Recall that the rules of Ps change the global state in
only one component. Thus, the BDDs that represent the relations of rules in Ss

would only be log(K) times larger than the BDDs for relations in S1 and S2 (the
identity relation on n elements can be represented with a BDD of size log(n)
[24]).

Let C′ = {〈p, e3 u2 u1〉 | 〈p, u1, u2〉 ∈ C}. On Ss, one can solve for the value
R = JOP(〈p, e1〉, C

′). Then RC = {(g, g′) | ((g, g2, · · · , gK), (g2, · · · , gK , g′)) ∈
R} (note the similarity to Thm. 1).

5 Lazy CBA of Concurrent Boolean Programs

In this section, we give a lazy analysis for CBA of concurrent Boolean programs.
In the reduction presented in §3, the analysis of the generated sequential program
had to assume all possible values for the symbolic constants. The lazy analysis
will have the property that at any time, if the analysis considers the K-tuple
(g1, · · · , gK) of valuations of the symbolic constants, then there is a single valid
execution of the concurrent program in which the global state is gi at the end
of the ith execution context of the first thread for all 1 ≤ i ≤ K.

The idea is to build up iteratively the effect that each thread can have on the
global state in their K execution contexts. Note that T s

1 (or T s
2 ) does not need

to know the values of Var
i
G when k < i. Hence, the analysis proceeds by making
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no assumptions on the values of Var
i
G when i > k. When k is incremented to

k + 1 in the analysis of T s
1 , it consults a table E2 that stores the effect that

T s
2 can have in its first k execution contexts. Using that table, it figures out a

valuation of Var
k+1
G to continue the analysis of T s

1 , and stores the effect that
T s

1 can have in its first k execution contexts in table E1. These tables are built
iteratively. More technically, if the analysis can deduce that T s

1 , when started in
state (1, g1, · · · , gk), can reach the state (k, g′1, · · · , g′k), and T s

2 , when started in
state (1, g′1, · · · , g′k) can reach (k, g2, g3, · · · , gk, gk+1), then an increment of k in
T s

1 produces the global state s = (k + 1, g′1, · · · , g′k, gk+1). Moreover, s can be
reached when T s

1 is started in state (1, g1, · · · , gk+1) because T s
1 could not have

touched Var
k+1
G before the increment that changed k to k + 1.

The algorithm is shown in Fig. 5. The entities used in Fig. 5 have the following
meanings:

– Let G = ∪K
i=1G

i, where G is the set of global states. An element from the
set G is written as g.

– Let L be the set of local states (all procedures have the same number of local
variables).

– The relation Hj
n is related to program node n of the jth thread. It is a

subset of {1, · · · , K} × G × G × L × G × L. If Hj
n(k, g0, g1, l1, g2, l2) holds,

then each of the gi are an element of Gk (i.e., a k-tuple of global states), and
the thread Tj is in its kth execution context. Moreover, if the valuation of
Var

i
G, 1 ≤ i ≤ k, was g0 when T s

j (the reduction of Tj) started executing,
and if the node ep(n) could be reached in data state (g1, l1), then n can be
reached in data state (g2, l2), and the variables Var

i
G, i > k are not touched

(hence, there is no need to know their values).
– The relation Sf captures the summary of procedure f.
– The relations Ej store the effect of executing a thread. If Ej(k, g0, g1) holds,

then g0, g1 ∈ Gk, and the execution of thread T s
j , starting from g0 can lead

to g1, without touching variables in Var
i
G, i > k.

– The function check(k, (g1, · · · , gk), (g′1, · · · , g′k)) returns g′k if gi+1 = g′i for
1 ≤ i ≤ k−1, and is undefined otherwise. This function checks for the correct
handing off of the global state when T2 stops and T1 starts an execution
context.

– Let [(g1, · · · , gi), (gi+1, · · · gj)] = (g1, · · · , gj), and we sometimes write g to
mean (g), i.e., [(g1, · · · , gi), g] = (g1, · · · , gi, g).

Understanding the rules. The rules R′
1,R

′
2,R

′
3, and R′

7 describe intra-thread
computation, and are similar to the corresponding unprimed rules in Fig. 3. The
rule R10 initializes the variables for the first execution context of T1. The rule
R11 initializes the variables for the first execution context of T2. The rules R8

and R9 ensure proper hand off of the global state from one thread to another.
These two are the only rules that change the value of k. For example, consider
rule R8. It ensures that the global state at the end of kth execution context
of T2 is passed to the (k + 1)th execution context of T1, using the function
check. The value g returned by this function represents a reachable valuation
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Hj
n(k, g0, g1, l1, [g2, g3], l3) n

st
−−→ m (g3, l3, g4, l4) ∈ [[st]]

R′

1
Hj

m(k, g0, g1, l1, [g2, g4], l4)

Hj
n(k, g0, g1, l1, g2, l2) n

call f()
−−−−−→ m Sf(k + i, [g2, g], [g3, g′])

R′

2
Hj

m(k + i, [g0, g], [g1, g], l1, [g3, g′], l2)

Hj
n(k, g0, g1, l1, g2, l2) exitnode(n) f = proc(n)

R′

3
Sf(k, g1, g2)

Hj
n(k, g0, g1, l1, g2, l2) n

call f()
−−−−−→ m l3 ∈ L

R′

7
H

j

entry(f)
(k, g0, g2, l3, g2, l3)

H1
n(k, g0, g1, l1, g2, l2) E2(k, g2, g3) g = check(g0, g3)

R8
H1

n(k + 1, [g0, g], [g1, g], l1, [g2, g], l2)

H2
n(k, g0, g1, l1, g2, l2) E1(k + 1, [g3, g2], [g0, g4])

R9
H2

n(k + 1, [g0, g4], [g1, g4], l1, [g2, g4], l2)

g ∈ G, l ∈ L, e = entry(main)
R10

H1
e (1, g, g, l, g, l)

Hj
n(k, g0, g1, l1, g2, l2)

R11
Ej(k, g0, g2)

E1(1, g0, g1), l ∈ L
R12

H2
e2

(1, g1, g1, l, g1, l)

Fig. 5. Rules for lazy analysis of concurrent Boolean programs.

of the global variables when T1 starts its (k + 1)th execution context. (In fact,
for (g1, · · · , gk, gk+1) = [g0, g], there must be an execution of the concurrent
program in which the global state is gi when Ti begins its ith execution context,
1 ≤ i ≤ k + 1.)

The following theorem shows that the relations E1 and E2 are built lazily,
i.e., they only contain relevant information.

Theorem 2. After running the algorithm described in Fig. 5,

E1(k, (g1, · · · , gk), (g′1, · · · , g′k)) and E2(k, (g′1, · · · , g′k), (g2, · · · , gk, g)) hold

if and only if there is an execution on the concurrent program with 2k − 1
context switches that starts in state g1 and ends in state g, and the global state

is gi at the start of the ith execution context of T1 and g′i at the start of the

ith execution context of T2. In particular, the set of reachable global states of

the concurrent program in 2K − 1 context switches are all g ∈ G such that

E2(K, g1, [g2, g]) holds.

6 Experiments

We did a proof-of-concept implementation of the eager algorithm for Boolean
programs, presented in §3, using the model checker Moped [23]. In most cases,
we took sequential programs and assumed that there were two copies of the pro-
gram running concurrently (expect for BlueT). The input programs are obtained
from a variety of sources: BlueT is a model of a Bluetooth driver [19]; Java* are
the result of abstracting Java programs [2]; Reg* are from the regression suite of
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Moped; Toy is a toy program we wrote for checking correctness. Some programs,
especially ones obtained from Java programs, have pointers and a bounded heap
(which is accounted for in the number of variables). We wanted to verify if a
certain program node was reachable by finding the set of reachable data-states
at the node. In most cases, we modified the programs to have both positive and
negative instances.

Prog Inst 2K Time (s) |Prog| #gvars #lvars
Toy pos 20 0.3 12 5 0
Reg-blast1 neg 20 3.9 19 7 21
Reg-blast1 pos 20 4.1 19 7 21
Reg-slam1 pos 20 19.6 19 1 10
BlueT neg 20 7.2 30 10 1
BlueT pos 10 7.6 30 10 1
JavaMeeting neg 10 168.5 537 16 64
JavaMeeting pos 10 361.3 537 16 64
JavaChange neg 10 770.8 601 24 38
JavaChange pos 10 1134.4 601 24 38

Fig. 6. Experiments on finite-data-
state models.

The results are shown in Fig. 6. The
last three columns give the size of the pro-
gram (total number of CFG edges), the
number of global variables, and the max-
imum number of local variables in a pro-
cedure, respectively. They show that our
algorithms are practical—the data-state
space of the last program has about 2158

possible states. Other techniques that ad-
dress CBA would not have scaled to these
programs. Also note that negative cases
take less time than positive cases. This is
because of the way we have implemented
the BDD operations. (In some cases, we

can conclude that a set is empty, i.e., a node is not reachable, without applying
all the required operations. For positive cases, this never happens, and all the
operations have to be applied.)

We do not compare against other methods of analyzing concurrent programs
that do not address CBA. That study is beyond the scope of this paper. (Note
that with CBA, one can precisely handle recursive programs, but their analysis
would be undecidable in the absence of a context bound.)

7 Related Work

Most of the related work on CBA has been covered in the body of the paper. A
reduction from concurrent programs to sequential programs was given in [19] for
the case of two threads and two context switches (it has a restricted extension to
multiple threads as well). In such a case, the only thread interleaving is T1; T2; T1.
The context switch from T1 to T2 is simulated by a procedure call. Then T2 is
executed on the program stack of T1, and at the next context switch, the stack of
T2 is popped off to resume execution in T1. Because the stack of T2 is destroyed,
the analysis cannot return to T2 (hence the context bound of 2). Their algorithm
cannot be generalized to an arbitrary context bound.

Analysis of message-passing concurrent systems, as opposed to ones having
shared memory, has been considered in [4]. They bound the number of messages
that can be communicated, similar to bound the number of contexts.

There has been a large body of work on verification of concurrent programs.
Some recent work is [7, 17]. However, CBA is different because it allows for
precise analysis of complicated program models, including recursion. As future
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work, it would be interesting to explore CBA with the abstractions used in the
aforementioned work.
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A Proofs

A.1 Proof of Thm. 1

(⇐) First, we show that a path of the concurrent program can be simulated by a
path in the sequential program. (In this proof, we will deviate from the notation
of the theorem to make the proof more clear.) Let c0 = e1, and d0 = e2. If the
configuration 〈p0, c0, d0〉 can lead to 〈p2K , cK , dK〉 under the transition system
(⇒∗

1;⇒
∗
2)

K , then we show that there exist states p2, p4, · · · , p2K−2 ∈ P such
that 〈(1, p0, p2, · · · , p2K−2), c0〉 ⇒Ps

〈(1, p2, p4, · · · , p2K), e3 dK cK〉.
If a sequence of rules σ take a configuration c to a configuration c′ un-

der the transition system ⇒, then we say c ⇒σ c′. For a rule r ∈ ∆i,
r = 〈p, γ〉 →֒ 〈p′, u〉, let rs[k, p1, · · · , pk−1, pk+1, · · · pK ] ∈ ∆s be the rule
〈(k, p1, · · · , pk−1, p

′, pk+1, · · · , pK), γ〉 →֒ 〈(k, p1, · · · , pk−1, p
′, pk+1, · · · , pK), u〉.

We extend this notation to rule sequences as well, and drop the pi, when they
are clear from the configuration the rules are applied on. Let rinc[k] stand for a
rule of Ps that increments the value of k (note that it can fire with anything on
the top of the stack). Let r1→2 stand for the rules that call from the first PDS
to the second, and r2→3 stand for the rules that call e3.

A path in (⇒∗
1;⇒

∗
2)

K can be broken down at each switch from ⇒1 to ⇒2, and
from ⇒2 to ⇒1. Hence, there must exist ci, di, 1 ≤ i ≤ K−1; pj , 1 ≤ j ≤ 2K−1;
and σh, 1 ≤ h ≤ 2K, such that a path in the concurrent program can be broken
down as shown in Fig. 7(a). Then the path shown in Fig. 7(b) is a valid run of
Ps that establishes the required property.
(⇒) For the reverse direction, a path σ in ⇒Ps

, from 〈(1, p0, p2, · · · , p2K−2), c0〉
to 〈(1, p2, p4, · · · , p2K), e3 dK cK〉 can be broken down as σ = σA r1→2 σB r2→3.
(This is because one must use the rules r1→2 and r2→3, in order, to push e3 on
the stack, after which no rules can fire.) Hence we must have the following (for
some states p1, p3, · · · , p2K−1):

〈(1, p0, p2, · · · , p2K−2), c0〉 ⇒
σA

Ps
〈(K + 1, p1, p3, · · · , p2K−1), cK〉

⇒r1→2

Ps
〈(1, p1, p3, · · · , p2K−1), d0 cK〉

⇒σB

Ps
〈(K + 1, p2, p4, · · · , p2K), dK cK〉

⇒r2→3

Ps
〈(1, p2, p4, · · · , p2K), e3 dK cK〉

Because σA changes the value of k from 1 to K + 1, it must have K + 1 uses
of rinc. Hence, it can be written as: σA = σs

1[1] rinc[1] σs
3[2] rinc[2] · · · rinc[K −

1] σs
2K−1[K] rinc[K]. Because only σs[i] can change the ith state component, we

must have the following:

〈(1, p0, p2, · · · , p2K−2), c0〉 ⇒
σs
1 [1]

Ps
〈(1, p1, p2, · · · , p2K−2), c1〉

⇒
rinc[1]
Ps

〈(2, p1, p2, · · · , p2K−2), c1〉
· · ·

⇒
σs
2K−1[K]

Ps
〈(K, p1, p3, · · · , p2K−1), cK〉

⇒
rinc[K]
Ps

〈(K + 1, p1, p3, · · · , p2K−1), cK〉

18



〈p0, c0, d0〉
⇒σ1

1 〈p1, c1, d0〉
⇒σ2

2 〈p2, c1, d1〉
⇒σ3

1 〈p3, c2, d1〉
⇒σ4

2 〈p4, c2, d2〉
· · ·
⇒

σ2K−1

1 〈p2K−1, cK , dK−1〉
⇒σ2K

2 〈p2K , cK , dK〉

〈(1, p0, p2, · · · , p2K−2), c0〉

⇒σs
1 [1] 〈(1, p1, p2, p4, · · · , p2K−2), c1〉

⇒rinc[1] 〈(2, p1, p2, p4, · · · , p2K−2), c1〉

⇒σs
3 [2] 〈(2, p1, p3, p4, · · · , p2K−2), c2〉

⇒rinc[2] 〈(3, p1, p3, p4, · · · , p2K−2), c2〉
· · ·

⇒rinc[K−1] 〈(K, p1, p3, p5, · · · , p2K−3, p2K−2), cK−1〉

⇒σs
2K−1[K] 〈(K, p1, p3, p5, · · · , p2K−3, p2K−1), cK〉

⇒rinc[K] 〈(K + 1, p1, p3, p5, · · · , p2K−3, p2K−1), cK〉
⇒r1→2 〈(1, p1, p3, p5, · · · , p2K−1), d0 cK〉

⇒σs
2 [1] 〈(1, p2, p3, p5, · · · , p2K−1), d1 cK〉

⇒rinc[1] 〈(2, p2, p3, p5, · · · , p2K−1), d1 cK〉
· · ·

⇒rinc[K−1] 〈(K, p2, p4, p6, · · · , p2K−2, p2K−1), dK−1 cK〉

⇒σs
2K [K] 〈(K, p2, p4, p6, · · · , p2K−2, p2K), dK cK〉

⇒rinc[K] 〈(K + 1, p2, p4, p6, · · · , p2K−2, p2K), dK cK〉
⇒r2→3 〈(1, p2, p4, p6, · · · , p2K−2, p2K), e3 dK cK〉

(a) (b)

Fig. 7. Simulation of a concurrent PDS run by a single PDS. For clarity, we write ⇒
to mean ⇒Ps in (b).

Similarly, σB = σs
2[1] rinc[1] σs

4[2] rinc[2] · · · rinc[K − 1] σs
2K [K] rinc[K]. The

reader can verify that the rule sequence σ1 σ2 · · ·σ2K−1 σ2K describes a path in
(⇒∗

1;⇒
∗
2)

K and takes the configuration 〈p0, c0, d0〉 to 〈p2K , cK , dK〉.

A.2 Complexity argument for Thm. 1

A PDS can have infinite number of configurations. Hence, sets of configura-
tions are represented using automata [24]. We do not go into the details of such
automata, but only present the running-time complexity arguments. Given an
automata A, and a PDS (Pin, Γin, ∆in), the set of configurations forward reach-
able from those represented by A can be calculated in time O(|Pin||∆in|(|Q| +
|Pin||Procin|)+ |Pin|| →A |), where Q is the set of states of A, and →A is the set
of its transitions [24]. We call the algorithm from [24] poststar, and its output,
which is also an automaton, poststar(A).

For the PDS Ps, obtained from a concurrent PDS with n threads
(P1,P2, · · · ,Pn), |Ps| = K|P |K , |∆s| = K|P |K−1|∆|, |Procs| = |Proc|, where
∆ = ∪n

i=1∆i and |Proc| =
∑n

i=1 |Proci|. To obtain the set of forward reach-
able configurations from 〈p, e1, e2, · · · , en〉, we will solve poststar(A) for each A
that represents the singleton set of configurations {〈(1, p, p2, · · · , pK), e1〉}, i.e.,
|P |K−1 separate calls to poststar. In the result, we can project out all configura-
tions that do not have (1, p2, · · · , pK , p′) as their state, for some p′. Directly using
the above complexity result, we get a total running time of O(K3|P |4K |∆||Proc|).
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For the case of two threads, we use a more sophisticated argument to calculate
the running time.

When asking for the set of reachable configurations of Ps, we are only inter-
ested in some particular configurations: when starting from 〈(1, p, p2, · · · , pK), e1〉,
we only want configurations of the form 〈(1, p2, · · · , pK , p′), u〉. Hence, when we
run poststar, starting from the above configuration, we remove some rules from
∆s: we remove all rules with left-hand side 〈(k, p′2, p

′
3, · · · , p′K , p′), γ〉 if γ ∈ Γ2

and pi 6= p′i for some i between 1 and k − 1, both inclusive. We statically know
that removing such rules would not affect the result.

Further, we make two observations about the algorithm from [24]: (i) if an
automaton A is split into two automata A1 and A2, such that the union of the
transitions (represented configurations) of A1 and A2 equals the set of transi-
tions (represented configurations) of A, then the running time of poststar(A)
is strictly smaller than than the sum of the running times of poststar(A1) and
poststar(A2). (ii) splitting the set of PDS rules ∆ into two (∆1 and ∆2) such
that no rule in ∆1 can fire after a rule of ∆2 is applied, then the running time
of poststar∆2

(poststar∆1
(A)) is the same as the running time of poststar∆(A),

where the poststar algorithm is subscripted with the set of rules it operates on.
Using these two observations, we show that running poststar using Ps takes less
time than the above-mentioned complexity.

Let ∆i ⊆ ∆s be the set of rules that operate when the first component of the
state (the value of k) is i, and ∆call ⊆ ∆s be the set of rules that call to e2 (from
Γ1) or e3. We know that any path in Ps can be decomposed into a rule sequence
from S = ∆1∗

∆2∗

· · ·∆K∗

∆call ∆1∗

∆2∗

· · ·∆K∗

∆call. Using observation (ii)
above, we break the running of poststar on ∆s into a series operating on each of
the above sets, in order. Next, after running poststar on one of ∆i∗ , we split the
resultant automaton A into as many automata as the number of states in the con-
figurations of A, e.g., if A represents the set {〈p1, c1〉, 〈p2, c2〉, 〈p2, c3〉}, then we
split it into two automata representing the sets {〈p1, c1〉} and {〈p2, c2〉, 〈p2, c3〉},
respectively. Observation (i) shows that this splitting only increases the running
time.

Tab. 1 shows the running time for performing poststar on the first K of the
∆i∗ from S. The column “Iter” shows which ∆i is being processed. The column
“Num” is the number of poststar that have to be run using ∆i. The column
“| → |” shows the upper bound on the number of transitions in the automaton
poststar is run on. The column “Time” is the running time of poststar on such
automata. The column “Split” is an upper bound on the the number of automata
the result is split into, and the last column in the number of states in each of
the resultant automata. For example, there are |P |i−1 number of invocations to
poststar with rule set ∆i, each on an automata with at most (i− 1)|P ||∆||Proc|
transitions, taking time 2(i−1)|P |2|∆||Proc|. Each result is split into |P | different
automata, each with at most i|P ||Proc| states. The reader can inductively verify
the correctness of the table.

Thus, this requires a total running time of O(K|P |K+1|∆||Proc|). Next, we
use the rules in ∆call and repeat the above process for the last K of the se-
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Iter Num | → | Time Split |Q|

1 1 1 |P |2|∆||Proc| |P | |P ||Proc|
2 |P | |P ||∆||Proc| 2|P |2|∆||Proc| |P | 2|P ||Proc|
i |P |i−1 (i − 1)|P ||∆||Proc| 2(i − 1)|P |2|∆||Proc| |P | i|P ||Proc|
K |P |K−1 (K − 1)|P ||∆||Proc| 2(K − 1)|P |2|∆||Proc| |P | K|P ||Proc|

Table 1. Running times for different stages of poststar on Ps.

quence S. However, in this case, no splitting is necessary, because we know the
desired target state, and have already removed some rules from ∆s. For exam-
ple, if the initial state chosen was (1, p, p2, · · · , pK), and after performing the
computation of Tab. 1, we obtain an automaton A that has the single state
(1, p′1, · · · .p′K) for all configurations represented by it. After processing A with
∆1 suppose the result is A′. There is no need to split A′ because of the rules
removed from ∆2. The rules of ∆2 would only fire on configurations that have
the state (2, p2, p

′
2, p

′
3, · · · , p′K). Thus, splitting is not necessary, and the time

required to process each of the |P |K−1 automata obtained from Tab. 1 using
∆i is 2(K + i − 1)|P |2|∆||Proc|. Hence, the time required to process the en-
tire S is O(K2|P |K+1|∆||Proc|). Because we have to repeat for |P |K−1 initial
states, the running time of poststar on Ps with two threads can be bounded by
O(K2|P |2K |∆||Proc|).

Backward analysis from a set of configurations represented by an automaton
A with |Q| states can be performed in time O(K|P |2K(K|P |K + |Q|)2|∆|) for
multiple threads, and O(K|P |2K(K|P | + |Q|)2|∆|) for two threads.

A.3 Proof of Thm. 2

For proving Thm. 2, we will make use of the fact that our reduction to a (sequen-
tial) Boolean program is correct. Let T s

1 be the reduction of the first thread, and
T s

2 be the reduction of the second thread. First, we show that given an execution
ρ of T s

1 , and certain facts about E2 (which summarizes the effect of the second
thread), ρ can be simulated by the subset of rules from Fig. 5 that apply to the
first thread. Formally, suppose that ρ is the execution shown in Fig. 8 (where n0

is the entry point of the thread).
The execution ρ is broken at the points where the value of k is incre-

mented. Note that this execution implies that in the concurrent program the
global state, when T1 begins its ith execution context, is gi, and when T2

begins its ith execution context, it is g′i. Further, suppose that the follow-
ing facts hold: E2(i, (g′1, g

′
2, · · · , g′i), (g2, g3, · · · , gk)) for 1 ≤ i ≤ k − 1. Given

these, we will show that rules for the first thread can be used to establish that
H1

nk
(k, (g1, · · · , gk), g, l, (g′1, · · · , g′k)) holds, for some g and l.
Corresponding to the execution ρ, there would be a sequence of deductions,

using the rules from Fig. 3 on T s
1 that derives the state at nk. These rules

simply perform an interprocedural analysis on T s
1 (the symbolic constants can

take any value when program execution starts). We formalize the notation of
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n0 : (1, g1, g2, · · · , gk, gk+1, · · · , gK , l0)
⇓

n1 : (1, g′
1, g2, · · · , gk, gk+1, · · · , gK , l1)

⇓
n1 : (2, g′

1, g2, · · · , gk, gk+1, · · · , gK , l1)
⇓

n2 : (2, g′
1, g

′
2, · · · , gk, gk+1, · · · , gK , l2)

⇓
...
⇓

nk−1 : (k − 1, g′
1, g

′
2, · · · , g′

k−1, gk, gk+1, · · · , gK , lk−1)
⇓

nk : (k, g′
1, g

′
2, · · · , g′

k, gk+1, · · · , gK , lk)

Fig. 8. An execution in T s
1 .

using these rules on T s
1 . Let the rules operate on the relations Hs and Ss.

These relations are of the form: Hs
n([k1, g1], l1, [k2, g2], l2), which semantically

means that if the data state at ep(n) was ([k1, g1], l1), then the data state at n

can be ([k2, g2], l2).; and the summary relation would be Ss
f([k1, g1], [k2, g2]).

For a statement st in T1, its translation in T s
1 encodes the transformer:

{((k, g1, · · · , gk, · · · , gK), l, (k, g1, · · · , g′k, · · · , gK), l′) | (gk, l, g′k, l
′) ∈ st}. Addi-

tionally, one has a self-loop edge associated with a transformer that increments
the value of k: {([k, g], l, [k + 1, g], l) | 1 ≤ k ≤ K}. Given a proof tree π for ρ,
we build a proof tree π′ using rules of Fig. 5 by induction on the bottom-most
rule of π.

When k = 1 in ρ, the conversion is straightforward: just replace a rule R in π

with the primed rule R′ from Fig. 5. An example is shown in Fig. 9 for a program
path n0

st1−−−→ n1
call f−−−−−→ n2, where the call to f takes the path n3

st2−−−→ n4. Let
(g1, · · · , gk+i)|k = (g1, · · · , gk).

The induction hypothesis is as follows: given ρ, as shown in Fig. 8, if there is
a proof tree π that derives Hs

nk
([k1, g], l, [k, (g′1, · · · , g′k, gk+1, · · · , gK)], l′) then

one can derive H1
nk

(k, (g1, · · · , gk), g|k, l, (g′1, · · · , g′k), l′). Note that in this case,
the last (K−k1) components of g must be (gk1+1, · · · , gK) because T s

1 could not
have modified them. We have already proved the base case above. Fix ginit =
(g1, · · · , gk) and gfinal = (g′1, · · · , g′k, gk+1, · · · , gK).

The bottom-most rule of π can be R1,R2 or R7. For the rule R1, one can
either use a statement transformer, or increment the value of k. All these cases,
and the way to obtain π′ are shown in Fig. 10.

One can prove a similar result for T s
2 . Note that H1

nk
(k, ginit, g|k, l, gfinal|k, l′)

implies E1(k, ginit, gfinal|k). Thus, these results are sufficient to prove one side
of the theorem: given an execution of the concurrent program, we can obtain
executions of T s

1 and T s
2 , and then use the above results together to show that

the rules in Fig. 5 can simulate the execution of the concurrent program.
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π1 =

[1, [g0, g]] ∈ Gs, l0 ∈ L
R0

Hs
n0

([1, [g0, g]], l0, [1, [g0, g]], l0) n0

st1
−−−→ n1 (g0, l0, g1, l1) ∈ [[st1]]

R1
Hs

n1
([1, [g0, g]], l0, [1, [g1, g]], l1)

π2 =

π1

Hs
n1

([1, [g0, g]], l0, [1, [g1, g]], l1) n1
call f

−−−−→ n2

R7
Hs

n3
([1, [g1, g]], l2, [1, [g1, g]], l2) n3

st2
−−−→ n4 (g1, l2, g2, l3) ∈ [[st2]]

R1
Hs

n3
([1, [g1, g]], l2, [1, [g2, g]], l3)

π =

π1

Hs
n1

([1, [g0, g]], l0, [1, [g1, g]], l1) n1
call f

−−−−→ n2

π2

Sf([1, [g1, g]], [1, [g2, g]])
R2

Hs
n2

([1, [g0, g]], l0, [1, [g2, g]], l1)

π′

1 =

g0 ∈ G, l0 ∈ L
R10

H1
n0

(1, g0, g0, l0, g0, l0) n0
st1

−−−→ n1 (g0, l0, g1, l1) ∈ [[st1]]
R′

1
H1

n1
(1, g0, g0, l0, g1, l1)

π′

2 =

π′

1

H1
n1

(1, g0, g0, l0, g1, l1) n1
call f

−−−−→ n2

R′

7
H1

n3
(1, g1, l2, g1, l2) n3

st2
−−−→ n4 (g1, l2, g2, l3) ∈ [[st2]]

R′

1
H1

n3
(1, g1, l2, g2, l3)

π′ =

π′

1

H1
n1

(1, g0, g0, l0, g1, l1) n1
call f

−−−−→ n2

π′

2

Sf(1, g1, g2)
R′

2
H1

n2
(1, g0, g0, l0, g2, l1)

Fig. 9. An example of converting from proof π to proof π′. For brevity, we use st to
mean a statement in the thread T1 (and not its translated version in T s

1 ).

Going the other way is quite similar. A deduction on H1 can be converted
into an interprocedural path of T s

1 . The rule R8 corresponds to incrementing
the value of k, and must be used a bounded number of times in a derivation
of H1 fact. The E2 assumptions used in a derivation have to be of the form
E2(1, g′1, g2), E

2(2, (g′1, g
′
2), (g2, g3)), · · · , E2(i, (g′1, · · · , g′i), (g2, · · · , gi+1)). This is

because the second component of H1 is only extended, but never modified, and
once k is incremented, the first k components cannot be modified either. Now, we
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can use the conversions of Fig. 10 in the opposite direction to prove the reverse
direction of the theorem.

(a)

π

Hs
nk

([k1, g], l, [k − 1, gfinal], l′) nk
k++

−−−→ nk

R1
Hs

nk
([k1, g], l, [k, gfinal], l′)

π′

(IH)
H1

nk
(k − 1, ginit|k−1, g|k−1, l, gfinal|k−1, l′)

(assumption)

E2(k − 1, (g′

1, · · · , g′

k−1), (g2, · · · , gk))
R8

H1
nk

(k, ginit, g|k, l, gfinal|k, l′)

(b)

π

Hs
n([k1, g], l, [k, (g′

1, · · · , g′

k−1, g′′

k , gk+1, · · · , gK)], l′′) n
st

−−→ nk (g′′

k , l′′, g′

k, l′) ∈ [[st]]
R1

Hs
nk

([k1, g], l, [k, gfinal], l′)

π′

(IH)
H1

n(k, ginit, g|k, l, (g′

1, · · · , g′

k−1, g′′

k ), l′′) n
st

−−→ nk (g′′

k , l′′, g′

k, l′) ∈ [[st]]
R8

H1
nk

(k, ginit, g|k, l, gfinal|k, l′)

(c)

π

Hs
n([k1, g], l0, [k, gfinal], l1) n

call f()
−−−−−→ m l ∈ L

R7
Hs

entry(f)([k, gfinal], l, [k, gfinal], l)

π′

(IH)
H1

n(k, ginit, g|k, l0, gfinal|k, l1) n
call f()

−−−−−→ m l ∈ L
R′

7
H1

entry(f)(k, ginit, gfinal|k, l, gfinal|k, l)
(d)

π1

Hs
n([k1, g], l, [k2, g′], l′) n

call f()
−−−−−→ nk

π2

Hs
m([k2, g′], l1, [k, gfinal], l2)

R3
Ss
f ([k2, g′], [k, gfinal])

R2
Hs

nk
([k1, g], l, [k, gfinal], l′)

π′

1
(IH)

H1
n(k2, ginit|k2

, g|k2
, l, g′|k2

, l′) n
call f()

−−−−−→ nk

π′

2
(IH)

H1
m(k, ginit, g′|k, l1, gfinal|k, l2)

R′

3
S1
f
([k, g′|k, gfinal|k)

R′

2
H1

nk
(k, ginit, g|k, l, gfinal|k, l′)

Fig. 10. Simulation of run ρ using rules in Fig. 5. In case (a), gk =
check(ginit|k−1, (g2, · · · , gk)) and g′

k = gk (because ρ does not edit these set of vari-
ables). In case (d), exitnode(m) holds, f = proc(m), k1 ≤ k2 ≤ k, the k2 + 1 to k

components of g′ are (gk2+1, · · · , gk) because it arises when k = k2, and the k1 + 1 to
k components of g are (gk1+1, · · · , gk) for the same reason.
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