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Figure 1: A room scene with complex models computed using photon mapping with both an adaptive image plane sampler and an adaptive
hemispheric integral sampler.

Abstract

We present novel samplers and algorithms for Monte Carlo render-
ing. The adaptive image-plane sampler selects pixels for refine-
ment according to a perceptually-weighted variance criteria. The
hemispheric integrals sampler learns an importance sampling func-
tion for computing common rendering integrals. Both algorithms,
which are unbiased, are derived in the generic Population Monte
Carlo statistical framework, which works on a population ofsam-
ples that is iterated through distributions that are modified over
time. Information found in one iteration can be used to guidesub-
sequent iterations. Our results improve rendering efficiency by a
factor of between 2 to 5 over existing techniques. We also show
how both samplers can be easily incorporated into a global render-
ing system.
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1 Introduction

Monte Carlo integration methods offer the most general solution
to physically accurate lighting simulation. For production appli-
cations, algorithm efficiency is of primary concern: image noise
(variance) must be low at practical computation times. We present
sampling techniques that significantly improve rendering efficiency
for image-plane sampling and hemispheric integrals. Both are de-
rived using the Population Monte Carlo (PMC) sampling frame-
work, which is a technique that adapts sampling distributions over
time and enables sample re-use, all with theoretical guarantees on
error and little computational overhead.

PMC algorithms iterate on a population of samples. In our sim-
plest sampler, for image-plane sampling (PMC-IP), the population
is a set of image-plane locations. The population is initialized in
some way, say using stratified sampling, then PMC-IP generates
an initial image. Any information available at this stage can then
be used to adapt akernel functionthat produces a new population.
In image-plane sampling, the perceptually-weighted variance in the
intermediate images is used to construct the kernel function, result-
ing in more image plane samples in regions of high variance. The
procedure is then iterated: sample, adapt, sample,. . . . Theresult is
an unbiased adaptive algorithm.



In the case of direct lighting, or hemispheric integrals in general,
importance sampling [Pharr and Humphreys 2004] is the primary
variance reduction tool. However, a poor choice of importance
function canincreasevariance, and, moreover, the best importance
function can vary throughout a rendering depending on such things
as surface properties, lighting configurations and the presence of
shadows. For example, the ideal importance function for a semi-
gloss surface depends on whether the primary lobe points toward a
light source, or the surface is in shadow, or neither. These configu-
rations vary over a surface and they are difficult to discoverbefore
sampling begins, yet the choice of importance functions is typi-
cally made once and remains fixed. PMC for hemispheric integrals
(PMC-HI) improves sampling efficiency by dynamically choosing
importance functions based on information gathered duringrender-
ing.

Photon mapping and path tracing have been the industrial render-
ing algorithms for global illumination. Our two sampling methods,
PMC-IP and PMC-HI can improve the efficiency of these two al-
gorithms with minimal modifications to the rendering system. Fur-
thermore, a complete rendering system enables further improve-
ments to PMC-HI.

Population Monte Carlo is a general purpose framework with many
variants. The challenge in applying it to rendering lies in the small
sample counts, the hard-to-evaluate distributions, and the visual
sensitivity to noise. Our contribution is two specific toolsfor ren-
dering that use the framework:

• An Image-Plane Sampler, PMC-IP, that adapts to guide sam-
ples to perceptually high variance image regions, is cheap to
compute, maintains stratification, and is unbiased.

• An Hemispheric Integral Sampler, PMC-HI, that adjusts
the sampling directions used to evaluate hemispheric integrals
at a point and supports a variety of importance functions act-
ing together. We can, for instance, avoid over-sampling a light
source from a surface point within its shadow, or a BRDF
specular lobe that makes no contribution. Furthermore, we
can guide samples toward important illumination directions
found by previous samples, without adding bias.

We include results comparing each algorithm to existing ap-
proaches. We find that PMC-based algorithms improve the effi-
ciency in a factor of 2 to 5 over existing methods. We also show
how to incorporate our algorithms into a modern rendering system.
The algorithms are independent of each other. However, in a com-
plete rendering system information can be fed from each iteration
of the image plane sampler back to the PMC-HI sampler to gain
even greater improvement in efficiency.

2 Related Work

Here we focus on two specific areas of related work: adaptive
image-plane sampling, and sampling for hemispheric integrals. For
an overview of Monte Carlo rendering in general, see Pharr and
Humphreys [2004].

Typically, adaptive image-plane algorithms perform a firstpass with
a small number of samples per pixel and use the resulting values
to label pixels as adequately sampled or in need of further refine-
ment. The algorithm then iterates on the pixels requiring more sam-
ples [Glassner 1995; Painter and Sloan 1989; Purgathofer 1986;
Mitchell 1987; Bolin and Meyer 1998; Ramasubramanian et al.
1999].

A common property of these existing algorithms is that they stop
sampling a given pixel when some image-derived metric is satis-
fied. As Kirk and Arvo [Kirk and Arvo 1991] point out, the eval-
uation of the image metric relies on random samples, so thereis
some non-zero probability that the threshold is incorrectly detected
and that sampling stops too soon. This introduces bias in thefinal
image, which is a problem when physically accurate renderings are
required. Our algorithm never uses a threshold to stop sampling a
pixel, and it is statistically unbiased.

Many metrics have been proposed for the test to trigger additional
sampling. Lee et al. [1985] used a sample variance based metric.
Dippé and Wold [1985] estimated the change in error as sample
counts increase. Painter and Sloan [1989] and Purgathofer [1986]
used a confidence interval test, which Tamstorf and Jensen [1997]
extended to account for the tone operator. Mitchell [1987] proposed
a contrast based criteria because humans are more sensitiveto con-
trast than to absolute brightness, and Schlick [1991] included strat-
ification into an algorithm that used contrast as its metric.Bolin
and Meyer [1998], Ramasubramanian et al. [1999] and Farrugia
and Péroche [2004] used models for human visual perception, of
which we use a variant. Most recently, Rigau et al. [2002; 2003]
introduced entropy-based metrics.

Our algorithm views the image plane as a single sample space
for the purposes of sampling. Dayal et al. [2005] took a similar
view in the context of frameless rendering. They used a variance-
based metric to control a kD-tree subdivision where samplesare
drawn uniformly within each adaptively sized cell of the subdivi-
sion. Stokes et al. [2004] also took a global approach with their
perceptual metric.

There is a large body of work on computing hemispheric integrals
(direct lighting), mostly concerned with importance sampling func-
tions. Veach’s thesis [1997] provides a description of the basic
methods and analysis of variance. Importance functions arecom-
monly based on surface BRDFs (see Pharr and Humphreys [2004]
for an overview of these), or light sources [Shirley et al. 1996; Agar-
wal et al. 2003]. Recent advances include wavelet-based impor-
tance functions for environmental lighting [Clarberg et al. 2005],
and resampling algorithms [Burke et al. 2005; Talbot et al. 2005]
that avoid visibility queries for samples that are likely tobe unim-
portant. However, the former is applicable only to environment
maps, while the latter throws away samples and still requires a-
priori choice of importance functions. No existing importance sam-
pling approach for hemispheric integrals offers adaptableimpor-
tance functions.

Work on adaptive PDFs for importance sampling has focused
on path tracing or irradiance caching applications. Dutréand
Willems [1994] used piecewise linear functions to determine shoot-
ing directions out of light sources in a particle tracing application.
Dutré and Willems [1995] use piecewise constant functionsand
Pietrek and Peter [1999] use wavelets to build adaptive PDFsfor
sampling gather directions in path tracing. A diffuse surface and
piecewise constant PDF assumption is required to reduce thenum-
ber of coefficients to a manageable level, and even then very high
sample counts are required. It is important to note that a badap-
proximation canincreasevariance. Lafortune and Willems [1995]
used a 5D tree to build an approximation to radiance in the scene,
and then use it for importance sampling in a path tracing frame-
work. The same problems with sample counts and approxima-
tion errors arise in their work. Our algorithm works with arbitrary
BRDFs and uses a low-parameter adaptive model to minimize the
sample count required to control adaption.

Adaptive algorithms have also been suggested for shadow compu-
tations. Ward [1991] proposed an algorithm for scenes with many



lights, where shadow tests for insignificant lights are replaced by
probabilistic estimates. Ward’s approach works best with many
light sources (tens or hundreds) while our technique works best
with few sources. Ohbuchi and Aono [Ohbuchi and Aono 1996]
adaptively sampled an area light source (which introduces bias).
They achieved good stratification by employing quasi-MonteCarlo
(QMC) techniques to place the samples, a technique we also use.

A Sequential Monte Carlo algorithm, similar in spirit to Popula-
tion Monte Carlo, has recently been applied by Ghosh, Doucetand
Heidrich [2006] to the problem of sampling environment mapsin
animated sequences. Their work exploits another property of iter-
ated importance sampling algorithms – the ability to re-usesam-
ples from one iteration to the next – and is complementary to our
approach.

3 Population Monte Carlo (PMC)

The Population Monte Carlo algorithm [Cappé et al. 2004] isan it-
erated importance sampling scheme. In this scheme, a samplepop-
ulation approximately distributed according to a target distribution
is generated at each iteration. Then the samples from all theitera-
tions can be used to form unbiased estimates of integrals under that
distribution. It is an adaptive algorithm that calibrates the proposal
distribution to the target distribution at each iteration by learning
from the performance of the previous proposal distributions.

Assume we have a population of samples denoted by
{

X(t)
1 , . . . ,X(t)

N

}

, where t is the iteration number andN is

the population size, and we wish to sample according to the
distribution proportional tof (x). The generic PMC sampling
algorithm is stated in Figure 2.

1 generate the initial population,t = 0
2 for t = 1, · · · ,T
3 adaptK(t)(x(t)|x(t−1))
4 for i = 1, · · · ,N

5 generatêX(t)
i ∼ K(t)(x|X(t−1)

i )

6 w(t)
i = f (X̂(t)

i )/K(t)(X̂(t)
i |X(t−1)

i )

7 resample according tow(t)
i for the new population

Figure 2: The generic Population Monte Carlo algorihtm.

Line 1 creates the population to jump-start the algorithm. Any
method can be used to generate these samples provided that any
sample with non-zero probability underf can be generated, and the
probability of doing so is known.

The outer loop is over iterations. In each iteration of the algorithm,
a kernel function, K(t)(x(t)|x(t−1)), is determined (line 3) using in-
formation from the previous iterations. The kernel function is re-
sponsible for generating the new population, given the current one.

It takes an existing sample,X(t−1)
i , as input and produces a candi-

date new sample,̂X(t)
i , as output (line 5). The distinguishing feature

of PMC is that the kernel functions are modified after each step
based on information gathered from prior iterations. The kernels
adapt to approximate the ideal importance function based onthe
samples seen so far. While this dependent sampling may appear to
introduce bias, it can be proven that the result is either unbiased or
consistent, depending on whether certain normalizing constants are
known (in our case they are known).

The weight computed for each sample,w(t)
i , is essentially its im-

portance weight. The resampling step in line 7 is designed tocull
candidate samples with low weights and promote high-weightsam-
ples. Resampling is not always necessary, particularly if the kernel
is not really a conditional distribution. In our two sampling algo-
rithms, we did not use the resampling step.

At any given iteration, an estimator of the integral of interest is

∫

D

f (x)dx=
1
N

N

∑
i=1

w(t)
i (1)

As with importance sampling, this estimator uses the sample
weights to estimate the normalization constant,Z, of the the target
distributionπ = 1

Z f (x). In practice, we can average over all iter-
ations to improve the estimate, even weighting each iteration dif-
ferently if we choose. The detail in proving the unbiasedness and
analyzing the variance of PMC method is given in [Anonymous
2006].

Several steps are required to apply PMC to rendering problems:

• Decide on the sampling domain and population size. Compu-
tational concerns and stratification typically drive the choice
of domain. In the image-plane case, working on a discrete
pixel domain rather than a continuous one makes stratifica-
tion simpler to implement and sampling more efficient. We
discuss the choice of population size in the context of each
algorithm, and later in the discussion.

• Define kernel functions and their adaption criteria. This isthe
most important task, and we give examples for our applica-
tions and suggest some general principles in the discussion.
For rendering applications two key concerns are the degree to
which the kernel supports stratification and whether it works
with a small population size (as low as 4 in our hemispheric
integrals sampler).

• Choose the techniques for sampling from the kernel functions
and the resampling step. The deterministic sampling we use
significantly reduces variance much like stratification.

The following sections describe each of our samplers in detail,
adaptation of them into a modern rendering system, and a gen-
eral discussion on PMC for rendering problems before we conclude
with results.

4 PMC-IP: Image-Plane Sampling

Physically-based rendering algorithms compute the intensity,
I(i, j), of each pixel(i, j), by estimating the integrals:

Ii, j =
∫

I

Wi, j (u)L(x,ω)du (2)

whereI is the image plane,Wi, j (u) is the measurement function
for pixel (i, j) – non-zero ifu is within the support of the recon-
struction filter at(i, j) – andL(x,ω) is the radiance leaving the
point, x, seen throughu in the direction−ω, determined by the
projection function of the camera. We are ignoring, for discussion
purposes, depth of field effects, which would necessitate integra-
tion over directions out of the pixel, and motion blur, whichwould
require integration over time.

An image-plane sampler selects the image-plane locations,x in
Equation 2. For simplicity, assume we are working with a ray-
tracing style algorithm that shoots from the eye out into thescene.



Adaptive sampling aims to send more rays through image locations
that have high noise, while avoiding bias in the final result.

Taking an importance sampling view, given a set of samples,
{X1, . . . ,XN} from an importance functionp(x), each pixel is esti-
mated using

Îi, j =
1
n

N

∑
k=1

Wi, j (Xk)L(Xk,ω)

p(Xk)
(3)

The source of bias in most existing adaptive image-plane samplers
is revealed here. Adaptive sampling without bias must avoiddeci-
sions to terminate sampling at an individual pixel, and instead look
at the entire image plane to decide where a certain number of new
samples will be cast. Every pixel with non-zero brightness must
have non-zero probability of being chosen for a sample, regardless
of its estimated error.

We also note the Equation 3 can be broken into many integrals,
one for the support of each pixel. Providedp(x) is known in each
sub-domain, the global nature ofp(x) is not important.

4.1 The PMC-IP Kernel Function

The kernel function is the starting point in creating a PMC algo-
rithm for adaptive image-plane sampling. We need a functionthat
has adaptable parameters, is cheap to sample from, and supports
stratification. This can be achieved with amixture modelof compo-
nent distributions,hIP,(i, j)(x), one for each pixel:

K(t)
IP (x) = ∑

(i, j)∈P

α(t)
(i, j)hIP,(i, j)(x), ∑

(i, j)∈P

α(t)
(i, j) = 1.

Where(i, j) is the pixel coordinate andP is the set of all pixels
in this image. Each component is uniform over the domain of a
single pixel integral. The parameters to the distribution are all the

α(t)
(i, j) values, and these change for each iteration,t. We achieve an

unbiased result if everyα(t)
(i, j) ≥ ε, whereε is a small positive con-

stant (we use 0.01). We enforce this through the adaptive process,
and the use ofε, rather than 0, provides some assurance that we
will not overlook important contributions (referred to asdefensive
sampling[Hesterberg 1995]).

The use of a mixture as the kernel results in aD-kernel PMC [Douc
et al. 2005a] algorithm. Sampling from such a distribution is

achieved by choosing a pixel,(i, j) according to theα(t)
(i, j), and

then sampling fromhIP,(i, j)(x). The latter can be done with a low-
discrepancy sampler within each pixel, giving sub-pixel stratifica-
tion. Stratification across the entire image plane can be achieved
through deterministic mixture sampling, which we describeshortly.
The importance functionp(x) in Equation 3 for a given pixel is
p(x) = hIP,(i, j)(x). This can be derived by considering each pixel
as an individual integral and observing that only one mixture com-
ponent has non-zero probability of contributing to each integral.

Notice that this kernel function is not conditional:
KIP(x(t)|x(t−1)) = KIP(x(t)). Hence, for image-plane sam-
pling we do not include a resampling step in the PMC algorithm
because no samples are re-used. The knowledge gained from prior
samples is instead used to adapt the kernel function.

4.2 Adapting the PMC-IP Kernel

The adaption method is responsible for determining the value of

eachα(t)
(i, j) given the populations from previous iterations and any

information available from them, such as the image computedso

far. We need to to define aα(t)
(i, j) for every pixel, with pixels that

require more samples having higher highα(t)
(i, j) for the component

that covers the pixel.

An appropriate criteria assignsα(t)
(i, j) proportional to the

perceptually-weighted variance at each pixel. The algorithm tracks
the sample variance in power seen among samples that contribute
to each pixel. To account for perception, the result is divided by the
threshold-versus-intensity functiontvi(L) introduced by Ferweda et
al. [Ferwerda et al. 1996]. Normalization also accounts forε.

α ′
i, j =

σ2
(i, j)

tvi(L(i, j))

α(t)
i, j = ε +

(1− ε)α ′
(i, j)

∑(i′, j ′)∈P α ′
(i′, j ′)

The first iteration of the algorithm samples uniformly over the im-
age plane, so this criteria can always be computed. The left images

in Figure 4 show an example of anα(0)
(i, j) map for a given initial

image. The perceptual term in the error image prevents very high
errors in both bright regions (a problem with unweighted variance)
and dark areas (a problem with luminance-weighted variance).

Note thatα(t)
(i, j) ≥ ε, so there is a non-zero probabbility of gener-

ating a sample at any given image plane location. This meets the
requirement for importance sampling that the importance function
is non-zero everywhere where the integrand is non-zero. Further-
more, as the total sample count approaches infinity, the count at any
pixel also approaches infinity. Hence, with the correctly computed
importance weights (Equation 3), the algorithm is unbiased.

4.3 Deterministic Mixture Sampling

Randomly sampling from the discrete distribution defined bythe

α(t)
(i, j) produces excess noise — some pixels get far more or fewer

samples than their expected value. This problem is solved with
deterministic mixture sampling, DMS, which is designed to give
each component (pixel) a number of samples roughly proportional

to itsα(t)
(i, j). Deterministic mixture sampling is unbiased and always

gives lower variance when compared to random mixture sampling,
as proven by Hesterberg [Hesterberg 1995].

The number of samples per iteration,N, (the population size) is
fixed at a small multiple of the number of pixels. We typicallyuse
4 samples per pixel, which balances between spending too much
effort on any one iteration and the overhead of computing a new
set of kernel parameters. For each pixel, the deterministicsam-
pler computesn′(i, j) = Nα(i, j), the target number of samples for that

pixel. It takes⌊n′(i, j)⌋ samples from each pixel(i, j)’s component.
The remaining un-allocated samples are sampled from theresidual
distributionwith probabilityn′(i, j) −⌊n′(i, j)⌋ at each pixel (suitably
normalized).

Figure 3 summarizes the final PMC-IP algorithm:



Figure 4: A comparison between adaptive and uniform image-plane sampling on a direct lighting example. Leftmost is the initial image for

PMC-IP sampling, and theα(0)
k image. The initial image used 2 samples per pixel. The next image is the result of PMC-IP sampling with two

iterations at 4spp on average. Center is a 10spp image uniformly distributed. The zooms show the shadow near the Buddha’sbase (PMC-IP
top, uniform bottom). To the right are the corresponding variance images. Note that the variance image for the PMC-IP sampler has few high
variance regions, and has a lower contrast in general, representing a more even distribution of error.

1 Generate the initial image
2 for t = 1, · · · ,T
3 Compute the perceptually-weighted variance image

4 Computeα(t)
k for each pixelk

5 Use DMS to allocate samples according toα(t)
k

6 Generate samples fromK(t)
IP (x) and accumulate to image

Figure 3: The PMC-IP Algorithm.

Image Method # SPP T(s) Err P-Eff
Buddha Uniform 10 58.1 0.625 0.027

PMC-IP 2+4+4 62.4 0.116 0.138
Box Uniform 16 163 0.545 0.011

Uniform 32 328 0.255 0.012
PMC-IP 4+6+6 169 0.182 0.033

Table 1: Measurements comparing PMC-IP and uniform image-
plane sampling, for equal total sample counts. The Buddha image
computed direct lighting with the MIS method, with a total of8
lighting samples for each pixel sample. PMC-IP sampling improves
the perceptual-based RMS error by a factor of 5.4 over uniform
sampling with only 7.5% more computation time. It corresponds
to an improvement in efficiency of 5.01. The Cornell Box images
use path tracing to compute global illumination including caustics.
Comparing with images of 16ssp, PMC-IP improves the efficiency
by a factor of 2.65.

4.4 PMC-IP Results

Adaptive image-plane sampling can be used in many situations
where pixel samples are required and an iterative algorithmcan be
employed. We have implemented it in the contexts of direct light-
ing using a Multiple Importance Sampler (MIS) and global illumi-
nation with path tracing, and as part of a complete photon mapping
system, which we discuss in Section 6.

Figure 4 shows the Buddha direct lighting example. The surface
is diffuse with an area light source. Each pixel sample used 8illu-
mination samples, and the images were rendered at 256×512, with
statistics presented in Table 1. We introduce the perceptually-based
mean squared efficiency (P-Eff) metric for comparing algorithms,
computed as:

Err =
∑pixelse

2

tvi(L)
, P-Eff=

1
T ×Err

wheree is the difference in intensity between a pixel and the ground
truth value andT is the running time of the algorithm on that image.
P-Eff is a measure of how much longer (or less) you would need to
run one algorithm to reach the perceptual quality of another[Pharr
and Humphreys 2004].

The final adaptive image shown is the unweighted average of three
sub-images (initial and two iterations). While weighting each sub-
image may be helpful, in this context it is not clear that the samples
from one iteration are any better than those from another because
they all used the same per-sample parameters. We obtained more
samples in places that needed it, but not better samples.

The path tracing algorithm differs from a standard version only in
how pixel locations are chosen. The improvement due to PMC-IP
sampling is more pronounced in this situation because some areas
of the image (the caustic, for instance) have a much higher variance
than others due to the difficulty of sampling such paths. We com-
pare the results in two aspects. First, we compare them visually.
Working toward a target image quality, we would continue iterating
the PMC-IP sampler until we were satisfied with the overall vari-
ance. In Fig. 5, we show the final result of the Cornell box and
the comparison between a set of snapshots of the caustic region be-
tween the general PT algorithm and our adaptive algorithm. We can
see that the result of 16th (equivalent to 64 spps) is even better than
the result of 256 spps. We also notice that even at diffuse regions,
our method converges more quickly than the general PT algorithm.

Second, we compare the efficiencies of our algorithm and the PT
algorithm. In this Table 1, we see that PMC-IP sampling with a
total of 16spp improves the efficiency by a factor of 3 to the uni-
form sampling with 16 spps and 32 spps. In this result, we ran our
examples for a fixed number of iterations (bounded by computation
time). Note that because the PMC-IP sampler evenly spreads vari-
ance over the image, an overall image error bound is very unlikely
to leave any high-error pixels.



Figure 5: A Cornell Box image computed using the PMC-IP algo-
rithm. The top image is the final result using PMC-IP algorithm
with 64 iterations, with each iteration averaging 4 spps. Itis easier
to find converged values in diffuse regions than in the caustic re-
gion. Thus, we compare the results by focusing on this region. The
images in the second row, from left to right, are the cropped images
of the caustic region computed using non-adaptive path tracing with
16, 32, 64 and 128 spps. The images in the third row, from left to
right, are intermediate results from the adaptive algorithm at 4, 8,
16 and 32 iterations when computing the top image. The last row
demonstrates that our adaptive sampler produces better visual re-
sults at lower sample counts: on the left is the result from 256 spps,
un-adapted, and on the right image is the result of 16 adapting iter-
ations at an average of 4 spps per iteration.

5 PMC-HI: Adaptive Hemispheric Inte-
grals Sampling

Hemispheric samplers generate incoming directions,ω ′, at a sur-
face point,x. One application is in direct lighting, which assumes
that the light leaving a surface point,L(x,ω) can be evaluated by
the following integral, composed of terms for light emittedfrom
and reflected atx:

L(x,ω) = Le(x,ω)+

∫

Ω
f (x,ω,ω ′)dω ′ (4)

whereLe(x,ω) is light emitted atx, Ω is the hemisphere of direc-
tionsout of x and f (x,ω,ω ′) is the light reflected atx from direc-
tion−ω ′ into directionω:

f (x,ω,ω ′) = Lin(x,−ω ′) fr(x,ω,ω ′)|cos(θ ′)| (5)

where L(x,−ω ′) is the light arriving atx from direction ω ′,
fr(x,ω,ω ′) is the BRDF, andθ ′ is the angle betweenω ′ and the
normal atx.

A standard importance sampling algorithm forL(x,ω) samples di-
rections,

{

ω ′
1, . . . ,ω

′
n
}

, out of x according to an importance func-
tion, p, and computes the estimate:

L̂(x,ω) =
1
n

n

∑
i=1

f (x,ω,ω ′
i )

p(ω ′
i )

(6)

The variance of this estimator improves asp more closely approxi-
matesf , and is zero whenp is proportional tof .

In the local direct lighting situation, one common choice for p is
proportional toLin(x,−ω ′) fr(x,ω,ω ′)|cos(θ ′)| or a normalized
approximation to it. An alternative is to break the integralinto a
sum over individual light sources and sample points on the lights
to generate directions [Pharr and Humphreys 2004,§16.1]. In an
environment map lighting situation, the wavelet product approach
of Clarberg et al. [2005] currently provides the best way to choose
p. However, none of these individual importance functions behaves
well in all cases.

Figure 6 demonstrates the various difficult cases for importance
sampling. The floor consists of a checker pattern with diffuse and
glossy squares (with two types of gloss settings). There aretwo
lights, one large and one small. In pixels that image diffusesquares,
an importance function based on the lights is best. In highlyglossy
pixels that reflect the large light, BRDF sampling is best. For glossy
pixels that do not reflect light, sampling from the light is best, and
rough glossy pixels benefit from both BRDF and light sampling,
but we have no way of knowing this a-priori, and most practition-
ers would use BRDF sampling. In rough glossy regions that reflect
only one light, sampling from the other light is wasteful, but again
most algorithms would sample equally or according to total emitted
power.

Multiple Importance Sampling (MIS) and Bidirectional Importance
Sampling address many of these problems, by trying several impor-
tance functions and combining their results. While this does very
well at reducing variance, it is wasteful in cases where one of the
importance functions is much better than the others and could be
used alone. Other techniques assume knowledge of which strategy
will dominate where.

PMC-HI is a sampler that generates directions out of a point by
adapting a kernel function to match the integrand of interest —

Figure 6: A scene constructed to demonstrate how the optimalsam-
pling strategy varies over an image. The checkers contains diffuse
and glossy squares, with near-pure specular toward the backand
rougher toward the front. There are two light sources.



Lin(x,−ω ′) fr(x,ω,ω ′)|cos(θ ′)| in the direct lighting case. For ex-
ample, the lower images in Figure 7 indicate the relative usefulness
of different importance functions at each pixel. Furthermore, the
PMC framework enables important samples from one iterationto
guide sampling in subsequent iterations.

5.1 The PMC-HI Kernel Function

Each direct lighting estimate takes place at a single surface point
and is only one small step in a larger computation. The same surface
point, and hence the same target function,fr , essentially never re-
appears. We choose to adapt on a per-estimate basis, which avoids
the need to store information about the adaptation state at the sur-
face points and interpolate to find information at new points. Hence,
the number of samples on which to base adaption is low, certainly
less than 100 and less than 10 in some of our examples.

A mixture distribution of a few candidate importance functions is
a good starting point. At least one such component is likely to
be a good approximation tofr , and we expect to adapt to use that
function most often. To catch cases where good sampling directions
are hard to find, we include a component,hcone, that samples based
on important sample directions from the previous iteration. For one
light, the mixture is

K(t)
IR (ω(t)|d(t),β (t)) = α(t)

BRDFhBRDF(ω(t)) (7)

+α(t)
lighthlight(ω(t))

+α(t)
conehcone(ω(t)|d(t),β (t))

There is one term for the BRDF-based importance function, one
for a light (or one per light for multiple lights) and the conepertur-
bation function. The cone function samples a direction uniformly
within a cone of directions with axisd(t) and half-angleβ (t), which
is set based on the population in the previous iteration. It is partic-
ularly useful for situations like partial shadowing where previous
samples that found visible portions of the light generate more sam-
ples that also reach the light.

The population in PMC-HI is a set of sample directions out of the
surface point we are estimating. The population size must belarge

enough to obtain reasonable estimates for theα(t)
k values at each

iteration but not so large as to increase computation times unneces-
sarily. We typically useN = 2m, wherem is the number of mixture
components. This is a sufficient size to see the benefits of adaption,
as the results in Figure 7 demonstrate.

5.2 Adapting for PMC-HI

An initial population ofN samples,
{

Ω(0)
1 , . . . ,Ω(0)

n0

}

, is generated

usingα(0)
cone= 0 and the otherα(0)

k equal and summing to one. A
deterministic mixture sampling is used to select the numberof sam-
ples from each component. Each sample is tagged with the mix-
ture component that was used to generate it, and their importance
weights are computed:

w(0)
i =

f (x,ω,ω ′)

K(0)
IR (ω(0))

(8)

There is no resampling step for direct lighting. The sample size is so
small that resampling tends to unduly favor high-weight directions
at the expense of others, thus reducing the degree to which sampling

Figure 7: These maps show how the mixture component weights
for PMC-HI vary over the image, after two iterations. Brightmeans

high weight. From left to right:α(2)
L1 , the left light’s weight;α(2)

L2 ,

the right light’s weight;α(2)
BRDF; and α(2)

cone, which in this image
is of limited use. The large light dominates in regions whereno
light is seen in a glossy reflection, while the right light is favored
in nearby diffuse squares. The BRDF component is favored only
when the large light is specularly reflected at a pixel. The images
are quite noise-free for such small sample counts (16 total samples
per estimate), indicating that the adaption mechanism converges to
a consistent result.

Image Method # SPP T(s) Err P-Eff
Checks MIS 12 46 0.379 0.057

MIS 48 183 0.153 0.035
PMC-HI 12 54 0.146 0.127

Plant MIS 27 53 0.403 0.047
PMC-HI 27 64 0.128 0.122

Table 2: Measurements comparing PMC-HI sampling with MIS,
for equal total sample counts. In all cases we used a single direct
lighting estimate for each pixel. For the Checks scene, PMC-HI im-
prove the efficiency by a factor 2.21, which takes four times more
samples for uniform MIS to reach the approximately same percep-
tual based variance (Err). The efficiency gain for the Plant scene is
2.60.

explores the domain. Instead, the cone mixture component isused
to incorporate the information from previous samples.

The new component weights,α(1)
k , can now be determined, along

with the d(1) and β (1) parameters forhcone(ω(1)|d(1),β (1)). The
cone directiond(1) is found by taking a weighted average of the

t = 0 population samples, with weightsw(0)
i . The cone size is set

to the standard deviation of those samples. The component weights
are set based on the sample importance weights:

α(t)
k =

∑i∈Sk
w(t−1)

i

∑n
j=1 w(t−1)

j

(9)

whereSk is the set of samples that were generated using compo-
nentk. In the first iteration there is no sample from the cone pertur-

bation, so we setα(1)
cone= 0.2 and adjust the otherα ’s by a factor of

0.8 to make them all sum to one.

We now begin the next iteration. A new set of samples is
generated using deterministic mixture sampling from the kernel

K(t)
IR (ω(t)|d(t),β (t)), weights are computed, and the kernel function

is updated based on the weights. To form the estimate, we use Equa-

tion 1, with each sample,Ω(t)
i , weighted byw(t)

i from Equation 8.

5.3 Adaptive Direct Lighting Results

We present results on two examples of PMC-HI for direct lighting:
the checker scene (Figure 6) and a plant rendering with complex



Figure 8: An image involving complex soft shadows and glossy
surfaces. The top is PMC-HI sampling, while the middle is MIS
with equal total sample count. Note the significant improvement
in the soft shadows achieved with PMC-HI, shown in the zoomed
images at the bottom (PMC-HI left, MIS right).

shadows and glossy BRDFs (Figure 8). The timing and the error
comparisons with MIS (the best of several existing algorithms we
tried on these scenes) appear in Table 2. The checkers image reso-
lution is 500×500 and the plant image is at 720×405.

The checker scene clearly demonstrates that adaption is a stable
process that finds a good kernel function, or evenly weights the
components if no component dominates (Figure 7). The cone com-
ponent is not particularly helpful in this case because the visibility
is simple. The results show that PMC-HI gains an improvementin
rendering efficiency by a factor of about 3. The plant scene demon-
strates the usefulness of the cone function in partially shadowed re-
gions. It results in a major improvement in the soft shadow bound-
aries on the table.

6 Integrating Samplers into a Rendering
System

The combined use of both PMC-IP and PMC-HI in a single ren-
dering pipeline allows us to further improve the rendering effi-
ciency. Figure 9 shows a modern plug-in style Monte Carlo ren-

Figure 9: A block diagram of a plug-in style Monte Carlo render-
ing system, following Pharr and Humphreys [2004]. The PMC-IP
sampler replaces a uniform sample generator with the addition of
a feedback path from the sample accumulator in order to calculate
the perceptual variance. The PMC-HI estimator replaces thedirect
lighting estimator. We can feed information from one iteration back
to the next one to provide initial values for the next iteration.

Figure 10: Blown up images of the upper right portion of the room
scene from Figure 1. The image was generated with a standard
photon shooting phase. On the left is the result of a final gather
with 4 PMC-IP iterations, with each iteration averaging 4 samples
per pixel and using the PMC-HI direct lighting sampler augmented
with the feedback mechanism. PMC-HI uses 2 iterations and each
iterations has 16 shadow rays to estimate direct lighting. Right is
the result of a standard photon mapping gather using 16 spps and
using 16 shadow rays per light to estimate direct lighting. Note the
significant reducitomn in noise with our methods.

dering framework. The only core framework modification required
to support adaptive sampling is the addition of a feedback path from
the output image generator back to the samplers, required topass
information from one sampling iteration back to the samplers for
the next iteration. For the PMC-IP sampler, this feedback provides
the variance map required to determine pixel sampling weights. In
addition, we can improve the performance of the PMC-HI sampler
through feedback.

6.1 Improving the PMC-HI with Feedback

In Figure 9 we show the PMC-HI estimator replacing the direct
lighting estimator. However, it can be used in any situationwhere
the estimation of an integral over the hemisphere is required. Ir-
radiance caching would benefit from the PMC-HI estimator in the
computation of each cache value. Photon mapping can also usea
PMC sampler in the final gathering phase.



The PMC-HI sampler of Section 5 was presented in the context of a
single integral estimate. On the first iteration it uses a setof default

weights for each mixture component,α(0)
k . In a complete rendering

system, we are able to record the final adapted weights from all
the direct lighting integrals done during one image-plane sampling
iteration. The recorded weights can then be used to initialize the

PMC-HI α(t)
k values for the next round of sampling.

Consider a single pixel sample at image plane iterationt. A direct
lighting estimate is made for the first surface point seen through
the pixel location. This direct lighting estimate uses the PMC-HI
sampler to adapt a set of mixture weights, which we pass back along
with the estimate itself and accumulate in an auxiliary image. Other
estimates may also be made for indirect illumination, but wedo not
record the weights from those.

At the next image-plane iteration, any direct lighting estimate re-
quired at a pixel looks to the auxiliary image to find startingweights
for the PMC-HI adaption process. This avoids wasting PMC-HI
iterations with un-adapted initial parameters, which improves our
rendering efficiency.

Photon mapping is an industry standard method for global illumina-
tion, and we implemented the above method for the gather portion
of a photon mapping implementation. Figure 1 shows a room scene
computed with the final system. Looking at the blown-up images
of right wall by the lamp, in Figure 10, we can see that our algo-
rithm converges more rapidly to a smooth image. This is because
PMC-HI obtains a better estimate of the direct lighting, andPMC-
IP puts more samples in this region because of its high variance
nature. Both improve the efficiency of the final result.

7 Discussion

The most important variable parameter in a PMC algorithm is the
population size. Assuming a fixed total rendering budget, a small
population reduces the number of samples per iteration, which gives
more flexibility in the total sample count in an algorithm, but rel-
atively more time is then spent adapting mixture parameters. Fur-
thermore, the quality of the adapted functions is lower because they
are derived from less information. Hence, we use small populations
only for the hemispheric integrals case, where we aim to keepthe
total number of samples per estimate low and the kernel function
has a very small number of parameters. Larger populations result
in more robust adaptation and less overhead, and in general are to
be favored. However, if the population is too large, the benefits
of adaption are lost as relatively more samples are drawn using a
mal-adapted importance function during the early iterations.

In Equation 8 we use the full mixture distribution as the importance
function,K(ω ′

i ). This is a form of Rao-Blackwellization, which re-
duces variance but at the expense of additional computation. The
algorithm remains correct if we use only the mixture component
from which the sample came,hk(ω ′(i)), and we need not compute
the other mixture functions. In some cases, the resulting reduction
in computation may exceed the increase in noise, but in rendering
the greatest cost is usually in obtaining a sample, rather than evalu-
ating its probabilities.

The most notable limitation of PMC is the high sample counts re-
quired when the kernel has many adaptable parameters. This pre-
cludes, for instance, using one component per light when there are
many lights. Such a strategy would be appealing for efficiently
sampling in complex shadow situations (some components would
see the lights, others would not), but the sample count required
to adequately determine the mixture component weights would be

too large. Instead we use a single mixture component for all the
lights and rely on the cone perturbation component to favor visi-
ble lights. This does not work well if the illumination sources are
widely spaced.

In Section 6 we presented an image space method for sharing
adapted parameters across different estimates. An alternate ap-
proach for integrating functions defined on surfaces is to store the
mixture component weights in a surface map and interpolate.This
amortizes the cost of adapting over many surface points. We did
not explore this possibility, but it offers potential for the multi-light
problem or cases where many light transport paths must be con-
structed through a scene, such as bi-directional path tracing or pho-
ton mapping.

8 Conclusion

We have shown how algorithms for adaptive image-plane sam-
pling and hemispheric integral computations can be derivedwithin
a PMC framework. In each case the algorithm learns an effective
sampler based on the results from early iterations. This alleviates
one of the greatest problems in Monte Carlo rendering: the choice
of importance functions and other parameters.

The image-plane sampler and direct lighting integrator arecom-
mon components in many rendering algorithms. PMC-IP sampling
could be used as a plugin component for essentially any algorithm
that forms light paths through the eye, including the gatherphase
of photon-mapping, bi-directional path tracing, irradiance caching,
and so on. The PMC-HI sampler could be used in any situation
where estimates of an integral over the hemisphere are required.
Irradiance caching would benefit greatly from a PMC sampler in
the computation of each cached value. We have shown how photon
mapping can use PMC samplers in the final gathering phase.

PMC is just one approach from the family of iterated importance
sampling algorithms [Robert and Casella 2004]. The Kalman filter
is another well-known example. Common to these techniques is
the idea of sample reuse through resampling and the adaptionof
sampling parameters over iterations. Computer graphics certainly
offers further opportunities to exploit these properties.
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