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Abstract

A Boolean function is called correlation immune if every input is

independent of the output, when the inputs are chosen from a uni-

form distribution. Such functions are of interest in machine learning

and stream cipher design. We show how an asymptotic formula of

Denisov, which approximately counts the n-variable correlation im-

mune functions, can be improved so as to be accurate even for fairly

small n. Such information is useful to designers of machine learning

algorithms, as it indicates how often a greedy algorithm for learning

decision trees will fail.
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1 Introduction.

Let f be a Boolean function with n inputs and one output. Suppose we choose
the n inputs at random, uniformly from the 2n available choices. We call f
correlation immune if, for all i, the random variables xi and y = f(x1, . . . , xn)
are independent.

There is an equivalent “physical” definition. Any Boolean function f
can be viewed as a placement of of 0’s and 1’s on the vertices of an n-
dimensional hypercube. Then, f is correlation immune if the center of mass
for this placement is at the center of the hypercube. For example, when
n = 2, consideration of the diagrams

0 −− 1
| |
| |
1 −− 0

0 −− 1
| |
| |
1 −− 1

reveals that exclusive-or is correlation immune, whereas the ordinary or op-
eration is not.

The term “correlation immunity” can be justified as follows. Since an in-
put xi and the output y each take at most two values, their independence is
equivalent to the vanishing of their correlation coefficient. Also, this vanish-
ing is unaffected by linear transformations, so there is no harm in assuming
that the outputs of f are ±1. In the remainder of this paper, we will, there-
fore, assume that f : {0, 1}n → {±1}.

In this paper we focus on the following counting problem. Let Bn be
the number of Boolean functions of n variables that are correlation immune.
How large is Bn? Using analytic methods, Denisov [4] found an asymptotic
formula for Bn, but said nothing about how well it approximates the true
value. We will refine his formula so that it becomes accurate for small values
of n, and provide rigorous bounds on the error in our approximations.

Correlation immune functions are of interest in machine learning [9], for
the following reason. A simple “greedy” method for inferring a decision
tree representation of a Boolean function from a sample of input-output
pairs works by choosing the root of the tree to maximize some numerical
score (information gain), and then proceeding recursively. If the function is
correlation immune, the expectation of this numerical score is zero, and the
method cannot distinguish between relevant and irrelevant variables. Having
good answers to the counting problem, then, allows the designer of a machine
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learning procedure to know how many functions require more sophisticated
methods.

Correlation immune functions are also useful in stream cipher cryptogra-
phy [11, 12], as functions for combining two or more pseudo-random streams
into a more complex keystream. They have also been tied coding theory
[2]. For this reason, a number of authors have emphasized techniques for
constructing them. For a survey of their properties from this point of view,
and some results on combinatorial approaches to the counting problem, see
[10].

We will also discuss a related question that is of interest in cryptography.
What is the probability that a function is both correlation immune and bal-
anced, in the sense that a random input produces a random bit as output?
Such functions have been called 1-resilient [3].

2 Previous Work

Let us first review Denisov’s results. Recall that the Fourier coefficients of a
function f : {0, 1}n → {±1} are, for z ∈ {0, 1}n,

f̂(z) =
∑

x

f(x)(−1)z·x.

From this formula it follows that f̂(z) is always an integer. Then, since
exactly n of the z’s have Hamming weight 1,

Z := (f̂(z))||z||=1

is an element of Zn. Xiao and Massey [13] observed that f is correlation
immune precisely when Z = 0.

Suppose that f is uniformly distributed over the 22n
possible functions.

Then Z is a random variable, whose characteristic function E[ei(t,Z)] is

FZ(t) =
∏

σ

cos(tσ).

In this formula,
tσ = σ1t1 + · · · + σntn,

where σ ∈ {±1}n is a sign pattern, and we take the product over the 2n pos-
sible such patterns. Applying Fourier inversion to the characteristic function
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of Z, one obtains

Pr[Z = 0] =
1

(2π)n

∫

[−π,π]n
FZ(t)dt.

The function FZ has a local maximum at t = 0, and by using a Laplace
approximation around this point, Denisov found the limiting formula

Dn :=
1

2

(

8

π

)n/2

2−n2/2 · 22n

. (1)

for the number of n-variable correlation immune functions. In particular, he
showed that Bn/Dn → 1 as n → ∞.

The idea behind the Laplace approximation is the following. If we expand
each cosine in a Taylor series, terms of odd degree in the ti’s will cancel, and
we are left with

∏

σ

cos(tσ) = 1 − 2n∑n
i=1 t2i
2

+ · · ·

This is also the Taylor expansion of the Gaussian

G(t) = e−2n||t||2/2,

so the integral around 0 should be to be close to the integral of G over all
of Rn. If we include the idea that FZ has multiple peaks, coming from the
periodicity of the cosine, we get (1). (Actually, Denisov worked with a cosine
product of n + 1 variables; we have simplified his argument a bit.)

Denisov’s formula has an interesting probabilistic interpretation. For a
random Boolean function, each Fourier coefficient is the result of a 2n-step
random walk. The probability that such a walk returns to its origin is

(

2n

2n/2

)

22n ∼
(

2

π

)1/2

2−n/2,

by Stirling’s formula. If all the walks were independent, we would have
a smaller result than (1). Thus, the vanishing of one Fourier coefficient
“encourages” the others to vanish as well.

The main idea behind our improvement of Denisov’s result is to use more
terms in the Taylor expansion of FZ . Of course, such enhancements will be
meaningful only if the integrand falls off sharply enough away from its peaks,
and most of our effort will go into verifying this.
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3 Notation.

We now give some notation and definitions we will need later.
Unless noted otherwise, ||t|| means the 2-norm of the vector t ∈ Rn.

Quantities estimated by big-O notation are allowed to be negative.
Let

L = {(a1π/2, . . . , anπ/2) : ai ∈ Z,
∑

ai even }.
This is a period lattice for FZ , in the sense that FZ(t + v) = FZ(t) for all
v ∈ L. As a fundamental domain for L, we take the box

F = [−π/4, π/4]n−1 × [−π/2, π/2].

Let C = {t ∈ Rn : ||t||1 ≤ π
2
}. Note that t ∈ C iff tσ is. Also, the

boundary of C is formed from the 2n hyperplanes tσ = π
2
.

If v, w are distinct elements of L, we have ||v − w||1 ≥ π. From this it
follows that the sets v + C, for v ∈ L, have no interior points in common.

If we identify points whose coordinates agree mod 2π, the box [−π, π]n

becomes a union of 4n/2 copies of F . Since FZ is periodic, we then have

Bn = 22n 1

(2π)n

∫

[−π,π]n
FZ(t)dt = 22n+2n−1 1

(2π)n

∫

F
FZ(t)dt. (2)

(Note that 22n 4n

2
= 22n+2n−1.)

4 Improved Analytic Bounds, With Error

Estimates.

4.1 Bounds for Cosine Products.

For any t, we have 0 ≤ FZ(t) ≤ 1. The upper bound follows from the
definition; to prove the lower bound, split the product in two, according to
the sign of t1. Since cosine is even, these parts have the same value.

Lemma 4.1 If t ∈ F\C,

∏

σ

cos(tσ) ≤ cos
(

π

2n + 1

)2n−1

.
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Proof. By the definition of F ,

|t1|, . . . , |tn−1| ≤ π/4, |tn| ≤ π/2.

Let i be the least index such that |ti| > π/(2n); we know this exists because
t /∈ C. We claim there is an index j with the following property: for any σ,
if we flip the sign of tj and get tτ , then at least one of tσ mod π, tτ mod π,
will be ≥ π/(2n + 1) in absolute value. (We use symmetric residues.) The
lemma follows easily from this claim.

We now prove the claim. If i ≤ n− 1, we may take j = i; in this case the
claim follows from the inequalities π/(2n + 1) < |tj| ≤ π/4.

Suppose, then, that i = n. Without loss of generality, tn > 0. If tn <
π/2 − π/(4n + 2), we can take j = n. Otherwise, suppose that for some ρ,
we have |tρ mod π| ≤ π/(2n + 1). (If not, we are done.) Since tn is at least
π/2 − π/(4n + 2), this cancellation is only possible if

n−1
∑

k=1

ρktk ≥ π

2
− 3π

2(2n + 1)
.

Then, choose any j such that

ρjtj ≥
1

n − 1

[

π

2
− 3π

2(2n + 1)

]

=
π

2n + 1
.

Then, π/(2n + 1) ≤ |tj| ≤ π/4, as needed.

Corollary 4.1 For t ∈ F\C, we have

∏

σ

cos(tσ) ≤ e−2n+1/(2n+1)2 , (3)

Proof. Since cos(x) ≤ 1 − 4x2/π2 for |x| ≤ π/2, we have

cos
(

π

2n + 1

)2n−1

≤
(

1 − 4

(2n + 1)2

)2n−1

.

The result then follows, since (1 − y/m)m ≤ e−y when y > 0.

Our next result deals with the behavior of FZ on C.
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Lemma 4.2 For all t ∈ C,

FZ(t) ≤ G(t). (4)

Proof. On the boundary of C, FZ vanishes, so we need only consider interior
points. For |z| < π/2 we have the convergent Taylor series

log cos z = −z2

2
− z4

12
− z6

45
− · · · .

All coefficients are negative. (See Abramowitz and Stegun [1], 4.3.72 for a
formula for these, involving Bernoulli numbers.) Substituting z = tσ and
summing over all σ, we get

∑

σ

log cos tσ = −2n||t||2
2

− T4

12
− T6

45
− · · · , (5)

where T2k =
∑

σ(t
σ)2k. Exponentiating both sides gives the result.

4.2 A Tail Bound for the Gaussian.

Let
Γ(α, z) :=

∫ ∞

z
uα−1e−udu. (6)

This is the incomplete Gamma function; see Abramowitz and Stegun [1].

Lemma 4.3 Let a ≥ 0. Then

Ia :=
1

(2π)n

∫

||t||≥a
e−2n||t||2/2dt =

2−n2/2

(2π)n/2

Γ(n/2, 2n−1a2)

Γ(n/2)
.

Proof. By using spherical coordinates and integrating out the angles (as
explained by Fleming [5], p. 181), we find

Ia :=
1

(2π)n

∫

||t||≥a
e−||t||2/(2s2)dt =

βn

(2π)n

∫ ∞

a
rn−1e−r2/2s2

dr, (7)

where

βn =
2 πn/2

Γ(n/2)
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is the surface area of the unit-radius sphere in Rn.
Let s2 = 2−n. Substitute u = r2/(2s2) in (7), to get

Ia =
βns

n

(2π)n
2n/2−1

∫ ∞

a2

2s2

un/2−1e−udu. (8)

The constant is

βns
n

(2π)n
2n/2−1 =

2 πn/2

Γ(n/2)

2−n2/2

(2π)n
2n/2−1 =

2−n2/2

(2π)n/2Γ(n/2)
, (9)

and a2/(2s2) = 2n−1a2.

Corollary 4.2 Let a = n2−n/2. Then for n ≥ 2,

Ia =
2−n2/2

(2π)n/2
e−n2/2+O(n log n).

Proof. The incomplete Gamma function has the asymptotic series

Γ(α, z) ∼ zα−1e−z

[

1 +
α − 1

z
+

(α − 1)(α − 2)

z2
+ · · ·

]

.

Furthermore, when α > 1 and z > 0, its terms start out positive, and then
alternate. If we use only the initial segment of positive terms, we get an upper
bound. (This follows from the remainder estimate given by Abramowitz and
Stegun [1], 6.5.32.) Our parameters are

α = n/2, z =
a2

2s2
=

n2

2
,

so
Γ(n/2, n2/2) ≤ (n2/2)n/2−1e−n2/2 n

n − 1
,

since
∑

k≥0
1

nk = (1 − 1/n)−1. The result follows from Lemma 4.3 and Stir-
ling’s formula.
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4.3 A Multi-Factor Cauchy-Schwartz Inequality.

Let f1, . . . fr be non-negative functions, in L1(µ) for some positive measure
µ. Then

∫

f1 · · ·frdµ ≤
r
∏

i=1

(
∫

f r
i dµ

)1/r

. (10)

This is a known result. See Polya and Szego [8], p. 68 for integrals over an
interval. It can be proved by induction, as follows. The base case, r = 2, is
Cauchy-Schwartz. To reduce r to r−1, apply Holder’s inequality to f1 · · ·fr−1

and fr, taking p = r/(r − 1), q = r.

4.4 Estimates for the Exponential Function.

Recall the Taylor series

e−t =
∑

k≥0

(−)k tk

k!
= 1 − t + t2/2 − · · · .

Then, if m ≥ 2 is even, we have

m−1
∑

k=0

(−)k tk

k!
≤ e−t ≤

m
∑

k=0

(−)k tk

k!
, for all t ≥ 0 . (11)

For a proof of this, see the discussion of “enveloping series” in [4], pp. 32.
ff.

4.5 Bounds for Moments.

Recall that we defined T2k =
∑

σ(t
σ)2k, for k ≥ 2. Our goal is now to estimate

moments of these functions, against the Gaussian density

dµ =
1

(2π)n/2
e−||t||2/(2s2)dt

on Rn, where s2 = 2−n.

Lemma 4.4 Let

dn = sn/(2π)n/2 =
2−n2/2

(2π)n/2
.
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Then
1

(2π)n

∫

Rn
T2k1

· · ·T2kre
−||t||2/(2s2)dt = O

(

dn
n
∑

ki

2n
∑

(ki−1)

)

. (12)

as n → ∞.

Proof. Let
M =

∫

Tk1
· · ·Tkrdµ,

where ki ≥ 2, with repetitions allowed.
Replacing the T ’s by their definitions, we get

M =
∑

σ1,...,σr

∫

(tσ1)2k1 · · · (tσr)2krdµ,

where the sum is over all the 2nr possible r-tuples of sign combinations. By
(10),

M ≤
∑

σ1,...,σr

r
∏

i=1

(
∫

(tσi)2kirdµ
)1/r

. (13)

The Gaussian measure is spherically symmetric, so we can replace the
i-th integral in (13) by

Ji :=
∫

(t1 + · · · + tn)2kirdµ.

Choose an orthogonal change of coordinates such that

u1 =
t1 + · · · + tn√

n
.

(Values of u2, . . . , un are not important here.) Then, since
∑

ti =
√

nu1, we
have

Ji =
nkir

(2π)n/2

∫

Rn
u2kir

1 e−||u||2/2s2

du

=
nkirsn−1

(2π)1/2

∫

R

u2kir
1 e−u2

1
/2s2

du1

=
nkirsn+2rki

(2π)1/2

∫

R

v2kire−v2/2dv

= (2rki − 1)(2rki − 3) · · · (3)(1)
nkirsn

2nrki
≤ nkirsn

2nrki
(2rki)

rki.
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Substituting this bound into (13), we see that

1

(2π)n/2

∫

Rn
T2k1

· · ·T2kre
−||t||2/(2s2)dt = O

(

sn n
∑

ki

2n
∑

(ki−1)

)

,

with an implied constant depending on the ki’s.

Any moment can be computed exactly, should this be desired. We illus-
trate with three examples that we will use later.

Any T2k can be handled by the same orthogonal transformation we used
to prove Lemma 4.4. For example, we have

1

(2π)n

∫

Rn
G(t)T4(t)dt = dn

3n2

2n
, (14)

and
1

(2π)n

∫

Rn
G(t)T6(t)dt = dn

15n3

4n
, (15)

Moments involving cross products or powers are more involved. Consider,
for example (T4)

2. This is an even symmetric homogeneous polynomial of
degree 8, so it must have the form

A
∑

i

t8i + B
∑

i6=j

t6i t
2
j + C

∑

i<j

t4i t
4
j + D

∑

i6=j,k
j<k

t4i t
2
j t

2
k + E

∑

i<j<k<ℓ

t2i t
2
j t

2
kt

2
ℓ .

Thus, our moment equals what we would have got had we integrated

Ant81 + Bn(n − 1)t61t
2
2 + C

(

n

2

)

t41t
4
2 + Dn

(

n − 1

2

)

t41t
2
2t

2
3 + E

(

n

4

)

t21t
2
2t

2
3t

2
4.

To find the coefficients, we can make some judiciously chosen substitutions.
First set t1 = 1, and all other ti = 0, and conclude that A = 4n. To find
B and C similarly set t1 = t2 = 1, and t1 = 2, t2 = 1 to get two linear
equations, and then solve these to get B = 12 · 4n and C = 38 · 4n. Finally,
from t1 = t2 = t3 = 1, get D = 84 · 4n and from t1 = t2 = t3 = t4 = 1, get
E = 216 · 4n. Since our multivariate Gaussian density factors, computing
the integral for T 2

4 reduces to computing moments of a univariate normal
distribution, which are known [6, p. 227]. Proceeding in this way, we get

1

(2π)n

∫

Rn
G(t)T 2

4 dt = dn
3n(3n3 + 24n2 + 24n − 16)

22n
. (16)
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Applied to a polynomial of degree m, this procedure finds P (m/2) coef-
ficients, where P (n) denotes the number of partitions of n. It is thus more
efficient than a brute force expansion of a product of T2k’s.

4.6 Asymptotics for Bn.

Theorem 4.1 As n → ∞, we have

Bn = Dn

(

1 − n2

4 · 2n
+ O(

n4

22n
)

)

.

Proof.

For sufficiently small |z|,

−z2

2
− z4

12
− 2z6

45
≤ log cos z ≤ −z2

2
− z4

12
.

(In fact, |z| ≤ z0 := 1.3228... is small enough.) This implies

−2n∑ t2i
2

− T4

12
− 2T6

45
≤
∑

σ

log cos(tσ) ≤ −2n∑ t2i
2

− T4

12
.

So
e−2n

∑

t2i /2e−T4/12−2T6/45 ≤ FZ(t) ≤ e−2n
∑

t2i /2e−T4/12.

Applying (11) with m = 2 to the factors involving T4 and T6, we get

G(t)(1 − T4

12
− 2T6

45
) ≤ FZ(t) ≤ G(t)(1 − T4

12
+

T 2
4

288
).

The upper bound holds for any t ∈ C, and the lower bound additionally
||t|| ≤ z0.

Recall that Bn is expressed using the integral (2) over F . If we write

F = {t ∈ F ∩ C : ||t|| < n2−n/2} + {t ∈ F ∩ C : ||t|| ≥ n2−n/2} + (F\C)

and consider each piece separately, we get

Ln ≤ 1

(2π)n

∫

F
FZ(t)dt ≤ Un,
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where

Ln =
1

(2π)n

∫

Rn
G(t)(1 − T4

12
− 2T6

45
)dt − 1

(2π)n

∫

||t||>n2−n/2

G(t)dt.

(Note that n2−n/2 < z0 for all n ≥ 1.) Similarly, using F = (F ∩C)+(F\C),
we obtain

Un =
1

(2π)n

∫

Rn
G(t)(1 − T4

12
+

T 2
4

288
)dt +

1

(2π)n

∫

F\C
FZ(t)dt.

Using (14), Lemma 4.4, and Corollary 4.2, we get

Ln = dn

(

1 − n2

4 · 2n
+ O(

n3

22n
)

)

+ dne
−n2/2+O(n log n).

Similarly, but now using Corollary 4.1, we have

Un = dn

(

1 − n2

4 · 2n
+ O(

n4

22n
)

)

+ dne
−2n+1/(2n+1)2+O(n2).

Asymptotically, the rightmost error terms can be absorbed into the big-O
terms, so we can multiply by 22n · 4n/2 to get the theorem.

Using more terms in our Taylor expansions, we can get more accurate
formulas. This involves significantly more computation, but no new ideas.
Accordingly, we just state the result.

Theorem 4.2 There are polynomials P1, P2, . . . such that

Bn = Dn

(

1 +
ν
∑

k=1

Pk(n)

2kn
+ O(n2ν+22−(ν+1)n)

)

.

The first three Pi are

P1 = −n2

4
;

P2 =
n(3n3 − 8n2 + 24n − 16)

96
;

P3 = −n(n5 − 8n4 + 72n3 − 336n2 + 512n − 256)

384
.

It can be shown that Pk has degree 2k.
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Taking ν = 1, 2, 3 in the theorem, we get approximations which we denote
by En, Fn, and Gn. The following data show that they are accurate even for
small n.

n Dn En Fn Gn Bn

1 2.25676e + 00 1.97466e + 00 1.99229e + 00 2.00331e + 00 2
2 5.09296e + 00 3.81972e + 00 3.97887e + 00 4.01866e + 00 4
3 2.29872e + 01 1.65220e + 01 1.72516e + 01 1.73235e + 01 18
4 8.30023e + 02 6.22517e + 02 6.41971e + 02 6.41971e + 02 648
5 3.83624e + 06 3.08697e + 06 3.14141e + 06 3.13984e + 06 3140062
6 5.80992e + 14 4.99290e + 14 5.03616e + 14 5.03489e + 14 503483766022188

We obtained values of Bn from the data of Palmer, Read, and Robinson
[7], who enumerated correlation immune functions by Hamming weight. We
note that Bn ≤ Dn for all n ≤ 6. One suspects that this bound actually
holds for all n.

4.7 Explicit Bounds.

The estimates of the last section can be converted into explicit bounds. Using
(14)–(16) and Lemma 4.3, we have the lower bound

Bn ≥ Dn

(

1 − n2

4 · 2n
− 2n3

3 · 4n
− 2

(n2/2)n/2e−n2/2

n(n − 1)Γ(n/2)

)

.

Similarly, but with Lemma 4.1, we get an upper bound. This bound,
however, is only sharp for n ≥ 15. This is because it uses a worst-case
estimate for the cosine product. If we use estimates that vary with t, and
average over possible t, we can do better.

For convenience in calculation, we consider only the set F ∩{ti ≥ 0}, and
assign it the mass 1, using a product measure. Following the ideas in Lemma
4.1, there are four cases to consider.

First, suppose there is some i, i = 1, . . . , n such that ti = α, with π/(2n) <
ti < π/4. Then, since flipping the sign of ti will bounce any tσ mod π out
of the interval (−α, α), we have FZ ≤ cos(α)2n−1

. The mass associated with
the interval (α, α + dα) is (at most)

dV =
1

2 · n!
× n

(

α

π/4

)n−1

d

(

α

π/4

)

.
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(We divide by 2 because tn only goes up to π/4, and by n! because we
only care about t 6∈ C.) Integrating over possible α, we see that the total
contribution for this case is at most

E1 :=
2

π(n − 1)!

∫ π/4

π/2n

(

α

π/4

)n−1

(cos α)2n−1

dα.

Second, suppose ti < π/(2n) for i = 1, . . . , n− 1, and tn = π/2− β, with
π/(2n) < β < π/4. By similar reasoning, tσ mod π is outside (−β, β) for at
least half of the σ’s, so this case contributes at most

E2 :=
2

π

(

2

n

)n−1 ∫ π/4

π/2n
(cos β)2n−1

dβ.

Third, suppose t1, . . . , tn−1 are as in the previous case, but now tn = γ,
with π/2− π/(2n) < γ < π/2, and for all σ, we have tσ mod π 6∈ (−π/(2n +
1), π/(2n + 1)). The contribution from this case is bounded by

E3 :=
(

2

n

)n−1

· 1

n

(

cos
π

2n + 1

)2n

.

Fourth, let the ti be as in the previous case, but assume there is some σ
with tσ mod π ∈ (−π/(2n+1), π/(2n+1)). As noted in the proof of Lemma
4.1, there must be some j ≤ n−1 with tj ≥ π/(2n+1). Since max{t1, . . . , tn}
is at most π/(2n) but at least π/(2n+1), the mass associated with this case
is bounded by

1

n

[(

π

2n
− π

2n + 1

)

· 4

π

]n−1

=
1

n

[

4

2n(2n + 1)

]n−1

.

Hence this case contributes at most

E4 :=
1

n

(

4

2n(2n + 1)

)n−1 (

cos
π

2n + 1

)2n−1

.

With this case analysis, we get the upper bound

Bn ≤ Dn

(

1 − n2

4 · 2n
+

n(3n3 + 24n2 + 24n − 16)

96 · 4n

)

+(E1 +E2 +E3 +E4)2
2n

.

The integrals in E1 and E2 are amenable to numerical integration.
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The table below displays these bounds. Since Bn is not known for n ≥ 7,
we presume that Gn is accurate enough to use as a reference value. We
have not continued beyond n = 16 because all columns agree with Gn to the
precision given.

n lower bound Gn upper bound

7 1.682368e + 32 1.715225e + 32 3.038417e + 33
8 5.284468e + 68 5.322504e + 68 2.413768e + 70
9 2.773184e + 143 2.780329e + 143 2.826073e + 145
10 8.334293e + 294 8.341773e + 294 1.289014e + 297
11 1.668020e + 600 1.668529e + 600 1.511604e + 602
12 2.988472e + 1213 2.988776e + 1213 1.807850e + 1214
13 8.630092e + 2442 8.630378e + 2442 8.653684e + 2442
14 1.299441e + 4905 1.299454e + 4905 1.299459e + 4905
15 1.066098e + 9833 1.066102e + 9833 1.066103e + 9833
16 5.200232e + 19692 5.200237e + 19692 5.200239e + 19692

5 Counting 1-Resilient Functions.

Our methods extend to count correlation immune Boolean functions that are
also balanced, in the sense that there are an equal number of inputs giving 0
and 1 outputs. Such functions have been called 1-resilient [3]. In this section
we indicate how our results extend to this case, without giving any of the
proofs.

First, the probability that a Boolean function of n variables is 1-resilient
is

1

(2π)n+1

∫

[π,π]n+1

F ′
Z(t)dt,

where
F ′

Z(t) =
∏

all signs

cos(t0 ± t1 ± · · · ± tn).

Note that there are now n + 1 variables but 2n sign combinations.
The analog of Denisov’s formula is

D′
n :=

1

2

(

8

π

)(n+1)/2

2−n(n+1)/2 · 22n

.
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Asymptotic corrections can also be made to this formula, and we can re-use
a lot of our work if we note that

F ′
Z(t0, . . . , tn)2 = FZ(t0, . . . , tn).

Furthermore, F ′
Z ≥ 0 on C ′ = {t : ||t|| ≥ π/2}, where the action is.

The analog of Theorem 4.2 holds, but now with polynomials P ′
i (n) =

Pi(n+1). (That is, we use the same polynomials, but now plug in n+1.) For
example, if B′

n denotes the number of n-variable 1-resilient Boolean functions,
then we have, as n → ∞,

B′
n = D′

n

(

1 − (n + 1)2

4 · 2n
+ O(

n4

22n
)

)

.

Here is some numerical data.

n D′
n E ′

n F ′
n G′

n B′
n

1 2.55e + 00 1.27e + 00 1.59e + 00 1.750704e + 00 0
2 4.06e + 00 1.78e + 00 2.29e + 00 2.395397e + 00 2
3 1.30e + 01 6.48e + 00 7.70e + 00 7.700410e + 00 8
4 3.31e + 02 2.02e + 02 2.21e + 02 2.194959e + 02 222
5 1.08e + 06 7.78e + 05 8.10e + 05 8.081522e + 05 807980
6 1.16e + 14 9.37e + 13 9.53e + 13 9.526281e + 13 95259103924394
7 2.67e + 31 2.33e + 31 2.35e + 31 2.347810e + 31 (see below)

The value B′
7 = 23478015754788854439497622689296 is not displayed in the

table, for typographical reasons.
Here, E ′

n, F ′
n, G′

n are analogous to their unprimed counterparts. The exact
values for n ≤ 6 come from Palmer, Read, Robinson [7], and B′

7 was recently
computed by Alfredo Viola.
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