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Abstract
MapReduce is a simple and flexible parallel program-

ming model proposed by Google for large scale data pro-
cessing in a distributed computing environment [4]. In this
paper, we present a design and implementation of MapRe-
duce for the Cell architecture. This model provides a sim-
ple machine abstraction to users, hiding parallelization and
hardware primitives. Our runtime automatically manages
parallelization, scheduling, partitioning and memory trans-
fers. We study the basic characteristics of the model and
evaluate our runtime’s performance, scalability, and effi-
ciency for micro-benchmarks and complete applications. We
show that the model is well suited for many applications
that map well to the Cell architecture, and that the runtime
sustains high performance on these applications. For other
applications, we analyze runtime performance and describe
why performance is less impressive. Overall, we find that the
simplicity of the model and the efficiency of our MapReduce
implementation make it an attractive choice for the Cell plat-
form specifically and more generally to distributed memory
systems and software-exposed memories.

1. Introduction
The Cell processor is capable of an order of magnitude per-
formance improvement over conventional processors, with
a peak performance rating of 256 GFLOPS at 4 GHz [8,
9, 10]. However, harnessing this potential is challenging
for three reasons. First, programmers must write explic-
itly multi-threaded code to utilize the eight SPE (Syner-
gistic Processing Element) cores in addition to the main
PPE (Power Processing Element) core. Second, SPE lo-
cal memory is software-managed, requiring programmers to
explicitly orchestrate all reads and writes to and from the
global memory space. Third, the SPEs are statically sched-
uled SIMD cores, requiring data-level parallelism in the ap-
plication to achieve high performance.

To address these programming challenges, we present a
design and implementation of MapReduce for the Cell pro-
cessor. MapReduce was initially proposed by Google for
large scale data processing in a distributed computing en-
vironment [4] and the model has recently been ported to
shared memory multiprocessor systems [22]. The MapRe-

duce model provides a simple programming abstraction that
hides low-level details from the programmer using a runtime
tuned to the underlying architecture. The runtime system we
implement for the Cell processor takes care of partitioning
the input data, scheduling the program’s execution across the
cores, managing memory transfers between global and SPE
memory, and handling inter-core communication and syn-
chronization. Users simply specify aMap function that pro-
cesses data to generate a set of intermediate key/value pairs,
and aReducefunction that processes all intermediate values
associated with the same intermediate key. This allows pro-
grammers without any experience with parallel systems to
easily program for the Cell processor.

Implementing an efficient MapReduce runtime for the
Cell processor has three main challenges compared to a
homogeneous, shared memory multi-processor implementa-
tion. First, memory must be explicitly managed and trans-
ferred between global and SPE memory. Second, since the
SPEs, which execute the Map and Reduce functions, have
software-managed memories, the runtime is responsible for
overlapping computation with memory transfers as much
as possible. Third, between the Map and Reduce phases,
there is a logical grouping phase that must be effectively dis-
tributed across the SPEs.

Our particular implementation tackles the memory man-
agement problem by pre-allocating Map and Reduce output
regions for bulk DMA transfers. We parallelize computation
with memory transfers by double-buffering and streaming
data whenever possible. Finally, we implement the logical
grouping using a two-step process of partitioning and sort-
ing. Overall, we decompose the execution flow into work
units, or tasks, and schedule dependent work units as others
work units complete. We use a priority work queue to im-
plement load balancing and use the priorities to control the
execution flow to avoid bottlenecks.

In this paper, we provide a detailed discussion on the
design of the runtime and evaluate performance. The three
main contributions of this paper are:

• A runtime that allows programmers to focus solely on the
computation component of their application, hiding com-
munication, buffer management, synchronization, and
scheduling complications. The runtime is available for
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(a) Single-threaded (b) MapReduce (c) MapReduce logical
pseudo-code pseudo-code execution flow

Figure 1. MapReduce example illustration.

public download atsourceforge.net/projects/
mapreduce-cell.

• A characterization of the efficiency and scalability of
the runtime across the application space using a suite of
micro-benchmarks.

• A demonstration of the productivity and performance
benefits of the model and runtime. A set of complete
applications implemented using the model are no more
complex than their corresponding serial implementa-
tions, and applications perform on average 2.7 times bet-
ter and up to 8.6 times better on the Cell processor than
on an optimized Intel Core21.

The remainder of this paper is organized as follows. In
section 2, we explain the MapReduce model. Section 3
presents our API and design, and discusses implementation.
Section 4 presents results covering performance, scalability,
and productivity. Section 5 discusses future enhancements.
Section 6 presents related work, and section 7 concludes.

2. The MapReduce Model
Dean and Ghemawat describe the MapReduce programming
model as follows [4]:

The computation takes a set ofinput key/value pairs,
and produces a set ofoutputkey/value pairs. The user
of the MapReduce library expresses the computation
as two functions:MapandReduce.

Map, written by the user, takes an input pair and
produces a set ofintermediatekey/value pairs. The
MapReduce library groups together all intermediate
values associated with the same intermediate key and
passes them to theReducefunction.

TheReducefunction, also written by the user, ac-
cepts an intermediate key and a set of values for that
key. It merges together these values to form a possibly
smaller set of values. Typically just zero or one output
value is produced perReduceinvocation.

The canonical MapReduce application example is that of
counting the number of words in a set of documents. Fig-
ures 1a–c provide a simple illustration. Using MapReduce,

1 Applications are not tuned for SIMD on either platform.

the input is divided into regions, and the Map function is per-
formed on each region in parallel. The Map function outputs
each word in the given region (the key) and the number of
times the word occurs in that region (the value). Numbers
(values) corresponding with the same word (key) are then
grouped together and passed to the Reduce function. The Re-
duce function sums the number of occurrences of a word in
each region to output a final count. Similar to Map, Reduce
invocations are independent and can proceed in parallel.

3. MapReduce for Cell
The MapReduce model has been implemented for two ar-
chitectures. Google’s MapReduce runtime targets distributed
clusters [4] and Stanford’s Phoenix runtime targets shared
memory multi-processors [22]. Since the Cell architectureis
a distributed memory architecture, our high-level design re-
sembles Google’s design, while the granularity of operations
is similar to Phoenix.

In Google’s MapReduce, a partition is sorted and reduced
all on the same node. Our implementation decouples sorting
and reduce to enable better load balancing. This makes sense
on the Cell platform since local store sizes are small, com-
munication is fast, and bandwidth is abundant. Beyond that,
specifics of Google’s design are unavailable, and our detailed
runtime description contributes uniquely to the literature.

In Phoenix, the Map and Reduce work is distributed
across the different cores and hardware caching exploits
locality. For grouping values by key, output keys are first
hashed and pointers to keys and values are then inserted into
a hashed binary search tree, thereby eliminating the need
for sorting and copying memory. These techniques are not
viable for the Cell processor since manipulating large, re-
cursive graph structures is extremely complex and awkward
with software-managed memories. We develop a set of novel
techniques to implement the runtime for the Cell exploiting
its strengths: global coordination via the PPE and fast DMA
transfers with overlapping computation.

Our runtime uses extensive multi-threading, running pri-
marily on the PPE, while the Map and Reduce functions map
naturally to the SPEs. The PPE runtime schedules work for
the different SPEs, manages data structures, and performs all
memory management. The main responsibility of the SPEs
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void MapReduce exec(MapReduce Specification specification);

The exec function initializes the MapReduce runtime and executes MapReduce according to the user specification.

void MapReduce emitIntermediate(void **key, void **value);
void MapReduce emit(void **value);

These two functions are called by the user-definedMapandReducefunctions, respectively.

Table 1. The MapReduce for Cell API.

is to run user code and assist in the grouping step, which is
accomplished by a two-step process of partitioning and sort-
ing. In this section, we describe the API, the runtime design,
and discuss implementation highlights.

3.1 The Cell MapReduce API

Our Cell MapReduce implementation is written in C. Ta-
ble 1 shows the interface presented to the user. There are
also three MapReduce data structures – a runtime specifica-
tion structure, a key/value array structure, and a list of arrays
structure – and associated functions for creating, manipulat-
ing, and destroying these data structures2. The programmer
simply specifies the program, including the number of SPEs,
using this interface, and the runtime completely handles par-
allelization to the different SPEs and memory management.

The primary difference from other APIs is that users do
not dynamically allocate output in the Map and Reduce func-
tions. Instead, the runtime provides pointers to local output
regions, providing three key benefits: (1) it shifts the burden
of explicit memory management away from the program-
mer and entirely to the runtime, (2) it enables high perfor-
mance since the runtime can perform correct memory align-
ment and efficient transfers, and (3) it relieves the overhead
of dynamic memory allocation in the Map and Reduce func-
tions. As a result,emit andemitIntermediate take
references to pointers as arguments, as shown in Table 1,
and modify the pointers to point to pre-allocated memory. It
is then the responsibility of the application to provision this
memory. This is a key enhancement in our API compared to
the Phoenix API.

3.2 Design Overview

Our MapReduce design consists of five stages:Map, Parti-
tion, Quick-sort, Merge-sort, andReduce. Figure 2a shows
the overall flow of execution, and Figure 2b shows the flow
applied to the example word count application. Program exe-
cution starts with the Map stage, triggered by a main runtime
control thread. This stage takes as input a single, logical ar-
ray of key/value pairs and produces one logical array of val-
ues, and one logical array of keys with pointers to values.
The Partition, Quick-sort, and Merge-sort stages then group
identical keys together to produce a set of partitions sorted
by key. When complete, each partition contains a contigu-

2 The full API is documented in the header files
include/mapReduce.h and include/mapReduce spu.h
distributed with the runtime.

ous array of intermediate values for each key. Finally, the
Reduce stage takes as input a partition and applies the user-
defined Reduce function to each key and associated values
to produces one logical output array of key/value pairs.

The Map and Reduce stages, which execute user code,
run exclusively on the SPEs. The three intermediate stages
execute on both the SPEs and the PPE. We describe each
stage in detail below.

Stage 1: Map

During Map, the SPEs execute the user-specified Map func-
tion on the input data and produce a set keys and a set of val-
ues, with keys containing pointers to their values. Runtime
code on the PPE initiates the execution of this phase and or-
chestrates data movement to feed the SPE local memories.
The input is divided into eight logical groups (one per SPE)
of approximately equal size using a simple heuristic. Output
buffers (one per SPE) are then pre-allocated in global mem-
ory, and pointers to the input and output buffers are passed to
each SPE. The SPEs stream data into their local memories
using DMA, process the data, and write results into a lo-
cal output buffer. Since the size of output produced by Map
cannot be statically determined, runtime monitoring code is
appended to the Map function to check when this buffer fills
up. Similarly, the input to an SPE can be larger than the lo-
cal input buffer available in the SPEs local memory, so SPE
runtime code also orchestrates the batched transfer of data
into the local memories. When an SPEs local output buffer
is full, the contents are transferred to the pre-allocated out-
put buffer in shared memory. Figure 2c shows the memory
transfers. The SPE notifies the PPE that the output buffer
is ready and receives a pointer to a newly allocated output
buffer to continue processing. All communication and syn-
chronization is orchestrated through the Cell’s mailbox and
signal notification mechanisms.

Optimizations:In our implementation, the SPE’s input
and output buffers are double-buffered. Furthermore, there
are always two pre-allocated output buffer in shared memory
so that as soon as one buffer is full, a pointer to the next one
is ready.

Stage 2: Partition

Partition groups identical keys into the same partition by
distributing Map output keys into a set of partitions as shown
in Figures 2a and 2c. As SPE output buffers are written
to shared memory, the PPE iterates through each key and
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(b) Execution flow applied to example of Figure 1c.

(a) MapReduce execution flow. (c) MapReduce memory management.

Figure 2. MapReduce for the Cell architecture.

copies it into the partition pointed to by the key’s hash value,
previously computed by the SPE.

Optimizations:First, to exploit locality, the SPE output
buffers are segregated into separate key and value regions.
Second, partitions are linked-lists of buffers sized to fit in
the local stores of the SPEs for in-place sorting, allowing
Quick-sort to proceed in parallel with Partition as individual
buffers become full. Third, while hashing is significantly
more efficient at grouping keys than sorting, providing user
control over partitioning (the number and the hashing) is
desirable since different applications will partition optimally
in different ways. Hence, the API allows the user to specify
a custom hash function and the number of partitions.

Stage 3: Quick-sort

We complete the grouping of keys by sorting. Our runtime
uses a two-phase sorting strategy to distribute the sort to
the SPEs. As individual partition buffers are filled, they are
streamed to available SPEs for in-place quick-sorting. The
sorted output is then copied back to its original location
in shared memory, overwriting the unsorted contents, as
shown in Figure 2c. A partition’s buffers are sort-merged,
if necessary, in the next phase.

Stage 4: Merge-sort

Due to memory limitations, an in-place sort of an entire par-
tition is not always possible. In such a case, we merge all
quick-sorted buffers into a single sorted buffer using an ex-

ternal binary merge-sort. In Merge-sort, pairs of previously
sorted buffers within a partition are scheduled for merging
on the SPEs. In contrast to Map, the output size can be stati-
cally determined, so the SPE outputs are DMAed into a sin-
gle pre-allocated output buffer in shared memory, as shown
in Figure 2c.

The runtime continues merge-sorting on the SPEs until
only two buffers remain in the partition. The final merge-
sort takes place on the PPE. The primary reason is that we
now need to bring the keys and their remotely located values
together into a contiguous block of memory for Reduce. For
this, direct and uncomplicated access to the entire shared
memory space is highly desirable. In the final merge sort,
all duplicate keys are eliminated so that a single unique key
is associated with multiple values to be passed on to Reduce.

Optimizations:Merges are scheduled for optimal band-
width utilization rather than greedily as illustrated by Fig-
ure 3. This yieldsn/log(n) better bandwidth utilization in
the limit asn approaches infinity, wheren is the number of
quick-sort buffers in a partition. For high-volume applica-
tions, we measured an average 20% performance improve-
ment using this strategy.

Stage 5: Reduce

During Reduce, the SPEs execute the user-specified Reduce
function on all the values for a given key. The PPE passes
information about the sorted partition and a pointer to a pre-
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Figure 3. Bandwidth-optimal merge strategy.

allocated output buffer to the SPE. Output buffers are arrays
of key/value pairs. This stage is otherwise identical to Map.
An output list maintained by the PPE contains a pointer to
all the output buffers, and is the output structure returnedto
the user.

3.3 Implementation Analysis

Challenges to an efficient implementation are multi-threading
the runtime, scheduling of stages, and memory management.
We describe our solution to each below.

3.3.1 Multi-threaded Runtime

Since a large number of events occur concurrently, we im-
plemented the runtime using extensive multi-threading with
dedicated threads, using a total of 20 threads. All threads are
spawned once, and remain active through the entire execu-
tion of the program.

• 1 PPEmain threadspawns all other threads, creates the
necessary data structures, and initiates the Map stage.

• 8 SPEworker threadsperform the work of the Map,
Reduce, Quick-sort stages, and SPE portion of the Merge-
sort stage.

• 8 PPEscheduler threads, one for each SPE thread,
notify an SPE when a work unit is ready for prefetching
through the Cell’s mailbox mechanism.

• 2 PPEworker threadsperform the partitioning by dis-
tributing keys into partitions as well as the final merge-sort.
There are two such threads to utilize the PPE’s two-way
SMT capability.

• 1 PPEevent threadresponds to output buffer memory
allocation requests and completion notifications from the
SPEs. It controls the execution flow by scheduling dependent
work units on the PPE scheduler and worker threads as well.

3.3.2 Stage Scheduling

Figure 2a shows the logical execution flow of the runtime.
However, stages 2 through 5 can execute concurrently as
long as data dependences within a partition are correctly
enforced. In fact, since the final merge occurs on the PPE,
Merge-sort becomes a serialization bottleneck if the logical
flow is maintained, as each partition would complete quick-
sorting and SPE merge-sorting at approximately the same
time, and all the SPEs would grind to a waiting for the PPE
to complete each final merge.

To avoid this PPE bottleneck, stages 3 and 4 are executed
in partition order. That is, the runtime gives priority to out-

Figure 4. Double-buffering in SPEs. Left and Right differ-
entiate the two buffers.

standing work on the leftmost partition of Figure 2a. This
way, execution reaches the PPE merge-sort for partition 0 as
soon as possible, at which point priority shifts to partition 1
and the SPEs transition to sorting that partition. This pattern
then repeats, maximizing concurrency between the PPE and
SPEs.

3.3.3 Memory Management

Managing the SPE local memories efficiently is crucial for
high performance. Of the available 256KB, the runtime uses
around 12KB for the SPE runtime code and 128KB for its
buffers, leaving a little less than half of the memory for user
code, data, and stack space. The runtime buffers are double-
buffered differently in each phase as shown in Figure 4.

• Map and Reduceeach allocate 32KB for input and
32KB for output per double-buffer as shown in Figure 4b.
The input and output buffering must be managed indepen-
dently because the input to output ratio of the phases is data-
dependent and cannot be statically determined.

• Quick-sort is an in-place sort, requiring only a single
buffer for both input and output. Two 64KB buffers are used
as shown in Figure 4c.

• Merge-sort allocates two 16KB regions for the two
input streams and 32KB for output as shown in Figure 4d.
Due to the nature of the merge operation, each region drains
or fills at a different rate, so each region is double-buffered
independently.

Our implementation overlaps memory transfers with
computation as much as possible within a given stage.
Across stages, prefetching could potentially reduce the start-
up time. However, when an SPE transitions from one stage
to another, it is not always possible to pre-reserve space for
the next phase as the previous phase is completing. In future
work, we will explore techniques for such prefetching.

3.4 Support for Application Varieties

The execution flow previously described assumes a full
MapReduce execution. However, applications may not re-
quire all stages of the model.

Map only: Certain data-parallel applications require only
a Map stage, such as DCT, and can output directly to a
known global output region. For such applications stages 2
through 5 are unnecessary overheads. If the user does not
call emitIntermediate inside the Map function, the
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runtime will not schedule any further work past Map, thus
removing these overheads.

Map only with sorted output: If emitIntermediate
is called but no Reduce function is defined, the runtime
completes after Merge-sort; Reduce is never scheduled and
the output list contains one sorted array of pairs per partition.

Chaining Invocations:Sometimes an application will chain
multiple MapReduce invocations. Hence, the output of Re-
duce must be naturally compatible with the input of Map.
Due to multiple, fixed size Reduce output buffers, output is
a list of buffers. To allow such chaining efficiently, we define
our API such that both inputs and output are lists of buffers.

4. Evaluation
This section presents an evaluation of our MapReduce run-
time. We first characterized the MapReduce model and de-
rived a set of parameters that capture application behavior.
We then developed a parameterizable micro-benchmark for
performance analysis. In this section, we present a discus-
sion of these parameters, a detailed evaluation using our pa-
rameterizable micro-benchmark, and a derivation of applica-
tion categories based on specific parameter configurations.
We conclude with an analysis of complete applications.

4.1 Tools and Metrics

We used a 3.2 GHz Cell QS20 Blade Server running Fe-
dora Core Linux to execute our micro-benchmark and ap-
plications. Using the Cell SDK v2.0, SPE code was com-
piled with the IBM XLC compiler [6], and PPE code with
the GCC compiler, both at optimization level 3.

We instrumented our runtime and used processor perfor-
mance counters to measure execution cycles. We analyze
runtime and application performance using the following
three metrics: execution time, runtime overhead, and scal-
ability as the number of the SPEs is increased from 1 to 8.
We measure overhead as percentage of time the SPEs are
idle, which can occur for two reasons. First, SPEs may have
to wait for work or synchronization from the PPE. Second,
SPEs may be stalled waiting for completion of outstanding
DMA transfers. Runtime code executing on the SPEs ac-
counts for less than 1% of execution time, and hence we
ignore this source of overhead. For complete applications,
we also analyze execution rate by examining BIPS (Billions
of Instructions Per Second). To measure BIPS, we estimated
dynamic instruction count for the map, reduce, hash, and
sort execution kernels using the Cell simulator (we did not
have access to processor performance counters for instruc-
tion count), and divided by total application execution time
measured using the Cell blade.

4.2 MapReduce Model Characterization

Table 2 shows the different parameters we use to charac-
terize MapReduce programs. The model is simple enough
that these six parameters completely capture behavior of ap-

Parameter Description Micro-benchmark
Configuration

map Execution cycles per [*,0,.01,512,256,16MB]

intensity input byte to Mapa

reduce Execution cycles per [0,*,1.0,1 ,256,16MB]

intensity input byte to Reduce
map Ratio of input size to [0,0,* ,512,1 ,16MB]

fan-out size of keys output
in Mapb

reduce Number of values [0,128,1.0,*,256,16MB]

fan-in per key in Reduce
partitions Number of partitions [0,0,1.0,512,* ,16MB]

input size Input size in bytes [0,0,1.0,512,1 ,* ]

a We do not consider the sizes of keys and values within the input, as this
only affects the number of Map function invocations, and canoften be
optimized within an application.
b As a simplification, we assume that all intermediate keys areless than
16 bytes in size and quadword aligned; hence, effectively 16bytes in size.
This was true for all evaluated applications.

Table 2. Application parameters and micro-benchmarkcon-
figuration to isolate effects of each parameter.

plications at the API level. We developed a parameterizable
micro-benchmark which we used to isolate each parameter
and study its effect. We carefully tune the parameters for
these experiments such that the studied parameter becomes
the control variable and dictates performance. The third col-
umn in Table 2 shows the settings of other parameters, as a
6-tuple, as each parameter is isolated. The next four sections
discuss execution time, a classification of application types,
overheads, and the scalability effects of the parameters.

4.2.1 Execution Time

Figure 5 shows how execution time scales as each applica-
tion parameter is varied linearly. In general, execution scales
linearly or near-linearly for most parameters, showing that
the runtime effectively implements the model. We discuss
each individual parameter in detail below.

map intensity and reduce intensity: The amount of user
computation performed in the Map and Reduce functions
directly controls performance. As expected, increasing the
intensity of the kernels scales execution time proportionally.

map fan-out: Altering the number of key/value pairs emit-
ted in the Map stage affects the computation and mem-
ory transfer that occurs in all subsequent stages – one less
key/value pair means one less element to partition and sort,
and, if the key is unique, also one less reduction to perform.
We see a super-linear (nlog(n)) effect on execution time as
the fan-out is scaled. Fan-out increases the number of values
to be sorted, and to isolate map fan-out we set map intensity,
reduce fan-in and reduce intensity to low values. As a result,
sorting, which scales asnlog(n), dictates performance. Pro-
portionally increasing the number of partitions can make this
growth linear as described further below.
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Figure 5. Execution time normalized to execution time at the lowest setting for the given parameter. The individual curve are
not meaningfully compared since the weighting of parameters across micro-benchmark configurations varies.

reduce fan-in: The number of reduce invocations is equiv-
alent to the number of key/value pairs emitted during Map
divided by thereduce fan-in. Thus, there is an inverse rela-
tionship between thereduce fan-inand the execution time.

partitions: Execution time initially decreases rapidly as the
number of partitions is reduced, and then increases gradu-
ally after reaching a minimum. As the number of partitions
increases, the size of each partition reduces. At first, execu-
tion time also reduces because sorting is limited to a par-
tition, and sorting many small sized partitions is less work
than sorting a few large partitions. However, when the size
of partitions drops below the size of a SPE quick-sort buffer,
performance degrades. An increase in the number of buffers,
and a subsequent decrease in the amount of SPE work per-
formed per buffer, cause the PPE to be overburdened with
buffer management and synchronization tasks, and unable
to handle and respond to requests in a timely manner.

input size: Application performance scales slightly faster
than linearly with the input size. This is because the amount
of key comparisons per input element in sorting grows by
nlog(n). Proportionally increasing the number of partitions
will make this growth linear.

4.2.2 Application Types

In the above discussion and in Table 2 we show only the
isolated effect of each parameter, purposefully overlooking
parameter inter-dependencies. In real applications however,
these parameters do interact and affect the runtime and over-
all performance. Rather than exhaustively analyze all possi-
ble combinations, we examine each stage of the runtime and
determine a set ofapplication typesthat capture the domi-
nant interactions between the parameters.

Map-dominated: The Map stage’s performance is to first-
order dictated bymap intensity, but is also related tomap
fan-out, which dictates the amount of partitioning work. Par-
tition runs on the PPE concurrently with Map, and must
complete within some proximity of Map to ensure unob-
structed sorting with no serialization bottleneck. Hence,to
avoid this bottleneck, the ratio ofmap intensityto map fan-
out must be above some threshold value. Those applications
that meet this threshold we labelmap-dominated. For our

micro-benchmark configuration representative of this appli-
cation type, we set this ratio very high.

Partition-dominated: Conversely, if this ratio is below the
threshold value, partitioning dominates and we label these
applicationspartition-dominated. For this application type,
our representative micro-benchmark configuration has the
ratio set very low.

Sort-dominated: The criticality of sorting is dictated by the
map fan-outand the number ofpartitions. While many real-
world applications setpartitions to its performance-optimal
value, others desire a single sorted partition, and still others
define a custom hash function and set the number of parti-
tions to divide output into logically separate, sorted group-
ings. We label applications with a highmap fan-outand
very few partitions as sort-dominated. For our representa-
tive micro-benchmark configuration, we setpartitionsto one
andmap fan-outhigh. This configuration stresses the Merge-
sort stage of the runtime, and entirely bypasses partitioning
as there is only one partition.

Reduce-dominated: Although applications dominated by
Reduce are in theory a possibility, all real-world applica-
tions we examined have simple Reduce computations, with
low reduce intensityand highreduce fan-in. Reduce thus
comprises only a small percentage of overall execution time.
Moreover, Reduce has minimal effect on the execution of
other stages. Hence, we do not study this as a separate appli-
cation type in this paper.

Table 3 lists the application types we study and their
micro-benchmark parameter configurations. In examining
real-world applications, we observed that most applications
align strongly with one of these application types.Map-
dominated applications are traditional, computationally-
intense data-parallel applications that utilize the Reduce
phase only for coalescing the results from individual Map
phases. In contrast,partition-dominatedapplications rely
heavily on the partitioning, sorting, and Reduce phases of the
runtime to group many key/value pairs together, such as the
word counting example in section 2. Finally,sort-dominated
applications are likepartition-dominatedapplications, but
with sorted output.
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Application Name Application Type Lines of Code Speedup vs. Core2 BIPS
MapReduce Serial 1-SPE 8-SPEs 8-SPE Ideal 1-SPE 8-SPEs 8-SPE Ideal

histogram partition-dominated 345 216 0.16 0.15 2.44 1.56 1.51 24.49
kmeans partition-dominated 324 318 0.91 3.00 6.92 2.08 7.35 17.01
linearRegression map-dominated 279 114 0.34 2.59 2.67 1.47 11.32 11.70
wordCount partition-dominated 226 324 0.87 0.96 10.26 1.52 1.74 18.64
NAS EP map-dominated 264 112 1.08 8.62 8.62 2.00 15.93 15.95
distributedSort sort-dominated 171 93c 0.41 0.76 5.48 1.28 2.38 17.15

c The serial implementation of distributedSort uses the C standard library qsort().

Table 4. Applications characteristics and performance.
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Figure 6. Execution breakdown for application types.

4.2.3 Runtime Overhead

Figure 6 shows the breakdown of execution time in the SPEs
for the three application types running with 8 SPEs.Map, re-
duce, andsort denote execution time in the respective com-
putation stages.PPEandDMA represent runtime overhead.
PPE denotes the percentage of cycles SPEs are waiting for
work and synchronization from the PPE, including the ab-
sence of work due to initialization, finalization, and work-
flow dependences.DMA denotes the percentage of cycles
SPEs must wait for DMA completion in order to proceed.
The contribution of runtime code executing on the SPEs is
less than 1% and is included in themap, reduce, andsort
times.

Map-dominatedapplications are ideally suited for the
architecture and the model, and the runtime is very efficient
in executing these applications. For these applications, the
SPEs spend more than 95% of their time in the Map and
Reduce kernels.

Partition-dominatedapplications frequently have runtime
overhead around 90%. These applications emit a large vol-
ume of intermediate data, and typically have minimal Map,

Application Type Micro-benchmark Configuration
map-dominated [128,0 ,.01,8,8 ,16MB]

partition-dominated [0 ,0 ,1.0,8,256,16MB]

sort-dominated [0 ,0 ,1.0,8,1 ,16MB]

Table 3. Application types.
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Figure 7. Speedup as number of SPEs is scaled from 1 to 8.

or Reduce work.PPEcontribues 85% andDMA contributes
5% overhead. 40% ofPPE is caused by serialization on
the PPE’s substantial partitioning task. The remaining 45%
of PPE is caused by the low computation demands on the
SPEs, which cause a high turnover rate for the PPE’s buffer
management and scheduling tasks, overwhelming the PPE.
To potentially alleviate these PPE overheads, section 5 dis-
cusses techniques to parallelize Partition and enhance PPE
thread scheduling for improved response times.

Sort-dominatedapplications also have high overheads
around 90%, but for different reasons.DMA contributes 20%
andPPE contributes 70% overhead. 40% ofPPE is due to
the inherent serialization of Merge-sort and Reduce, given
only one partition. The remaining 30% ofPPE is due to
low computation demands on the SPEs, similar topartition-
dominatedapplications. The 20%DMA overhead is caused
primarily by merge-sort output transfers.

4.2.4 Scalability

Figure 7 shows the relative speedup of the three application
types as the number of SPEs is increased.Map-dominated
applications scale perfectly.Partition-dominatedapplica-
tions experience both partitioning and the final merge-sort
as serialization points. Together, these two tasks dominate
execution time, leaving little other work that can scale with
more processors.Sort-dominatedapplications scale better,
but still poorly due to the Merge-sort and Reduce serial-
ization points; when the number of processors is increased
from 4 to 8, there is contention for DMA and PPE resources,
causing a performance degradation.

8



4.3 Application Performance

We now discuss the performance of complete applications,
focusing again on execution time, overheads, and scalability.

4.3.1 Applications

We implemented six real-world applications, four of which
are applications from the Phoenix evaluation suite [22] well
suited to the Cell architecture. We also implemented one
application from the NAS benchmark suite,EP [1], eas-
ily adapted to the model, and one application,distributed-
Sort, as representative of data processing applications where
sorted output is often desired. The application names, their
type, and the lines of code are shown in Table 4. Equiva-
lent micro-benchmark configurations are shown in Table 5.
A detailed description of each application follows.

histogram: The frequency of occurrence of each RGB color
component for a given bitmap image file is counted. Map
counts the occurrences of each color component and Reduce
gathers the intermediate sums to produce a final sum for each
component.

kmeans:This application clusters a set of data points. Map
takes as input a point, finds the distance between the point
and each cluster, and assigns the point to the closest cluster.
Reduce computes the new cluster means by averaging the
coordinates of all points assigned to the given cluster. The
algorithm iterates until it converges.

linearRegression: This applications computes a line-of-
best-fit for a set of 2D coordinates. Coordinates are grouped
into 32KB chunks for bulk processing. Map computes inter-
mediary summary statistics for a chunk and reduce gathers
all the data for a given statistic and calculates the best fit.

wordCount: The frequency of occurrence of each word in
a file is counted for a given text file. For compatibility, our
implementation truncates all words to 16 characters.

NAS EP: Map generates pairs of Gaussian random deviates
and counts the number of pairs that lie within successive
square annuli, along with the sum of all pairs generated.
Reduce computes the final sums for each attribute.

distributedSort: This application performs an integer sort.
Map selects the key on which to sort. Reduce is omitted.

Application Name Micro-benchmark Configuration
histogram [6 ,<1,0.38 ,4700,512,100MB]

kmeans [793,13,2.0 ,100 ,100,1.6MB]

linearRegression [61 ,<1,<0.01,8192,8 ,128MB]

wordCount [8 ,<1,1.0 ,25 ,512,10MB ]

NAS EP [145,<1,<0.01,8 ,8 ,512MB]

distributedSort [8 ,0 ,1.0 ,- ,1 ,32MB ]

Table 5. Measured parameter values for applications.
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Figure 8. Execution breakdown for applications.

Four other applications from the Phoenix suite were
not implemented for the following reasons.Reverse Index
andString Matchrequire variable length structures (strings)
which our current runtime does not support. Providing such
support with software-managed memories is complex and
highly challenging.Matrix Multiply andPCA require direct
access to a large global data structure and have no Reduce
work. MapReduce therefore provides limited productivity
benefits. Particularly for the Cell, implementing them to ac-
commodate arbitrary data sizes also requires explicit user
memory management, defeating a key benefit of our run-
time.

Our baseline for performance comparison is another best-
of-breed system, an Intel Core2 Duo with a 4MB L2 cache
operating at 2.4 GHz. We implemented single-threaded ver-
sions of the applications in C and compiled them using GCC
at optimization level 3. While optimized multi-threaded Cell
implementations of these applications could serve as a base-
line (or upper-bound), they require extensive application-
specific tuning and reveal little intuition about the appli-
cations themselves. Instead we measure runtime overheads
to quantify inefficiencies and compare against this baseline
system.

4.3.2 Execution Time and Runtime Overhead

Columns 5 through 7 of Table 4 show the relative speedup
of the applications compared to an Intel Core2 serial im-
plementation, and Figure 8 shows the breakdown of execu-
tion cycles. Ideal speedup is calculated by removing all the
overhead execution cycles from the execution time of the
program. A couple of applications perform worse than the
baseline, a few perform better, while NASEP excels – its
achieved speedup is close to ideal. An explanation of each
application follows.

linearRegressionand NASEP are map-dominatedand
significantly out-perform our baseline, with total runtime
overhead under 4% and 1%, respectively, and achieving
close to ideal speedup at 2.6X and 8.6X, respectively. Note
that neither application is hand-optimized for SIMD execu-
tion on the Cell, which could further boost performance.
NASEP in particular performs computation on double-
precision floating-point numbers, to which the Cell is not
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well suited, but which is required by the benchmark spec-
ification. For the sake of fairness, we used the C standard
math library routines on both the baseline system and the
Cell system, but our experiments showed that using SIMD
single-precision operations yields a minimum 7Xadditional
performance improvement for the Cell MapReduce imple-
mentation.

Amongpartition-dominatedapplications, whilehistogram
is naturally data-parallel, implementing it using MapReduce
makes it reliant on the PPE for partitioning and runtime
orchestration with 92% overhead and only 0.15X speedup.
wordCountperforms similarly with 90% overhead, but is
more competitive with the baseline showing 0.96X speedup.
The speedup difference is caused by an extremely straight-
forward and very fast single-threaded implementation ofhis-
togram, compared to relatively a more complex and slower
single-threaded implementation ofwordCount, which re-
quires a binary search tree for data storage. Finally,kmeans
has very high map-intensity, allowing useful work to occur
concurrently with partitioning. Partitioning still dominates
as a serialization bottleneck, however, preventing the transi-
tion into themap-dominatedcategory, despite strongly out-
performing our baseline with 3.0X speedup. This bottleneck
is evidenced by the modest performance scaling from 1 SPE
to 8 SPEs.

distributedSortis the onlysort-dominatedapplication, al-
though any partition-dominated application is likely to be-
comesort-dominatedif a single sorted output is required.
distributedSorthas 28% overhead due to Merge-sort serial-
ization, 32% due to lengthy DMA stalls, and 26% due to idle
cycles waiting for work and synchronization from the PPE,
resulting in 86% total overhead. Speedup relative to the base-
line is only 0.76X. Although the ideal speedup is 5.6X, it is
not achievable in practice as DMA, synchronization, and the
inherent serialization of merge-sorting constrain any sorting
application.

4.3.3 Scalability

One of the benefits of the model is its inherent scalability.
While, our performance analysis used all 8 SPEs, by simply
configuring the number of SPEs in the runtime, an applica-
tion can be scaled up or down. We study scalability of the
runtime by varying the number of SPEs from 1 to 8 and ex-
amining the execution rate (BIPS). Columns 8 and 9 of Ta-
ble 4 show BIPS for 1 and 8 SPEs, respectively. The Cell
processor’s theoretical peak is 51.2 BIPS when using all 8
SPEs at 3.2 GHz.

Applications that suit the model and architecture (kmeans,
linearRegression, andNASEP), show near-linear speedup.
For example,NASEP performance increases from 2.0 to
15.93 BIPS.Partition-dominatedapplications with little
map work likehistogramandwordCountare bottlenecked
by the PPE and hence adding more SPEs provides lit-
tle speedup, at best going from 1.52 to 1.74 BIPS.Sort-
dominatedapplications scale better, but eventually DMA

and PPE overheads dominate and the SPEs go under-utilized.
Our representativesort-dominatedapplication,distributed-
Sort, scales from 1.28 to 2.38 BIPS.

Ideal BIPS is calculated by isolating execution of only the
Map, Reduce, and sorting kernels, and is provided in column
10 of Table 4. As shown, if the SPEs can be perpetually fed
with data, all applications can sustain high performance. For
applications that map well to the model and architecture,
our runtime is able to match this ideal BIPS. For other
applications, it is less successful, but the ideal BIPS will
be hard to achieve even with application-specific tuning, as
much of the DMA and PPE overheads are inherent to the
applications themselves.

5. Discussion
Our performance results show that computationally intense
applications scale well and sustain high performance. In ad-
dition to the performance benefits, the MapReduce model
provides a large programmability benefit, as indicated by the
lines of code listed in the third and fourth columns of Ta-
ble 4. While the runtime itself is quite sophisticated, requir-
ing more than 5000 lines of code, the MapReduce programs
were no more cumbersome to develop than their single-
threaded counterparts – we had to perform no application-
specific tuning, partitioning, scheduling, or memory man-
agement.

However, our results show that computationally weak
applications perform relatively poorly. Unfortunately, it is
unclear whether this is a limitation of the architecture or
the model since these applications are primarily PPE bound,
as opposed to bandwidth or computation bound. As future
work, we propose two implementation enhancements that
have the potential to greatly improve the scalability of the
runtime executing these types of applications.

Distributing Partition to the SPEs: The serialization bot-
tleneck of partitioning on the PPEs is a substantial deterrent
to efficient processing of computationally weak applications.
For such applications, decentralizing the partitioning work
across the SPEs is clearly desirable. The obvious approach is
to replicate the number of partition buffers for each SPE, and
have each SPE partition directly into its own set of buffers.
However, this complicates selecting of the optimal number
of partitions, and also forces DMA transfers at the granular-
ity of key/value pairs. Nevertheless, our experiments indicate
that this enhancement could yield up to a 2X performance
improvement forpartition-dominatedapplications running
with all 8 SPEs.

A single OS thread: Upon close examination of our per-
formance data, we discovered that our runtime suffers from
multi-threading overheads on the PPE. As an example, we
observed that for computationally weak Map tasks, the time
taken by the PPE to respond to an output allocation request
is twenty times the time taken for SPE computation. The
relatively large (coarse) time-slice granularity of the OSis
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primarily responsible for the slow PPE response time. Thus,
the solution that we propose is to implement the PPE por-
tion of the runtime using only a single, event-driven OS
thread, while making all communication asynchronous. This
presents a challenge as currently the PPE scheduler threads
communicate work items to the SPEs using blocking mail-
box calls.

We include some other enhancements to be considered
for future work below.

Arbitrary memory accesses in Map and Reduce:Exten-
sions to the model and the run-time to efficiently support
arbitrary memory accesses can enhance the range of appli-
cations supported by the runtime. Our current design has the
limitation that (1) the input, intermediate, and output ele-
ment data structures must be of bounded size, and that (2)
they must occupy a contiguous region of memory. Support-
ing either or both of these features for the Cell platform is
challenging. For our runtime, they also require a substantial
API and design re-architecture.

Hierarchical MapReduce: With the Cell processor being
used in clusters and the growing requirement of high per-
formance computing in servers, a hierarchical MapReduce
model at the large-scale and chip-level is a natural future en-
hancement we will explore.

6. Related work
Our related work discussion covers Cell-specific program-
ming tools, high-performance applications on the Cell pro-
cessor, programming model extensions for parallelism that
can be applied to Cell, and extensions to the MapReduce
model.

Eichenberger et al. describe a variety of techniques in
the optimizing Cell compiler for extracting parallelism and
simplifying memory management [6]. Topics include SIMD
parallelism extraction, automatic code and data partition-
ing across the cores using OpenMP pragmas [20], and the
implementation of a software-managed cache to support a
single shared memory abstraction on the SPEs. IBM Re-
search has also proposed message passingmicrotasksbased
on the Message Passing Interface (MPI) standard [19]. Fi-
nally, Blagojevic et al. describe scheduling techniques for
different granularities of parallelism for the Cell proces-
sor [3].

Williams et al. used a mathematical model to examine
the potential of the Cell processor for scientific computation
and identify memory management as a key challenge [25].
Application-specific tuning has been used to map several
applications to the Cell processor, including solving lin-
ear equations [14], H.264 decoding [24], speech recogni-
tion [16], and ray tracing [2]. Nanda et al. describe soft-
ware and application tuning for Cell servers focusing on
system-level design and application tuning across Cell pro-
cessors [18]. The hierarchical MapReduce model we pro-

posed as an enhancement can be applied in such systems.
The stream programming model [12] is well suited for

the Cell architecture, and several runtimes support this
model [17, 23]. Fatahalian et al. introduce a new program-
ming model called Sequoia targeted at explicitly memory
managed machines [7]. The MapReduce model is similar to
streaming, but the automatic grouping enables more sophis-
ticated applications than streaming alone. Deitz et al. de-
velop techniques for user-defined scans (similar toMap) and
formulation of user-defined reductions that can be applied
in Chapel and MPI [5]. Knight et al. describe general com-
pilation techniques for explicitly managed memories [13].
Kandemir et al. describe compiler techniques for scratch-
pad memory space which can be applied to the SPE local
memories [11].

Lämmel presents a formal description of the MapReduce
model [15]. The Sawzall language captures the MapReduce
model and provides an interface to a set of aggregators that
can express many common data processing and data reduc-
tion problems [21]. Finally, Yang et al. add amergefunction
to extend MapReduce for processing multiple related hetero-
geneous datasets [26].

7. Conclusions
The Cell processor provides a unique and innovative archi-
tecture with vast performance potential but a challenging
programming platform. This paper presented a MapReduce
runtime for the Cell processor. The runtime provides a sim-
ple machine abstraction, hiding parallelization and hardware
primitives from the user. The programming model is well
suited to several data-parallel programs, and it maps natu-
rally to the Cell architecture. The simplicity of the model
provides enormous productivity benefits and makes the ar-
chitecture accessible to many domains and types of users.
The scalability and performance of the runtime make it at-
tractive for high-performance computation as well.

Applications suited to the model profit greatly from the
productivity, performance, and efficiency benefits, yet the
model is not universally applicable to all types of appli-
cations. Future architectures must embrace such “domain-
specific” solutions, as one universal paradigm or implemen-
tation is unlikely to be efficient and provide high perfor-
mance. Looking forward, this work is applicable to all chip-
multiprocessor systems of the future that adopt a distributed
memory design or software-exposed memories. High perfor-
mance and programmer productivity will both be equally im-
portant constraints for such architectures. The simplicity of
the model and the efficiency of our MapReduce design make
it an attractive choice for programming these systems.
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