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Abstract. There is growing interest in analyzing executables to lamkbfugs
and security vulnerabilities. This paper describes thégdeand implementation
of a language for describing the semantics of an instruainalong with a run-
time system to support the static analysis of executabliggewin that instruction
set. The work advances the state of the art by creating neultipalysis phases
from a specification of the concrete operational semanfitseolanguage to be
analyzed. By exploiting this powerful infrastructure foeating analysis compo-
nents, it will be possibly for recently developed analysishiniques for analyzing
executables to be applied more broadly, to executablesewrih a variety of
instructions sets.

1 Introduction

The problem of analyzing executables to recover infornmatibout their execution
properties has been receiving increased attention. Hoywenesh of this work has fo-
cused orspecializedanalyses to identify aliasing relationships [19], dataetefences
[7,13], targets of indirect calls [18], values of string2]lbounds on stack height [34],
and values of parameters and return values [40]. In conBasikrishnan and Reps [8,
10] developed ways to address all of these problems by mdarsanalysis that dis-
covers an overapproximation of the set of states that caedmhed at each pointin the
executable—wherestatemeansll of the state: values of registers, flags, and the con-
tents of memory. Moreover, their approach is able to be agpb stripped executables
(i.e., neither source code nor symbol-table/debuggirmyimétion is available).

Although their techniques, in principle, are languageepehdent, they were instan-
tiated only for the IntelA32 instruction set. Our motivation is to provide a systematic
way of extending those analyses—and others—to instrusttsmother tham32.

The situation that we face is actually typical of much workowagram analysis: al-
though the techniques described in the literature arejiiple, language-independent,
implementations are often tied to a specific language orrmdiate representation
(IR). This state of affairs reduces the impact that good ideasldped in one context
(e.g., Java program analysis) have in other contexts (etg.analysis).

For high-level languages, the situation has been addréssddveloping common
intermediate languages, e.@CC’s RTL, Microsoft'sMSIL, etc. (although the academic
research community has not rallied around a similar comnfetigpm). The situation is
more serious for low-level instruction sets, because ahéiruction-set evolution over
time (and the desire to have backward compatibility as wizel iscreased from 8 bits
to 64 bits), which has led to instruction sets with severaldrad instructions, and (ii) a
variety of architecture-specific features that are incaibfwith other architectures.

* Supported by ONR under grant N0O0014-01-1-0796 and by NSErughnts CCF-0540955
and CCF-0524051.
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To address these issues, we developed a language for degdhib semantics of
an instruction set, along with a run-time system to supgwtdtatic analysis of exe-
cutables written in that instruction set. The work repoiitethis paper advances the
state of the art by creating a system for automatically gativey analysis components
from a specification of the language to be analyzed. The sy8tat we have created,
calledTSL (for “ TransformerSpecificationLanguage”), has two classes of users: (1)
instruction-set-specificationgS) developers and (2) analysis developers. The former
are involved in specifying the semantics of different instion sets; the latter are in-
volved in extending the analysis framework.

In the design of th&SL system, we were guided by the following principles:

— There should be a formal language for specifying the serrsmnfithe language to
be analyzed. MoreovessS developers should specify only the abstract syntax and
a concrete operational semantics of the language to be zwthlyeach analyzer
should be automatically generated from this specification.

— Concrete syntactic issues—including (i) decoding (maeltiode to abstract syn-
tax), (ii) encoding (abstract syntax to machine code),§éirsing assembly (assem-
bly code to abstract syntax), and (iv) assembly prettytprin(abstract syntax to
assembly code)—should be handled separately from theagbsyntax and con-
crete semantics.

— There should be a clean interface for analysis developespéoify the abstract
semantics for each analysis. An abstract semantics csidighinterpretation an
abstract domain and a set of abstract operators (i.e.,éavpglrations of SL).

— The abstract semantics for each analysis should be sepfatethe languages to
be analyzed so that one does not need to specify multipléonsref an abstract
semantics for multiple languages—this is the key concegitritakes the analyzer-
generator system language-independent.

Each of these objectives has been achieved inrgiesystem. The contributions
made by our work can be summarized as follows:

Transformer Specification LanguageWe created th&SL language for specifying the
abstract syntax and concrete semantics of instruction aetsdeveloped mechanisms
by which a multiplicity of instruction-set analyzers can generated automatically.
The TSL system translates thesL specification of each instruction set to a common
intermediate representatio@IR) that can be used to create multiple analyzgp3.(

Support for Multiple Analysis TypesThe system supports several analysis types.

— Classical worklist-based value-propagation analysediclwgenerated transform-
ers are applied, and changes are propagated to successtesgssors (depend-
ing on propagation direction). Context-sensitivity in Banalyses is supported by
means of the call-string approach [37].

% The translation of the concrete syntaxes to and from alisggatax is handled by a genera-
tor tool that is separate fromSL, and will not be discussed in this paper. The relationship
between the two systems is similar to that between Flex asdrBiWith Flex and Bison, a
Flex-generated lexer passes tokens to a Bison-generateer.da our case, th€SL-defined
abstract syntax serves as the formalism for communicatihgeg—namely, instructions’ ab-
stract syntax trees—between the two tools.
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— Transformer-composition analyses [16, 37], which areipalgrly useful for context-
sensitive interprocedural analysis.
— Unification-based analyses for flow-insensitive interpeheral analysis.

In addition, an emulator (for the concrete semantics) is silgpported.

Implemented AnalysesThese mechanisms have been instantiated for a number of spe-
cific analyses that are useful for analyzing low-level cadeluding: value-set analysis
[8,10] (§4.1), affine-relation analysis [87.2] (§4.2), aggregate structure identification
[11] (§4.3), def-use analysis (for memory, registers, and fldgs3}, and generation of
symbolic expressions for an instruction’s semantigsy).

Established Applicability.The capabilities of our approach have been demonstrated by
writing specifications fotA32 andPowerPC. These are nearly complete specifications
of the languages—not idealized subsets, as are often usathaemic studies—and
include such features as (1) aliasing among 8-bit, 16-bi, 22-bit registers, e.gal,

ah, ax, andeax (for I1A32), (2) endianness, (3) issues arising due to bounded-word-
size arithmetic (overflow/underflow, carry and borrow, shd, rotation, etc.), and (4)
setting of condition codes (and their subsequent intesificet at jump instructions).

The abstract transformers for these analyses that aredrigam the A32 andPow-
erPC32TSL specifications have been put together to create a systemstbattially du-
plicates CodeSurfer/x86 [9]. A similar analysis systemHewerPC is under construc-
tion. (TheTSL-generated components are in place; only a few mundanesinirdaure
components are lacking.)

We have also experimented with sufficiently complex feawEother low-level
languages (e.g., register windows for SPARC and conditional execution of instruc-
tions forARM) to know that they fit our specification and implementatiordeis.

There are many specification languages for instructionasdsmany purposes to
which they have been applied. In our work, we needed a mesimatioi create abstract
interpreters of instruction-set specifications. There(atdeast) four issues that arise:
during the abstract interpretation of each transformer athstract interpreter must be
able to (i) execute over abstract states, (ii) execute bihdhes of a conditional ex-
pression, (iii) compare abstract states and terminateatbstxecution when a fixed
point is reached, and (iv) apply widening operators, if 138eey, to ensure termination.
Such a mechanism did not appear to be available in the laegubgt we looked at. As
far as we knowTSL is the first instruction-set-specification language to supguch
mechanisms.

Although this paper only discusses the applicatio8if to low-level instruction
sets, we believe that only small extensions would be neexlbd able to applySL to
source-code languages (i.e., to create language-indepeadalyzers for source-level
IRs). The main obstacle is that the concrete semantics of as@ade language gener-
ally uses an execution state based on nested variabldtte-{a variable-to-location,
location-to-value) maps. For a low-level language, théesitacorporates an address-
based memory model, for which thi&L language provides appropriate primitives.

The remainder of the paper is organized as folloy#sintroducesrSL and the ca-
pabilities of the systent4 explains howCIR is instantiated to create an analyzer for a
specific analysis componefiB presents how th&SL system handles some important
issues, such as recursion and conditional branchesling5 describes quirky features
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of several instruction sets, and discusses how those &satre handled iTSL. §6
discusses related work.

2 Overview of theTsL System

This section provides an overview of thSL system. We discuss how three analysis
components are created automatically fromsa specification, using a fragment of the
IA32 instruction set to illustrate the process.

2.1 TSL from an ISS Developer’'s Standpoint

Fig. 1 shows part of a specification of th&32 instruction set taken from the manual
[1]. The specification contains information about the regsas well as the addressing
modes that are supported. It also provides the specificafidhe ADD instruction’s
action, i.e., how it manipulates its operands and how it glkarthe state.

Fig. 1. A part of the Intel manual’s specification tA32’s ADD instruction.

General Purpose registers: EAX,EBX,ECX,EDX,ESP,EBRHESI,EIFADD r/m32,r32; Add r32 to r/m32
Each of these registers also have 16-bit or 8-bit subset®iame ADD r/m16,r16; Add r16 to r/mi6. ..

Addressing Modes: [sreg:][offset][([base][,index][zde])] Operation: DEST— DEST + SRC;
EFLAGS register: ZF,SF,OF,CF,AF,PF, . .. Flags Affected: The OF,SF,ZF,AF,CF, and PF
Ce flags are set according to the result.

[1] /1 User-defined abstract syntax [1] template <typename INTERP>

[2] reg32: EAX() | EBX()|...; [2] class CIR {

[3] flag: ZF() | SFQ |...; [3] classreg32{...};

[4] operand32: Indirect32(reg32 reg32 INT8 INT32) [4] class EAX: publicreg32 { ... };
[5] | D|rectRegSZ(regSZ)| Immediate32(INT32)| ...; [5]

[6] operandl6: . [6] classoperand32 { ... };

[N [7]1 class Indirect32: public operand32 { ... };

[8] instruction ey ...

[9] : ADD32_32(operand32 operand32) [9] classinstruction { ... };

[10] | ADD16.16(operand16 operand16) | .. .; [10] class ADD32.32: public instruction { . ..

[11] var32: Reg32(reg32); [11] enum TSL.ID id;

[12] var_bool: Flag(flag); [12] operand32 opl;

[13] state: State(MEMMAP32_8_LE // memory-map [13] operand32 op2;

[14] VAR32MAP Il register-map  [14] };

[15] VARBOOLMAP); /I flag-map [15] ...

[16] // User-defined functions [16] classstate { ... };

[17] state interpOp32(state S, operand32 1) { ...} [17] class State: public state { . ..

[18] state updateFlag32(state S,...){ ...} [18] INTERP::MEMMAP32_8_LE mapMap;

[19] state updateState32(state S, ...) { [19] INTERP::VAR32MAP var32Map;

[20]  with(S) ( [20] INTERP::VARBOOLMAP  varBoolMap;

[21] State(mem,regs,flags): . . . [21] };

[22] } [22] ...

[23] state interpinstr(instruction |, state S) { [23] static state interpInstr(instruction I, state S) {

[24]  with(l) ( [24] state ans;

[25] ADD32_32(dstOp, srcOp): [25]  switch(lid) {

[26] let dstVal = interpOp32(S, dstOp); [26] case ID-ADD32.32: {

[27] srcVal = interpOp32(S, srcOp); [27] operand32 dstOp = l.op1;

[28] res = dstVal + srcVal; [28] operand32 srcOp = l.op2;

[29] S2 = updateFlag(S, dstVal, srcval, res); [29] INTERP::INT32 dstVal = interpOp32(S, dstOp);
[30] in (updateState32( S2, dstOp, res ) ), [30] INTERP::INT32 srcVal = interpOp32(S, srcOp);
[31] L. [31] INTERP::INT32 res = INTERP::Add(dstVal,srcVal);
[32] ) [32] state S2 = updateFlag(S, dstVal, srcVal, res);
[33] } [33] ans = updateState32(S2, dstOp, res);

[34] } break;
Fig. 2. A part of theTSL specification 0fA32 [35] .

concrete semantics, which corresponds tog@}e }
specification ofADD from thelA32 manual.[3g};
Reserved types and function names are un

lined. d'g_eg' 3. A part of theCIR generated from Fig. 2.
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However, the specification from Fig. 1 is only semi-formauses a mixture of En-
glish and pseudo-code. Our work is based on completely fiospeifications, which
are written in a language that we design&8L(). TSL is a first-order functional lan-
guage with a datatype-definition mechanism for defining n&ee datatypes, plus de-
construction by means of pattern matching. Fig. 2 shows #negb theTSL specifica-
tion that corresponds to Fig. 1.

Much of what anSS developer writes is similar to writing an interpreter forian
struction set in first-ordewL [20]. An ISS developer specifies the abstract syntax gram-
mar by defining the constructors for a language of instrastitines 2—-10), a concrete-
state type (lines 13—-15), and the concrete semantics ofiestrhction (lines 23-33).

TSL provides 5 basetypesNT8, INT16, INT32, INT64, andBOOL. TSL supports
arithmetic/logical operators, —, *, /, !, &&, ||, xor), bit-manipulation operators
&, |, ", <, >, right-rotate, left-rotate), relational operatoss, (<=, >, >=, ==, |=),
and a conditional-expression operator)

TSL also provides several map-basetypdEMMAP32_8_LE, MEMMAP32_16_LE,
VAR32MAP, VAR16MAP, VARSMAP, VARBOOLMAP, etc. MEMMAP32_8_LE maps from
32-bit values (addresses) to 8-bit valugsR32MAP from var32 to 32-bit valuesyAR-
BOOLMAP from var_bool to Boolean values, and so forth. Tab. 1 shows the list of
some of theTSL access/updatéunctions. Eachaccessfunction takes a map (e.g.,
MEMMAP32_8_LE, VAR32MAP, VARBOOLMAP, etc.) and an appropriate key (el§lT32,
var32, var_bool, etc.), and returns the value that corresponds to the kesh &adate
function takes a map, a key, and a value, and returns theegbdetp. Thaccess/update
functions forMEMMAP32_8_LE implement the little-endian storage convention.

Table 1. Access/Updatéunctions.
MEMMAP32_8_LE MemUpdate_32_8_LE_32( MEMMAP32_8_LE memmap INT32 key INT32 v);
INT32 MemAccess_32_8_LE_32( VAR32MAP mapmap INT32 key);

VAR32MAP Var32Update(VAR32MAP var32Map var32 key, INT32 v);
INT32 Var32Access( VAR32MAP var32Map var32 key);

VARBOOLMAP VarBoolUpdate( VARBOOLMAP varBoolMap var_bool key, BOOL v);
BOOL VarBoolAccess( VARBOOLMAP varBoolMap var_bool key);

Each specification must define several reserved (but uderedy types:var64,
var32, varl6, var8, andvar_bool, which represent storage components of 64-bit, 32-bit,
16-bit, 8-bit, and Boolean types, respectivehgtruction; state; as well as the reserved
functioninterplinstr. (These are underlined in Fig. 2.) These form part of the ARlla
able toanalysis enginethat use th@SL-generated transformers (8. The reserved
types are used as an interface betweerCtReand analysis domain implementations.

The definition of types and constructors on lines 2—10 of Fig.an abstract-syntax
grammar fonA32. The definitions forvar32 andvar_bool wrap the user-typegg32 and
flag, respectively. Typeeg32 consists of nullary constructors fok32 registers, such
asEAX() andEBX(); flag consists of nullary constructors for the32 condition codes,
such agzF() andSF(). Lines 4—7 define types and constructors to representahieus
kinds of operands than32 supports, i.e., various sizes of direct register, immedliat
and indirect memory operands. The reserved (but user-defiyygeinstruction consists
of user-defined constructors for each instruction, suchz332 32 andADD16.16,
which represent instructions with different operand sizes
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The typestate specifies the structure of the execution state. Jtag for 1A32 is
defined on lines 13-15 of Fig. 2 to consist of a memory-mapgsster-map, and a
flag-map. Theconcrete semantids specified by writing a function naméaterpinstr
(see line 23 of Fig. 2), which maps arstruction and astate to astate.

2.2 Common Intermediate Representation¢IR)

Fig. 3 shows part of th&@SL CIR automatically generated from Fig. 2. Each gener-
atedCIR is specificto a given instruction-set specification, mgmmon(whence the
nameCIR) across generated analyses. Each geneGires a template class that takes
as inputiNTERP, an abstract domain for an analysis (lines 1-2). The uséEnetkab-
stract syntax (lines 2—10 of Fig. 2) is translated to a s&t+af abstract-domain classes
(lines 3—15 of Fig. 3) that contain appropriate abstractaijoes. The user-defined types,
such aseg32, operand32, andinstruction, are translated to abstragt+ classes, and the
constructors, such @AX, Indirect32, andADD32_32, are subclasses of the parent ab-
stractC++ class. Each user-defined function is translated@tRamember function.
EachTSL basetype and basetype-operator is prepended with theatnmalrameter
namelNTERP; INTERP is supplied for each analysis by an analysis designerwithe
expression and the pattern matching on lines 24-25 of Fige 2ranslated tewitch
statements ilc++* (lines 25-36 in Fig. 3). The function calls for obtaining tredues
of the two operands (lines 26—27 in Fig. 2) correspond taCthecode on lines 29-30
in Fig. 3. TheTSL basetype-operatoer on line 28 in Fig. 2 is translated to tf&R
member functiomdd, as shown on line 31 in Fig. 3. The function calls for updathmey
state (lines 29-30 in Fig. 2) are translated ir@e+ code (lines 32-33 in Fig. 3).

2.3 TSL from an Analysis Developer’s Standpoint

The generate€IR is instantiated for an analysis by defining (r+) an interpreta-
tion: a representation class for eat@L basetype, and implementations of eadL
basetype-operator and built-in function. Tab. 2 showsriémentations of primitives
for three selected analyses: value-set analys#\( sees4.1), quantifier-free bit-vector
semanticsQFBV, seet4.5), and def-use analysiBWA, see§4.4).

Each interpretation defines an abstract domain. For exafimee3 of each column
defines the abstract-domain class feT32: ValueSet32, QFBVTerm32, and UseSet.
Each abstract domain is also required to contain a set ofwexddunctions, such as
join, meet andwiden which forms an additional part of the API available to asay
engines that usesL-generated transformers (sg8.

Note that the work that an analysis developer performsisspecific buindepen-
dentof each language to be analyzed; from the interpretationditnes an analysis,
the abstract transformers for that analysis can be gemkaatematically foreveryin-
struction set for which one hast&L specification.

2.4 Generated Transformers
Consider the instructionatld ebx,eax”, which causes the sum of the values of the 32-
bit registersebx andeax to be assigned intebx. When Fig. 3 is instantiated with the

4 The TSL front end performsvith-normalization which transforms all (multi-levelyvith ex-
pressions to use only one-level patterns, using the patmpilation algorithm from [31,
38].
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Table 2. Parts of the declarations of the basetypes, basetypetomgrand map-access/update
functions for three analyses.

VSA QFBV DUA

[1] class VSALINTERP { [1] class QFBV_INTERP { [1] class DUA_INTERP {

[2] /I basetype [2] /I basetype [2] /I basetype

[3] typedef ValueSet32 INT32; [3] typedef QFBVTerm32 INT32; |[[3] typedef UseSet INT32;

4 ... 4] ... 4] ...

[5] /I basetype-operators [5] /I basetype-operators [5] /I basetype-operators

[6] INT32 Add(INT32 a, INT32 b) {([6] INT32 Add(INT32 a, INT32 b) {|[6] INT32 Add(INT32 a, INT32 b) {
[7] return a.addValueSet(b); [7] return QFBVPIus32(a, b); |[7] return a.Union(b);

8 } 8 } 8 }

o ... @ ... @ ...

[10] /I map-basetypes [10] /I map-basetypes [10] /I map-basetypes

[11] typedef Dict<var32,INT32> [11] typedef Dict<var32,INT32> [11] typedef KillUseSet VAR32MAP;
[12] VAR32MAP; [12] VAR32MAP; [12] ...

[13] ... [13] ... [13] /I map-access/update functions
[14] /I map-access/update functions |[14] // map-access/update functions |[14] INT32 Var32Access(

[15] INT32 Var32Access( [15] INT32 Var32Access( [15] VAR32MAP m, var32 k) {
[16] VAR32MAP m, var32 k) { [16] VAR32MAP m, var32 k) { [16] return UseSet(k);

[17] return m.Lookup(K); [17] return m.Lookup(k); [17] }

[18] } [18] } [18] VAR32MAP

[19] VAR32MAP [19] VAR32MAP [19] Var32Update( VAR32MAP m,
[20] Var32Update( VAR32MAP m, ([20] Var32Update( VAR32MAP m, ([20] var32 Kk, INT32v) {

[21]  var32k, INT32v) { [21] var32k, INT32v) { [21] VAR32MAP a2 =

[22] return m.Insert(k, v); [22] return m.Insert(k, v); [22] m.Insert2Kill(k);

[23] } [23] } [23] return a2.Insert2Use(v);
[24] ... [24] ... [24] }

[25]}; [25]}; [25]};

three interpretations from Tab. 2, lines 23-33 of Fig. 2 iempént the three transformers
presented (using mathematical notation) in Tab. 3.

Table 3. Transformers generated by thW&L system.

|AnalysigGenerated Transformers foadd ebx,eax”
1VSA | AS.SEbx—S(ebx)+"**S(eax)] [ZF—(S(ebx)+"**S(eax) = 0)] [more flag updatds
2.QFBV/| (ebx” = ebx+*?eax) A (ZF <(ebx+>?eax = 0)) A (SF < (ebx+>eax< 0)) A ...
3DUA |defs={ebx, ZF, SF, OF, CF, AF, PF}, uses= {eax, ebx}

2.5 Measures of Success

The TSL system provides two dimensions of pa-
rameterizability: different instruction sets and dif-
ferent analyses. EadBS developer specifies an
instruction-set semantics, and each analysis devel-
oper defines an abstract domain for a desired anal-
ysis by giving an interpretation (i.e., the imple-
mentations off'SL basetypes, basetype-operators,
and access/updatéunctions). Given the inputs
from these two classes of users, theL sys-

M Instruction-Set Specifications tem automatically generates an analysis compo-
Fig. 4. The interaction between thenent. Thus, to creat®/ x N analysis components,
TSL system and a client analyzerthe TSL system only requires/ specifications of
The grey boxes represemSL- the concrete semantics of instruction sets, Ahd
generated analysis components. analysis implementations (Fig. 4), i.84+ N in-
puts to obtain/ x N analysis-component implementations.

Client Analyzer

N Analysis Components

interpinstr, interplnstr, interpinstry
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TheTSL system provides considerable leverage for implementiatyais tools and
experimenting with new ones. New analyses are easily impfeed because a clean
interface is provided for defining an interpretation. Itk@pproximately 1 man-day to
create each of thBUA andQFBYV interpretations.

Another measure of success is demonstrated by our effosef03L to recreate the
analysis components used in CodeSurfer/x86 [9]. We estitiat the task of writing
transformers (for eight analysis phases used in Code®&8trconsumed about 20
man-months; in contrast, we have invested a total of abouad-month to write the
C++ code for the set of SL interpretations that are used to generate the replacement
components. To this, one should add 10-20 man-days to vaet&3L specification
for 1A32: the current specifications faa32 andPowerPC are, respectively, 2,834 and
1,370 (non-comment, non-blank) linesTsL; the IA32 specification has gone through
multiple revisions as th&SL system took shape; however, thewerPC specification
was written after the language stabilized, and took appnaiély 4 man-days.

Because each analysis is defined by providing an interjyetétr the collection of
TSL primitives, implementations of the abstract transformferseach analysis can be
generated automatically feveryinstruction set for which one hasraL specification.
For instance, from thBowerPC specification, we were immediately able to generate all
of the analyses that had been developed while working w2 specification.

Ever since the days of the first compilers, systems that take programming
tasks previously performed manually have faced the questicdhow well their out-
put performs compared to that created by human programeesto the nature of the
transformers used in one of the analyses that we implemdatde-relation analy-
sis (ARA) [28]), it was possible to write an algorithm to compare tg&t.-generated
ARA transformers and the hand-codggA transformers that were incorporated in
CodeSurfer/x86. On a corpus of 542 instruction instancattibvered various opcodes,
addressing modes, and operand sizes, we found that3heenerated transformers
were equivalent in 324 cases amdre precise¢han the hand-coded transformers in the
remaining 218 cases.

In addition to leverage and thoroughness, for a system ld@eSurfer/x86—which
uses multiple analysis phases—automating the processatireg abstract transformers
ensures semantic consistency; that is, because analydenmantations are generated
from asinglespecification of the concrete semantics, this guarantegattonsistent
view of the concrete semantics is adopted by all of the apalysed in the system.

It takes approximately 8 seconds (on an Intel Pentium 4 wBtD@GHz CPU and
2GB of memory, running Centos 4) for th&sL compiler to compile theA32 spec-
ification to C++, followed by approximately 20 minutes walbck time (on an Intel
Pentium 4 with a 1.73GHz CPU and 1.5GB of memory, running \&mslXP) to com-
pile the generated C++.

5 Approximately 130 of the cases of improvement can be asttibé&atigue factor” on the part
of the human programmer: the hand-coded versions adoptessaqistic view and just treated
certain instructions as always assigning an unknown valtlegtregisters that they affected, re-
gardless of the values of the arguments. Becausé3$hegenerated transformers are based on
the ARA interpretation’s definitions of th€SL basetype-operators, tA&L-generated trans-
formers were more thorough: a basetype-operator’s defimiiti an interpretation is used &l
places that the operator arises in the specification of #teliction set’s concrete semantics.
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3 Generation of the Common Intermediate Representation

Given aTSL specification of an instruction set, th€L system generatedR that con-
sists of two parts: one is a list 6f++ classes for the user-defined abstract-syntax gram-
mar; the other is a list af++ template functions for the user-defined functions, includ-
ing the interface functiomterpinstr. The C++ functions are generated by linearizing
the TSL specification, in evaluation order, into a serie<e# statements.

However, there are some important issues that need to benyd@mandled for the
resulting code to be able to used to create abstract interpréor an instruction-set
specification. In particular, the code generated for eamtsformer must be able to: (i)
execute over abstract stat€8.Q), (ii) possibly propagate abstract states to more than
one successor in a conditional expressighZ), (iii) compare abstract states and ter-
minate abstract execution when a fixed point is reach@®]), and (iv) apply widening
operators, if necessary, to ensure terminati@g3). In§3.4, we discuss an additional
issue that arises i@IR generation, which is important for avoiding loss of premisior
some generated analyzers.

3.1 Execution Over Abstract States

As discussed if§2.2, theTSL system generates tl#R as a template class that takes
as input an interpretatioiNTERP. For each analysis, th@lR is instantiated by an ap-
propriate interpretation faNTERP that the analysis developer defines, as described in
§2.3. (§3.4 discusses more about how &L system generates ti®R.)

3.2 Conditional Branch
Fig. 5 shows part of theCIR that corre-

) INTERpumTag 1 uansiatonofa - sponds to theTSL expression et answer
[3] INTERP:INT32t2; =a ? b :c". Bool3is an abstract domain

[4] INTERP:INT32 answer;

[5] if(Bool3:possibly. false(to.getBoolavalueqyy { O Booleans (which consists of three val-

ues{FALSE, MAYBE, TRUE}, whereMAYBE

[7] tl = .. .; Il translation of b « ”

[B]  answer = ti; means “may be&FALSE or may beTRUE).

o } ' The TSL conditional expression is translated
Hﬂ f{(Bool3::possibly-true(t0.getBool3Value()) { - jntq threeif-statements (lines 5-9, lines 10—
[12] t2=...;/ translation of c 14, and lines 15-17 in Fig. 5). The body of the
Hay e first if-statement is executed when tBeol3

[15] if(t0.getBool3Value() == Bool3:MAYBE) { value fora is possibly false (i.e., eith&ALSE
Hg}} answer = t1.join(t2); or MAYBE). Likewise, the body of the sec-
ond if-statement is executed when tBeol3
Fig. 5. The translation of the conditional 5 e fora is possibly true (i.e., eithefRUE
branch fet answer =a? b : c”. or MAYBE). The body of the thirdf-statement
is executed when thBool3 value fora is MAYBE. Note that in the body of the third
if-statementanswer is overwritten with thgoin of t1 andt2 (line 16).

TheBool3 value for the translation of @SL BOOL-valued value is fetched hyet-
Bool3Value, which is one of therSL interface functions that each interpretation is re-
quired to define for the typBOOL. Each analysis developer decides how to handle
conditional branches by definingtBool3Value. It is always sound fogetBool3Value
to be defined as the constant function that always reMAYSE. For instance, this con-
stant function is useful when Boolean values cannot be egprein an abstract domain,
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such asDUA for which the abstract domain f®&OOL is a set ofuses. For an analysis
whereBool3 is itself the abstract domain for ty@OOL, such as/SA, getBool3Value
returns theBool3 value in the abstract state so that either an appropriatebrar both

branches can be abstractly executed.

3.3 Comparison, Termination, and Widening

[1] state repMovsd(state S, INT32 count) {
[2] count==07?S

[3] :with(S) (

[4] State(memory, regs, flags):

[5] let direction = VarBoolAccess(flags, DF());

[6] edi = RegValue32(regs,EDI());

[7] esi = RegValue32(regs,ESI());

[8] src = MemAccess_32_8_LE_32(memory, esi);
[9] newRegs = direction

[10] ? RegUpdate32(RegUpdate32(

[11] regs,EDI(),edi-4), ESI(),esi-4)

[12] : RegUpdate32(RegUpdate32(

[13] regs,EDI(),edi+4), ESI(),esi+4);

[14] newS = State(MemUpdate_32_8_LE_32(

[15] memory, edi, src), newRegs, flags);
[16] in ( repMovsd(news, count - 1) )

171 )

(18]}

Fig. 6. A recursiveTSL function.

[1] INTERP::state global_S;

[2] INTERP:INT global_count;

[3] INTERP::state global_retval;

[4] INTERP::state repMovsd(

[5] INTERP::state S, INTERP:INT32 count) {
[6] global_S = L;

[71 global_count = L;

[8] global_retval = L;

[9] return repMovsdAux(S, count);
[10]}

[11]INTERP::state repMovsdAux(

[12] INTERP:state S, INTERP::INT32 count) {

[13] // Widen and test for convergence

[14] INTERP::state tmp_S = global_S <7 (global_S LI S);
[15] INTERP:INT32 tmp_count =

[16] global_count 57 (global_count LI count);
[17] if(tmp-S C global_S && tmp_count C global_count) {
[18] return global_retval;

19 }

[20] S =tmp_S; global_S =tmp_S;

[21] count = tmp_count; global_count = tmp_count;

[22]

[23] /I translation of the body of repMovsd

[24] ...

[25] INTERP:state newS =...;

[26] INTERP::state t = repMovsdAux(newsS, count - 1);
[27] global_retval = global_retval U t;

[28] return global_retval;

[29]}

Recursion is not often used imSL
specifications, but is needed for han-
dling some instructions that involve
iteration, such as theA32 string-
manipulation instructions(TOS, LODS,
MOVS, etc., with variousREP pre-
fixes), and theeowerPC multiple-word
load/store instructionsLMT, STMT,
etc). For these instructions, the amount
of work performed is controlled either
by the value of a register, the value of
one or more strings, etc. These instruc-
tions can be specified iNSL using re-
cursion® For each recursive function
specified by anSs developer, thaSL
system generates a function that appro-
priately compares abstract values and
terminates the recursion if abstract val-
ues are found to be equal (i.e., the re-
cursion has reached a fixed point). The
function is also prepared to apply the
widening operator that the analysis de-
veloper has specified for the abstract
domain in use.

For example, Fig. 6 shows the user-
definedTSL function that handle&ep
movsd”, which copies the contents of
one area of memory to a second afea.
The amount of memory to be copied
is passed into the function as the ar-
gumentcount. Fig. 7 shows its trans-
lation into theCIR. A recursive func-
tion like repMovsd (Fig. 6) is split

Fig.7. The translation of the recursive functiodnt two functionsyepMovsd (line 4 of
from Fig. 6. For simplicity, some mathematical nof19- 7) andrepMovsdAux (line 11 of

tation is used, including! (join), 7 (widening),C
(approximation), and_ (bottom).

5 Currently, TSL supports only tail-recursion.

Fig. 7). TheTSL system initializes ap-
propriate global variableglobal S and

" repMovsd is called byinterplnstr, which passes in the value of regisiEX, and set€CX

to O afterrepMovsd returns.
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global_count (lines 6—8) inrepMovsd, and then callsepMovsdAux (line 9). At the be-
ginning ofrepMovsdAux, it generates statements that widen each of the globablasia
with respect to the arguments, and test whether all of thieadeariables have reached
a fixpoint (lines 13-17). If sorepMovsdAux returnsglobal_retval (line 18). If not, the
body of repMovsdAux is analyzed again (lines 23-26). Note that at the transiaifo
each normal return fromepMovsdAux (e.g., line 27), the return value is joined into
global_retval. The TSL system requires each analysis developer to define the funscti

join andwidenfor the basetypes of the interpretation used in the analysis

3.4 Two-LevelCIR

The examples given in Figs. 3, 5, and 7, show slightly singgifrersions ofCIR
code. TherSL system actually generate€sR code in which all the basetypes, basetype-
operators, andaccess/updatdunctions are appended with one of two predefined
namespaces that definéveo-levelinterpretation [29, 22]CONC_INTERP for concrete
interpretation (i.e., interpretation in the concrete setica), andABS_INTERP for ab-
stract interpretation. EitheZONC_INTERP or ABS_INTERP would replace the occur-
rences ofNTERP in the exampleCIR shown in Figs. 3, 5, and 7.

[1] // User-defined abstract-syntax grammar
[2] instruction: . . .

[3] | BCx(BOOL BOOL INT32 BOOL BOOL)
M ...
[5] /I User-defined functions

[6] state interplnstr(instruction I, state S) {
(71
(8
[0
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18] ...
(191}

Fig.8. A fragment of thePowerPC specification
for interpretingBCx instructions BC, BCA, BCL,

BCLA).

[1] AddSublnstr(op, dstOp, srcOp): // ADD or SUB
[2] letdstVal = interpOp(S, dstOp);
srcVal = interpOp(S, srcOp);
ans = (op == ADD() ? dstVal + srcVal
: dstVal - srcVal); // SUB()
in(...)

BCx(BO, B, target, AA, LK):
let. . .
a=...;// INT32 value computed from BO and BI
cia = RegValue32(S, CIA()); // current address
new_ia=(AA?a /I direct: BCA/BCLA
: cia + a); // relative: BC/BCL

Ir = RegValue32(S, LR()); // current address
new_Ir =

(LK ? cia + 4 // change the link register: BCL/BCLA

. Ir); // do not change the link register: BC/BCA

Fig. 9. An example of factoring ifTSL.

The reason for using a two-level
CIR is that the specification of an
instruction set often contains some
manipulations of values that should
always be treated as concrete val-
ues. For example, aisS developer
could follow the approach taken in
the PowerPC manual [2] and specify
variants of the conditional branch in-
struction 8C, BCA, BCL, BCLA) of
PowerPC by interpreting some of the
fields in the instructionAA andLK)
to determine which of the four vari-
ants is being executed (Fig. 8).

Another reason that this issue
arises is that most well-designed in-
struction sets have many regulari-
ties, and it is convenient to factor the
TSL specification to take advantage
of these regularities when specifying
the semantics. Such factoring leads
to shorter specifications, but leads to
the introduction of auxiliary func-

tions in which one of the parameters holds a constant vahegweninstruction. Fig. 9
shows an example of factoring. Th&32 instructionsADD and SUB both have two
operands and can. share the code for fetching the values tfthoperands. Lines 4-5
are the instruction-specific operations; the equality eggion 6p == ADD()" on line 4
can be (and should be) interpreted in concrete semantics.
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In both cases, the precision of an abstract transformeraraptimes be improved—
and is never made worse—nby interpreting subexpressionsiagsd with the manipu-
lation of concrete values in concrete semantics. For instaconsider aSL expression
letv = (b?71:2)that occurs in a context in whidhis definitely a concrete value;
v Will get a precise value—either 1 or 2—whéns concretely interpreted. However,
if bis not expressible precisely in a given abstract domaingctmalitional expression
“(b 71 :2)"will be evaluated by joining the two branches, andill not hold a precise
value (It will hold the abstraction dfft, 2}.).

To address this issue, we perform binding-time analysi$ ¢2lthe TSL code, the
outcome of which is that expressions associated with thepukation of concrete val-
ues in an instruction are annotated withand others witlA. We then generate the two-
level CIR by appendingCONC_INTERP for C values, andABS_INTERP for A values.
The generateg@IR is instantiated for an analysis transformer by defiriB$_INTERP.
TheTSL translator supplies a predefined concrete interpretatic@®NC_INTERP.

4 Generation of Static Analyzers

In this section, we explain how various analyses are creaséiy our system, and
illustrate this process with some specific analysis example

As illustrated in Fig. 4, a version of the interface functioterplinstr is created for
each analysis. Each analysis engine dattspinstr at appropriate moments to obtain a
transformer for an instruction being processed. Analysgrees can be categorized as
follows:

— Worklist-Based Value Propagation (or Transformer Apgiica) [TA]. These per-
form classical worklist-based value propagation in whieimgrated transformers
are applied, and changes are propagated to successoesfpsedrs (depending on
propagation direction). Context-sensitivity in such gsak is supported by means
of the call-string approach [37¥.SA uses this kind of analysis engingi(1).

— Transformer CompositionT|C]. These generally perform flow-sensitive, context-
sensitive interprocedural analysBUA (§4.4) uses this kind of analysis engine.

— Unification-Based Analyse®)B]. These perform flow-insensitive interprocedural
analysis.

For each analysis, th@lR is instantiated with an interpretation by an analysis devel
oper. This mechanism provides wide flexibility in how one canple the system to an
external package. One approach, used Wi, is that the analysis engine (written in
C++) callsinterpinstr directly. In this case, the instantiatetk serves as gransformer
evaluator interpinstr is prepared to receive an instruction and an abstract statere-
turn an abstract state. Another approach, usedla, is used when interfacing to an
analysis component that has its own input language for §pegiabstract transform-
ers. In this case, the instantiatetk serves as &ansformer generatorinterplnstr is
prepared to receive an instruction and a default abstraief sind return a transformer
specification in the analysis component’s input language.

The following subsections discuss how IR is instantiated for various analyses.

8 In the case of transformer generation far@analyzer, the default state is the identity function.
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4.1 Creation of aTA Transformer Evaluator for VSA

VSA is a combined numeric-analysis and pointer-analysis dhgorthat determines a
safe approximation of the set of numeric values and addsdbse each register and
memory location holds at each program point [10]rmemory regionis an abstract
quantity that represents all runtime activation records pfocedure. To represent a set
of numeric values and addresseSA usesvalue-set, where a value-set is a map from
memory regions to strided intervals. A strided intervakesgnts a set of numbers with
a lower bound, an upper bound, and a stride [35].

The Interpretation of Basetypes and Basetype-Operafbng abstract domain for the
integer basetypes is @alue-set The abstract domain faBOOL is Bool3 ({FALSE,
MAYBE, TRUE}), whereMAYBE means “may bé&ALSE or may beTRUE". The op-
erators on these domains are described in detail in [35].

The Interpretation of Map-Basetypes and Access/Updatetiaurs. The abstract do-
main for memory mapsMEMMAP32_8_LE, MEMMAP32_16_LE, etc.) is a dictionary
that maps each memory-locatidN{32) to avalue-setThe abstract domain for regis-
ter maps YAR32MAP, VAR16MAP, etc.) is a dictionary that maps each varialvkeg2,
varlg, etc.) to avalue-setThe abstract domain for flag mapss\RBOOLMAP) is a dic-
tionary that maps &ar_bool to aBool3. Theaccess/updatiunctions access or update
these dictionaries.

VSA uses this transformer evaluator to create an output abstate, given an in-
struction and an input abstract state. For example, row &bf 3 shows the generated
VSA transformer for the instructioratid ebx,eax”. The VSA evaluator returns a new
abstract state in whictbx is updated with the sum of the valuesetfx andeax from
the input abstract state and the flags are updated appedpriat

4.2 Creation of aTC Transformer Generator for ARA

An affine relation is a linear-equality constraint betwerteger-valued variableSRA
finds all affine relationships that hold in the program, forigeg set of variables. This
analysis is used to find induction-variable relationshipsveen registers and memory
locations; these help in increasing the precisiow®A when interpreting conditional
branches [8§7.2].

The principle that is used to creatg@@transformer generator is as follows: by inter-
preting theTSL expression that defines the semantics of an individuakiotm using
an abstract domain in which values represent transforraac call tanterpinstr will
residuate a transformer for the instruction. In the caseRX, theCIR is instantiated
so that for each instruction, the generated transformerabg® on an abstract domain
whose values are sets of matrices that represent affinddraretions on registers and
memory locations of the state [28].

Interpretation of Basetypes and Basetype-Operatdise abstract domain for the inte-
ger basetypes is a set of linear expressions in which vasabk either a register or an
abstract memory location—the actual representation ofittmeain is a set ofolumrs
that consist of an integer constant and an integer coeffitbereach program variable.
This column represents an affine expression over the vahagdhe variables’ hold at
the beginning of the instruction. The basetype operatioaslafined so that only a set
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of linear expressions can be generated; any operationethds lto a non-linear expres-
sion, such a3imes(eax, ebx), returnsTOP, which means that no affine relationship is
known to hold.

Interpretation of Map-Basetypes and Access/Update FanstiThe abstract domain of
the maps foARA is a set of matrices of sizeV + 1) x (N + 1), whereN is the number
of program variables. This abstraction, which is able to @ilidffine relationships in
an affine program, was defined by Miller-Olm and Seidl [2&clEaccessunction
extracts a set of columns associated with the variable ggas an argument, from
the set of matrices for its map argument—engemmar var32Mapin Tab. 1. Each
updatefunction creates a new set of matrices that reflects the atffaresformation
associated with the update to the variable in question.

For each instruction, theRA transformer relates linear-equality relationships that
hold before the instruction to those that hold after execudif the instruction.

4.3 Creation of auB Transformer Generator for ASI

ASl is a unification-based, flow-insensitive algorithm to idigrthe structure of aggre-
gates in a program [11]. For each instruction, the transéoigenerator generates a set
of ASI commands, each of which is either a commangpbt a memory region or a
command taunify some portions of memory (and/or some registers) At anatiysis,

a client analyzer typically applies the transformer getoert each of the instructions
in the program, and then feeds the resulting setgifcommands to ansS| solver to
refine the memory regions.

Abstract Domain for Basetypes and Basetype-Operatdre abstract domain for the
basetypes is dataref which is either a memory access or a register access. Tthe ari
metic, logical, and bit-vector operations datarefs convertdatarefs to unassignable
datarefs, which means that they will only be used to genesatis.

Abstract Domain for Map-Basetypes and Access/Update lametThe abstract do-
main of the maps foaSl is a set okplits andunificatiors. Theaccesgunctions generate
adatarefassociated with memory location or register. Tipelatefunctions create a set
of unificatiors orsplits according to theataref of the data argument.

For example, for the instructiomiov [ebx],eax”, when ebx holds the abstract ad-
dressAR foo—12, whereARfoo is the memory-region for some proceddio®'s ac-
tivation records, theASI transformer generator emits th#esI unification command
“ARfoq[-12:-9] :=: eax[0:3]".

4.4 Def-Use AnalysisDUA)

Def-Useanalysis collects all theefinitionsand usesof state components (memory-
locations, registers, and flags) for each instruction.

The Interpretation of Basetypes and Basetype-Operafbng abstract domain for the
basetypes is a set afesand the operators on this domain perform a set-union of thei
arguments’ sets.

The Interpretation of Map-Basetypes and Access/Updatetiams. The abstract do-
main of the maps fobUA is a tuple of sets-defsanduses Theaccess/updatiinctions

all perform set union of the sets associated with the argtsreEfrMEMMAP32_8_LE,
VAR32MAP, VARBOOLMAP, etc. memmapvar32Map or varBoolMapin Tab. 1).
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The DUA results (e.g., row 3 of Tab. 3) are used to create transfarfioerseveral
additional analyses, such @MOD analysis [15], which is an analysis to find modified
variables for each functioif (including variables modified by functions transitively
called fromf) and live-flag analysis, which is used in our version of VS/ptform
trace-splitting/collapsing@.5).

4.5 Quantifier-Free Bit-Vector (QFBV) Semantics

QFBV semantics provides a way to obtain a symbolic representatas a formula in
first-order quantifier-free bit-vector logic—of an insttiom’s semantics.

The Interpretation of Basetypes and Basetype-Operafbng abstract domain for the
integer basetypes is a term, and each operator on it cotsérterm that reflects the op-
eration. The abstract domain fBOOL is a formula, and each operator on it constructs
a formula that reflects the operation.

The Interpretation of Map-Basetypes and Access/Updatetiaurs. The abstract do-
main for the state components is a dictionary that maps agtacomponent to a term
(or aformula in the case ®ARBOOLMAP). Theaccess/updatiinctions retrieve from
and update the dictionaries, respectively.

QFBV semantics is useful for a variety of purposes. One use isxakaay informa-
tion in an abstract interpreter, such as %8 analysis engine, to provide more precise
abstract interpretation of branches in low-level code. ihee is that many instruction
sets provide separate instructions for (i) setting flags€dan some condition that is
tested) and (ii) branching according to the values held Igsfla

To address this problem, we usetrace-splitting/collapsing

scheme [26]. Th&SA analysis engine partitions the state at each
” flag-setting instruction based on live-flag information {@this ob-
tained from an analysis that uses thgA transformers); a semantic
reduction [16] is performed on the spUSA states with respect to

a formula obtained from the transformer generated byGhRBv

semantics. The set ofSA states that result are propagated to ap-
propriate successors at the branch instruction that usdtatys.

Thecmp instruction (A), which is a flag-setting instruction, h&s andzF as live
flags since those flags are used at the branch instrugsoi® andjz (E): js andjz
jump according teSF andZF, respectively. After interpretation of (A), the stages
split into four statesS,, S», S3, andS,, which are reduced with respect to the formulas
©1: (eax — 10 < 0) associated witBF, andy,: (eax — 10 == 0) associated withF.

S; := S[SF—T] [ZF  T] [eax — reducdS(eax), o1 A ©2)]
S, := S[SF—T] [ZF ~ F] [eax — reducdS(eax), o1 A —p2)]
S;3 := S[SF—F] [ZF — T] [eax — reducgS(eax), ~¢1 A @2)]
S4 1= S[SF—F] [ZF — F] [eax — reducéS(eax), ~p1 A —p2)]

Becausep; A s is not satisfiableS; becomesl. StateS, is propagated to the true
branch ofjs (i.e., just before (C)), an83 andS, to the false branch (i.e., just before
(D)). Because no flags are live just before (C), the splittimechanism maintains just a
single state, and thus all states propagated to (C)—hereithpist one—are collapsed
to a single abstract state. Becawgeis still live until (E), the statess andS, are
maintained as separate abstract states at (D).
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4.6 Paired Semantics

Our system allows easy instantiationgefluced product [16] by means opaired se-
mantics TheTSL system provides a template for paired semantics as showg.id®

[1] template <typename INTERP1, typename INTERP2>
[2] class PairedSemantics {
[3] typedef PairedBaseType<INTERP1:INT32, INTERP2:INT32> INT32;

[5] INT32 MemAccess_32_8_LE_32(MEMMAP32_8_LE mem, INT32 addr) {
[6] return INT32(INTERP1::MemAccess_32_8_LE_32(mem.GetFirst(), addr.GetFirst()),
[N INTERP2::MemAccess_32_8_LE_32(mem.GetSecond(), addr.GetSecond()));

Fig. 10. A part of the template class for paired semantics.

[1] typedef PairedSemantics<VSA_INTERP, DUA_INTERP> DUA;

[2] template<> DUA:INT32 DUA::MemAccess-32_8_LE_32( DUA:MEMMAP32_8_LE mem, DUA:INT32 addr) {
[3] DUA:INTERP1:MEMMAP32_8_LE memoryl = mem.GetFirst();

[4] DUA:INTERP2:MEMMAP32_8_LE memory2 = mem.GetSecond();

[5] DUA:INTERP1::INT32 addrl = addr.GetFirst();

[6] DUA:INTERP2::INT32 addr2 = addr.GetSecond();

[7] DUA::INT32 answer = interact(mem1, mem2, addrl, addr2);

[8] return answer;

Fig. 11. An example ofC++ explicit template specialization to create a reduced pbdu

The CIR is instantiated with gaired semantic domain defined with two interpre-
tations,INTERP1 and INTERP2 (each of which may itself be a paired semantic do-
main), as shown on line 1 of Fig. 11. The communication betweterpretations may
take place in basetype-operatorsaocess/updatéunctions; Fig. 11 is an example of
the latter. The two components of the paired-semanticsegatue deconstructed on
lines 3-6 of Fig. 11, and the individuBNTERP1 andINTERP2 components fronboth
inputs can be used (as illustrated by the calinteracton line 7 of Fig. 11) to create
the paired-semantics return vala@swer. Such overridings of basetype-operators and
access/updatéunctions are done bg++ explicit specialization of members of class
templates (this is specified @++ by “template<>"; see line 2 of Fig. 11).

We also found this method afIR instantiation to be useful to perform a form
of reduced product when analyses are split into multiplesphaas in a tool like
CodeSurfer/x86. CodeSurfer/x86 carries out many anahysses, and the application
of its sequence of basic analysis phases is itself iter@e@ach round, CodeSurfer/x86
applies a sequence of analys®SA, DUA, and several other&/SA is the primary
workhorse, and it is often desirable for the informationwdoed byVSA to influence
the outcomes of other analysis phases.

' We can use the paired-semantics
E% W:Td(icl)'glt(S.Z.(l.Jase, index, scale, disp): mechanism to obtain desirealilti-

[3] let addr = base + index * SignExtend8To32(scale) + disp; phase interactionamong our gen-

Er,l} ) m = MemUpdate_32_8_LE_32(mem,addr,v); erated analyzers—typically, by pair-
Fig. 12. A fragment ofupdateState32. ing the_VSA interpretation With an-

other interpretation. For instance,

with DUA_INTERP alone, the information required to get abstract memorytionés)

for addr is lost because thBUA basetype-operators-(and « on line 3 of Fig. 12)

just return the union of the argumenisse sets. With the pairing of/SA_LINTERP

with DUA_INTERP (line 1 of Fig. 11),DUA can use the abstract address computed

for addr2 (line 6 of Fig. 11) byVSA_INTERP, which usesVSA_INTERP::Add and
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VSA_INTERP::Mult; the latter operators operate on a numeric abstract dometime¢
than a set-based one).

Note that during the application of the paired semanti&s\ interpretation will be
carried out on th&SA component of paired intermediate values. In some sensesthi
duplicated work; however, a paired semantics is typicadlgdionly in a phase of trans-
former generation (for &C-style orUB-style evaluator), where the transformers are
generated during a single pass over the interproceduraltGig@nerate a transformer
for each instruction. Thus, only a limited amounisfA evaluation is performed (equal
to what would be performed to check that #®A solution is a fixed point).

5 Instruction Sets

In this section, we discuss the quirky characteristics aiemstruction sets, and vari-
ous ways these can be handledsL.

51 1A32

To provide compatibility with 16-bit and 8-bit versions &t instruction setA32 pro-
vides overlapping register names, suciagthe lower 16-bits 0EAX), AL (the lower
8-bits of AX), andAH (the upper 8-bits oAX). There are two possible ways to spec-
ify this feature inTSL. One is to keep three separate maps for 32-bit registerbjt16-
registers, and 8-bit registers, and specify that updatesyane of the maps affect the
other two maps. Another is to keep one 32-bit map for registerd obtain the value of
a 16-bit or 8-bit register by masking the value of the 32-bgister.

Another characteristic to note is tHAB2 keeps condition codes in a special register,
called EFLAGS.® One way to specify this feature is to declared32:Eflags();”, and
make every flag manipulation fetch the bit value from an appate bit position of the
value associated withflags in the register-map. Another way is to have symbolic flags,
as in our examples, and have every manipulatioBFafAGS affect the individual flags.

5.2 ARM

Almost all ARM instructions contain a condition field that allows an instian to be
executed conditionally, dependent on condition-code flayis feature reduces branch
overhead and compensates for the lack of a branch predittarever, it may worsen
the precision of an abstract analysis because in most at&tns’ specifications, the
abstract values from two arms off&L conditional expression would be joined.
For example MOVEQ is one of ARM’s

o ot o Varoomaresiaghiap, EQpy.  CONditional instructions; if the flagQ is true
3] src = interpOperand(curState, srcOprnd);  When the instruction starts executing, it ex-
[ b reaapratclregliap. destRed. Sk ecytes normally; otherwise, the instruction
6] answer =cond ? a: b; does nothing. Fig. 13 shows the specifica-
[7] i (answer ) tion of the instruction inTSL. In many ab-
Fig. 13. An example of the specificationgract semantics, the conditional expression
_(I)_fsall_nARM conditional-move instruction in “cond 7 a : b” will be interpreted as a join

' of the original register map and the updated
mapa, i.e.,join(a,b). ConsequentlyestReg would receive the join of its original value

9 Many other instruction sets, such®BARC, PowerPC, andARM, also use a special register
to store condition codes.
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andsrc, even whertond is known to have a definite valugRUE or FALSE) in VSA
semantics. The paired-semantics mechanism preseniédbican help with improving
the precision of analyzers by avoiding joins. WhendR is instantiated with a paired
semantics o¥SA_INTERP andDUA_INTERP, and thevSA value ofcond is FALSE, the
DUA_INTERP value foranswer gets emptydef- andusesets because the true branch
a is known to be unreachable according to W8A_INTERP value ofcond (instead of
non-empty sets fodefs anduses that contain all the definitions and usesd#stReg
andsrcOprnd).

5.3 SPARC

SPARC uses register windows to reduce

[1] var32:Reg(INT8) | CWP() | .. ; the overhead associated with saving reg-

[2] reg32 : OutReg(INT8) | INReg(INT8) | . . .;

[3] state: State(. .., VAR32MAP, . . .); . isters to the stack during a conventional
[4] INT32 RegAccess(VAR32MAP regmap, reg32 r) : P :

[5] let owp = Var32Access(regmap, CWP(): function call. Each W|r_1dow hasi8, 8 out,

6]  key = with(r) 8local, and 8global registersOuts become

7 OutReg(i): . :

H Regg((8?+i+(16+cwp*16)%(NW|NDOWS*]_G)’ ins on a context switch, and the new con-
[9] InReg(i): Reg(8+i+cwp*16), text gets a new set ajut andlocal reg-
[10] ...) ; e .

[11] in ( Var32Access(regmap, key) ) isters. A specific plgtform W|II_ have some
121} total number of registers, which are orga-
Fig.14. A method to handle the nized as a circular buffer; when the buffer
SPARC register window inTSL. becames full, registers are spilled to the

stack to free up a sufficient number for the called procedkig. 14 shows a way
to accomodate this feature. The syntactic registetReg(n) or InReg(n), defined on
line 2) in an instruction is used to obtain a semantic reg{&eg(m), defined on line 1,
wherem represents the register’s global index), which is the kedusr accesses on
and updates to the register map. The desired index of thergemegister is computed
with the index of the syntactic register, the valuecd¥P (the current window pointer)
from the current state, and the platform-specific v&lMANDOWS.

6 Related Work

There are many specification languages for instructioresgtsnany purposes to which
they have been applied. Some were designed for hardwardasiomy such as cycle
simulation and pipeline simulation [30, 27]. Others haverbesed to generate an emu-
lator for compiler-optimization testing [17, 23]DL [23] is a hardware-description lan-
guage that supports the retargeting of analyses and optilmiis relevant to instruction
scheduling, register assignment, and functional-unitipig. The New Jersey machine-
code toolkit [33] addresses concrete syntactic issuegijictgon decoding, instruction
encoding, etc.). Harcourt et al. usid to specify the semantics of instruction sets [20].
LISAS [14] is an instruction-set-description language that wagetbped based on their
experience usinglL. The latter two approaches particularly influenced thegiesi
theTSL language.

TSL shares some of the same goals\aRTL [32] (i.e., the ability to specify the
semantics of an instruction set and to support multiplentdi¢hat make use of a single
specification). The two languages were both influenced/ibybut different choices
were made about what aspectshf to retain: \-RTL is higher-order, but without
datatype constructors and recursi®BL. is first-order, but supports both datatype con-
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structors and recursiof.The choices made in the design and implementationSaf
were driven by the goal of being able to define multiple alzstirsterpretations of an
instruction-set’s semantics.

Some systems for representing and analyzing programs aialyntargeted for a
single language. For instan@)OT [4] is a powerful and flexible analysis/optimization
framework that supports analysis and transformation od bgtecode.

One method to support the retargeting of analyses to difféa@aguages is to create
a package that supports a family of program analyses tHatelift front ends can use
to create analysis components. Examples incBOBBDDB [39], Banshee [25], the
PPL [3], andWPDS++ [24]. The writer of each client front end needs to encode th
semantics of his language by creating appropriate tramsfs for each statement and
condition in the languagel®, using the package’s API (or input language).

WALA [6] supports a common intermediate form (Common Abstracit®yTree),
from which multiple additionalRs (e.g., CFGs and SSA-form) can be generated, and
multiple analyses can be performed that use theseThus, this is similar to the pack-
age approach, but supports a multiplicity of analyses.

In contrast to the package approatBL provides a domain-specific language for
instruction-set specification. With this approach, tB8 developer concentrates on
specifying the concrete operational semantics of his lagguusingrsL, and a multi-
plicity of analyzers are then created automatically. Asmlylevelopers can incorporate
different analysis packages into tleL framework by implementing appropriate ab-
stract operations that overapproximate the semantics akd fiet of TSL operations
(that have a well-defined semantics). (Any of the aforenometil packages could be
used for creating SL-based analyses; currenthyPDS++ is used for all of therc-
style analyzers that have been developed for use Wgthso far.)

There are two analysis systerf¥/,LA [5] and the optimizer flow-function inference
system developed by Rice et al. [36], in which sound analyaissformers are gener-
ated automatically from the concrete operational semsyngicis a specification of the
abstraction (either via the abstraction functi@wI(A) or the concretization function
(Rice et al.)). In our system, we rely on the analysis devalap supply sound abstract
operations. While this places an additional burden on dpesk, once an analysis is
developed it can be used with each instruction set specifi€gli. Moreover,

— The analyses that we support are much more efficient thare thascan be created
with TVLA and apply to our intended domain of application (low-lewale).

— Some of the analyses that we use, suchr& [28], appear to be beyond the power
of the heuristics-based transformer-generation methedsldped by Rice et al.

The development of methods for creating abstract transfgiinom a specification of
the abstraction or concretization function (a la [5] an@]]3s left for future research.
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