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Abstract duce model provides a simple programming abstraction that
hides low-level details from the programmer using a runtime
tuned to the underlying architecture. The runtime system we
implement for the Cell processor takes care of partitioning
the input data, scheduling the program’s execution achess t
cores, managing memory transfers between global and SPE
memory, and handling inter-core communication and syn-
chronization. Users simply specifyMap function that pro-
cesses data to generate a set of intermediate key/valise pair
¢ and aReducdunction that processes all intermediate values
associated with the same intermediate key. This allows pro-
grammers without any experience with parallel systems to
easily program for the Cell processor.

Implementing an efficient MapReduce runtime for the
Cell processor has three main challenges compared to a
homogeneous, shared memory multi-processor implementa-
tion. First, memory must be explicitly managed and trans-
ferred between global and SPE memory. Second, since the
SPEs, which execute the Map and Reduce functions, have
software-managed memories, the runtime is responsible for
overlapping computation with memory transfers as much
as possible. Third, between the Map and Reduce phases,
1. Introduction there is a logical grouping phase that must be effectivedy di

] ) tributed across the SPESs.
The Cell processor is capable of an order of magnitude per- . particular implementation tackles the memory man-
formance improvement over conventional processors, with agement problem by pre-allocating Map and Reduce output
a peak performance rating of 256 GFLOPS at 4 GHz [8, (ggions for bulk DMA transfers. We parallelize computation
9, 10]. However, harnessing this potential is challenging ith memory transfers by double-buffering and streaming
for three reasons. First, programmers must write explic- yat5 whenever possible. Finally, we implement the logical
itly multi-threaded code to utilize the eight SPE (Syner- 4qping using a two-step process of partitioning and sort-
gistic Processing Element) cores in addition to the main ing. Overall, we decompose the execution flow into work
PPE (Power Processing Element) core. Second, SPE loyynjts or tasks, and schedule dependent work units as others
cal memory is software-managed, requiring programmers oy ynits complete. We use a priority work queue to im-
explicitly orchestrate all reads and writes to and from the jement load balancing and use the priorities to control the
global memory space. Third, the SPEs are statically sched-gyacution flow to avoid bottlenecks.
uled SIMD cores, requiring data-level parallelism in the ap In this paper, we provide a detailed discussion on the

plication to achieve high performance. design of the runtime and evaluate performance. The three
To address these programming challenges, we present &,4in contributions of this paper are:

design and implementation of MapReduce for the Cell pro-

cessor. MapReduce was initially proposed by Google for e Aruntime that allows programmers to focus solely on the
large scale data processing in a distributed computing en- computation component of their application, hiding com-
vironment [4] and the model has recently been ported to  munication, buffer management, synchronization, and
shared memory multiprocessor systems [22]. The MapRe-  scheduling complications. The runtime is available for

MapReduce is a simple and flexible parallel program-
ming model proposed by Google for large scale data pro-
cessing in a distributed computing environment [4]. In this
paper, we present a design and implementation of MapRe-
duce for the Cell architecture. This model provides a sim-
ple machine abstraction to users, hiding parallelizatiorda
hardware primitives. Our runtime automatically manages
parallelization, scheduling, partitioning and memorynsa
fers. We study the basic characteristics of the model an
evaluate our runtime’s performance, scalability, and effi-
ciency for micro-benchmarks and complete applications. We
show that the model is well suited for many applications
that map well to the Cell architecture, and that the runtime
sustains high performance on these applications. For other
applications, we analyze runtime performance and describe
why performance is less impressive. Overall, we find that the
simplicity of the model and the efficiency of our MapReduce
implementation make it an attractive choice for the Celtpla
form specifically and more generally to distributed memory
systems and software-exposed memories.
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map(String key, String value) : ‘
for each word w in value Map l l l l l l
emitintermiediate(w, 1);

word-count(String str) {
for each word w in str
if (defined map[w])
map[w]++;
else map[w] = 0;
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reduce(String key, int[] values) :
result = 0;
for each v in values
result +=v;
emit(result);
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(a) Single-threaded
pseudo-code

(b) MapReduce
pseudo-code

(c) MapReduce logical
execution flow

Figure 1. MapReduce example illustration.

public download asour cef or ge. net/ pr oj ect s/ the inputis divided into regions, and the Map functionis-per
mapr educe-cel | . formed on each region in parallel. The Map function outputs

« A characterization of the efficiency and scalability of €ach word in the given region (the key) and the number of

the runtime across the application space using a suite oftimes the word occurs in that region (the value). Numbers
micro-benchmarks. (values) corresponding with the same word (key) are then

_ . grouped together and passed to the Reduce function. The Re-
* A demonstration of the productivity and performance ,ce function sums the number of occurrences of a word in

benefits of the model and runtime. A set of complete gach region to output a final count. Similar to Map, Reduce
applications implemented using the model are no more i ocations are independent and can proceed in parallel.
complex than their corresponding serial implementa-

tions, and applications perform on average 2.7 times bet-
ter and up to 8.6 times better on the Cell processor than3. MapReduce for Cell

on an optimized Intel Coré2 The MapReduce model has been implemented for two ar-

The remainder of this paper is organized as follows. In chitectures. Google’s MapReduce runtime targets didgtbu
section 2, we explain the MapReduce model. Section 3 clusters [4] and Stanford’s Phoenix runtime targets shared
presents our API and design, and discusses implementationmemory multi-processors [22]. Since the Cell architecisire
Section 4 presents results covering performance, sciyabil ~ a distributed memory architecture, our high-level design r
and productivity. Section 5 discusses future enhancementssembles Google’s design, while the granularity of operetio
Section 6 presents related work, and section 7 concludes. is similar to Phoenix.

In Google’s MapReduce, a partition is sorted and reduced
all on the same node. Our implementation decouples sorting
nd reduce to enable better load balancing. This makes sense
n the Cell platform since local store sizes are small, com-

2. The MapReduce Model

Dean and Ghemawat describe the MapReduce programmingﬂ
model as follows [4]:

The computation takes a setiaput key/value pairs,
and produces a set ofitputkey/value pairs. The user
of the MapReduce library expresses the computation
as two functionsMap andReduce

Map, written by the user, takes an input pair and
produces a set ahtermediatekey/value pairs. The
MapReduce library groups together all intermediate
values associated with the same intermediate key and
passes them to tHiReducdunction.

The Reducdunction, also written by the user, ac-
cepts an intermediate key and a set of values for that
key. It merges together these values to form a possibly
smaller set of values. Typically just zero or one output
value is produced pdReducenvocation.

The canonical MapReduce application example is that of
counting the number of words in a set of documents. Fig-
ures la—c provide a simple illustration. Using MapReduce,

1 Applications are not tuned for SIMD on either platform.

munication is fast, and bandwidth is abundant. Beyond that,
specifics of Google’s design are unavailable, and our @etail
runtime description contributes uniquely to the literatur

In Phoenix, the Map and Reduce work is distributed
across the different cores and hardware caching exploits
locality. For grouping values by key, output keys are first
hashed and pointers to keys and values are then inserted into
a hashed binary search tree, thereby eliminating the need
for sorting and copying memory. These techniques are not
viable for the Cell processor since manipulating large, re-
cursive graph structures is extremely complex and awkward
with software-managed memories. We develop a set of novel
techniques to implement the runtime for the Cell exploiting
its strengths: global coordination via the PPE and fast DMA
transfers with overlapping computation.

Our runtime uses extensive multi-threading, running pri-
marily on the PPE, while the Map and Reduce functions map
naturally to the SPEs. The PPE runtime schedules work for
the different SPEs, manages data structures, and perfdrms a
memory management. The main responsibility of the SPEs



voi d MapReduce_exec(MapReduce_Specification specification);
The exec function initializes the MapReduce runtime anaetes MapReduce according to the user specification.

voi d MapReduce_enitlnternedi ate(void *+xkey, void **val ue);
voi d MapReduce_enit(void **val ue);

These two functions are called by the user-defikieg andReducdunctions, respectively.

Table 1. The MapReduce for Cell API.

is to run user code and assist in the grouping step, which isous array of intermediate values for each key. Finally, the
accomplished by a two-step process of partitioning and sort Reduce stage takes as input a partition and applies the user-
ing. In this section, we describe the API, the runtime design defined Reduce function to each key and associated values
and discuss implementation highlights. to produces one logical output array of key/value pairs.
The Map and Reduce stages, which execute user code,

3.1 The Cell MapReduce API run exclusively on the SPEs. The three intermediate stages
Our Cell MapReduce implementation is written in C. Ta- execute on both the SPEs and the PPE. We describe each
ble 1 shows the interface presented to the user. There arestage in detail below.
also three MapReduce data structures — a runtime specifica-
tion structure, a key/value array structure, and a listcfyr ~ Stage 1: Map
structure — and associated functions for creating, maaipul  During Map, the SPEs execute the user-specified Map func-
ing, and destroying these data structéir@hie programmer  tion on the input data and produce a set keys and a set of val-
simply specifies the program, including the number of SPEs, ues, with keys containing pointers to their values. Runtime
using this interface, and the runtime completely handles pa code on the PPE initiates the execution of this phase and or-
allelization to the different SPEs and memory management. chestrates data movement to feed the SPE local memories.

The primary difference from other APIs is that users do The input is divided into eight logical groups (one per SPE)
not dynamically allocate output in the Map and Reduce func- of approximately equal size using a simple heuristic. Outpu
tions. Instead, the runtime provides pointers to local outp  buffers (one per SPE) are then pre-allocated in global mem-
regions, providing three key benefits: (1) it shifts the lard  ory, and pointers to the input and output buffers are passed t
of explicit memory management away from the program- each SPE. The SPEs stream data into their local memories
mer and entirely to the runtime, (2) it enables high perfor- using DMA, process the data, and write results into a lo-
mance since the runtime can perform correct memory align- cal output buffer. Since the size of output produced by Map
ment and efficient transfers, and (3) it relieves the ovathea cannot be statically determined, runtime monitoring cade i
of dynamic memory allocation in the Map and Reduce func- appended to the Map function to check when this buffer fills
tions. As a resultemi t andemi t | nt er nedi at e take up. Similarly, the input to an SPE can be larger than the lo-
references to pointers as arguments, as shown in Table 1cal input buffer available in the SPEs local memory, so SPE
and modify the pointers to point to pre-allocated memory. It runtime code also orchestrates the batched transfer of data
is then the responsibility of the application to provisibist into the local memories. When an SPEs local output buffer
memory. This is a key enhancementin our APl compared to is full, the contents are transferred to the pre-allocatste o
the Phoenix API. put buffer in shared memory. Figure 2¢ shows the memory
transfers. The SPE notifies the PPE that the output buffer
is ready and receives a pointer to a newly allocated output
Our MapReduce design consists of five stadéap, Parti- buffer to continue processing. All communication and syn-
tion, Quick-sort Merge-sort andReduce Figure 2a shows  chronization is orchestrated through the Cell’s mailbod an
the overall flow of execution, and Figure 2b shows the flow sjgnal notification mechanisms.
applied to the example word count application. Programexe-  Optimizations:In our implementation, the SPE’s input
cution starts with the Map stage, triggered by a main runtime and output buffers are double-buffered. Furthermore gther
control thread. This stage takes as input a single, logieal a are always two pre-allocated output buffer in shared memory

ray of key/value pairs and produces one logical array of val- so that as soon as one buffer is full, a pointer to the next one
ues, and one logical array of keys with pointers to values. js ready.

The Partition, Quick-sort, and Merge-sort stages thenmgrou -
identical keys together to produce a set of partitions sorte Stage 2: Partition

by key. When complete, each partition contains a contigu- partition groups identical keys into the same partition by
2The ful APl s documented in  the header files _dlstr_lbutmg Map output keys into a set of partitions as shpw

i ncl ude/ mapReduce. h  and i ncl ude/ mapReduce spu. h in Figures 2a and 2c. As SI?E output buffers are written
distributed with the runtime. to shared memory, the PPE iterates through each key and

3.2 Design Overview
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Figure 2. MapReduce for the Cell architecture.

copies it into the partition pointed to by the key’s hashealu  ternal binary merge-sort. In Merge-sort, pairs of previpus
previously computed by the SPE. sorted buffers within a partition are scheduled for merging
Optimizations:First, to exploit locality, the SPE output on the SPEs. In contrast to Map, the output size can be stati-
buffers are segregated into separate key and value regionscally determined, so the SPE outputs are DMAed into a sin-
Second, partitions are linked-lists of buffers sized torfit i gle pre-allocated output buffer in shared memory, as shown
the local stores of the SPEs for in-place sorting, allowing in Figure 2c.
Quick-sort to proceed in parallel with Partition as indivad The runtime continues merge-sorting on the SPEs until
buffers become full. Third, while hashing is significantly only two buffers remain in the partition. The final merge-
more efficient at grouping keys than sorting, providing user sort takes place on the PPE. The primary reason is that we
control over partitioning (the number and the hashing) is now need to bring the keys and their remotely located values

desirable since different applications will partition iopally together into a contiguous block of memory for Reduce. For
in different ways. Hence, the API allows the user to specify this, direct and uncomplicated access to the entire shared
a custom hash function and the number of partitions. memory space is highly desirable. In the final merge sort,

. all duplicate keys are eliminated so that a single unique key
Stage 3: Quick-sort is associated with multiple values to be passed on to Reduce.
We complete the grouping of keys by sorting. Our runtime  Optimizations:Merges are scheduled for optimal band-
uses a two-phase sorting strategy to distribute the sort towidth utilization rather than greedily as illustrated bygFi

the SPEs. As individual partition buffers are filled, theg ar  ure 3. This yields:/log(n) better bandwidth utilization in
streamed to available SPEs for in-place quick-sorting. The the limit asn approaches infinity, whene is the number of
sorted output is then copied back to its original location quick-sort buffers in a partition. For high-volume applica

in shared memory, overwriting the unsorted contents, astions, we measured an average 20% performance improve-
shown in Figure 2c. A partition’s buffers are sort-merged, ment using this strategy.

if necessary, in the next phase.

Stage 4: Merge-sort Stage 5: Reduce

Due to memory limitations, an in-place sort of an entire par- During Reduce, the SPEs execute the user-specified Reduce
tition is not always possible. In such a case, we merge all function on all the values for a given key. The PPE passes
quick-sorted buffers into a single sorted buffer using an ex information about the sorted partition and a pointer to a pre
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entiate the two buffers.
allocated output buffer to the SPE. Output buffers are array

of key/value pairs. This stage is otherwise identical to Map standing work on the leftmost partition of Figure 2a. This
An output list maintained by the PPE contains a pointer 10 ay, execution reaches the PPE merge-sort for partition 0 as
all the output buffers, and is the output structure retuteed  gogn as possible, at which point priority shifts to partitib

the user. and the SPEs transition to sorting that partition. Thisgvatt
then repeats, maximizing concurrency between the PPE and

3.3 Implementation Analysis
SPEs.

Challenges to an efficientimplementation are multi-thiegd
the runtime, scheduling of stages, and memory management3.3.3 Memory Management

We describe our solution to each below. Managing the SPE local memories efficiently is crucial for

3.3.1 Multi-threaded Runtime high performance. Of the available 256KB, the runtime uses
around 12KB for the SPE runtime code and 128KB for its

; ; . : ! . buffers, leaving a little less than half of the memory foruse
plemented the runtlm(_a using extensive multi-threading wit code, data, and stack space. The runtime buffers are double-
dedicated threads, using a total of 20 threads. All threesls a buffered differently in each phase as shown in Figure 4.

spawned once, and remain active through the entire execu- « Map and Reduce each allocate 32KB for input and

tion of the program. i o
¢ 1 PPEmain threadspawns all other threads, creates the 32KB for output per double_ buffer as shown in Flgure 4b.
The input and output buffering must be managed indepen-

ne(iegsgéyEc\iNact)?ksetrrliﬁtr:;a ds’ ae?;jo:r#]t?ggsv\t/g?k'vé?ﬁﬁ;a&z dently because the input to output ratio of the phases is data
P P, dependent and cannot be statically determined.

Reduce, Quick-sort stages, and SPE portion of the Merge- « Quick-sort is an in-place sort, requiring only a single

sort stage. X
« 8 PPEscheduler threadsone for each SPE thread, buffer for t_)oth_lnput and output. Two 64KB buffers are used
as shown in Figure 4c.

notify an SPE when a work unit is ready for prefetching « Merge-sort allocates two 16KB regions for the two

through the Cell's mailbox mechanism. input streams and 32KB for output as shown in Figure 4d.

L 2 PPEwo_rker thre_a_dsperform the partm_omng by dis- Due to the nature of the merge operation, each region drains
tributing keys into partitions as well as the final mergetsor . : L
or fills at a different rate, so each region is double-buffere

There are two such threads to utilize the PPE’s two-way independently;

SMT capability. Our implementation overlaps memory transfers with
* 1 PPEevent threadresponds to output buffer memory computation as much as possible within a given stage.

allocation requests and co_mpletlon not|f|cat|pns from the Across stages, prefetching could potentially reduce te-st
SPEs. It controls the execution flow by scheduling dependent . "
up time. However, when an SPE transitions from one stage

work units on the PPE scheduler and worker threads as well. - .
to another, it is not always possible to pre-reserve space fo

3.3.2 Stage Scheduling the next phase as the previous phase is completing. In future
work, we will explore techniques for such prefetching.

Since a large number of events occur concurrently, we im

Figure 2a shows the logical execution flow of the runtime.
However, stages 2 through 5 can execute concurrently as3 4 support for Application Varieties
long as data dependences within a partition are correctly
enforced. In fact, since the final merge occurs on the PPE,
Merge-sort becomes a serialization bottleneck if the lalgic
flow is maintained, as each partition would complete quick-
sorting and SPE merge-sorting at approximately the sameMap only: Certain data-parallel applications require only
time, and all the SPEs would grind to a waiting for the PPE a Map stage, such as DCT, and can output directly to a
to complete each final merge. known global output region. For such applications stages 2

To avoid this PPE bottleneck, stages 3 and 4 are executedhrough 5 are unnecessary overheads. If the user does not
in partition order. That is, the runtime gives priority totou  call eni t | nt er mredi at e inside the Map function, the

The execution flow previously described assumes a full
MapReduce execution. However, applications may not re-
quire all stages of the model.



runtime will not schedule any further work past Map, thus | Parameter | Description Micro-benchmark

removing these overheads. Configuration

. . . ma Execution cycles per [+, 0, .01, 512, 256, 16MVB
Map only with sorted output: If em t| nternedi ate inte%sity input byte thaﬁp [ ]
is called but no Reduce fL.mCtIOI’I |s_def|ned, the runtime —cquce Execution cycles perl [0,+,1,0,1 , 256, 16VE]
completes after Merge-sort; Reduce is never scheduled and jnensity | input byte to Reduce
the output list contains one sorted array of pairs per famtit map Ratio of input size 10| [0,0,= ,512,1 , 16M]
Chaining Invocations: Sometimes an application will chain | fan-out size of keys output
multiple MapReduce invocations. Hence, the output of Re- - K:Ma};pb —
duce must be naturally compatible with the input of Map. reduce umber of varues - [0,128,1.0, «, 256, 16M]

fan-in per key in Reduce

Due to multiple, fixed size Reduce output buffers, output is
a list of buffers. To allow such chaining efficiently, we de&fin
our API such that both inputs and output are lists of buffers.

partitions Number of partitions| [0, 0,1.0,512,« , 16MB]|
input size | Input size in bytes [0,0,1.0,512,1 ,* ]

. aWe do not consider the sizes of keys and values within thet,igsuthis
4. Evaluation only affects the number of Map function invocations, and oéen be
This section presents an evaluation of our MapReduce run- °Ptmized within an application. _ _
time. We first characterized the MapReduce model and de- bAs a simplification, we assume that all intermediate keyslese than

. . . 16 bytes in size and quadword aligned; hence, effectivellgytés in size.
rived a set of parameters that capture application behavior Thiswas true for all evaluated applications.

We then developed a parameterizable micro-benchmark for — -
performance analysis. In this section, we present a discus-1aple 2. Application parameters and micro-benchmark con-
sion of these parameters, a detailed evaluation using eur pa figuration to isolate effects of each parameter.
rameterizable micro-benchmark, and a derivation of applic
tion categories based on specific parameter configurationsplications at the API level. We developed a parameterizable
We conclude with an analysis of complete applications. micro-benchmark which we used to isolate each parameter
. and study its effect. We carefully tune the parameters for
4.1 Tools and Metrics these experiments such that the studied parameter becomes
We used a 3.2 GHz Cell QS20 Blade Server running Fe- the control variable and dictates performance. The thitd co
dora Core Linux to execute our micro-benchmark and ap- umn in Table 2 shows the settings of other parameters, as a
plications. Using the Cell SDK v2.0, SPE code was com- 6-tuple, as each parameter is isolated. The next four sectio
piled with the IBM XLC compiler [6], and PPE code with  discuss execution time, a classification of applicatioresyp
the GCC compiler, both at optimization level 3. overheads, and the scalability effects of the parameters.
We instrumented our runtime and used processor perfor- . i

mance counters to measure execution cycles. We analyzéh2-1 Execution Time
runtime and application performance using the following Figure 5 shows how execution time scales as each applica-
three metrics: execution time, runtime overhead, and scal-tion parameter is varied linearly. In general, executicies
ability as the number of the SPEs is increased from 1 to 8. linearly or near-linearly for most parameters, showing tha
We measure overhead as percentage of time the SPEs arthe runtime effectively implements the model. We discuss
idle, which can occur for two reasons. First, SPEs may have each individual parameter in detail below.
to wait for work or synchronization from the PPE. Second, : . . .

map intensity andreduce intensity: The amount of user

SPEs may be stalled waiting for completion of outstanding computation performed in the Map and Reduce functions

DMA transfers. Runtime code executing on the SPEs ac- directly controls performance. As expected, increasirg th
counts for less than 1% of execution time, and hence we. y P ) b ’ '©

. . S intensity of the kernels scales execution time proporiigna
ignore this source of overhead. For complete applications,

we also analyze execution rate by examining BIPS (Billions map fan-out: Altering the number of key/value pairs emit-

of Instructions Per Second). To measure BIPS, we estimatedied in the Map stage affects the computation and mem-
dynamic instruction count for the map, reduce, hash, and ory transfer that occurs in all subsequent stages — one less
sort execution kernels using the Cell simulator (we did not key/value pair means one less element to partition and sort,
have access to processor performance counters for instrucand, if the key is unique, also one less reduction to perform.
tion count), and divided by total application executiongim We see a super-lineanlog(n)) effect on execution time as
measured using the Cell blade. the fan-out is scaled. Fan-out increases the number ofvalue
to be sorted, and to isolate map fan-out we set map intensity,
reduce fan-in and reduce intensity to low values. As a result
Table 2 shows the different parameters we use to charac-sorting, which scales agog(n), dictates performance. Pro-
terize MapReduce programs. The model is simple enoughportionally increasing the number of partitions can make th
that these six parameters completely capture behavior-of ap growth linear as described further below.

4.2 MapReduce Model Characterization
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reduce fan-in: The number of reduce invocations is equiv-

micro-benchmark configuration representative of this iappl

alent to the number of key/value pairs emitted during Map cation type, we set this ratio very high.

divided by thereduce fan-inThus, there is an inverse rela-
tionship between theeduce fan-irand the execution time.

partitions: Execution time initially decreases rapidly as the

Partition-dominated: Conversely, if this ratio is below the
threshold value, partitioning dominates and we label these
applicationspartition-dominatedFor this application type,

number of partitions is reduced, and then increases gradu-our representative micro-benchmark configuration has the

ally after reaching a minimum. As the number of partitions
increases, the size of each partition reduces. At first,.exec

tion time also reduces because sorting is limited to a par-
tition, and sorting many small sized partitions is less work
than sorting a few large partitions. However, when the size

of partitions drops below the size of a SPE quick-sort buffer

performance degrades. An increase in the number of buffers
and a subsequent decrease in the amount of SPE work pe
formed per buffer, cause the PPE to be overburdened with

to handle and respond to requests in a timely manner.

input size: Application performance scales slightly faster

ratio set very low.

Sort-dominated: The criticality of sorting is dictated by the
map fan-outand the number gbartitions While many real-

world applications separtitionsto its performance-optimal
value, others desire a single sorted partition, and stikk

define a custom hash function and set the number of parti-

r’tions to divide output into logically separate, sorted grou

Ings. We label applications with a higmap fan-outand

very few partitions as sort-dominatedFor our representa-
&ive micro-benchmark configuration, we getrtitionsto one

andmap fan-ouhigh. This configuration stresses the Merge-
sort stage of the runtime, and entirely bypasses partitgni

than linearly with the input size. This is because the amount as there is only one partition.

of key comparisons per input element in sorting grows by

nlog(n). Proportionally increasing the number of partitions
will make this growth linear.

4.2.2 Application Types

Reduce-dominated: Although applications dominated by
Reduce are in theory a possibility, all real-world applica-
tions we examined have simple Reduce computations, with
low reduce intensityand highreduce fan-in Reduce thus
comprises only a small percentage of overall execution.time
Moreover, Reduce has minimal effect on the execution of

In the above discussion and in Table 2 we show only the other stages. Hence, we do not study this as a separate appli-

isolated effect of each parameter, purposefully overlogki
parameter inter-dependencies. In real applications hemev

these parameters do interact and affect the runtime and over

all performance. Rather than exhaustively analyze alliposs

ble combinations, we examine each stage of the runtime and

determine a set ddipplication typedhat capture the domi-
nant interactions between the parameters.

Map-dominated: The Map stage’s performance is to first-
order dictated bymap intensity but is also related tonap
fan-out which dictates the amount of partitioning work. Par-
tition runs on the PPE concurrently with Map, and must
complete within some proximity of Map to ensure unob-
structed sorting with no serialization bottleneck. Hertoe,
avoid this bottleneck, the ratio afiap intensityto map fan-

cation type in this paper.

Table 3 lists the application types we study and their
micro-benchmark parameter configurations. In examining
real-world applications, we observed that most applicetio
align strongly with one of these application typégap-
dominated applications are traditional, computationally-
intense data-parallel applications that utilize the Reduc
phase only for coalescing the results from individual Map
phases. In contraspartition-dominatedapplications rely
heavily on the partitioning, sorting, and Reduce phasdseof t
runtime to group many key/value pairs together, such as the
word counting example in section 2. Finakbgrt-dominated

outmust be above some threshold value. Those applicationsapplications are likgpartition-dominatedapplications, but

that meet this threshold we labelap-dominatedFor our

with sorted output.



Application Name | Application Type Lines of Code Speedup vs. Core2 BIPS
MapReduce Seriall 1-SPE| 8-SPEs| 8-SPE Ideal| 1-SPE | 8-SPEs| 8-SPE Ideal
histogram partition-dominated| 345 216 | 0.16 0.15 2.44 1.56 1.51 24.49
kmeans partition-dominated| 324 318 | 0.91 3.00 6.92 2.08 7.35 17.01
linearRegression | map-dominated 279 114 | 0.34 2.59 2.67 1.47 11.32 11.70
wordCount partition-dominated| 226 324 | 0.87 0.96 10.26 1.52 1.74 18.64
NAS_EP map-dominated 264 112 | 1.08 8.62 8.62 2.00 1593 | 15.95
distributedSort sort-dominated 171 9F 0.41 0.76 5.48 1.28 2.38 17.15
¢The serial implementation of distributedSort uses the 6dgted library gsort().
Table 4. Applications characteristics and performance.
100+ 8+ B 1 SPE
e oo = o
[ DMA 3 s
60 I sort ;)-3_4, == 8 SPEs
[_Jreduce Ny
401 I map
20 0- map-dom partition-dom sort-dom
0

map-dom partition-dom sort.dom Figure 7. Speedup as number of SPEs is scaled from 1 to 8.

Figure 6. Execution breakdown for application types.

or Reduce workPPE contribues 85% anBMA contributes

423 Runtime Overhead 5% overhead. 40% OPPE !s gaused by serializa_ltipn on

) S the PPE's substantial partitioning task. The remaining 45%
Figure 6 shows the breakdown of execution time in the SPES t ppE is caused by the low computation demands on the
for the three application types running with 8 SPEap, re- SPEs, which cause a high turnover rate for the PPE’s buffer
duce.andsortdenote execution time in the rgspectwe COM- management and scheduling tasks, overwhelming the PPE.
putation stages?PE andDMA represent runtime overhead. 14 potentially alleviate these PPE overheads, section-5 dis
PPE denotes the percentage of cycles SPEs are waiting forcsses techniques to parallelize Partition and enhance PPE
work and synchronization from the PPE, including the ab- {,read scheduling for improved response times.
sence of work due to initialization, finalization, and work- Sort-dominatedapplications also have high overheads
flow dependenceDMA denotes the percentage of cycles 4round 90%, but for different reasoiVA contributes 20%
SPEs must wait for DMA completion in order to proceed. 4nqppPE contributes 70% overhead. 40% BPE is due to
The contribution of runtime code executing on the SPES iS {he inherent serialization of Merge-sort and Reduce, given
less than 1% and is included in tineap reduce andsort only one partition. The remaining 30% &PE is due to

times. low computation demands on the SPEs, similgpddition-

Map-dominatedapplications are ideally suited for the gominatedapplications. The 2099MA overhead is caused
architecture and the model, and the runtime is very efficient primarily by merge-sort output transfers.

in executing these applications. For these applicatidres, t
0 e
SPEs spend more than 95% of their time in the Map and 42.4 Scalability
Reduce kernels. _ _ o
Partition-dominatedpplications frequently have runtime ~ Figure 7 shows the relative speedup of the three application
overhead around 90%. These applications emit a large vol-types as the number of SPEs is increaddep-dominated

ume of intermediate data, and typically have minimal Map, applications scale perfectlyartition-dominatedapplica-
tions experience both partitioning and the final merge-sort

as serialization points. Together, these two tasks dominat

Application Type | Micro-benchmark Configuration execution time, leaving little other work that can scalehwit
map-dominated [128,0 ,.01,8,8  16MB] more processorsSort-dominatecapplications scale better,
partition-dominated) [0 ,0 ,1.0,8, 256, 16M] but still poorly due to the Merge-sort and Reduce serial-
sort-dominated (0 .0 1081 ,16M ization points; when the number of processors is increased

from 4 to 8, there is contention for DMA and PPE resources,
causing a performance degradation.

Table 3. Application types.



4.3 Application Performance 100,
We now discuss the performance of complete applications, 8% B PPE
focusing again on execution time, overheads, and scdiabili 60+ [ DMA
[ sort
. . 404 [Jreduce
4.3.1 Applications 204 B map
We implemented six real-world applications, four of which ol
are applications from the Phoenix evaluation suite [22] wel %,O *% 40@(9 "’o,o 4% %,&
suited to the Cell architecture. We also implemented one %,)) P ”%0 Oo% NS %
‘o

application from the NAS benchmark suiteP [1], eas-
ily adapted to the model, and one applicatidistributed-
Sort, as representative of data processing applications where
sorted output is often desired. The application names;, thei o _ _
type, and the lines of code are shown in Table 4. Equiva-  Four other applications from the Phoenix suite were
lent micro-benchmark configurations are shown in Table 5. Not implemented for the following reasorReverse Index

A detailed description of each application follows. andString Matchrequire variable length structures (strings)

, which our current runtime does not support. Providing such
h|stogram:Thefrequency of occurrence of.each RGB color support with software-managed memories is complex and
component for a given bitmap image file is counted. Map highly challengingMatrix Multiply andPCA require direct
counts the occurrences of each color componentand Reducg ; qsq 19 a large global data structure and have no Reduce
gathers the intermediate sums to produce a final sum for each/vork. MapReduce therefore provides limited productivity

component. benefits. Particularly for the Cell, implementing them te ac
kmeans: This application clusters a set of data points. Map commodate arbitrary data sizes also requires explicit user
takes as input a point, finds the distance between the pointmemory management, defeating a key benefit of our run-
and each cluster, and assigns the point to the closestcluste time.

Reduce computes the new cluster means by averaging the Our baseline for performance comparison is another best-
coordinates of all points assigned to the given cluster. The of-breed system, an Intel Core2 Duo with a 4MB L2 cache
algorithm iterates until it converges. operating at 2.4 GHz. We implemented single-threaded ver-
sions of the applications in C and compiled them using GCC

linearRegression: This applications computes a line-of- o . e .
best-fit for a set of 2D coordinates. Coordinates are grouped.ﬁlt optimization level 3. While optimized multi-threadedICe

into 32KB chunks for bulk processing. Map computes inter- |_mplementations of these applicat_ions could.serve asa pase
mediary summary statistics for a chunk and reduce gathersIIne (or upper-bound), they require extensive application

all the data for a given statistic and calculates the best fit. spe_cmc tuning and reveal little intuition abou_t the appli-
cations themselves. Instead we measure runtime overheads

wordCount: The frequency of occurrence of each word in  to quantify inefficiencies and compare against this baselin
a file is counted for a given text file. For compatibility, our system.

implementation truncates all words to 16 characters.

Figure 8. Execution breakdown for applications.

NAS_EP: Map generates pairs of Gaussian random deviates4'3'2 Execution Time and Runtime Overhead

and counts the number of pairs that lie within successive Columns 5 through 7 of Table 4 show the relative speedup
square annuli, along with the sum of all pairs generated. of the applications compared to an Intel Core2 serial im-
Reduce computes the final sums for each attribute. plementation, and Figure 8 shows the breakdown of execu-
tion cycles. Ideal speedup is calculated by removing all the
overhead execution cycles from the execution time of the
program. A couple of applications perform worse than the
baseline, a few perform better, while NAFP excels — its
achieved speedup is close to ideal. An explanation of each

distributedSort: This application performs an integer sort.
Map selects the key on which to sort. Reduce is omitted.

Application Name | Micro-benchmark Configuration application follows.

histogram [6 ,<1,0.38 4700, 512, 100M8| linearRegressiorand NASEP are map-dominatedand
kmeans [798,183,2.0 ,100 , 100, 1. 6MB] significantly out-perform our baseline, with total runtime
linearRegression | [61 ,<1,<0.01,8192,8 |, 128M8] overhead under 4% and 1%, respectively, and achieving
wordCount [8 ,<1,1.0 ,25 ,512 10M8] close to ideal speedup at 2.6X and 8.6X, respectively. Note
NAS_EP [145,<1,<0.01,8 .8 512\ that neither application is hand-optimized for SIMD execu-
distributedSort (8 .0.1.0 .- .1 .32M8] tion on the Cell, which could further boost performance.

— NASEP in particular performs computation on double-
Table 5. Measured parameter values for applications.  precision floating-point numbers, to which the Cell is not




well suited, but which is required by the benchmark spec- and PPE overheads dominate and the SPEs go under-utilized.
ification. For the sake of fairness, we used the C standardOur representativeort-dominatedapplication,distributed-
math library routines on both the baseline system and the Sort scales from 1.28 to 2.38 BIPS.

Cell system, but our experiments showed that using SIMD  Ideal BIPS is calculated by isolating execution of only the

single-precision operations yields a minimum @&ditional Map, Reduce, and sorting kernels, and is provided in column
performance improvement for the Cell MapReduce imple- 10 of Table 4. As shown, if the SPEs can be perpetually fed
mentation. with data, all applications can sustain high performanoe. F

Amongpartition-dominatedpplications, whildistogram  applications that map well to the model and architecture,
is naturally data-parallel, implementing it using MapReelu  our runtime is able to match this ideal BIPS. For other
makes it reliant on the PPE for partitioning and runtime applications, it is less successful, but the ideal BIPS will
orchestration with 92% overhead and only 0.15X speedup. be hard to achieve even with application-specific tuning, as
wordCountperforms similarly with 90% overhead, but is much of the DMA and PPE overheads are inherent to the
more competitive with the baseline showing 0.96X speedup. applications themselves.

The speedup difference is caused by an extremely straight- . .
forward and very fast single-threaded implementatiomisf 5. Discussion

togram compared to relatively a more complex and slower Our performance results show that computationally intense
single-threaded implementation @fordCount which re- applications scale well and sustain high performance. in ad
quires a binary search tree for data storage. Finlathgans dition to the performance benefits, the MapReduce model
has very high map-intensity, allowing useful work to occur provides a large programmability benefit, as indicated by th
concurrently with partitioning. Partitioning still donates lines of code listed in the third and fourth columns of Ta-
as a serialization bottleneck, however, preventing thestra  ble 4. While the runtime itself is quite sophisticated, riequ
tion into themap-dominatedategory, despite strongly out- ing more than 5000 lines of code, the MapReduce programs
performing our baseline with 3.0X speedup. This bottleneck were no more cumbersome to develop than their single-
is evidenced by the modest performance scaling from 1 SPEthreaded counterparts — we had to perform no application-

to 8 SPEs. specific tuning, partitioning, scheduling, or memory man-
distributedSorts the onlysort-dominatedpplication, al- agement.
though any partition-dominated application is likely to- be However, our results show that computationally weak

comesort-dominatedf a single sorted output is required. applications perform relatively poorly. Unfortunately,i$
distributedSorthas 28% overhead due to Merge-sort serial- unclear whether this is a limitation of the architecture or
ization, 32% due to lengthy DMA stalls, and 26% due to idle the model since these applications are primarily PPE bound,
cycles waiting for work and synchronization from the PPE, as opposed to bandwidth or computation bound. As future
resulting in 86% total overhead. Speedup relative to the-bas work, we propose two implementation enhancements that
line is only 0.76X. Although the ideal speedup is 5.6X, itis have the potential to greatly improve the scalability of the
not achievable in practice as DMA, synchronization, and the runtime executing these types of applications.

inherent serialization of merge-sorting constrain anyisgr

o Distributing Partition to the SPEs: The serialization bot-
application.

tleneck of partitioning on the PPEs is a substantial detérre
4.3.3 Scalability to efficient processing of computationally weak applicasio
For such applications, decentralizing the partitioningkvo
across the SPEs is clearly desirable. The obvious apprsachii
to replicate the number of partition buffers for each SPH, an
have each SPE partition directly into its own set of buffers.
However, this complicates selecting of the optimal number
of partitions, and also forces DMA transfers at the granular
ity of key/value pairs. Nevertheless, our experimentsiat
that this enhancement could yield up to a 2X performance

One of the benefits of the model is its inherent scalability.
While, our performance analysis used all 8 SPESs, by simply
configuring the number of SPEs in the runtime, an applica-
tion can be scaled up or down. We study scalability of the
runtime by varying the number of SPEs from 1 to 8 and ex-
amining the execution rate (BIPS). Columns 8 and 9 of Ta-
ble 4 show BIPS for 1 and 8 SPEs, respectively. The Cell
processor’s theoretical peak is 51.2 BIPS when using all 8. . ) L .
SPEs at 3.2 GHz. improvement forpartition-dominatedapplications running
Applications that suit the model and architectloméans with all 8 SPEs.
linearRegressionandNAS EP), show near-linear speedup. A single OS thread: Upon close examination of our per-
For example NASEP performance increases from 2.0 to formance data, we discovered that our runtime suffers from
15.93 BIPS. Partition-dominatedapplications with little multi-threading overheads on the PPE. As an example, we
map work like histogramandwordCountare bottlenecked  observed that for computationally weak Map tasks, the time
by the PPE and hence adding more SPEs provides lit-taken by the PPE to respond to an output allocation request
tle speedup, at best going from 1.52 to 1.74 BIBSrt- is twenty times the time taken for SPE computation. The
dominatedapplications scale better, but eventually DMA relatively large (coarse) time-slice granularity of the 8S
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primarily responsible for the slow PPE response time. Thus, posed as an enhancement can be applied in such systems.
the solution that we propose is to implement the PPE por- The stream programming model [12] is well suited for
tion of the runtime using only a single, event-driven OS the Cell architecture, and several runtimes support this
thread, while making all communication asynchronous. This model [17, 23]. Fatahalian et al. introduce a new program-
presents a challenge as currently the PPE scheduler threadsiing model called Sequoia targeted at explicity memory
communicate work items to the SPEs using blocking mail- managed machines [7]. The MapReduce model is similar to
box calls. streaming, but the automatic grouping enables more sophis-
. . icated applications than streaming alone. Deitz et al. de-
We include some other enhancements to be Cons'derm{/eloptechniques for user-defined scans (similaiep) and
for future work below. formulation of user-defined reductions that can be applied
Arbitrary memory accesses in Map and ReduceExten- in Chapel and MPI [5]. Knight et al. describe general com-
sions to the model and the run-time to efficiently support pilation techniques for explicitly managed memories [13].
arbitrary memory accesses can enhance the range of appliKandemir et al. describe compiler techniques for scratch-
cations supported by the runtime. Our current design has thepad memory space which can be applied to the SPE local
limitation that (1) the input, intermediate, and output-ele memories [11].
ment data structures must be of bounded size, and that (2) Lammel presents a formal description of the MapReduce
they must occupy a contiguous region of memory. Support- model [15]. The Sawzall language captures the MapReduce
ing either or both of these features for the Cell platform is model and provides an interface to a set of aggregators that
challenging. For our runtime, they also require a substnti can express many common data processing and data reduc-
API and design re-architecture. tion problems [21]. Finally, Yang et al. addhaergefunction
to extend MapReduce for processing multiple related hetero

Hierarchical MapReduce: With the Cell processor bein
g X I r. geneous datasets [26].

used in clusters and the growing requirement of high pe
formance computing in servers, a hierarchical MapReduce .
model at the large-scale and chip-level is a natural futnre e /- Conclusions

hancement we will explore. The Cell processor provides a unique and innovative archi-
tecture with vast performance potential but a challenging
6. Related work programming platform. This paper presented a MapReduce

Our related work discussion covers Cell-specific program- runtime for the Cell processor. The runtime provides a sim-
ming tools, high-performance applications on the Cell pro- P!& machine abstraction, hiding parallelization and haw
cessor, programming model extensions for parallelism that Primitives from the user. The programming model is well

can be applied to Cell, and extensions to the MapReduceSUited to several data-parallel programs, and it maps natu-
model. rally to the Cell architecture. The simplicity of the model

Eichenberger et al. describe a variety of techniques in Provides enormous productivity benefits and makes the ar-
the optimizing Cell compiler for extracting parallelismcan ~ Chitecture accessible to many domains and types of users.
simplifying memory management [6]. Topics include SIMD The §calabll!ty and performance of the. runtime make it at-
parallelism extraction, automatic code and data partition tractive for high-performance computation as well.
ing across the cores using OpenMP pragmas [20], and the Appll_catlons suited to the mode] proflt greatly from the
implementation of a software-managed cache to support aPreductivity, performance, and efficiency benefits, yet the
single shared memory abstraction on the SPEs. IBM Re-Model is not universally applicable to all types of appli-
search has also proposed message passicrgtasksased cations. Future architectures must embrace such “domain-
on the Message Passing Interface (MPI) standard [19]. Fi- SPecific” solutions, as one universal paradigm or implemen-
nally, Blagojevic et al. describe scheduling techniques fo tation is unlikely to be efficient and provide high perfor-
different granularities of parallelism for the Cell proces Mance. Looking forward, this work is applicable to all chip-
sor [3]. multiprocessor systems of the future that adopt a distibut

Williams et al. used a mathematical model to examine Memory design or software-exposed memories. High perfor-
the potential of the Cell processor for scientific computati ~ Mance and programmer productivity will both be equally im-
and identify memory management as a key challenge [25]. Portant constraints fqr.such architectures. The smplnrit
Application-specific tuning has been used to map several the model and the efficiency of our MapReduce design make
applications to the Cell processor, including solving lin- it @n attractive choice for programming these systems.
ear equations [14], H.264 decoding [24], speech recogni-
tion [16], and ray tracing [2]. Nanda et al. describe soft- References
ware and application tuning for Cell servers focusing on [1] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L
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cessors [18]. The hierarchical MapReduce model we pro- Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
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