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ABSTRACT
Program instrumentation has a wide variety of useful applications,

but tool writers must overcome the challenge of substantial over-

heads caused by introducing additional code and data into a pro-

gram. This paper observes that instrumentation usually operates on

many discrete, independent data structures, which we call metadata

parallelism. We proposes to exploit this phenomenon to reduce the

overhead of instrumented programs by executing instrumentation

function invocations that manipulate different pieces of metadata

simultaneously in different threads.

The key challenge to spreading instrumentation function execution

across many threads is ensuring that metadata updates occur in the

correct order, and do not suffer from data races. Metadata-based

parallelization solves this problem by using a user-specified map-

ping of instrumentation function invocations to serialization sets.

The runtime ensures that metadata updates are handled correctly

by executing all function invocations in a given serialization set in

the same thread. It achieves concurrency by spreading different

serialization sets across multiple threads.

Metadata-based parallelization improves on previous techniques to

reduce the overhead of program instrumentation of a broad class of

dynamic monitoring tools, including those that measure common-

case behavior, such as profilers, and those that check for anomalous

behavior, such as debugging and testing tools. Our technique al-

lows tool developers to leverage parallelism with a natural, intuitive

programming interface, leaving the burden of correct synchroniza-

tion of the parallelized execution to the instrumentation system.

We have modified the EEL instrumentation system to support

metadata-based parallelization, and we evaluate our prototype by

comparing the performance of parallelized instrumentation on both

multicore and SMP systems. We show that the fast communication

provided by the multicore system is a key enabler for fine-grained

parallelization, achieving speedups averaging 4.3X for value pro-

filing and 2.9X for data dependence profiling using 8 additional

thread contexts.

1. INTRODUCTION
The advent of commodity multicore microprocessors has brought

multiprocessing capabilities to mainstream computing. Because

the multiple cores are integrated on a single die, they can pro-

vide extremely fast inter-processor communication. Thus multi-

core processors do not just provide multiprocessing for the masses,

but actually enable new types of parallel applications that were not

possible given the higher communication latencies of conventional

symmetric multiprocessing (SMP) machines.

Parallelizing existing applications that were unable to benefit from

the coarse parallelism of SMPs is one obvious way to leverage mul-

ticore processors. Another, perhaps less apparent, opportunity af-

forded by multicore processors is the ability to enhance applica-

tions to provide richer features, greater usability, and improved re-

liability. Program instrumentation—additional code inserted into a

program to collect information about its runtime behavior—is such

an enhancement. This information has many useful applications,

such as profile-driven optimization, debugging and testing, and in-

trusion detection and reaction.

Program instrumentation inserts additional code and data into a

program, and can incur substantial overheads. Tool builders face an

inherent trade-off between the richness of runtime data collected,

and the performance degradation incurred. Section 2 summarizes

research aiming to alleviate these overheads. Historically, efforts to

reduce instrumentation overhead have focused on reducing the fre-

quency of instrumentation execution via sampling techniques [1,2,

9, 23]. Sampling can significantly reduce the overheads of instru-

mentation, but sacrifices accuracy in the process. While this is of-

ten a desirable trade-off for tools which measure common-case be-

havior, sampling is unacceptable for tools that monitor uncommon

events. Testing and debugging applications frequently fall within

the class of tools which require complete profiling. For example,

memory debuggers such as Memcheck [31] and Purify [24] would

be far less useful if they only occasionally caught errors.

Parallelization is an attractive option for tools that require the entire

program to be monitored, because the overall execution time can be

reduced by overlapping work using multiple threads. Previous ap-

proaches to parallelizing program instrumentation have focused on

minimizing the performance impact to the program. Because in-

strumentation code reads from, but rarely (or never) writes to pro-

gram state, the instrumentation can be executed in a separate thread.

While this decomposition allows the program to execute at nearly

full speed, the instrumentation still executes very slowly. In many

cases, the results of the instrumentation are what is interesting, so

allowing the program to finish early is of little benefit.

This paper describes another type of parallelism present in instru-

mented code, which we call metadata parallelism. Metadata par-

allelism is the degree of independence among the operations per-

formed by instrumentation code on its own, private data structures.

Instrumented programs often contain large amounts of metadata

parallelism, because metadata is stored about fine-grained program

attributes such as memory addresses and program counter values.

Previous approaches to parallel instrumentation have been unable

to exploit this phenomenon because its fine granularity was not



amenable to the high communication latencies of SMPs. In this

paper, we show that a metadata-based decomposition can leverage

the fast communication provided by multicore processors to greatly

reduce the overhead of program instrumentation.

Metadata-based parallelization, discussed in Section 3, modifies a

conventional thread of execution (the program thread) to send the

arguments of an instrumentation function to one of a number of del-

egate threads. A delegate thread, running on a separate hardware

context, is responsible for receiving the arguments and executing

the instrumentation function. The key challenge in metadata-based

parallelization is ensuring that metadata dependences between the

instrumentation functions are honored, maintaining the appearance

of sequential execution. This achieved by mapping each invoca-

tion of an instrumentation function to a serialization set. The in-

strumentation system then guarantees that all function invocations

within a given serialization set execute in the same order they would

have in sequential execution.

Metadata-based parallelization of program instrumentation enables

rapid development of fast, accurate profiling tools, without placing

restrictions on the type of data collected, or placing onerous de-

mands on the tool developer. The main limitation of this technique

is that it is only beneficial when the overhead of an individual in-

strumentation function is greater than the overhead of passing its

arguments to a delegate thread. Fortunately, the advent of multi-

core processors with fast inter-core communication allows for very

fast communication of the instrumentation arguments.

We have implemented a prototype of metadata-based paralleliza-

tion using the EEL instrumentation system [26]. We compare the

performance of two profiling tools running on a multicore system

vs. a conventional SMP system. Our results demonstrate that the

faster inter-thread communication provided by CMPs enables par-

allelization of program instrumentation at a very fine granularity.

Metadata-based parallelization speeds up value profiling [8] by an

average of 4.3X and data dependence profiling [20] by an average

of 2.9X using 8 additional thread contexts on an UltraSPARC T1-

based Sun Fire T2000 system.

2. RELATED WORK
Leveraging the power of program instrumentation requires tool de-

velopers to deal with complex processor instruction sets and es-

oteric executable file formats. This problem is addressed by in-

strumentation systems [5–7, 10–12, 14, 15, 26, 27, 30, 32]. These

systems present tool developers with abstractions such as routines,

control-flow graphs, and simplified, machine-independent instruc-

tion representations. By hiding the details of executable formats

and instruction set architectures, these systems facilitate the rapid

development of correct, efficient, and portable tools for monitor-

ing application execution. The programming model provided by

metadata-based parallelization adheres to the philosophy of instru-

mentation systems by providing an intuitive interface for tool de-

velopers to exploit parallelism in their instrumented code.

The utility of program instrumentation has motivated researchers to

examine ways to alleviate its overheads. One way to reduce these

overheads is to reduce the frequency of execution of instrumenta-

tion. Ball and Larus have developed optimal algorithms for control

flow profiling, which reduce the amount of instrumentation to the

minimum amount needed to reconstruct a complete profile [3, 4].

Convergent profiling reduces the frequency of instrumentation ex-

ecution once a profile converges to a steady-state [8]. Statistical

sampling techniques [1,2,9,23] can significantly reduce the amount

of times instrumentation must be executed. These techniques are

orthogonal to parallelization, and they may be used in a comple-

mentary fashion.

Hardware support is an attractive option for inspecting the run-

time properties of applications. Modern processors provide event

counters for a wide variety of hardware performance metrics. Re-

searchers have proposed more elaborate hardware support to collect

more detailed data about running programs [13, 16, 17, 19, 22, 25,

34]. The advantages of hardware schemes is that they can achieve

very low overhead, and often do not require modification of the

original program. The disadvantage of hardware support is that it

adds complexity to the design verification process. Metadata-based

parallelization avoids this additional complexity by using general-

purpose hardware to reduce the overhead of profiling.

Parallelization is an attractive option for hiding instrumentation

overheads, due to the inherent parallelism between a program and

instrumentation code. Patil and Fischer proposed executing the

program in one thread, with a second thread executing a shadow

process that checks the correctness of memory operations [29].

Shadow processing allows the original program to run at nearly

full speed, but the instrumentation itself still suffers from very large

overheads. The shadow process, which determines if there were er-

rors in the execution, can experience slowdown by a factor of 10X

or more. Metadata-based parallelization could be applied to the

shadow process to greatly reduce this overhead.

Oplinger and Lam proposed executing instrumentation functions as

speculative threads on a simultaneously-multithreaded (SMT) pro-

cessor [28]. Their design does not explicitly exploit metadata paral-

lelism, instead relying on thread-level speculation hardware to de-

tect and rollback violations of metadata dependences. This means

that instrumentation with dense metadata dependences may cause

frequent violations, negating the benefits of parallelization. Fur-

thermore, their scheme requires hardware support for thread-level

speculation, which has not yet been implemented in mainstream

microprocessors.

Shadow profiling [21] and SuperPin [33] are both enhancements to

Pin [12] that allow it to perform parallel execution of instrumenta-

tion. Both of these systems modify a program to periodically fork

off a shadow process (or timeslice, in the parlance of SuperPin)

that executes a portion of the program instrumented with the de-

sired data collection routines. These shadow processes are quite

long–millions to hundreds of millions of instructions for shadow

profiling, and up to a second for SuperPin. Because the only mod-

ification made to the original program is infrequent forking of a

shadow process, the slowdown incurred by the program thread is

minimal. However, shadow profiling is only applicable to event-

counting forms of profiling, which have inherently parallel meta-

data updates (e.g. counter increments).

SuperPin provides an API for users to reconcile the local metadata

updates of the individual timeslices. This API provides a merge

function that is called at the end of each timeslice to integrate the

local metadata updates with the overall metadata. When metadata

updates depend on values of the metadata generated in previous

timeslices, the tool developer must track all the updates in the lo-

cal timeslice. Then when the merge function is called, the previous

values of metadata are propogated through these updates to gener-

ate the final value. This may require significant extra bookkeeping
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Figure 1: Program execution under metadata-based parallelization

effort, making it difficult to parallelize some types of instrumenta-

tion.

3. METADATA-BASED PARALLELIZATION

3.1 Overview
As an instrumented program executes, the instrumentation code

maintains information in private data structures, or metadata. Meta-

data typically describe fine-grained aspects of the state of the run-

ning program. This leads to a great deal of independence in the op-

erations performed by the instrumentation. For example, memory

profiling tools track information about operations the program per-

forms performs on memory by maintaining a metadatum for each

distinct address. Updates to a particular metadatum depend only

on its previous state, and the operation the program performs on

the associated address. Updates to metadata for different addresses

are thus completely independent.

We propose metadata-based parallelization to leverage this inde-

pendence. The high level operation of this model is illustrated

in Figure 1. The conventional thread of execution, or program

thread initially forks a number of delegate threads before it be-

gins execution. Then, as the program thread executes and encoun-

ters instrumentation sites, it sends the information needed by the

instrumentation–the memory address and the operation performed

on it, in our example–to a delegate thread, and continues execution.

The delegate threads wait to receive this information, and when

they do, they execute the instrumentation on behalf of the pro-

gram thread. Metadata-based parallelization achieves concurrency

by spreading the instrumentation over multiple delegate threads,

speeding up the overall execution of the program.

There are two key challenges to metadata-based parallelization.

First, instrumentation invocations that operate on the same metada-

tum must still execute in program order. This ensures that metadata

operations correctly observe the previous value of the metadata, as

is required by our memory profiling example. This is not guaran-

teed if instrumentation is distributed to delegate threads in an ad hoc

fashion. Second, to prevent data races from occurring when differ-

ent threads attempt to access the same metadatum, mutual exclu-

sion to individual metadata elements must be ensured. Metadata-

based parallelization solves these problems by executing all instru-

mentation that operates on the same metadatum in the same del-

egate thread. This solves the ordering problem, because delegate

threads retrieve messages from the program thread in order, so up-

dates to the same metadatum still happen in program order. The

mutual exclusion property is also assured by executing all opera-

tions on a particular metadatum in the same thread. Restricting

operations on individual metadata elements to a single thread does

not overly restrict concurrency because there are typically many

more metadata elements than there are threads.

3.2 Example: Data Dependence Profiling
We illustrate metadata-based parallelization with a specific exam-

ple of memory profiling–data dependence profiling [20]. This tech-

nique is used to ascertain which static store instructions each static

load instruction depends on during the dynamic execution of the

program. This is achieved by shadowing memory with a table that

tracks, for each byte in memory, the program counter of the last

store to write to that address. Stores are instrumented to write their

PCs into the table for each memory element they address. Loads

are instrumented to access the shadow table for the addresses they

access, and read out the PC of the last store to that address. This PC

is then added to the list of stores the load depends on. The instru-

mentation functions for loads and stores are given in pseudocode in

Figure 2.

ddp_store (addr st_pc, addr st_addr, int size) {

// insert st_pc into shadow memory table

// from st_addr to st_addr+size

}

ddp_load (addr ld_pc, addr ld_addr, int size) {

// 1) access shadow memory table

// from ld_addr to ld_addr+size

// 2) read store pcs, add to list of

// stores this load depends on

}

Figure 2: Data dependence profiler
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Figure 3 gives an example of the data dependence profiler monitor-

ing a hypothetical instruction stream, showing the corresponding

instrumentation function calls and the final state of the memory

shadow table and the dependence lists. Metadata dependences be-

tween the instrumentation function invocations are indicated with

arcs. For example, the load on line 3 depends on the store on line 1,

because they are to the same address. Loads can also depend on

multiple stores, because different sizes of loads and stores can over-

lap. This is the case with the dependence of the load on line 8,

which depends on the store on line 6 and line 2. Anti-dependences

also occur, such as the store on line 7 and the load on line line3.

For the data dependence profiler to correctly observe the memory

behavior of the program, metadata dependences must be honored.

Violation of these dependences might result in the load instrumen-

tation determining that it depends on a store it does not actually

depend on, or missing a store that it does depend on. On the other

hand, instrumentation function invocations that are independent of

each other may be ordered arbitrarily without changing their out-

come. In our example, the invocations that access the 0x8000 row

of the memory shadow table (the left dependence arcs) could be run

in any order relative to the invocations that access the 0x9000 row

of the memory shadow table (the right dependence arcs), and the

same set of load dependence lists would result.

Metadata-based parallelization can be applied to this example by

executing operations on the two different rows of the shadow table

in different delegate threads. Thus the instrumentation functions

invocations on lines 1, 3, and 7 would be executed in one thread,

and the invocations on lines 2, 4, 5, 6, and 8 would be executed

in another thread. The execution of these delegate threads can be

arbitrarily interleaved without changing the results of the profiler.

3.3 Serialization Sets
Metadata-based parallelization ensures the necessary ordering be-

tween instrumentation function invocations using serialization sets.

By placing invocations in the same serialization set, the tool devel-

oper indicates that they access the same metadatum. The runtime

support of the instrumentation system then ensures that all function

invocations in the same serialization set are assigned to the same

delegate thread for processing. Note the distinction between func-

tions and their invocations here–a single static function may have

its dynamic invocations mapped to different serialization sets, and

ddp_store (1000, 8000, 4)

ddp_load (3000, 8000, 4)

ddp_store (6000, 8001, 1)

ddp_store (2000, 9000, 4)

ddp_load (4000, 9000, 4)

ddp_load (3000, 9000, 4)

ddp_load (4000, 9000, 4)

ddp_store (5000, 9002, 2)

ID :  A D D R  > >  2  =  0 x 2 0 0 0 ID :  A D D R  > >  2  =  0 x 2 4 0 0

Figure 4: Serialization sets for data dependence profiling ex-

ample

invocations of different functions may be mapped to the same seri-

alization set.

The runtime mapping between instrumentation function invoca-

tions and serialization sets is performed using a user-specified se-

rialization mapping, or serializer. The serializer is a piece of code

that takes some or all of the arguments to the instrumentation func-

tion, and identifies the serialization set for the instrumentation func-

tion invocation. An extremely simple serializer could merely return

the address of the metadatum manipulated by the function invoca-

tion. In practice, it is simpler to use the value of whatever piece of

machine state the function invocation is related to. This approach

provides a natural programming interface for writing instrumen-

tation functions, and lends itself to efficient implementation, since

these values are usually readily available at the instrumentation site.

Serializers may be either static, such as the PC of a particular in-

struction, or dynamic, such as the memory address used by a load

or store.

Serialization sets provide an intuitive programming interface. Writ-

ing instrumentation code already requires the tool developer to rea-

son about the machine state the instrumentation is observing and to

correctly track metadata related to that state. Specifying the serial-

ization mapping requires the programmer to extend this reasoning

to specify, for a given function invocation, which metadata element

it will access.

Serializers are also easy to debug. Incorrectly specified serializ-

ers may be detected by placing a field in every metadata structure



that tracks the serialization set that accesses it. Then each instru-

mentation function invocation can check that its serialization set

matches the value of this field, and signal an error on mismatch.

Serializers that perform poorly are usually caused by load balanc-

ing issues, which may be discovered by observing the number of

function invocations handled by each delegate thread. If a few del-

egate threads are performing most of the work, then the serializer

could be modified to identify the metadata dependences at a finer

granularity, or to provide a more uniform distribution of mappings

to the serialization sets.

For our data dependence profiler example, a good serializer would

be the address accessed by a memory instruction shifted left by two

bits, which corresponds to the rows of the memory shadow table.

Figure 4 shows the two serialization sets that result from our exam-

ple using this serializer. This results in two sets of function calls

that respect the dependence arcs shown in Figure 3. Thus while the

members of each sets must run in the same delegate thread, these

sets can be mapped to different delegate, yielding concurrent exe-

cution of the instrumentation functions.

3.4 Instrumentation Requirements
For the purpose of this paper, we assume all instrumentation is en-

capsulated in functions, and that all the state needed to execute the

instrumentation function is passed in as arguments. This simplifies

the expression of instrumentation by the tool builder, and is a com-

mon idiom in many instrumentation systems [5,7,11,12,14,15,26,

30, 32]. In practice, this is not a limitation, since most forms of

instrumentation can be trivially transformed to meet this require-

ment.

We also assume that instrumentation functions do not change the

original computation of the program. This is a fundamental re-

quirement, since the implicit assumption in delegating an instru-

mentation function to another thread and proceeding with execu-

tion of the program is that the instrumentation function will return

to where it was called.

We note that the underlying assumption of metadata-based

parallelization—that instrumentation functions operate on a large

number of distinct data elements—might seem to preclude the use

of container data structures. Data structures such as arrays, lists,

and hash tables can be important for achieving efficient imple-

mentations of algorithms. But if individual metadata elements are

stored in a container, then accesses to the metadata elements, while

independent, are still subject to races on the data structure contain-

ing them. A natural solution that leverages metadata parallelism is

to partition the data structures per-thread, since metadata updates

are confined to a single thread. For our data dependence example,

the shadow table can be partitioned in this fashion, since all table

accesses to a given metadatum only happen within a single dele-

gate thread. It is possible that some instrumentation tools might

require some programmer-specified synchronization on container

structures, but we believe that metadata-based parallelization can

handle most cases.

3.5 Examples
Table 3.5 lists examples of some common types of instrumentation

tools, and how the serializer would be specified for each type. The

first category, instruction profiling tools, collect information spe-

cific to individual instructions. Correct parallelization requires that

all dynamic instances of a static instruction are seen in program or-

der by instrumentation functions. With metadata-based paralleliza-

tion, this is implemented by placing instrumentation for each in-

struction in a separate serialization set using a static serializer–the

PC of the profiled instruction.

The second category contains memory profiling tools. These re-

quire that all updates to a given memory address are seen in the or-

der they occur in the program. Because memory can be addressed

at different granularities, instrumentation of memory instructions

must be placed in serialization sets according to the largest granu-

larity. Thus the serializer is the memory address with enough low-

order bits masked off to ensure that updates of any size to a given

address are assigned to the same serialization set. For example,

on an architecture that can address up to eight bytes at a time, the

serializer would be the address with the least-significant three bits

shifted off.

4. IMPLEMENTATION
We have implemented a prototype of metadata-based paralleliza-

tion using the EEL [26] instrumentation system. We chose to use

EEL for three reasons: first, it is a proven instrumentation system

used to develop several profiling tools [4, 26]; second, its source

code is available, allowing us to add support for spawning and con-

trolling delegate threads; and third, it supports the SPARC ISA,

facilitating our comparison between a multicore system and a SMP

system.

4.1 Programming Interface
Our implementation extends EEL’s call_snippet interface to

support parallel instrumentation calls with user-specified or built-

in serializers as shown in Table 2. A call_snippet takes the

specified instrumentation routine and generates code to pass argu-

ments and invoke the routine. We extended this interface with a

pcall_snippet which takes a user-supplied routine and seri-

alizer, and generates an instrumentation proxy, which is responsi-

ble for invoking the instrumentation function in a delegate thread.

Users may write their own serializers as an code_snippet (EEL’s

generic form of instrumentation code), or use a built-in serializer.

The built-in serializers are handy because they are simple to use,

and have been optimized to execute efficiently.

Before instrumenting a program with

pcall_snippets, tool builders must call the

prepare_parallel_instrumentation method in

EEL’s executable class. This method adds the necessary symbols,

routines, and library dependences to the application to correctly

support the parallelized execution.

4.2 Runtime Support
Our parallel instrumentation system adds code to main function

(or whichever function serves as the program entry point) to spawn

the delegate threads on entry. It also adds code to perform a thread

join at the end of this function, which ensures the application does

not terminate before the delegate threads complete.

For each instrumentation site, the instrumentation system generates

an instrumentation proxy. The instrumentation proxy performs 3

actions: 1) it executes the serializer to determine the serialization

set; 2) it hashes the serialization set id over the number of delegate

threads to identify the delegate for execution; and 3) it pushes the

instrumentation function handle and arguments into the message

queue.



Profiling Type Examples Serializer

Instruction basic-block and edge profiling [3, 32], dynamic instruction counting,

value profiling [8]

PC >> log2 (instruction size)

Memory memory debuggers [24, 31], data dependence profiling [20] address >> log2 (ACCESS_SIZE)

Table 1: Examples of profiling tools and how they would be serialized in metadata-based parallelization

Interface Description

call_snippet (routine* inst_r,

call_args** args,

bool returns_result);

standard EEL call snippet (some param-

eters omitted for brevity)

pcall_snippet (routine* inst_r,

call_args** args,

bool returns_result,

code_snippet* serializer);

parallel call snippet with user-specified

serializer

pcall_snippet_pc (routine* inst_r,

call_args** args,

bool returns_result,

addr pc);

parallel call snippet serialized on pro-

gram counter pc

pcall_snippet_target (routine* inst_r,

call_args** args,

bool returns_result,

instruction* inst);

parallel call snippet serialized on

control-flow target of instruction inst

pcall_snippet_address (routine* inst_r,

call_args** args,

bool returns_result,

instruction* inst);

parallel call snippet serialized on ad-

dress generated by memory instruction

inst

pcall_snippet_value (routine* inst_r,

call_args** args,

bool returns_result,

int_reg reg,

addr_pc);

parallel call snippet serialized on value

in register reg before program counter

pc

Table 2: Parallel instrumentation call interface

The instrumentation proxy uses a simple hash of the modulus of

the serialization set id and the number of delegate threads. Since

the modulus operation is fairly expensive in the SPARC ISA, we

optimize the case where the number of delegate threads is of the

form 2N to generate the modulus by using the lower N bits rather

than using the integer arithmetic instructions.

Communication between the program thread and the delegate threads

is performed using one-way circular message queues. When the

program thread executes an instrumentation proxy, the handle of

the instrumentation function and all of its arguments are pushed

into the appropriate message queue. A delegate thread then re-

trieves this message, first reading the handle of the instrumentation

function. The delegate then uses the handle to look up how many

arguments the function has, and then retrieves them from the mes-

sage queue. When the program thread reaches the end of the main

function in the program, it sends a special message with a null han-

dle, which signals the delegate threads to terminate. The program

thread then executes the thread join, which causes it to wait until

all delegate threads finish processing instrumentation routines and

exit.

4.3 Multithreaded Programs
Our current implementation supports only single-threaded applica-

tions, but there is no fundamental limitation that prevents metadata-

based parallelization from being applied to multithreaded applica-

tions. This may be desirable if a multithreaded application executes

with fewer threads than a machine has hardware contexts.

To support multithreaded execution, our tool would need to in-

tercept and correctly handle process and thread control functions.

Moseley et al. [21] describe how to handle the fork system call,

which creates a new process. When fork is called and not im-

mediately followed by an exec, new delegate threads must be cre-

ated for this process. A parallelizing instrumentation tool must also

catch all calls to all thread creation and termination routines to set

up the necessary delegate threads.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Setup
We evaluated the performance of our prototype implementation on

both a multicore Sun Fire T2000 system, and an SMP Sun Fire

V880 system. The configuration of these systems is described in

Table 3.

The UltraSPARC-T1 processor [18] in the multicore system has

eight processor cores, each of which are four-way multithreaded.

When running parallelized instrumented programs on this machine,

we bind the program thread to one core and do not map any other

threads to that core. The delegate threads are then mapped to the



Multicore SMP

Sun Fire T2000 Sun Fire V880

Processor Type UltraSPARC T-1 UltraSPARC-III+

# Processors 1 8

Cores per Processor 8 1

Threads per Core 4 1

Clock Speed 1GHz 900 MHz

Memory 16 GB 32 GB

Table 3: Machine parameters

Message Size (bytes)
Clock Cycles (Mean)

Multicore SMP

4 45 49

8 45 63

16 45 92

32 45 129

64 45 243

128 45 294

256 45 310

Table 4: Mean number of clock cycles required to repeatedly

send a message via the message queue

remaining cores in such a way as to minimize the number of threads

sharing a core. This minimizes the amount of competition among

delegate threads for processor resources.

Our benchmarks are comprised of all the C language benchmarks

from the SPEC2000 benchmark suite. EEL is currently unable to

correctly handle eon as well as the Fortran floating point bench-

marks, so these are not included in our evaluation. The incom-

patibilities are a known issue with EEL, and are not related to our

prototype implementation.

5.2 Communication Overhead
Our prototype implementation uses one-way message queues to

communicate between the program thread and the delegate thread.

The main limitation to performance of the prototype is how quickly

the program thread can generate instrumentation arguments to pass

to the delegate threads. This determines how much concurrency in

the instrumentation can be exploited. To measure the rate at which

the program thread is able to dispatch these messages, we wrote a

microbenchmark where the program thread repeatedly sends mes-

sages of varying size to a delegate thread. Each message includes

the tick counter of the processor running the program thread. By

observing the deltas in the tick counter, we can measure the time

needed to send each message. We used this microbenchmark to

compare the overhead of sending message on the multicore and

SMP systems. Table 4 summarizes the results.

The multicore system has a uniform overhead of 45 cycles, regard-

less of message size, due its a write-through L1 cache policy and

shared on-chip L2 cache. The overhead in the SMP system is fairly

similar for small messages, but increases quickly with increasing

message size. By observing the individual stream of message la-

tencies on the SMP system we found that each message that crosses

a 64-byte cache line boundary incurred significant additional over-

head, and that the effect was additive for messages that cross mul-
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Figure 5: Overhead of value profiling
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Figure 6: Overhead of data dependence profiling

tiple cache line boundaries. The shared cache on the multicore sys-

tem thus enables parallel applications with much greater amounts

of communication.

5.3 Case Study 1: Value Profiling
For our first case study, we implemented value profiling [8]. Value

profiling is used to observe the most common values produced by

each instruction in a program. This information is valuable because

it may be used to produce specialized versions of code when certain

values in a program are invariant or very common.

Following the proposal of Calder et al [8], our implementation of

value profiling maintains a 50-entry Top-N-Value (TNV) table for

each instruction. The TNV table tracks the 50 most-commonly

seen values, as well as the frequency of their occurrence. We mea-

sured the overheads of value profiling on both the multicore and

SMP systems; the results are shown in Figure 5. Since the multi-

core and SMP systems use different CPUs, we compare their per-

formance using the same set of instrumented programs to ensure

that our parallelization experiments are addressing similar over-

heads.

Value profiling introduces significant overhead into program exe-

cution. For the integer benchmarks, the average average slowdown

was 154X on the multicore system, and 129X on the SMP system.

The slowdown for the floating point benchmarks was much lower

on the multicore system (4X) than the SMP system (16X). This

disparity reflects the very poor floating point performance of the

UltraSPARC-T1 [18], which has limited floating point capabilities.
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Figure 7: Performance of parallelized value profiling on an SMP system
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Figure 8: Performance of parallelized data dependence profiling on an SMP system

The floating point programs take much longer to execute on this

system, so the instrumentation takes up a relatively smaller portion

of the execution time.

To apply metadata-based parallelization to value profiling, we ob-

serve that the individual TNV table elements are each accessed only

by the instrumentation for a particular instruction. Thus we paral-

lelized the program using a PC-based serializer.

5.4 Case Study 2: Data Dependence Profiling
Our second case study was data dependence profiling [20], which

has already been described in detail in Section 3.2. We parallelized

this tool using the memory address based serializer described in

the example. Two types of container data structures are used for

this application—a hash table used to store the shadow memory ta-

ble, and lists used to store the load dependences. We partitioned

both into per-thread structures avoid needing to add any synchro-

nization to the instrumentation. Since the load dependence lists are

distributed over a number of thread-specific data structures, at the

end of the profiling run we simply iterate over these results and

combine them to obtain the final profile.

Figure 6 shows the overhead of data dependence profiling. The

integer benchmarks had similar overheads of 70X and 75X on the

multicore and SMP systems, respectively. The multicore system

again showed less overhead in the floating point benchmarks, with

an overhead of 12X compared to 74X for the SMP system.

5.5 SMP Performance

Figure 7 shows the performance of parallelized value profiling on

the SMP system as a function of the number of delegate threads.

Since value profiling instruments every instruction, a great deal of

communication occurs between the program and delegate threads.

As we saw in Section 5.2, the performance of communication de-

grades as the amount of data sent increases. The parallel value

profiler suffers a slowdown by a factor of 2 for any number of dele-

gate threads–the amount of communication in the parallelized value

profiler is simply too much for the SMP to accommodate.

The performance of parallelized data dependence profiling on the

SMP is given in Figure 8. Because data dependence profiling in-

struments only load and store instructions, the amount of commu-

nication is significantly less than in value profiling. This enables

the parallelized profiler to achieve noticeable speedup. Parallel ex-

ecution speeds up data dependence profiling by a factor of 1.75X

for with 7 delegate threads.

5.6 Multicore Performance
The performance of parallelized value profiling and data depen-

dence profiling on the multicore system is given in Figure 9 and

Figure 10, respectively. These figures show the speedup achieved

the multicore system using a varying number of delegate threads.

We use a variety of configurations to illustrate several factors af-

fecting the performance. The first factor is the number of delegate

threads mapped to a CPU. In the configurations using one to seven

delegate threads, each delegate thread is mapped to a separate core.

The 14 delegate thread uses exactly two threads per core. The sec-

ond factor is that configurations using a number of delegate threads

that is a power of two use a much faster hashing function in the
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Figure 9: Performance of parallelized value profiling on a multicore system
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Figure 10: Performance of parallelized data dependence profiling on a multicore system

instrumentation proxy. This motivated our inclusion of 8- and 16-

delegate thread configurations.

Using only one delegate thread results in a slight slowdown from

the single-threaded benchmarks. The critical path in this configu-

ration runs through the delegate thread. The slowdown indicates

that reading arguments out of the message queue in the delegate

thread before executing the instrumentation functions takes longer

than executing the instructions between instrumentation functions

in the single-threaded version.

The fast hash function used in the power-of-two configurations

gives significant improvements over the configurations using the

slower hash function. For example, the 4-delegate configuration

runs faster than the 5-, 6-, and 7-delegate configurations for most

benchmarks. And the 8-delegate configuration is much faster than

the 7- or 14-delegate ones. The greatly improved performance of

the faster hash function indicates that the speed of the instrumenta-

tion proxy plays a critical role in determining the amount of paral-

lelism that can be exploited.

Comparing the 8-and 16-delegate configurations reveals that us-

ing multiple threads per core does not significantly improve perfor-

mance for most of the benchmarks. This makes sense, because mul-

tithreading is intended to deal with the frequent L2 cache misses

incurred by server workloads [18]. The SPEC benchmarks repre-

sent common desktop and workstation applications that miss far

less often in the L2 cache.

Overall, metadata-baed parallelization achieves significant speedups

utilizing the fast communication provided by the multicore system.

Value profiling speeds up by a factor of 4.3X, and data dependence

profiling speeds up by a factor of 2.9X, when using 8 delegate

threads.

6. CONCLUSION
In this paper, we observe that program instrumentation typically

collects numerous independent pieces of information (metadata)

about a program’s execution. We propose metadata-based paral-

lelization to leverage this parallelism to greatly reduce the overhead

of instrumented programs.

The main challege to parallelizing instrumentation is ensuring that

metadata dependences are respected during the concurrent execu-

tion. We address this problem with serialization sets, a program-

ming abstraction that allows tool developers to specify on what

metadatum a particular invocation of an instrumentation function

will operate. The runtime support in the instrumentation system

then ensures that metadata dependences are respected by running

all function invocations in a serialization set in the same thread. Se-

rialization sets provide an intuitive programming interface, allow-

ing tool developers to easily exploit fine-grained parallelism in a

wide range of program-monitoring applications. Looking forward,

we believe that this natural programming idiom can be useful for

many other types of applications.

We have developed a prototype implementation of metadata-based

parallelism within the EEL instrumentation system. We show that

the fast on-chip communication provided by multicore processors

is critical to enabling fine-grained parallelization. Using a multi-

core system, we then demonstrate that our prototype can reduce the

overhead of two profiling applications, speeding up value profiling



by 4.3X and data dependence profiling by 2.9X using 8 additional

hardware contexts.
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