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Abstract

A Boolean function f is correlation immune if each input variable is independent of the
output, under the uniform distribution on inputs. (For example, the parity function is
correlation immune.) We consider the problem of identifying relevant variables of a corre-
lation immune function, in the presence of irrelevant variables. We address this problem in
two different contexts. First, we analyze Skewing, a heuristic method that was developed
to improve the ability of greedy decision tree algorithms to identify relevant variables of
correlation immune Boolean functions, given examples drawn from the uniform distribu-
tion (Page and Ray, 2003). We present theoretical results revealing both the capabilities
and limitations of skewing. Second, we explore the problem of identifying relevant variables
in the Product Distribution Choice (PDC) learning model, a model in which the learner can
choose product distributions and obtain examples from them. We give two new algorithms
for finding relevant variables of correlation immune functions in the PDC model.



1. Introduction

A Boolean function f : {0, 1}n → {0, 1} is correlation immune if for every input variable xi,
the values of xi and f(x1, . . . , xn) are independent, with respect to the uniform distribution
on {0, 1}n (cf. Roy, 2002). Examples of correlation immune functions include parity of
k ≥ 2 variables, the constant functions f ≡ 1 and f ≡ 0, and the function f(x) = 1 iff all
bits of x are equal.

If a function f is not correlation immune, then given access to examples of f drawn
from the uniform distribution, one can easily identify (at least one) relevant variable of f
by finding an input variable that is correlated with the output of f . This approach clearly
fails if f is correlation immune.

We consider the problem of identifying relevant variables of a correlation immune func-
tion, in the presence of irrelevant variables. We address this problem in two different
contexts. First, we present a theoretical analysis of Skewing, a heuristic method that was
developed to improve the ability of greedy decision tree learning algorithms to identify rel-
evant variables of correlation immune functions, given examples drawn from the uniform
distribution (Page and Ray, 2003; Ray and Page, 2004). We present theoretical results that
reveal both the strengths and limitations of skewing. Second, we present algorithms for
identifying relevant variables in the Product Distribution Choice (PDC) model of learning.
The PDC model, which we introduce below, is a variant of the standard PAC learning
model (Valiant, 1984) in which the learner can specify product distributions and sample
from them.

Greedy decision tree learning algorithms perform poorly on correlation immune func-
tions because they rely on measures such as Information Gain (Quinlan, 1997) and Gini
gain (Breiman et al., 1984) to choose which variables to place in the nodes of the decision
tree. The correlation immune functions are precisely those in which every attribute has
zero gain under all standard gain measures, when the gain is computed on the complete
dataset (i.e. the truth table) for the function. Thus when examples of a correlation immune
function are drawn uniformly at random from the complete dataset, the learning algorithms
have no basis for distinguishing between relevant and irrelevant attributes.

Experiments have shown skewing to be successful in learning many correlation immune
functions (Page and Ray, 2003). One of the original motivations behind skewing was the
observation that obtaining examples from non-uniform product distributions can be help-
ful in learning particular correlation immune functions such as parity. Skewing works by
reweighting the given training set to simulate receiving examples from a subclass of product
distributions called skewed distributions.

However, simulating alternative distributions is not the same as sampling directly from
them. The Product Distribution Choice (PDC) model allows such direct sampling. This
model can be seen as a variant of the PAC model, and has similarities with other learning
models studied previously (see Section 4). In the PDC model, the learner has access to
an oracle from which it can request examples. Before requesting an example, the learner
specifies a product distribution. The oracle then supplies an example drawn from that
distribution. In our study of the PDC model, we focus on a fundamental learning task: the
problem of identifying relevant variables in the presence of irrelevant ones.

2



Note that by setting the parameters of the product distribution to be equal to 0 and
1, one can simulate membership queries in the PDC model. However, we are particularly
interested in exploring learning in the PDC model when the parameters of the chosen
product distributions are bounded away from 0 and 1.

Our interest in the PDC model is motivated not just by our study of skewing, but
by a more general question: In learning, how much does it help to have access to data
from different distributions? In practice, it may be possible to obtain data from different
distributions by collecting it from different sources or populations. Alternatively, one may
be able to alter environmental conditions to change the distribution from which data is
obtained. In such settings, it can be expensive to sample from too many distributions, and
it may be impossible to sample from certain “extreme” distributions. Thus in the PDC
model, we are concerned not just with time and sample complexity, but also in the number
and type of product distributions specified.

2. Summary of results

We begin by proving that in an idealized setting, skewing will succeed. More particularly,
we show that when the learning algorithm has access to the complete truth table of a target
Boolean function, skewing will succeed in finding a relevant variable of that function. (More
particularly, under any random choice of skewing parameters, a single round of the skewing
procedure will find a relevant variable with probability 1.)

We also prove a result in the idealized setting for a variant of skewing called sequential
skewing (Ray and Page, 2004). Experiments indicate that sequential skewing scales better
to higher dimensional problems than standard skewing. We show here, however, that even
when the entire truth table is available as the training set, sequential skewing is ineffective for
a subset of the correlation immune functions known as the 2-correlation immune functions.
A Boolean function f : {0, 1}n → {0, 1} is 2-correlation immune if, for every pair of distinct
input variables xi and xj, the variables xi, xj , and f(x1, . . . , xn) are mutually independent.
Thus, any practical advantage sequential skewing has over standard skewing comes at the
cost of not working on this subset of functions.

We present two new algorithms in the PDC model for identifying a relevant variable
of an n-variable Boolean function with r relevant variables. The first algorithm uses only
r distinct p-biased distributions (i.e. distributions in which each input variable is set to
1 with some fixed probability p). It runs in time polynomial in n and the sample size
O((r + 1)2r ln 2nr

δ ). The second algorithm uses O(e4r ln 1
δ ) p-biased distributions, and runs

in time polynomial in n and the sample size, O(e28r ln2 n
δ ). For r = O(log n), only the

second algorithm runs in time polynomial in n, but the first uses O(log n) distributions,
whereas the second uses a number of distributions that depends polynomially on n.

Both algorithms are non-adaptive: they request all examples before processing them.
Since the algorithms use only p-biased distributions, and each such distribution is a skewed
distribution, they can be viewed as skewing algorithms for a setting in which it is possible to
sample directly from skewed distributions, rather than just to simulate those distributions.

The second of the two algorithms is based on a new sample complexity result that we
prove using martingales.
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We also briefly describe two PDC algorithms that are implicit in the literature. One
follows directly from the techniques of Bshouty and Feldman (2002). When r = O(log n) it
runs in time polynomial in n and uses a number of distributions that is linear in n. The exact
sample complexity of this algorithm is somewhat different than the sample complexity of
our second new algorithm, and the distributions used are not p-biased. The other algorithm
from the literature is a simple membership query algorithm.

Finally, we analyze skewing in the context for which it was originally designed: learning
from a random sample drawn from the uniform distribution. We present a negative result on
learning parity functions with skewing in this context, based on techniques from statistical
query learning. One implication of the result is that skewing requires a sample of size
at least nΩ(log n) to find (with constant probability of failure) a relevant variable of an n-
variable Boolean function computing the parity of logn of its variables. (Technically, we
prove the result for a variant of skewing called skewing with independent samples. We give
evidence that the lower bound should also apply to standard skewing.)

Correlation immunity is defined in terms of the uniform distribution. We discuss a
natural extension of correlation immunity to non-uniform product distributions. We give
a simple example of a function that is correlation immune with respect to a non-uniform
product distribution. Thus while functions like parity are difficult for greedy learners when
examples come from the uniform distribution, other functions can be difficult when examples
come from another product distribution.

Our analysis of skewing in the idealized setting, and our two new algorithms in the
PDC model, are both based on a lemma that we prove concerning a property of Boolean
functions. Specifically, we show that every non-constant Boolean function f on {0, 1}n

has a variable xi such that induced functions fxi←0 and fxi←1 on {0, 1}n−1 (produced by
hardwiring xi to 0 and 1) do not have the same number of positive examples of Hamming
weight k, for some k.

The paper is organized as follows. We first give some background on skewing in Sec-
tion 3. In Section 4, we discuss related work. Section 5 contains basic definitions and
lemmas, including characterizations of correlation immune functions, and simple lemmas
on quantities such as Gini gain and the magnitude of the first-order Fourier coefficients.
It also contains a simple example of a function that is correlation immune with respect to
a non-uniform product distribution. Section 6 discusses sample complexity bounds used
later in the paper, and proves an upper bound on the estimation of Gini gain, based on
martingales.

In Section 7, we prove our structural result on Boolean functions.

We begin our analysis of skewing in Section 8 with results in the idealized setting in
which the entire truth table is given as the training set.

Section 9 contains our two new algorithms for the PDC model. It also the discussion of
the two PDC algorithms implicit in the literature. Finally, Section 10 contains our sample
complexity lower bounds on learning parity functions.

3. Background on Skewing

As a motivating example, suppose we have a Boolean function f(x1, . . . , xn) whose value is
the parity of r of its variables. Those r variables are relevant, and the rest are irrelevant.
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Function f is correlation immune. With respect to the uniform distribution on the domain of
f , both relevant and irrelevant variables have zero gain. Equivalently, the first-order Fourier
coefficients are all zero (cf. Section 5.3). But, with respect to other product distributions
on the examples, relevant variables have non-zero gain, while irrelevant variables still have
zero gain (see Page and Ray, 2003; Arpe and Reischuk, 2006). This suggests that learning
correlation immune functions might be easier if examples could be obtained from non-
uniform product distributions.

In many machine learning applications, however, we have little or no control over the
distribution from which we obtain training data. The approach taken by skewing is to
reweight the training data, to simulate receiving examples from another distribution. More
particularly, the skewing algorithm works by choosing a “preferred setting” (either 0 or 1)
for every variable xi in the examples, and a weighting factor p where 1

2 < p < 1. These
choices define a product distribution over examples x ∈ {0, 1}n in which each variable xi

has its preferred setting with probability p, and the negation of that setting with probability
1 − p.

To simulate receiving examples from this product distribution, the skewing algorithm
begins by initializing the weight of every example in the training set to 1. Then, for each xi,
and each example, it multiplies the weight of the example by p if the value of xi in the ex-
ample matches its preferred setting, and by 1−p otherwise. This process is called “skewing”
the distribution. The algorithm computes the gain of each variable after the reweighting.
The algorithm repeats this procedure a number of times, with different preferred settings
chosen each time. Finally, it uses all the calculated gains to determine which variable to
output. The exact method used varies in different skewing implementations. In the paper
that introduced skewing, the variable chosen was the one whose calculated gains exceeded
a certain threshold the maximum number of times (Page and Ray, 2003).

In the context of decision tree learning, skewing is applied at every node of the decision
tree, in place of standard gain calculations. After running skewing on the training set at
that node, the variable chosen by the skewing procedure is used as the split variable at that
node.

In investigating skewing, we are particularly interested in cases in which the number of
relevant variables is much less than the total number of variables. Optimally, we would like
sample complexity and running time to depend polynomially on n, 2r (and log 1

δ ), so that
we have a polynomial-time algorithm when r = O(log n).

4. Related Work

Throughout this paper, we focus on the problem of finding a relevant variable of a target
Boolean function, given a labeled sample drawn from the uniform distribution. Given a
procedure that finds a single relevant variable xi of a Boolean function f (for any f with at
most r relevant variables), it is easy to extend this procedure to find all relevant variables
of the target by recursively applying it to the induced functions obtained by hardwiring xi

to 1 and 0 respectively.

It is a major open problem whether there is a polynomial-time algorithm for finding
relevant variables of a Boolean function of log n relevant variables (out of n total variables)
using examples from the uniform distribution (cf. Blum, 2003). Mossel et al. (2003) gave
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an algorithm for learning arbitrary functions on r relevant variables, using examples drawn
from the uniform distribution, in time polynomial in ncr and ln(1/δ), for some c < 1. This
improves on the näıve algorithm which requires time polynomial in nr. The heart of the
algorithm is a procedure to find a relevant variable. The algorithm of Mossel et al. uses
both Gaussian elimination and estimates of Fourier coefficients, and is based on structural
properties of Boolean functions. It is not noise-tolerant.

Mossel et al. also briefly considered the question of finding a relevant variable, given
examples drawn from a single product distribution [p1, . . . , pn]. 1 They stated a result
that is similar to our Theorem 8.1, namely that if a product distribution is chosen at
random, then with probability 1, the Fourier coefficient (for that distribution) associated
with any relevant variable will be non-zero. The important difference between that result
and Theorem 8.1 is that our theorem applies not to all random product distributions, but
just to random skewed distributions. Since random product distributions have different
properties than random skewed distributions, the proof given by Mossel et al. does not
suffice to prove Theorem 8.1.

The problem of learning parity functions has been extensively studied in various learn-
ing models. It is a well-known open question whether it is possible to PAC-learn parity
functions in polynomial time, using examples drawn from the uniform distribution, in the
presence of random classification noise. This problem is at least as difficult as other open
problems in learning; in fact, a polynomial time algorithm for this problem would imply
a polynomial-time algorithm for the problem mentioned above, learning functions of logn
relevant variables using examples from the uniform distribution (Feldman et al., 2006).

At the other extreme from correlation-immune functions are functions for which all first
order Fourier coefficients are non-zero (i.e. all relevant variables have non-zero gain). This
is true of monotone functions and symmetric functions (see Mossel et al., 2003). Arpe and
Reischuk, extending previous results, gave a Fourier-based characterization of the class of
functions that can be learned using a standard greedy covering algorithm (Arpe and Reis-
chuk, 2006; Akutsu et al., 2003; Fukagawa and Akutsu, 2005). This class is a superset of the
set of functions for which all relevant variables have non-zero degree-1 Fourier coefficients.

The PDC model investigated in this paper has some similarity to the extended statistical
query model of Bshouty and Feldman (2002). In that model, the learner can specify a
product distribution in which each variable is set to 1 with probability ρ, 1/2 or 1 − ρ, for
some constant 1/2 > ρ > 0. The learner can then ask a statistical query which will be
answered with respect to the specified distribution. In the PDC model the user can specify
an arbitrary product distribution, and can ask for random examples with respect to that
distribution. One could simulate the extended statistical query model in the PDC model
by using random examples (drawn with respect to the specified distribution) to answer the
statistical queries.

As noted in the introduction, it is possible to simulate membership queries in the PDC
model by setting the parameters of the chosen product distribution to 0 and 1. The prob-
lem of efficiently learning Boolean functions with few relevant variables, using membership

1. They also claimed that this result implies an algorithm for learning functions with r relevant variables
in time polynomial in 2r, n, and ln(1/δ), given examples drawn from almost any product distribution.
However, the justification for their claim was faulty, since it does not take into account the magnitude
of the non-zero Fourier coefficient.
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queries alone, has been addressed in a number of papers (Blum et al., 1995; Bshouty and
Hellerstein, 1998; Damaschke, 2000). The goal in these papers is to have attribute-efficient
algorithms that use a number of queries that is polynomial in r, the number of relevant
variables, but only logarithmic in n, the total number of variables. Guijarro et al. (1999) in-
vestigated the problem of identifying relevant variables in the PAC model with membership
queries.

We use Fourier-based techniques in proving some of our results. There is an extensive
literature on using Fourier methods in learning, including some of the papers mentioned
above. Some of the most important results are described in the excellent survey of Mansour
(1994).

Correlation immune functions and k-correlation immune functions have applications to
cryptography. They have been widely studied in that field (see Roy, 2002, for a survey),
beginning with the work of Siegenthaler (1984). Correlation immune functions have also
been studied in other fields under different guises. The truth table of a k-correlation immune
function corresponds to a certain orthogonal array (Camion et al., 1991). Orthogonal arrays
are used in experimental design. The positive examples of a k-correlation immune function
form a k-wise independent set. Such sets are used in derandomization (see e.g. Alon, 1996).

It is natural to ask how many n-variable Boolean functions are correlation immune,
since these actually need skewing. The question has been addressed in a number of different
papers, as described by Roy (2002). Counts of correlation immune functions up to n = 6,
separated by Hamming weight, were computed by Palmer et al. (1992). For larger n one
can use the analytic approximation 22n · Pn, where

Pn =
1

2

(

8

π

)n/2

2−n2/2

(

1 − n2

4 · 2n

)

. (1)

Since there are 22n

Boolean functions in toto, Pn approximates the probability that a random
Boolean function is correlation immune. Its main term was found by Denisov (1992), and
the rest is the beginning of an asymptotic series investigated by Bach (2007). Even for small
n, the above approximation is fairly accurate. For example, there are 503483766022188 6-
variable correlation immune functions, and the above formula gives 4.99 × 1014.

Skewing was developed as an applied method for learning correlation-immune Boolean
functions. Skewing has also been applied to non-Boolean functions, and to Bayes nets (Lantz
et al., 2007; Ray and Page, 2005).

The main results in Sections 7 and 8 of this paper appeared in preliminary form in Rosell
et al. (2005).

5. Preliminaries

We begin with basic definitions and fundamental lemmas.

5.1 Notation and terminology

We consider two-class learning problems, where the features, or variables, are Boolean. A
target function is a Boolean function f(x1, . . . , xn). An example is an element of {0, 1}n.
Example a ∈ {0, 1}n is a positive example of Boolean function f(x1, . . . , xn) if f(a) = 1, and
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a negative example of f if f(a) = 0. A labeled example is an element (a, b) ∈ {0, 1}n ×{0, 1};
it is a labeled example of f if f(a) = b.

Let f(x1, . . . , xn) be a Boolean function. The function f is a mapping from {0, 1}n

to {0, 1}. An assignment a = (a1, . . . , an) to the variables x1, . . . , xn is an element of
{0, 1}n. The assignment obtained from a by negating the ith bit of a is denoted by a¬xi

.
Given a Boolean function f(x1, . . . , xn), variable xi is a relevant variable of f if there exists
a ∈ {0, 1}n such that f(a) 6= f(a¬xi

).

For σ ∈ {0, 1}n, let σi = (σ1, . . . , σi−1, σi+1, . . . , σn), that is, σi denotes σ with its ith
bit removed.

A truth table for a function f over a set of variables is a list of all assignments over
the variables, together with the mapping of f for each assignment. For i ∈ [1 . . . n] and
b ∈ {0, 1}, fxi←b denotes the function on n− 1 variables produced by “hardwiring” the ith
variable of f to b. More formally, fxi←b : {0, 1}n−1 → {0, 1} such that for all a ∈ {0, 1}n−1,
fxi←b(a) = f(a1, a2, . . . , ai−1, b, ai, . . . , an−1).

The integers between 1 and n are denoted by [1 . . . n]. For real a and b, (a, b) denotes
the open interval from a to b.

For probability distribution D, we use PrD and ED to denote the probability and expec-
tation with respect to distribution D. For any probability distribution D over a finite set
X, and any A ⊆ X, we define PrD(A) to be equal to

∑

a∈A PrD(a). We omit the subscript
D when it is clear from context.

Given a probability distribution D on {0, 1}n, and a Boolean function f : {0, 1}n →
{0, 1}, a random example of f drawn with respect to D is an example (x, f(x)) where x is
drawn with respect to D.

A training set T for learning an n-variable Boolean function is a multiset consisting of
elements in {0, 1}n×{0, 1}. It defines an associated distribution on {0, 1}n×{0, 1} sometimes
known as the empirical distribution. For each (a, y) ∈ {0, 1}n × {0, 1}, the probability of
(a, y) under this distribution is defined to be the fraction of examples in the training set
that are equal to (a, y). In the absence of noise, a training set for learning a function
f : {0, 1}n → {0, 1} is a set of labeled examples (x, f(x)). The empirical distribution on
such a training set can be viewed as a distribution on {0, 1}n, rather than on {0, 1}n×{0, 1}.

A product distribution D on {0, 1}n is a distribution defined by a parameter vector
[p1, . . . , pn] in [0, 1]n where for all x ∈ {0, 1}n, PrD[x] = (

∏

i:xi=1 pi)(
∏

i:xi=0(1 − pi)). The
uniform distribution on {0, 1}n is the product distribution defined by [1/2, 1/2, . . . , 1/2].
For fixed p ∈ (0, 1), we use D[p] to denote the product distribution defined by [p, . . . , p]
Distribution D[p] is the p-biased distribution.

A skew is a pair (σ, p) where σ ∈ {0, 1}n is an assignment, and p ∈ (0, 1). We refer to σ
as the orientation of the skew, and p as the weighting factor.

Each skew (σ, p) induces a probability distribution D(σ,p) on the 2n assignments in
{0, 1}n as follows. Let τp : {0, 1} × {0, 1} → {p, 1 − p} be such that for b, b′ ∈ {0, 1},
τp(b, b

′) = p if b = b′ and τp(b, b
′) = 1−p otherwise. For each a ∈ {0, 1}n, distribution D(σ,p)

assigns probability Πn
i=1τp(σi, ai) to a. Thus distribution D(σ,p) is a product distribution in

which every variable is set to 1 either with probability p, or with probability 1 − p. When
σ = (1, . . . , 1), the distribution D(σ,p) is commonly called a p-biased distribution.

Given a skew (σ, p) and a function f , the gain of a variable xi with respect to f under
distribution D(σ,p) is thus equivalent to the gain that is calculated by applying skew (σ, p)
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(using the procedure described in Section 3) to a training set consisting of the entire truth
table for f . We say that variable xi has gain for (f, σ, p) if the gain of xi with respect to f
under D(σ,p) is non-zero. We call distributions D(σ,p) skewed distributions.

We note that in other papers on skewing, p is required to be in (1/2, 1), rather than in
(0, 1). Here it is more convenient for us to let p be in (0, 1). Given any orientation σ, and
any p ∈ (0, 1), skew (σ̄, 1 − p), where σ̄ is the bitwise complement of σ, induces the same
distribution as (σ, p). Thus allowing p to be in (0, 1) does not change the class of skewed
distributions, except that we also include the uniform distribution.

Given a, b ∈ {0, 1}n, let ∆(a, b) = |{i ∈ [1, . . . , n]|ai 6= bi}|, i.e., ∆(a, b) is the Hamming
distance between a and b. For a, b ∈ {0, 1}n, let a + b denote the componentwise mod 2
sum of a and b. Given c ∈ {0, 1}n, we use w(c) to denote the Hamming weight (number of
1’s) of c. Thus w(a+ b) = ∆(a, b).

In the product distribution choice (PDC) model, the learning algorithm has access to
a special type of random example oracle for a target function f(x1, . . . , xn). This random
example oracle takes as input the parameters [p1, . . . , pn] of a product distribution D over
unlabeled examples (x1, . . . , xn). The oracle responds with a random example (x1, . . . , xn)
drawn according to the requested distribution D. We assume the learner knows n.

5.2 Gain

Greedy tree learners partition a data set recursively, choosing a “split variable” at each step.
They differ from one another primarily in their measures of “goodness” for split variables.
The measure used in the well-known CART system is Gini gain (Breiman et al., 1984).
Gini gain was also used in the decision tree learners employed in experimental work on
skewing (Page and Ray, 2003; Ray and Page, 2004). In this paper, we use the term “gain”
to denote Gini gain.

Gini gain is defined in terms of another quantity called Gini index. Let S be a (multi)
set of labeled examples. Let S1 = {(x, y) ∈ S|y = 1} and S0 = {(x, y) ∈ S|y = 0}. The Gini

index of S is 2 |S1||S0|
|S|2 . Let H̃(S) denote the Gini index of S. Let T1 = {(x, y) ∈ S1|xi = 1}

and T0 = {(x, y) ∈ S|xi = 0}. For any potential split variable xi, the Gini index of S

conditional on xi is defined to be H̃(S|xi) := |T1|
|S| H̃(T1) + |T0|

|S| H̃(T0). The Gini gain of a
variable xi with respect to S is

G(S, xi) = H̃(S) − H̃(S|xi). (2)

In decision tree terms, this is the weighted sum of the Gini indices of the child nodes
resulting from a split on xi.

Some definitions of Gini gain and Gini index differ from the one above by a factor of 2;
our definition follows that of Breiman et al. (1984).

Now suppose that each example in our (multi) set S has an associated weight, a real
number between 0 and 1. We can define the gain on this weighted set by modifying the
above definitions in the natural way: each time the definitions involve the size of a set, we
instead use the sum of the weights of the elements in the set.

We can also define Gini index and Gini gain of variable xi with respect to f : {0, 1}n →
{0, 1} under a distribution D on {0, 1}n. The Gini index of f with respect to a probability
distribution D on {0, 1}n is 2PrD[f = 1](1−PrD[f = 1]). Let H̃D(f) denote the Gini index
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of f with respect to D. For any potential split variable xi, the Gini index of f with respect
to D, conditional on xi is H̃D(f |xi) := PrD[xi = 0]H̃D(fxi←0) + PrD[xi = 1]H̃D(fxi←1).
The Gini gain of a variable xi with respect to f , under distribution D, is

GD(f, xi) = H̃D(f) − H̃D(f |xi) (3)

The Gini gain of xi with respect to f , under the uniform distribution on {0, 1}n, is equal
to the Gini gain of xi with respect to the training set T consisting of all entries in the truth
table. The Gini gain is always a value in the interval [0, 1].

The following lemma relates the size of the Gini gain with respect to a distribution D
to the difference in the conditional probabilities PrD[f = 1|xi = 1] − PrD[f = 1|xi = 0].

Lemma 1 Let f be an n-variable Boolean function, and let D be a distribution on {0, 1}n

such that Pr[xi = 1] is strictly between 0 and 1. Then GD(f, xi), the Gini gain of variable
xi with respect to f , under distribution D, is equal to

2pi(1 − pi)(PrD[f = 1|xi = 1] − PrD[f = 1|xi = 0])2 (4)

where pi = PrD[xi = 1].

Proof. Let p = pi, β = PrD[f = 1], β1 = PrD[f = 1|xi = 1], and β0 = PrD[f = 1|xi =
0]. Thus β = pβ1 + (1 − p)β0.

The Gini gain of xi with respect to f is

2(β(1 − β) − p(β1(1 − β1)) − (1 − p)(β0(1 − β0)))

= 2(β(1 − β) − (pβ1 + (1 − p)β0)) + pβ2
1 + β2

0(1 − p))

= 2(β(1 − β) − β + pβ2
1 + β2

0(1 − p))

= 2(−β2 + pβ2
1 + β2

0(1 − p)) (5)

Substituting pβ1 + (1 − p)β0 for β, we get that the last quantity is

= 2(−p2β2
1 − 2p(1 − p)β0β1 − (1 − p)2β2

0 + pβ2
1 + β2

0(1 − p))

= 2((1 − p)p(β2
1 − 2β0β1 + β2

0))

= 2p(1 − p)(β1 − β0)
2 (6)

�

Under distributionD on {0, 1}n, xi and (the output of) f are independent iffGD(f, xi) =
0.

5.3 Fourier Coefficients

Given a Boolean function f : {0, 1}n → {0, 1}, define an associated function F = 1 − 2f .
That is, F : {0, 1}n → {1,−1} such that F (x) = 1 − 2f(x) for all x ∈ {0, 1}n. The
function F can be seen as an alternative representation of Boolean function f , using −1
and 1 respectively to represent true and false outputs, rather than 1 and 0.

10



For every z ∈ {0, 1}n, let χz : {0, 1}n → {1,−1} be such that χz(x) = −1
(
P

i:zi=1 xi) mod 2
.

Thus χz is the alternative representation of the function computing the parity of the vari-
ables set to 1 by z. For z ∈ {0, 1}n, n-variable Boolean function f , and associated F = 1−2f ,
the Fourier coefficient f̂(z) is defined as follows:

f̂(z) := E[F (x)χz(x)] (7)

here the expectation is with respect to the uniform distribution on x ∈ {0, 1}n.

The degree of Fourier coefficient f̂(z) is w(z), the Hamming weight of z. The Fourier
coefficient associated with the variable xi is f̂(z) where z is the characteristic vector of xi

(i.e. zi = 1 and for j 6= i, zi = 0). In an abuse of notation, we will use f̂(xi) to denote this
Fourier coefficient. Thus f̂(xi) = E[F (x)(1− 2xi)]. The function F can be expressed by its
Fourier series, F (x) =

∑

z∈{0,1}n f̂(z)χz(x).

Fourier coefficients can be generalized from the uniform distribution to product distri-
butions, as described by Furst et al. (1991). Let D be a product distribution on {0, 1}n

defined by parameters [p1, . . . , pn], all of which are strictly between 0 and 1. For z ∈ {0, 1}n,
let φz : {0, 1}n → {0, 1} be such that φz(x) =

∏

i:zi=1
µi−xi

σi
where µi = pi is ED[xi] and

σi =
√

pi(1 − pi) is the standard deviation of xi under D. The Fourier coefficient f̂D(z),
for product distribution D, is defined as follows:

f̂D(z) := ED[F (x)φz(x)]. (8)

When D is the uniform distribution, this definition is equivalent to the definition of an
ordinary Fourier coefficient.

Parseval’s identity, applied to the Fourier coefficients of product distributions, states
that

∑

z∈{0,1}n
f̂D

2
(z) = 1. (9)

The Fourier coefficient associated with the variable xi, with respect to product distri-
bution D, is f̂D(z), where z is the characteristic vector of xi. Abusing notation as before,
we will use f̂D(xi) to denote this Fourier coefficient. Thus

f̂D(xi) =
piED[F (x)] − ED[xiF (x)]

√

pi(1 − pi)
(10)

The next lemma is analogous to Lemma 1, and relates the value of the Fourier coefficient
for xi, for product distribution D, to the difference in conditional probabilities PrD[f =
1|xi = 1] − PrD[f = 1|xi = 0].

Lemma 2 Let f be an n-variable Boolean function, and let D be a product distribution over
{0, 1}n defined by π = [p1, . . . , pn], such that each pi ∈ (0, 1). Let F : {0, 1}n → {1,−1} be
such that F = 1− 2f . Then the Fourier coefficient associated with xi, for distribution D, is

2
√

pi(1 − pi)(PrD[f = 1|xi = 1] − PrD[f = 1|xi = 0]).

11



Proof. By definition,

f̂(xi) =
piED[F (x)] − ED[xiF (x)]

√

pi(1 − pi)
. (11)

Let β = PrD[f = 1] (which equals PrD[F = −1]), β1 = PrD[f = 1|xi = 1], and
β0 = PrD[f = 1|xi = 0].

Since piED[F (x)] = pi(1 − 2β), ED[F (x)xi] = pi(1 − 2β1), and β = pβ1 + (1 − p)β0, it
follows that

piED[F (x)] − ED[xiF (x)] = 2pi(−β + β1)

= 2pi(−piβ1 − (1 − pi)β0 + β1)

= 2pi(1 − pi)(β1 − β0). (12)

Dividing by
√

pi(1 − pi), the lemma follows. �

The following important facts about first-order Fourier coefficients for product distribu-
tions are easily shown. For D a product distribution on {0, 1}n where each pi ∈ (0, 1),

1. If xi is an irrelevant variable of a Boolean function f , then f̂D(xi) = 0.

2. GD(f, xi) = 0 iff f̂D(xi) = 0.

5.4 Correlation Immune Functions

For k ≥ 1, a Boolean function is defined to be k-correlation immune if for all 1 ≤ d ≤ k, all
degree-d Fourier coefficients of f are equal to 0. An equivalent definition is as follows (Xiao
and Massey, 1988; Brynielsson, 1989). Let x1, . . . , xn be random Boolean variables, each
chosen uniformly and independently. Let y = f(x1, . . . , xn). Then f is k-correlation immune
if and only if, for any distinct variables xi1 , . . . , xik of f , the variables y, xi1 , xi2 , . . . , xik are
mutually independent.

A greedy decision tree learner would have difficulty learning k-correlation immune func-
tions using only k-lookahead; to find relevant variables in the presence of irrelevant ones for
such functions, it would need to use k + 1-lookahead.

A Boolean function is correlation immune if it is 1-correlation immune. Equivalently,
a Boolean function f is correlation immune if all variables of f have zero gain for f , with
respect to the uniform distribution on {0, 1}n. As can be seen from Lemma 1, this is the
case iff for every input variable xi of the function, Pr[f = 1|xi = 1] = Pr[f = 1|xi = 0],
where probabilities are with respect to the uniform distribution on {0, 1}n. The following al-
ternative characterization of correlation-immune functions immediately follows: A Boolean
function is correlation-immune iff

|{a ∈ {0, 1}n | f(a) = 1 and ai = 1}| = |{a ∈ {0, 1}n | f(a) = 1 and ai = 0}|. (13)

5.5 Correlation immune functions for product distributions

Correlation immune functions are defined with respect to the uniform distribution. Here we
extend the definition to apply to arbitrary product distributions with parameters strictly

12



between 0 and 1. In particular, for such a product distribution D, we can define a function
to be correlation immune for D if either (1) The degree-1 Fourier coefficients with respect
to D are all 0, or (2) the gain of every variable with respect to D is 0, or (3) PrD[f =
1|xi = 1]−PrD[f = 1|xi = 0] = 0 for all variables xi of f . By the results in Section 5, these
definitions are equivalent.2

A natural question is whether there are (non-constant) correlation immune functions for
non-uniform product distributions D. There are, as illustrated by the following example,
which can be easily generalized to other similar product distributions.

Example: Let n be a multiple of 3, and let D be the product distribution defined by
[2/3, 2/3, . . . , 2/3].

For any n that is a multiple of 3, we will show that the following function f is correlation
immune with respect to D.

Let f be the n-variable Boolean function such that f(x) = 1 if x = 110110110110 . . .
(i.e. n/3 repetitions of 110), or when x is equal to one of the two right-shifts of that vector.
For all other x, f(x) = 0.

To prove correlation immunity, it suffices to show that for each xi, PrD[f = 1|xi = 1] =
PrD[f = 1].

Each positive example of f has the same probability. It is easy to verify that for each
xi, 2/3 of the positive examples have xi = 1. Thus PrD[f = 1 and x = 1] = 2/3PrD[f = 1].
So,

PrD[f = 1|x = 1] = PrD[f = 1 and x = 1]/PrD[x = 1]

= (2/3PrD[f = 1])/(2/3)

= PrD[f = 1] (14)

�

In Section 8 we will give examples of product distributions D for which there are no
correlation-immune functions.

6. Estimating first-order Fourier coefficients and gain

Fourier-based learning algorithms work by computing estimates of selected Fourier coeffi-
cients using a sample. Given a training set S = {(x(1), y(1)), . . . , (x(m), y(m))} for a Boolean
function f and z ∈ {0, 1}n, the estimated Fourier coefficient for z, calculated on S, with
respect to product distribution D, is

f̂S,D(z) :=
1

m

m
∑

j=1

(1 − 2y(j))φz(x
(j)). (15)

To simplify notation, where D is clear from context, we will often write f̂S(z) instead of
f̂S,D(z). Since φz depends on D, calculating f̂S(z) from S requires knowledge of D. In our

2. We do not extend the definition of correlation-immunity to non-product distributions. With respect to a
non-product distribution, it is possible for both relevant and irrelevant variables to have non-zero gain.
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work we only consider cases in which D is known. (In cases that D is an unknown product
distribution, its parameters can be estimated (see Furst et al., 1991).)

If S is a random sample of f drawn with respect to D, then f̂D(z) = ED[(1−2f(x))φz(x)]
and f̂S,D(z) is the estimate of the expectation ED[(1 − 2f(x))φz(x)] on sample S.

In Section 9, there are situations in which we will know that, with respect to a known
product distribution D, there exists a relevant variable of a function f whose first-order
Fourier coefficient has magnitude at least q, for some value q. As mentioned earlier, the
first-order Fourier coefficients of irrelevant variables are zero. Thus if one can estimate first-
order Fourier coefficients of f so the estimates each have additive error less than q/2, then
a non-empty subset of the relevant variables of f can be constructed by taking all variables
whose Fourier coefficient estimates are at least q/2. The following lemma gives an upper
bound on the sample size that would be needed to produce the desired estimates with high
probability (set ǫ = q/2). The lemma is implicit in the paper of Furst et al. (1991), and
follows from a standard bound of Hoeffding.

Lemma 3 Let f be an n-variable Boolean function. and let D be a product distribution
over {0, 1}n defined by [p1, . . . , pn]. Let β = maxi{1/pi, 1/(1 − pi)}, ǫ > 0, and 0 < δ < 1.
If S is a set of

1

ǫ2
2(β − 1) ln

2n

δ
random examples of f , drawn from distribution D, then with probability at least 1 − δ,
|f̂S(xi) − f̂D(xi)| < ǫ for all variables xi of f .

Skewing works by estimating gain, rather than by estimating first-order Fourier coeffi-
cients. More generally, one can use gain estimates rather than Fourier coefficient estimates
to try to identify relevant variables of a function (assuming some have non-zero gain). Be-
low we give a sample-complexity bound, analogous to Lemma 3, for estimating gain. The
technique is based on a standard large deviation estimate, which can be thought of as a
“vector” version of the Chernoff bound.

Let Z(0), Z(1), . . . be a discrete-time Markov process in R
k with differences bounded

by c. That is, Z(0), Z(1), . . . are random variables taking values in R
k, such that the

distribution of Z(t + 1) given Z(u) for all u ≤ t depends only on Z(t), and for each pair
Z(t), Z(t+ 1) the L2 norm ||Z(t+ 1)−Z(t)|| is at most c. We call the process a martingale

if for all t ≥ 0, E[Z(t)] exists, and E[Z(t+ 1)|Z(t)] = Z(t). (More general definitions exist,
but this will suffice for our purpose.) A standard result says that martingales are unlikely
to wander too far from their initial values.

Lemma 4 Let Z(t) be a martingale in Rk with differences bounded by c. Then for any
λ > 0,

Pr[||Z(t) − Z(0)|| ≥ λ] ≤ 2 exp(
−λ2

2tc2
). (16)

Proof See, e.g. Pinelis (1992). �

Lemma 5 Let f be an n-variable Boolean function and let D be a product distribution over
{0, 1}n whose parameters are in (0, 1). Let ǫ > 0, and 0 < δ < 1. If S is a set of

256 log(2n/δ)/ǫ2
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random examples of f , drawn from distribution D, then with probability at least 1 − δ,
|G(S, xi) −GD(f, xi)| ≤ ǫ for all variables xi of f .

Proof Let xi be a variable, and consider the 2 × 2 table

f = 0 f = 1

xi = 0 a1 a2

xi = 1 a3 a4

In this table, the aj’s are probabilities, so that a1 denotes the probability (under D) that
xi = f = 0, and similarly for the others. Therefore, 0 ≤ aj ≤ 1, and

∑

aj = 1.
By drawing a random sample S of f from distribution D, we get counts m1,m2,m3,m4

corresponding to the aj ’s. For example, m2 is the number of examples in S for which xi = 0
and f = 1. We can view the sampling procedure as happening over time, where the tth
example is drawn at time t.

At times t = 0, 1, 2, . . ., we can observe

Z(t) := (m1 − a1t,m2 − a2t,m3 − a3t,m4 − a4t). (17)

By the definition of Z,

E[Z(t+ 1) − Z(t)|Z(t)] = a1(1 − a1,−a2,−a3,−a4) + a2(−a1, 1 − a2,−a3,−a4)

+a3(−a1,−a2, 1 − a3,−a4) + a4(−a1,−a2,−a3, 1 − a4)

= (0, 0, 0, 0) (18)

where the last equation follows because
∑

aj = 1. Thus Z(0), Z(1), . . . is a martingale in R4.
Also, Z(t+1)−Z(t) equals, up to symmetry, (1−a1,−a2,−a3,−a4). Since a2

2+a2
3 +a2

4 ≤ 1,

(1 − a1)
2 + a2

2 + a2
3 + a2

4 ≤ 2, (19)

and the martingale has differences bounded by c =
√

2.
The gain of xi in f with respect to distribution D is

GD(f, xi) = 2 [β(1 − β) − pβ1(1 − β1) − (1 − p)β0(1 − β0)] (20)

where
β = Pr[f = 1] = a2 + a4, (21)

p = Pr[xi = 1] = a3 + a4, (22)

β0 = Pr[f = 1|xi = 0] =
a2

a1 + a2
, (23)

and
β1 = Pr[f = 1|xi = 1] =

a4

a3 + a4
. (24)

Substituting these into the above gain formula and simplifying, we get

GD(f, xi) = 2

[

(a1 + a3)(a2 + a4) −
a3a4

a3 + a4
− a1a2

a1 + a2

]

(25)
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Define the function G(a1, . . . , a4) to be equal to the right hand side of the above equation.
This is a continuous function of the aj ’s, on the simplex aj ≥ 0,

∑

aj = 1.
Observe that

0 <
∂

∂aj

(

ajak

aj + ak

)

=
1

(aj/ak + 1)2
< 1, (26)

if aj , ak > 0, and

0 ≤ ∂

∂aj
(a1 + a3)(a2 + a4) ≤

∑

ai = 1. (27)

This implies that |∂G/∂aj | ≤ 2 in the interior of the simplex.
Suppose that (b1, b2, b3, b4) and (c1, c2, c3, c4) are two points on the interior of the simplex

with maxj{|cj − bj |} = µ. Let a(t) = b+ t(c− b) be the the parametric equation of the line
from b to c, and let G̃(t) = G(a(t)).

Letting ai(t) be the ith coordinate of a(t), and applying the chain rule, we get that

∂G̃

∂t
=

∑

i

∂G̃

∂ai

dai

dt
(28)

Since G̃(0) = G(b) and G̃(1) = G(c), by the mean value theorem, there exists t∗ ∈ [0, 1]
such that

∂G̃

∂t
(t∗) = G(c) −G(b). (29)

For (a1, . . . , a4) in the interior of the simplex,
∣

∣

∣
∂G̃/∂ai

∣

∣

∣
≤ 2. By the definition of a(t),

|dai/dt| = |ci − bi| ≤ µ. Thus
∣

∣

∣

∣

∣

∂G̃

∂t
(t∗)

∣

∣

∣

∣

∣

= |G(c) −G(b)| ≤ 8µ. (30)

Since G is continuous, this holds even for probability vectors b and c on the boundary.
We seek a sample size m large enough that (for all variables xi)

Pr[ |G(S, xi) −GD(f, xi)| ≥ ǫ ] ≤ δ

n
. (31)

Let the empirical frequencies be âj = mi/m, i = 1, . . . , 4. By (30), it will suffice to make
m large enough that, with probability at least 1 − δ/n, we observe |âj − aj| < ǫ/8 for all
j. Let’s call a sample “bad” if for some j, |mj/m− aj | ≥ ǫ/8. Since Z(0) = ~0, this implies
that ||Z(m) − Z(0)|| ≥ ǫm/8. If we take λ = ǫm/8, c =

√
2, and t = m in the Chernoff

bound (Equation 16), we see that

Pr[ bad sample ] ≤ 2e−
ǫ2m
256 . (32)

This will be less than δ/n as soon as

m ≥ 256 log(2n/δ)

ǫ2
. (33)

�

We note that it is possible to obtain a weaker bound than the one in Lemma 5 by using
standard Chernoff bound arguments on each of the “counts” mi used in calculating the gain
estimates.
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7. A property of non-constant Boolean functions

For k ∈ [0, . . . , n], let Wk(f) denote the number of positive assignments of f of Hamming
weight k. We will make repeated use of the following lemma.

Lemma 6 Let f be a non-constant Boolean function on {0, 1}n. Then there exists a vari-
able xi of f and a number k ∈ [0, . . . , n − 1] such that Wk(fxi←0) 6= Wk(fxi←1).

Proof. Assume no such variable xi exists.

We begin by showing that for i ∈ [1 . . . n], there exists k ∈ [0 . . . n − 1] such that
Wk(fxi←1) > 0. By the definition of Wk, Wk(fxi←1) > 0 precisely when there exists some
assignment b ∈ {0, 1}n such that f(b) = 1, bi = 1, and the Hamming weight of b is k + 1.
Since f is not a constant function, there exists a ∈ {0, 1}n such that f(a) = 1. Recall that
w(a) denotes the Hamming weight of a. If ai = 1, let k = w(a)− 1, else let k = w(a). Since
Wk(fxi←0) = Wk(fxi←1), and at least one of these is positive since f(a) = 1, it follows that
Wk(fxi←1) > 0.

Thus we can define m = min{k | Wk(fxi←1) > 0 for some i ∈ [1, . . . , n]}. Let i∗ be an
index such that Wm(fxi∗←1) > 0. For example, suppose f is the function f(x1, x2, x3) =
x1x2 ∨x3. Then fx3←1(0, 0) = 1. Since the assignment (0, 0) has Hamming weight 0, which
is the minimum possible, m = 0 and we can take i∗ = 3.

There are two cases.

Case 1: 0 < m ≤ n − 1. Since Wm(fxi∗←1) > 0, by assumption Wm(fxi∗←0) > 0 also.
Thus there exists t ∈ {0, 1}n such that ti∗ = 0, fxi∗←0(t

i∗) = 1, and w(ti
∗
) = m. Since

m > 0, there exists an index j 6= i∗ such that tj = 1. Without loss of generality, assume
i∗ < j. Thus t = (t1, . . . , ti∗−1, 0, ti∗+1, . . . , tj−1, 1, tj+1, . . . , tn). Since fxi∗←0(t

i∗) = 1,
f(t) = 1 also, and thus fxj←1(t

j) = 1. However, w(tj) = m− 1 so Wm−1(fxj←1) > 0, which
contradicts the definition of m.

Case 2: m = 0. We claim that for all a ∈ {0, 1}n, f(a) = 1.

The proof of the claim is by induction on the Hamming weight of a, w(a). For the base
case, let w(a) = 0. Thus a is the all 0’s assignment. By the definition of m, Wm(fxi∗←1) > 0
and hence Wm(fxi∗←0) > 0 also. But since m = 0, the only assignment in {0, 1}n−1 of
Hamming weight m is the all 0’s assignment, which is equal to ai∗ since w(a) = 0. Thus
fxi∗←0(a

i∗) = 1, and hence f(a) = 1 as claimed.

Now let j ∈ [0 . . . n− 2]. Assume inductively that all assignments x of Hamming weight
j satisfy f(x) = 1. Let t be an assignment of Hamming weight j + 1. Choose an index l
such that tl = 1; index l exists because j + 1 > 0. By the inductive assumption, for every
assignment u such that w(u) = j, f(u) = 1. There are precisely

(

n−1
j

)

assignments u such
that w(u) = j and ul = 0. All these assignments u satisfy f(u) = 1, and thus Wj(fxl←0)
=

(

n−1
j

)

. Since Wj(fxl←0) = Wj(fxl←1), Wj(fxl←1) =
(

n−1
j

)

also. The quantity
(

n−1
j

)

is

equal to the total number of assignments in {0, 1}n−1 containing exactly j 1’s. Clearly tl

is one of these assignments, hence fxl←1(t
l) = 1. Since f(t) = fxl←1(t

l), f(t) = 1 also.
Since t was an arbitrary assignment of Hamming weight j + 1, we have that f(a) = 1 for
all a ∈ {0, 1}n of Hamming weight j+1. Hence we have shown by induction that f(a) = 1
for all a ∈ {0, 1}n. This contradicts the hypothesis that f is not a constant function, which
completes the proof of the lemma. �
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Lemma 6 can be restated using the terminology of weight enumerators. Given a binary
code (i.e. a subset of {0, 1}n, for some n), the weight enumerator of this code is the
polynomial P (z) =

∑

k Wkz
k. Lemma 6 states that if f is a non-constant Boolean function,

then it has a relevant variable xi such that codes C0 := {x ∈ {0, 1}n−1|fxi←1(x) = 1}, and
C1 := {x ∈ {0, 1}n−1|fxi←1(x) = 1} have different weight enumerators.

Lemma 6 proves the existence of a variable xi with a given property. One might con-
jecture that all relevant variables of f would share this property, but this is not the case,
as shown in the following simple example.

Example: Let f(x1, x2, x3) = (¬x1 ∨ ¬x2 ∨ x3)(x1 ∨ x2 ∨ ¬x3). Let σ = (0, 0, 0). Since
f(1, 1, 0) 6= f(0, 1, 0), x1 is a relevant variable of f . It is straightforward to verify that, For
k ∈ {0, 1, 2}, Wk(fx1←0) = Wk(fx1←1). The same holds for x2 by symmetry. Variable x3 is
the only one satisfying the property of Lemma 6.

8. Skewing in an idealized setting

In this section, we analyze skewing in an idealized setting, where the available data consists
of the truth table of a Boolean function. We then do an analysis of sequential skewing in
the same setting.

8.1 A motivating example

Recall that a correlation immune function f(x1, . . . , xn) is one such that for every variable
xi, the gain of xi with respect to f is 0 under the uniform distribution on {0, 1}n. We are
interested in the following question: When skewing is applied to a correlation immune func-
tion, will it cause a relevant variable to have non-zero gain under the skewed distribution?
(Equivalently, will it cause one of the first-order Fourier coefficients to become non-zero?)
We show that, in the idealized setting, the answer to this question is “yes” for nearly all
skews. The answer is somewhat different for sequential skewing.

When we use a skew (σ, p) to reweight a dataset that consists of an entire truth table,
the weight assigned to each assignment a in the truth table by the skewing procedure is
PD(σ,p)(a), where D(σ, p) is the skewed distribution defined by (σ, p). Moreover, the gain of
a variable xi as measured on the weighted truth table is precisely the gain with respect to
D(σ, p). By Lemma 1, it follows that a variable xi will have gain on the skewed (weighted)
truth table dataset iff PD(f = 1|xi = 1) − PD(f = 1|xi = 0) 6= 0, where D = D(σ, p). If xi

is a relevant variable, the difference PD(f = 1|xi = 1)−PD(f = 1|xi = 0) can be expressed
as a polynomial h(p) in p of degree at most r−1, where r is the number of relevant variables
of f . If xi is an irrelevant variable, PD(f = 1|xi = 1) − PD(f = 1|xi = 0) = 0. The main
work in this section will be to show that for some relevant variable xi, this polynomial is
not identically 0. Having proved that, we will know that for at most r− 1 values of weight
factor p (the roots of h), h(p) = 0. For all other values of p, h(p) 6= 0, and xi has gain in f
with respect to D(σ, p).

We give an example construction of the polynomial h(p) for a particular function
and skew. Consider a Boolean function f over 5 variables whose positive examples are
(0, 0, 0, 1, 0), (0, 0, 1, 0, 0), (1, 0, 1, 1, 0). Assume a skew (σ, p) where σ = (1, . . . , 1) and p
is some arbitrary value in (0, 1). Let D = D(σ,p). There are two positive examples of f
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setting x1 = 0, namely (0, 0, 0, 1, 0), (0, 0, 1, 0, 0). It is easy to verify that PD(f = 1|x1 =
0) = 2p(1 − p)3. Similarly, PD(f = 1|x1 = 1) = p2(1 − p)2. Let h(p) = PD(f = 1|x1 =
1) − PD(f = 1|x1 = 0). Then h(p) = p2(1 − p)2 − 2p(1 − p)3, which can be rewritten as
a degree-4 polynomial in p. This polynomial has at most 4 roots, and it is not identically
0. It follows that for all but at most 4 choices of p, h(p) is not zero. Thus if we choose p
uniformly at random from (0, 1), with probability 1, x1 has gain for (f, σ, p).

8.2 Analysis of skewing in an idealized setting

For f : {0, 1}n → {0, 1} a Boolean function, k ∈ [1 . . . n], and σ ∈ {0, 1}n, let W (f, σ, k)
denote the number of assignments b ∈ {0, 1}n such that f(b) = 1 and ∆(b, σ) = k.

Using the symmetry of the Boolean hypercube, we can generalize Lemma 6 to obtain
the following lemma, which we will use in our analysis of skewing.

Lemma 7 Let f be a non-constant Boolean function on {0, 1}n, σ ∈ {0, 1}n be an orienta-
tion, and i ∈ [1 . . . n]. Then there exists a variable xi of f and k ∈ [0, . . . , n − 1] such that
W (fxi←1, σ

i, k) 6= W (fxi←0, σ
i, k).

Proof. Recall that given two assignments a and b, we use a+b to denote componentwise
addition mod 2. Let g be the isomorphism on {0, 1}n−1 such that g(x) = x + σi. Let
f ′ : {0, 1}n → {0, 1} be such that f ′(x) = f(g(x)).

Applying Lemma 6 to function f ′, let xi and k be such that Wk(f
′
xi←1) 6= Wk(f

′
xi←0).

For all a ∈ {0, 1}n−1, f ′xi←1(a) = 1 and w(a) = k iff fxi←1(g(a)) = 1 and ∆(g(a), σ) =
w((a+σ)+σ) = k. Since g is an isomorphism, it follows that Wk(f

′
xi←1) = W (fxi←1, σ

i, k).
The analogous statement holds for Wk(f

′
xi←0). Thus W (fxi←1, σ

i, k) 6= W (fxi←0, σ
i, k). �

We now show the connection between the above lemma and gain.

Lemma 8 Let f be a Boolean function on {0, 1}n, σ ∈ {0, 1}n be a fixed orientation, and i ∈
[1 . . . n]. Let r be the number of relevant variables of f . If W (fxi←1, σ

i, j) = W (fxi←0, σ
i, j)

for all j ∈ [1 . . . n − 1], then for all weighting factors p ∈ (0, 1), xi does not have gain for
(f, σ, p). Conversely, if W (fxi←1, σ

i, j) 6= W (fxi←0, σ
i, j) for some j ∈ [1 . . . n − 1], then

for all but at most r − 1 weighting factors p ∈ (0, 1), xi has gain for (f, σ, p).

Proof. Let f0 denote fxi←0 and f1 denote fxi←1. Let σ ∈ {0, 1}n be a fixed orientation.
For real valued variables y and z and for a ∈ {0, 1}n, let Tσ,a(y, z) be the multiplicative

term yn−dzd, where d = ∆(σ, a), the Hamming distance between σ and a. So, for example,
if σ = (1, 1, 1) and a = (1, 0, 0), Tσ,a = yz2. Note that for p ∈ (0, 1), Tσ,a(p, 1 − p) is the
probability assigned to a by distribution D(σ,p). For σ ∈ {0, 1}n and f a Boolean function
on {0, 1}n, let gf,σ be the polynomial in y and z such that

gf,σ(y, z) =
∑

a∈{0,1}n:f(a)=1

Tσ,a(y, z) (34)

Thus, for example, if f is the two-variable disjunction f(x1, x2) = x1 ∨ x2, and σ = (1, 1),
then gf,σ = y1z1 + y1z1 + y2z0 = y2 + 2yz.

Define g′(y, z) = gf1,σi(y, z) − gf0,σi(y, z), where g is as given in Equation 34. The
quantity W (f, σ, k) is the value of the coefficient of the term yn−kzk in gf,σ. Thus g′(y, z) =
∑n−1

j=0 cjy
n−1−jzj , where for all j ∈ [0 . . . n− 1], cj = W (f1, σ

i, j) −W (f0, σ
i, j).
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Let p ∈ (0, 1). Under distribution D(σ,p), Pr(f = 1|xi = 0) and Pr(f = 1|xi = 1) are
equal to gf0,σi(p, 1 − p) and gf1,σi(p, 1 − p) respectively. Thus by Lemma 1, xi has gain for
(f, σ, p) iff g′(p, 1 − p) = 0.

Let h(p) be the polynomial in p such that h(p) = g′(p, 1 − p).

If xi is irrelevant, then for all fixed p ∈ (0, 1), xi has no gain for (f, σ, p). Further,
W (f1, σ

i, j) = W (f0, σ
i, j) for all j ∈ [0 . . . n− 1]. Thus the lemma holds if xi is irrelevant.

In what follows, assume xi is relevant.

If W (f1, σ
i, j) = W (f0, σ

i, j) for all j ∈ [0 . . . n− 1], then h(p) is identically 0 and for all
fixed p ∈ (0, 1), xi has no gain for (f, σ, p).

Suppose conversely that W (f1, σ
i, j) 6= W (f0, σ

i, j) for some j. Then g′(y, z) is not
identically 0. We will show that h(p) = g′(p, 1 − p) is a polynomial of degree at most r − 1
that is not identically 0.

We begin by showing that h(p) has degree at most r − 1. Let xl 6= xi be an irrelevant
variable of f . Assume without loss of generality that σl = 1. Then since f(axl←1) = 1 iff
f(axl←0) = 1,

gf,σ(p, 1 − p) =
∑

a∈{0,1}n:f(a)=1,al=1

pTσl,al(p, 1 − p) +
∑

a∈{0,1}n:f(a)=1,al=0

(1 − p)Tσl,al(p, 1 − p)

=
∑

a∈{0,1}n:f(a)=1,al=0

Tσl,al(p, 1 − p)

=
∑

b∈{0,1}n−1:fxl←0(b)=1

Tσl,b(p, 1 − p)

= gfxl←0,σ(p, 1 − p) (35)

(36)

That is, gf,σ(p, 1−p) is equal to the corresponding polynomial for the function gfxl←0,σ(p, 1−
p) produced by hardwiring irrelevant variable xl to 0. By repeating this argument, we get
that gf,σ = gf̃ ,σ where f̃ is the function obtained from f by hardwiring all of its irrelevant

variables to 0. Thus g has degree at most r and h(p) = g′(p, 1−p) has degree at most r−1.

Let j′ be the smallest j such that W (f1, σ
i, j) 6= W (f0, σ

i, j). Then aj′ is non-zero, and
all (non-zero) terms of g′(y, z) have the form ajy

r−1−jzj where j ≥ j′. We can thus factor
out zj′ from g′(y, z) to get g′(y, z) = zj′g′′(y, z), where g′′(y, z) =

∑r−1
j=j′ ajy

r−1−jzj−j′. One

term of g′′ is aj′y
r−1−j′, while all other terms have a non-zero power of z. Thus for p = 1,

g′′(p, 1 − p) = aj′ which is non-zero, proving that g′′(p, 1 − p) is not identically 0. Hence
h(p) = zj′g′′(p, 1 − p) is the product of two polynomials that are not identically 0, and so
h(p) is not identically 0.

Finally, since h(p) is a polynomial of degree at most r − 1 that is not identically 0, it
has at most r − 1 roots. It follows that there are at most r − 1 values of p in (0, 1) such
that xi does not have gain for (f, σ, p). �

We now present the main theorem of this section.

Theorem 8.1 Let f be a non-constant Boolean function on {0, 1}n. Let σ ∈ {0, 1}n be an
orientation, and let p be chosen uniformly at random from (0, 1). Then with probability 1
there exists at least one variable xi such that xi has gain for (f, σ, p).
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Proof. Let σ ∈ {0, 1}n be a fixed orientation. Let r be the number of relevant vari-
ables of f . Let xi be the variable of f whose existence is guaranteed by Lemma 7. Thus
W (fxi←1, σ

i, j) 6= W (fxi←0, σ
i, j) for some j. By Lemma 8, for all but at most r−1 weight-

ing factors p ∈ (0, 1), xi has gain for (f, σ, p). With probability 1, a random p chosen
uniformly from (0, 1) will not be equal to one of those r − 1 weighting factors. �

Using the techniques above, we can also show that for certain p-biased distributions
D[p], there do not exist any non-constant correlation immune functions with respect to
D[p]. By Lemma 7 and the proof of Lemma 8, there is some variable xi such that associated
polynomial h(p) (defined with respect to σ = (1, . . . , 1)) is not identically 0. It follows that
for any p that is not a root of h, xi has gain for (f, (1, . . . , 1), p), and thus f is not correlation
immune with respect to distribution D[p]. The polynomial h(p) has integer coefficients with
magnitude at most 2r, which restricts its possible roots. For example, all roots of h must
be algebraic, and thus for any non-algebraic p, f is not correlation immune with respect to
D[p].

With Theorem 8.1 we have shown that for any non-constant function and any orienta-
tion σ, there exists at least one variable xi such that if p is chosen randomly, then, with
probability 1, xi has gain with respect to f under the distribution D(σ,p). However, the
magnitude of the gain may vary depending on the function and on the skew. The identity
of the variable(s) having gain can also depend on the skew. Moreover, there may be other
relevant variables that don’t have gain for any p. In the example given following the proof
of Lemma 6, variables x1 and x2 will have no gain for (f, (0, . . . , 0), p) no matter the choice
of p.

Theorem 8.1 suggests that skewing is an effective method for finding relevant variables
of a non-constant Boolean f , because for nearly all skews, there will be at least one variable
with non-zero gain. Equivalently, for nearly all skewed distributions, function f is not
correlation immune with respect to that distribution. However, in practice – even in a
noiseless situation where examples are all labeled correctly according to a function f – we
do not usually have access to the entire truth table, and thus are not able to compute the
exact gain of a variable under distribution D(σ,p) defined by the skew. We can only estimate
that gain. Moreover, in practice we cannot sample from the distribution D(σ,p). Instead,
we simulate D(σ,p) by reweighting our sample.

8.3 Analysis of Sequential Skewing

Sequential skewing is a variant of skewing. In sequential skewing, n+1 iterations of reweight-
ing are performed, where n is the number of input variables of the target function. On the
jth iteration, examples are reweighted according to the preferred setting of the jth vari-
able alone; if the setting of the jth variable matches the preferred setting, the example is
multiplied by p, otherwise the example is multiplied by 1 − p. The reweighting in the jth
iteration is designed to simulate the product distribution in which each variable other than
xi is 1 with probability 1/2, and variable xj has its preferred setting with probability p. As
in standard skewing, the algorithm uses the calculated gains to determine which variable
to output.

In the reweighting done by sequential skewing, there is a chosen variable xi, a preferred
setting c ∈ {0, 1} of that variable, and a weight factor p ∈ (0, 1). We thus define a (sequen-
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tial) skew to be a triple (i, c, p), where i ∈ [1 . . . n], c ∈ {0, 1}, and p ∈ (0, 1). Define the
probability distribution D(i,c,p) on {0, 1}n such that for a ∈ {0, 1}n, D(i,c,p) assigns proba-

bility p · (1
2 )n−1 to a if ai = c, and (1−p) · (1

2 )n−1 otherwise. Thus D(i,c,p) is the distribution
that would be generated by applying sequential skewing, with parameters xi, c and p, to
the entire truth table.

Let f be a Boolean function on {0, 1}n. We say that variable xj has gain for (f, i, c, p)
if under distribution D(f,i,c,p), I(f |xj) > 0. By Lemma 1, xj has gain for (f, i, c, p) iff under
distribution D(f,i,c,p), Pr[f = 1|xj = 1] 6= Pr[f = 1|xj = 0].

We will use the following lemma.

Lemma 9 A Boolean function f is 2-correlation immune iff it is 1-correlation immune,
and for all pairs i < j, the inputs xi and xj are independent given f(x1, . . . , xn).

Proof. We first prove the forward direction. If f is 2-correlation immune, then it is
certainly 1-correlation immune, and all triples (f, xi, xj) are mutually independent.

The reverse direction is a calculation. Let α, β, γ ∈ {0, 1}. Using pairwise independence,
and then 1-correlation immunity, we get

Pr[f = α, xi = β, xj = γ] = Pr[f = α] Pr[xi = β, xj = γ | f = α]

= Pr[f = α] Pr[xi = β | f = α] Pr[xj = γ | f = α]

= Pr[f = α] Pr[xi = β] Pr[xj = γ] (37)

This holds even if Pr[f = α] = 0, for then both sides vanish. �

The constant functions f = 0 and f = 1 are 2-correlation immune, as is any parity
function on 3 or more variables. We have enumerated the 2-correlation immune functions
up to n = 5 and found that when n ≤ 4, the only such functions are as above, but for
n = 5, others begin to appear. Specifically, there are 1058 2-correlation immune functions
of 5 variables, but only 128 parity functions and complements of these (with no constraint
on the relevant variables). (Our enumeration method works as follows. Vanishing of the
relevant Fourier coefficients can be expressed as a linear system with 0-1 solutions, which
we can count by a “splitting” process reminiscent of the time-space tradeoff for solving
subset sum problems (Odlyzko, 1980).) Denisov (1992) gave an asymptotic formula for the
number of 2-correlation immune functions, and from this work it follows that for large n,
only a small fraction of the 2-correlation immune functions will be parity functions.

The following theorem shows that, in our idealized setting, sequential skewing can iden-
tify a relevant variable of a function, unless that function is 2-correlation immune. It follows
that sequential skewing will be ineffective in finding relevant variables of a parity function,
even with unlimited sample sizes. In contrast, standard skewing can identify relevant vari-
ables of a parity function if the sample size is large enough.

Theorem 8.2 Let f be a correlation-immune Boolean function on {0, 1}n and let c ∈ {0, 1}.
Let p be chosen uniformly at random from (0, 1). If the function f is 2-correlation immune,
then for all j ∈ [1 . . . n], xj has no gain for (f, i, c, p). Conversely, if f is not 2-correlation
immune, then for some j ∈ [1 . . . n], xj has gain for (f, i, c, p) with probability 1.
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Proof. Let f be a correlation immune function. Let i ∈ [1 . . . n] and c ∈ {0, 1}.
Assume c = 1. The proof for c = 0 is symmetric and we omit it. Consider skew (i, c, p),

where p ∈ (0, 1). Let f−1(1) = {x ∈ {0, 1}∗|f(x) = 1}.
Let j ∈ [1 . . . n]. Let A1 = |{a ∈ f−1(1) | ai = c and aj = 1}|, and B1 = |{a ∈

f−1(1) | ai 6= c and aj = 1}|. Similarly, let A0 = |{a ∈ f−1(1) | ai = c and aj = 0}|,
B0 = |{a ∈ f−1(1) | ai 6= c and aj = 0}|.

Under distribution D(f,i,c,p), if j 6= i, Pr[f = 1|xj = 1] = (A1p + B1(1 − p))
(

1
2

)n−2
. If

j = i, then because c = 1, Pr[f = 1|xj = 1] = A1

(

1
2

)n−1
. Similarly, if j 6= i, Pr[f = 1|xj =

0] = (A0p+B0(1 − p))
(

1
2

)n−2
. If j = i, Pr[f = 1|xj = 0] = B0

(

1
2

)n−1
.

The difference Pr[f = 1|xj = 1]−Pr[f = 1|xj = 0] is a linear function in p. If i 6= j, this
function is identically zero iff A1 = A0 and B1 = B0. If it is not identically 0, then there is
at most one value of p ∈ (0, 1) for which it is 0. If i = j, this function is identically zero iff
A1 = B0. Also note that for i = j, A0 = 0 and B1 = 0 by definition.

In addition, since f is correlation immune, A1 + A0 = B1 + B0. If i = j, then Pr[f =
1|xj = 1] − Pr[f = 1|xj = 0] is therefore identically zero and xi has no gain for (f, i, c, p).
If j 6= i, then xj has no gain for (f, i, c, p) iff A1 = A0 = B1 = B0. This latter condition is
precisely the condition that Pr[xi = α∧ xj = β|f = γ] = Pr[xi = α|f = γ] Pr[xj = β|f = γ]
under the uniform distribution on {0, 1}n. If this condition holds for all pairs i 6= j, no
variable xj has gain for (f, i, c, p), and by Lemma 9, f is 2-correlation immune. Otherwise
for some i 6= j, xj has gain for (f, i, c, p) for all but at most 1 value of p. The theorem
follows. �

9. Exploiting product distributions

Until now we have simulated alternative product distributions through skewing. But simu-
lating alternative distributions is not the same as sampling directly from them. In particular,
skewing can magnify idiosyncracies in the sample in a way that does not occur when sam-
pling from true alternative distributions. Therefore we now consider the PDC model, in
which the learning algorithm can specify product distributions and request random exam-
ples from those distributions. In practice it might be possible to obtain examples from such
alternative distributions by working with a different population or varying an experimental
set-up. Intuitively, one might expect a high degree of overhead in making such changes, in
which case it would be desirable to keep the number of alternative distributions small.

9.1 FindRel1: Finding a relevant variable using r distributions

Let Booleanr,n denote the Boolean functions on n variables that have at most r relevant
variables. We first present a simple algorithm that we call FindRel1, based on Theorem 8.1.
It identifies a relevant variable of any target function in Booleanr,n, with probability 1− δ,
by estimating the first-order Fourier coefficient of xi for r distinct product distributions.
The algorithm assumes that r is known. If not, standard techniques can be used to com-
pensate. For example, one can repeat the algorithm with increasing values of r (perhaps
using doubling), until a variable is identified as being relevant.

The algorithm works as follows. For j ∈ {1, . . . , r}, let Dj denote the product distribu-
tion that sets each of the n input variables to 1 with probability j/(r+1). For each Dj , the
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algorithm requests a sample Sj of size m0 (we will specify m0 in the proof below). Then, for
each of the n input variables xi, it estimates the associated first-order Fourier coefficients
from sample Sj. At the end, the algorithm outputs the set of all variables xi whose gain on
some Sj exceeded a threshold θ0 (also specified below).

Theorem 9.1 For all non-constant f ∈ Booleanr,n, with probability at least 1− δ FindRel1
will output a non-empty subset of the relevant variables of f . FindRel1 uses a total of
O((r + 1)2r ln 2nr

δ ) examples, drawn from r distinct p-biased distributions. The running

time of FindRel1 is polynomial in 2O(r ln r), n, and ln 1
δ .

Proof. Since f ∈ Booleanr,n, f has at least one relevant variable. Recall that for distri-
bution D on {0, 1}n, GD(f, xi) denotes the gain of xi with respect to f under distribution
D. Recall also that D[p] denotes the product distribution that sets each variable xi to 1
with probability p.

By the arguments in Section 8, for each relevant variable xi, PrD[p][f = 1|xi = 1] −
PrD[p][f = 1|xi = 0] can be written as a polynomial of degree r−1 in p. Call this polynomial
hi(p). The degree of hi(p) depends on r, rather than n, because D is a product distribution
and hence the conditional probabilities Pr[f = 1|xi = 1] and Pr[f = 1|xi = 0] depend
only on the settings of the relevant variables. For all irrelevant variables xi of f , hi(p) is
identically 0.

Now let xi be a relevant variable such that hi(p) is not identically 0. By Theorem 8.1, f
has at least one such relevant variable. The polynomial hi(p) has degree at most r− 1 and
hence has at most r − 1 roots. Therefore, for at least one j ∈ {1, . . . , r}, hi(j/(r + 1)) 6= 0.

Let j∗ ∈ {1, . . . , r} be such that hi(j
∗/(r+ 1)) 6= 0. Since hi has integer coefficients and

is of degree at most r − 1, it follows that hi(j
∗/(r + 1)) = b/(r + 1)r−1, for some integer b.

Thus the absolute value of hi(j
∗/(r+1)) is at least 1/(r+1)r−1, and by Lemma 2, the first-

order Fourier coefficient (for distribution Dj∗) associated with xi has magnitude at least

2
q

j∗

(r+1)
(1− j∗

r+1
)

(r+1)(r−1) , which is lower bounded by q :=
2

q

1
(r+1)

(1− 1
r+1

)

(r+1)(r−1) , Set θ0 in the description of

FindRel1 to be q/2.
For any single Dj , it follows from Lemma 3 that for some m0 = O((r+ 1)2r−1 ln 2nr

δ ), if
we use a sample of size m0 drawn from Dj and estimate all n first-order Fourier coefficients
for distribution Dj using that sample, then with probability at least 1 − δ

r , each of the
estimates will have additive error less than q/2. Thus with probability at least 1 − δ, this
will hold for all r of the Dj . The total number of examples drawn by FindRel1 is rm0.

Since for some relevant variable, the associated Fourier coefficient is at least q for some
Dj , and for all irrelevant variables, the associated Fourier coefficient is 0 for all Dj , the
theorem follows. �

Skewing uses gain estimates, rather than estimates of the first-order Fourier coefficients.
FindRel1 can be modified to use gain estimates. By a similar argument as above, it follows
from Lemma 1 that for distribution Dj∗ , some relevant variable has gain at least q′ =
2 1

r+1(1 − 1
r+1)( 1

r+1)2r−2 with respect to that distribution. We could thus modify FindRel1
to output the variables whose gain exceeds q′/2. Then Lemma 5 implies that a sample of
size m0 = O(r4r−2 ln nr

δ ) would suffice for the modified FindRel1 to output a non-empty
subset of relevant variables. This sample complexity bound is higher than the bound for
the original FindRel1 based on Fourier coefficients.
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9.2 FindRel2: Lowering the sample complexity

We now present our second algorithm, FindRel2. As discussed in the introduction, it has
an advantage over FindRel1 in terms of running time and sample complexity, but requires
examples from a larger number of distinct distributions. FindRel2 is based on the following
lemma.

Lemma 10 Let f have r ≥ 1 relevant variables. Suppose p is chosen uniformly at random
from (0, 1). Then there exists a relevant variable xi of f , and a value τ = exp(−2r + o(r))
such that with probability at least τ/2 (with respect to the choice of p), GD[p](f, xi) ≥ τ/2.

Proof By Theorem 8.1 and its proof, there exists a variable xi of f such that PrD[p][f =
1|xi = 1] − PrD[p][f = 0|xi = 0] can be expressed as a polynomial hi(p), which has integer
coefficients and is not identically 0. Let g(p) = GD[p](f, xi). By Lemma 1,

g(p) = 2p(1 − p)hi(p)
2. (38)

Then there are integers γ0, . . . , γ2r such that g(p) =
∑2r

j=0 γjp
j. Since g(p) is non-negative

but not identically 0, we can define

τ :=

∫ 1

0
g(p)dp =

2r
∑

j=0

γj

j + 1
> 0. (39)

This is at least 1/L, where L is the least common multiple of {1, . . . , 2r+ 1}. Observe that
for each prime, the number of times it appears in the prime factorization of L equals the
number of its powers that are ≤ 2r + 1. Therefore, by the prime number theorem (see e.g.
Ivić, 2003), we have, for some c > 0,

logL =
∑

pk≤2r+1
k≥1

log p = 2r +O(re−cλ(r)), (40)

where λ(r) = (log r)3/5(log log r)−1/5. Thus τ = exp(−2r+ o(r)). Now let α be the fraction
of p ∈ (0, 1) for which g(p) ≥ τ/2. Then,

τ =

∫

g≥τ/2
g +

∫

g<τ/2
g ≤ α+ (τ/2)(1 − α). (41)

This implies α ≥ τ/(2 − τ) > τ/2, and the lemma follows. �

Note that the proof of the above lemma relies crucially on the non-negativity of the
gain function, and thus the same proof technique could not be applied to first-order Fourier
coefficients, which can be negative.

It is possible that the bounds in the above result could be improved by exploiting how
g comes from the Boolean function f . Without such information, however, the bounds
are essentially the best possible. Indeed, by properly choosing g, one can use this idea to
estimate the density of primes from below, and get within a constant factor of the prime
number theorem. See Montgomery (1994) for a discussion of this point.

25



FindRel2, our second algorithm for finding a relevant variable, follows easily from the
above lemma. We describe the algorithm in terms of two parameters m1 and m2. The
algorithm begins by choosing m1 values for p, uniformly at random from (τ/8, τ/8) (where
τ is as in Lemma 10). Let P be the set of chosen values.

For each value p ∈ P , the algorithm requests m2 random examples drawn with respect
to distribution D[p], forming a sample Sp. Then, for each of the n input variables xi, it
computes G(Sp, xi), the gain of xi on the sample Sp. At the end, the algorithm outputs all
variables xi such that G(Sp, xi) > θ1 for at least one of the generated samples Sp (we will
specify θ1 below).

Using Lemma 10, we can give values to parameters m1, m2, and θ1 in FindRel2 and
prove the following theorem.

Theorem 9.2 For all non-constant f ∈ Booleanr,n, with probability at least 1− δ FindRel2
will output a non-empty subset of the relevant variables of f . FindRel2 uses a total of
O(r28r log n

δ ) examples, drawn from O(e4r log 1
δ ) product distributions. The running time is

polynomial in 2O(r), n, and log 1
δ .

Proof. As in the proof of Theorem 9.1, f has at least one relevant variable xi for which
hi(p) is not identically 0. Let xi∗ denote this variable.

Let τ = exp(−2r(1+O(log r)−1) be the value referred to in the statement of Lemma 10.
Thus 1

τ = O(e4r). By Lemma 10, for at least a τ/2 fraction of the values of p ∈ (0, 1),
hi∗(p) ≥ τ/2. Thus for more than a τ/4 fraction of the values of p ∈ (τ/8, 1 − τ/8),
hi∗(p) ≥ τ/2. Let us call these “good” values of p. If a single p is chosen uniformly at
random from (τ/8, 1 − τ/8), then the probability p is good is greater than τ/4.

Let 0 < δ1 < 1. If the algorithm chooses m1 = 4
τ ln 1

δ1
independent random values

of p to form the set P , the probability that P does not contain any good p’s is at most
(1 − τ/4)m1 < e−m1τ/4 = δ1.

Suppose P is such that it does contain at least one good p. Let p∗ be such a p. Let
γ = GD[p∗](f, xi∗). Then by Lemma 1, γ ≥ 2p∗(1 − p∗)(τ/2)2 ≥ τ3

32 − τ4

256 , since p∗ is good
and p∗ ∈ (τ/8, 1 − τ/8). Set θ1 in the algorithm to be equal to γ/2.

Let 0 < δ2 < 1. Set m2 in the algorithm to be equal to 256 ln(2nm1/δ2)/γ
2.

Consider any p ∈ P . Then by Lemma 5, with probability at least 1−δ2/m1, |G(Sp, xi)−
GD[p](xi)| < γ/2 for all variables xi. Since |P | = m1, it follows that |G(Sp, xi)−GD[p](xi)| <
γ/2 holds for all variables xi and for all p ∈ P , with probability at least 1 − δ2.

Assuming P has at least one good p∗, GD[p∗](xi∗) ≥ γ and GD[p](xi) = 0 for all p and
all irrelevant xi. Thus if |G(Sp, xi) −GD[p](xi)| < γ/2 holds for every xi and p ∈ P , and P
contains at least one good p, then FindRel2 outputs a non-empty subset of relevant variables
of f .

It follows that the the probability that the algorithm does not output a non-empty
subset of the relevant variables is at most δ1 + δ2. Setting δ1 and δ2 to both equal δ/2, the
lemma follows. �

9.3 Two algorithms from the literature

Another approach to finding a relevant variable is implicit in work of Bshouty and Feldman
(2002). We present it briefly here.
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Bshouty and Feldman’s approach is based on the following facts. Variable xi is relevant
to f iff there is some Fourier coefficient f̂(z) with zi = 1 and f̂(z) 6= 0. Further, if f has
r relevant variables, the absolute value of every non-zero Fourier coefficient of f is at least
1/2r.

For b ∈ {0, 1}n−1, let 1b denote the concatenation of 1 with b. Let w(b) denote the
Hamming weight of b. DefineR1(f) =

∑

b∈{0,1}n−1 f̂2(1b)( 1
22w(b) ). ThusR1 is a weighted sum

of the Fourier coefficients f̂(z) such that z1 = 1. For any z ∈ {0, 1}n, the quantity f̂2(z) is
non-zero only if {i|zi = 1} ⊆ {i| variable xi is a relevant variable of f}. Therefore, if f̂2(1b) 6=
0, then w(b) ≤ r. It follows that if x1 is relevant, R1 > 1/24r . If xi is irrelevant, R1 = 0 .
Let D′ be the product distribution specified by the parameter vector [1/2, 1/4, 1/4, . . . , 1/4]
and let w ∈ {0, 1}n be such that w = [1, 0, . . . , 0]. As shown by Bshouty and Feldman
Bshouty and Feldman (2002, proof of Lemma 11), R1 = Ex∼U [Ey∼D′ [f(y)χw(x ⊕ y)]]2.
Here x ∼ U denotes that the first expectation is with respect to an x drawn uniformly
with U , and y ∼ D′ denotes that the second expectation is with respect to a y drawn
from distribution D′. For any fixed x, Ey∼D′ [f(y)χw(x⊕ y)]], can be estimated by drawing
random samples (y, f(y)) from D′. The quantity S1 can thus be estimated by uniformly
generating values for x, estimating Ey∼D′ [f(y)χw(x ⊕ y)]] for each x, and then taking the
average over all generated values of x. Using arguments of Bshouty and Feldman, which
are based on a standard Hoeffding bound, it can be shown that for some constant c1, a
sample of size O(2c1r log2( 1

δ′ )) from D′ suffices to estimate S1 to within an additive error of
1

24r−1 , with probability 1− δ′. If the estimate obtained is within this error, then whether xi

is relevant can be determined by just checking whether the estimate is greater than 1
24r−1 .

We can apply this procedure to all n variables xi, each time taking a sample of y’s from a
new distribution. Setting δ′ = δ/n, it follows that a sample of size O(n2c1r log2 n

δ ) suffices
to determine, with probability 1 − δ, which of the n variables are relevant.

The above algorithm uses examples chosen from n product distributions. Each product
distribution has exactly one parameter set to 1/2, and all other parameters set to a fixed
value ρ 6= 1/2 (here ρ = 1/4, although this choice was arbitrary).

If the parameters of the product distribution can be set to 0 and 1, membership queries
can be simulated. We now briefly describe an algorithm that uses membership queries
and uniform random examples to find a relevant variable of a target function with at most
r relevant variables. A similar approach is used in a number of algorithms for related
problems (see, e.g. Arpe and Reischuk, 2006; Guijarro et al., 1999; Blum et al., 1995;
Damaschke, 2000; Bshouty and Hellerstein, 1998).

The algorithm first finds the value of f(a) for some arbitrary a, either by asking a
membership query or choosing a random example. Then, the algorithm draws a random
sample S of size 2r ln 1

δ . Assuming the function contains at least one relevant variable, a
random example has probability at least 1/2r of being negative, and probability at least 1/2r

of being positive. Thus if the function has at least 1 relevant variable, with probability at
least 1−δ, S contains an example a′ such that f(a′) 6= f(a). (If it contains no such example,
the algorithm outputs the constant function f(x) = f(a).) The algorithm then takes a and
a′, and using membership queries, executes a standard binary-search procedure for finding
a relevant variable of a Boolean function, given a positive and a negative example of that
function (cf. Blum et al., 1995, Lemma 4). This procedure makes O(log n) membership
queries.
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If we carry out the membership queries in the PDC model by asking for examples from
product distribution distributions with parameters 0 and 1, the result is an algorithm that
finds a relevant variable with probability at least 1 − δ using O(log n) product distribu-
tions and O(2r log 1

δ ) random examples. The random examples can also be replaced by
membership queries on (n, r) universal sets (see e.g. Bshouty and Hellerstein, 1998).

10. On the limitations of skewing

One of the motivating problems for skewing was that of learning the parity of r of n variables.
The results of Section 8 imply that skewing is effective for learning parity functions if the
entire truth table is available as the training set. (Of course, if the entire truth table
is available, there are much more straightforward ways of identifying relevant variables.)
Equivalently, we can identify relevant variables if we are able to determine the exact gain of
each variable with respect to skewed distributions. In practice, though, we need to estimate
gain values based on a random sample. The random sample must be large enough so that
we can still identify a relevant variable, even though the gain estimates for the variables will
have some error. We now consider the following sample complexity question: how large a
random sample is needed so that skewing can be used to identify a relevant variable of the
parity function, with “high” probability? We would like to know how quickly this sample
complexity grows as r and n grow.

As mentioned previously, it is a well-known open question whether it is possible to
PAC-learn parity functions in polynomial time, using examples drawn from the uniform
distribution, in the presence of random classification noise. Many noise-tolerant PAC learn-
ing algorithms can be re-cast as algorithms in a learning model called the statistical query
model. There are lower bounds on learning parity of r of n variables in the statistical query
model (Bshouty and Feldman, 2002; Blum et al., 1994). Skewing is not an algorithm in
the statistical query model, so these lower bounds do not apply directly to skewing. How-
ever, skewing, like statistical query learning, is based on the estimation of statistics. We
use the techniques employed in proving the statistical query lower bounds to prove sample
complexity lower bounds for skewing.

It is difficult to analyze the behavior of skewing because the same sample is used and
re-used for many gain calculations. This introduces dependences between the resulting gain
estimates. Here we consider a modification of the standard skewing procedure, in which we
pick a new, independent random sample each time we estimate the gain of a variable with
respect to a skew (σ, p). We will call this modification “skewing with independent samples.”
Intuitively, since the motivation behind skewing is based on estimating statistical quantities,
choosing a new sample to make each estimate should not hurt accuracy. (In experiments, we
found that skewing with independent samples was slightly more effective in finding relevant
variables than standard skewing.)

For simplicity, we will assume that the variable output by the skewing algorithm is the
one that exceeds a fixed threshold the maximum number of times. However, as we discuss
below, our lower bounds would also apply to implementations using other output criteria.

We prove a sample complexity lower bound for skewing with independent samples, when
applied to target function that is the parity of n of r variables. The proof is based based on
the fact that the skewing algorithm does not use all the information in the examples. Given a
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skew (σ, p), and an example (x, f(x)), the skewing algorithm weights this example according
to d = ∆(x, σ), the Hamming distance between x and σ. The calculation of the gain for a
variable xi on the weighted dataset then depends only on f(x), whether xi = σi, and on d.
These three pieces of information can be viewed as a “summary statistic” for (x, f(x). The
skewing algorithm uses only the summary statistics for the examples; it does not use any
other information about the examples. We will argue that the summary statistics do not
contain enough information to identify relevant variables of a parity function, unless the
sample size is “large”.

We begin by proving a technical lemma, using techniques of Bshouty and Feldman
(2002) and Blum et al. (1994).

In this section, all probabilities are with respect to the uniform distribution.

Let i ∈ {1, . . . , n}. Let Parityr,n be the set of parity functions on n variables which have
r relevant variables. So for each f ∈ Parityr,n, f(x1, . . . , xn) = xi1 + xi2 + . . . + xir where
the sum is taken mod 2, and the xij are distinct.

Let f ∈ Parityr,n. Let F : {0, 1}n → {1,−1} be the associated function F = 1 − 2f .

Let d ∈ {1, . . . , n}. Let b, c ∈ {0, 1}. Let S1 = Pr[xi = b,∆(x, σ) = d, and f(x) = c]
when xi is a relevant variable of f . Let S2 = Pr[xi = b,∆(x, σ) = d, and f(x) = c] when
xi is an irrelevant variable of f . Thus S1 is the probability of obtaining a certain summary
statistic for variable xi, when xi is relevant, and S2 is the probability of obtaining that
statistic when xi is irrelevant.

We prove an upper bound on |S1 − S2|.

Lemma 11 |S1 − S2| ≤ 1
2min{ 1

(n−1
r )

, 1

(n−1
r−1)

}

Proof. Let γ = |S1 −S2|. Define a function ψi(x, y) : {0, 1}n ×{1,−1} → {1,−1} such
that ψi(x, y) = −1 if xi = b, ∆(x, σ) = d and y = 1 − 2c, and ψi(x, y) = 1 otherwise. Thus
ψi(x, F (x)) = −1 iff xi = b, ∆(x, σ) = d, and f(x) = c.

For xi a relevant variable of f , it is easy to verify that E[ψi(x, F (x))] = 1−2S1. Similarly,
for xi an irrelevant variable of f , E[ψi(x, F (x))] = 1 − 2S2.

Let xj be a relevant variable, and xk be an irrelevant variable.

Since |S1 − S2| = γ,

|E[ψj(x, F (x))] − E[ψk(x, F (x))]| = 2|S2 − S1| = 2γ. (42)

For any function ρ : {0, 1}n×{1,−1} → {1,−1} and any function G : {0, 1}n → {1,−1},

E[ρ(x,G(x))]

= E[ρ(x,−1)
1 −G(x)

2
+ ρ(x, 1)

1 +G(x)

2
]

=
1

2
E[ρ(x, 1)G(x)] − 1

2
E[ρ(x,−1)G(x)] +

1

2
E[ρ(x, 1)] +

1

2
E[ρ(x,−1)] (43)

Note that the last two terms are independent of G.
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Setting F = G and ρ to ψj and ψk, we get that

E[ψj(x, F (x)) − ψk(x, F (x))] =
1

2
E[ψj(x, 1)F (x)] − 1

2
E[ψj(x,−1)F (x)]

−1

2
E[ψk(x, 1)F (x)] +

1

2
E[ψk(x,−1)F (x)] (44)

Note further that since ψj is 1 if its last argument is −1 + 2c and F corresponds to a
parity function,

E[ψj(x,−1 + 2c)F (x)] = E[ψk(x,−1 + 2c)F (x)] = E[F (x)] = 0. (45)

Thus

|E[ψj(x, F (x)) − ψk(x, F (x))]| =

| − 1

2
E[ψj(x, 1 − 2c)F (x)] +

1

2
E[ψk(x, 1 − 2c)F (x)]| (46)

Because |E[ψj(x, F (x)) − ψk(x, F (x))]| = 2γ, it follows that

|E[ψk(x, 1 − 2c)F (x)] − E[ψj(x, 1 − 2c)F (x)]| = 4γ (47)

Thus either

|E[ψj(x, 1 − 2c)F (x)]| ≥ 2γ (48)

or

|E[ψk(x, 1 − 2c)F (x)]| ≥ 2γ (49)

Assume the former. Let g(x) = ψj(x, 1 − 2c). Note that g(x) = −1 iff xj = b and
∆(x, σ) = d.

Consider the discrete Fourier series for g,

g(x) =
∑

a∈{0,1}n
ĝ(a)χa(x) (50)

Let a ∈ {0, 1}n be such that for all i ∈ {1, . . . , n}, ai = 1 iff xi is a relevant variable of f .
Then F = χa. By definition of the Fourier coefficient, ĝ(a) = E[g(x)χa(x)] = E[g(x)F (x)].
Further, E[g(x)F (x)] = E[ψj(x, 1 − 2c)F (x)] and thus |ĝ(a)| ≥ 2γ.

Note that g(x) has the same value for every function in Parityr,n having xi as a relevant
variable. The same is therefore true for ĝ(a) = E[g(x)χa(x)], for any a ∈ {0, 1}n. We have
thus proved that |ĝ(a)| ≥ 2γ for any a such that a is the indicator vector of a set of r
variables containing xj.

Since there are
(

n−1
r−1

)

such vectors a, it follows that in the Fourier expansion of g, there

are at least
(n−1

r−1

)

Fourier coefficients ĝ(a) such that |ĝ(a)| ≥ 2γ. Thus the sum of the

squares of the Fourier coefficients of g is at least 4γ2
(n−1

r−1

)

.

By Parseval’s identity,

30



4γ2

(

n− 1

r − 1

)

≤ 1. (51)

It follows that

γ ≤ 1

2
√

(

n−1
r−1

)

. (52)

This bound on γ was based on the assumption that |E[ψj(x,−1)F (x)]| ≥ 2γ. The other
case is that |E[ψk(x,−1)F (x)]| ≥ 2γ. The same line of argument shows that in this case

γ ≤ 1

2
√

(n−1
r

)

. (53)

The lemma follows. �

We now prove a sample complexity lower bound for learning parity functions, using
skewing with independent samples.

Theorem 10.1 Let n, r be such that 1
2

(n
r

)1/3
> n. Suppose we use skewing with independent

samples to identify a relevant variable of f , where f ∈ Parityr,n. Assuming that the samples
are drawn from the uniform distribution, to successfully output a relevant variable with
probability at least µ requires that the total number of examples used in making the gain

estimates be at least
(µ− r

n
)max{(n−1

r−1),(
n−1

r )}
2n .

Proof. Consider running skewing with independent samples with a target function
f ∈ Parityr,n satisfying the conditions of the theorem. Assume that all examples are drawn
from the uniform distribution. To estimate the gain of a variable xi with respect to a
skew (σ, p), the skewing algorithm uses a sample drawn from the uniform distribution. In
calculating this estimate, the algorithm uses only the following information about each
labeled example (x, f(x)):

1. The value of xi.

2. The value of f(x).

3. The value d = ∆(x, σ).

For each labeled example (x, f(x)), we can therefore define a corresponding summary ex-
ample (xi, f(x), d) ∈ {0, 1}2 × {0, . . . , n} containing the above information. (The value of
d in the summary example is dependent on σ, but not on p.) Since skewing uses only the
information in the summary examples, we may assume in our analysis that the skewing
algorithm is, in fact, given only the summary examples (xi, f(x), d) for each skew (σ, p) and
variable xi, rather than the raw examples (x, f(x)).

The number of distinct possible summary examples is at most 4n, since there are 2
possible values each for xi and f(x), and n possible values for d given xi. The uniform
distribution on examples x induces a distribution D on the summary examples (xi, f(x), d)
generated for skew (σ, p) and variable xi. For fixed σ, distribution D is the same for all
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relevant variables xi of f . It is also the same for all irrelevant variables xi of f . LetDσ
1 be the

distribution for the relevant variables, andDσ
2 be the distribution for the irrelevant variables.

Let q be the distance between Dσ
1 and Dσ

2 as measured in the L1 norm. That is, if K denotes
the set of possible summary examples (xi, f(x), d), then q =

∑

z∈K |PrDσ
1
[z] − PrDσ

2
[z]|.

Since there are at most 4n possible summary examples, it follows from Lemma 11 that
q ≤ 2nmin{ 1

(n−1
r )

, 1

(n−1
r−1)

}.
Let m be the total number of examples used to estimate the gain of all variables xi

under all skews (σ, p) used by the skewing algorithm. For each xi, the summary examples
used to estimate the gain of xi with respect to (σ, p) are distributed according to Dσ

1 if xi

is relevant, and Dσ
2 if xi is irrelevant. Let s be the L1 distance between Dσ

1 and Dσ
2 . Thus

s ≤ 2(n− 1)min{ 1

(n−1
r )
, 1

(n−1
r−1)

}.
Since the L1 distance between Dσ

1 and Dσ
2 is at most s for every skew (σ, p), it follows

that during execution of the algorithm, with probability at least (1 − s)m, the summary
examples generated for the relevant variables of f are distributed in the same way as the
summary examples generated for the irrelevant variables of f . Since the variables were
permuted before skewing began, it follows that with probability at least (1− s)m, the final
variable output by the skewing algorithm is equally likely to be any of the n input variables
of f . Thus the probability that the skewing algorithm outputs an irrelevant variable is
at least (1 − s)m n−r

n , and its probability that it outputs a relevant variable is at most
1− (1− s)m n−r

n < 1− (1− sm)(1− r
n) < r

n + sm(1− r
n) < r

n + sm. The first inequality in
this sequence holds because (1 − s)m < (1 − sm), since 0 < s < 1.

Since the upper bound of r
n + sm on the success probability (in identifying a ran-

dom variable) holds when the variables are initially permuted, it holds for the worst case
f ∈ Parityr,n, if the variables are not initially permuted. It follows that if skewing with
independent samples outputs a relevant variable of f (for any f ∈ Parityr,n) with prob-

ability at least µ, then the total number of examples used must be at least
µ− r

n

s . Since
s ≤ 2nmin{ 1

(n−1
r )

, 1

(n−1
r−1)

}, the lemma follows. �

To make the theorem concrete, consider the case where r = log n. Note that if we simply
choose one of the n variables at random, the probability of choosing a relevant variable in
this case is log n

n . It follows from the theorem that for skewing to output a relevant variable
with success “noticably” greater than random guessing, that is, with probability at least
logn

n + 1
p(n) , for some polynomial p, it would need to use more than a superpolynomial

number of examples.
The above proof relies crucially on the fact that skewing uses only the information in the

summary examples. The details of how the summary examples are used is not important
to the proof. Thus the lower bound applies not only to the implementation of skewing that
we assumed (in which the chosen variable is the one whose gain exceeds the fixed threshold
the maximum number of times). Assuming independent samples, the lower bound would
also apply to other skewing implementations, including, for example, an implementation in
which the variable with highest gain over all skews was chosen as the output variableo.

On the other hand, one can also imagine variants of skewing to which the proof would
not apply. For example, suppose that we replaced the single parameter p used in skewing
by a vector of parameters [p1, . . . , pn], so that in reweighting an example, variable xi causes
the weight to be multiplied by either pi or 1 − pi, depending on whether there is a match
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with xi’s preferred setting. Our proof technique would not apply here, since we would be
using information not present in the summary examples. To put it another way, the proof
exploits the fact that the distributions used by skewing are simple ones, defined by a pair
(σ, p). Interestingly, it was our focus on such simple distributions that led us to the two
new algorithms in Section 9.

The above proof is based on proving an upper bound on s. Another way to prove
such an upper bound is to use the fact that a statistical query algorithm could find out if a
variable was relevant by requesting a bound on the proportion of examples corresponding to
summary examples (xi, f(x), d), within tolerance s/2. Having found the at most r relevant
variables, the underlying function could then be found by asking 2r statistical queries with
tolerance 1/2r , in order to find out the value of the underlying function on the relevant
variables. If s were too large, this would contradict known lower bounds on statistical
learning of parity. This approach would result in nearly the same theorem as above, but
the proof is less direct. The advantage to this approach is that it that it yields lower bounds
not just for parity, but for other functions with high statistical query dimension. (See e.g.
Bshouty and Feldman (2002) for the definitions of the statistical query model and statistical
query dimension.)

Empirical evidence suggests that parity is a particularly difficult function for skewing to
handle; in experiments skewing was much more successful in identifying relevant variables of
correlation immune functions other than parity (Page and Ray, 2003). The negative result
above depends on the fact that for f a parity function with r relevant variables, |S1 − S2|
is O( 1

(n−1
r )

).

Skewing’s empirical success in learning other correlation immune functions is likely due
to the fact that such an upper bound does not hold for these functions. For example,
consider Consensusr,n, the set of all n-variable Boolean functions with r relevant variables,
whose value is 1 iff the r relevant variables are all equal. The functions in this set are
correlation immune. Assume n + r is even. Let d = (n + r)/2 and σ ∈ {0, 1}n. Let
S1 = Pr[xi = 1 − σi,∆(x, σ) = n/2, and f(x) = 1] when xi is a relevant variable of f . Let
S2 = Pr[xi = 1−σi,∆(x, σ) = d, and f(x) = 1] when xi is an irrelevant variable of f . Then
S1 = 1

2n

(n−r
n−r

2

)

and S2 = 1
2n (

(n−r−1
n−r

2
−1

)

+
(n−r−1

n+r
2
−1

)

). Then S1 −S2 = Ω( 1
2n

(n−r
n−r

2

)

), since the first

term of S2 is equal to S1/2, and the second term of S1 is much smaller than the first. Since
( m
m/2

)

= θ( 2m√
m

), S1 − S2 = Ω( 1√
n−r2r ). Even for r as large as n/2, this is Ω( 1√

n2r ). Note

the difference between this quantity and the analogous upper bound for parity. Specifically,
the dependence here is on 1

2r rather than on 1
nr .

11. Conclusions and Open Questions

In this paper, we have studied methods of finding relevant variables that are based on
exploiting product distributions.

We have provided a theoretical study of skewing, an approach to learning correlation
immune functions (through finding relevant variables) that has been shown empirically to be
quite successful. On the positive side, we have shown that when the skewing algorithm has
access to the complete truth table of a target Boolean function—a case in which standard
greedy gain-based learners fail—skewing will succeed in finding a relevant variable of that
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function. More particularly, under any random choice of skewing parameters, a single round
of the skewing procedure will find a relevant variable with probability 1.

In some sense the correlation immune functions are the hardest Boolean functions to
learn, and parity functions are among the hardest of these to learn, since a parity function
of k+ 1 variables is k-correlation immune. In contrast to the positive result above, we have
shown (using methods from statistical query learning) that skewing needs a sample size
that is superpolynomial in n to learn parity of logn relevant variables, given examples from
the uniform distribution.

We leave as an open question the characterization of the functions of log n variables that
skewing can learn using a sample of size polynomial in n, given examples from the uniform
distribution.

Skewing operates on a sample from a single distribution, and can only simulate alter-
native product distributions. We have used the PDC model to study how efficiently one
can find relevant variables, given the ability to sample directly from alternative product
distributions. We have presented two new algorithms in the PDC model for identifying
a relevant variable of an n-variable Boolean function with r relevant variables. The first
algorithm uses only r distinct p-biased distributions. It runs in time polynomial in n and
the sample size, O((r + 1)2r ln 2nr

δ ). The second algorithm uses O(e4r ln 1
δ ) p-biased distri-

butions, and runs in time polynomial in n and the sample size, O(e28r ln2 n
δ ). For r = log n,

only the second algorithm runs in time polynomial in n, but at the cost of using a number
of distributions that is polynomial in n, instead of log n. We have also briefly described two
PDC algorithms that are implicit in the literature.

We leave as an open problem the development of PDC algorithms with improved bounds,
and a fuller investigation of the tradeoffs between time and sample complexity, and the
number and types of distributions used. As a first step, it would be interesting to show
an algorithm whose time complexity is polynomial in n when r = log n, using a number
of p-biased distributions that is polynomial in log n. As we have mentioned, it is a major
open problem whether there is a polynomial-time algorithm for finding relevant variables
of a function of logn variables, using only examples from the uniform distribution.
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