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ABSTRACT
Future multicore processors will become more susceptible to a va-

riety of hardware failures. In particular, intermittent faults, caused

in part by manufacturing process variation or in-progress wear-out,

can cause bursts of frequent faults that last from several cycles to

several seconds or more. Cost-effective reliability to tolerate in-

termittent faults will likely require, or be greatly simplified by, the

ability to temporarily suspend execution on a core during periods

of frequent intermittent faults. We investigate three existing tech-

niques for adapting to the dynamically changing resource availabil-

ity caused by such core suspension, and demonstrate their different

system-level implications.

We show that system software reconfiguration has very high

overhead for short intermittent faults, that temporarily pausing the

execution of a faulty core can lead to cascading livelock, and that

using spare cores has high fault-free cost. To remedy these and

other drawbacks of current techniques, we propose using a thin

hardware/firmware layer to manage an overcommitted system —

one where the OS is configured to use more virtual processors than

the number of currently available physical cores. We show that this

proposed technique can gracefully degrade performance during in-

termittent faults of various durations with low overhead, without

involving system software, and without requiring spare cores.

1. Introduction
The components of future multicore processors will become un-

reliable as technology scales, because individual devices are in-

creasingly susceptible to a variety of hardware faults [7, 9, 11, 14,

38, 40]. In particular, technology experts warn about the pending

increase in intermittent faults — faults which occur unpredictably

for a period of time, commonly due to process variation or in-

progress wear-out, combined with voltage and temperature fluctu-

ations [7,9,14,15]. These are in addition to transient faults (or soft

errors), typically caused by particle strikes, and permanent faults,

which occur repeatedly after a device sustains irreversible damage.

Hardware fault tolerance techniques have shown great promise at

tolerating faults, i.e., at hiding the effects of faults from the system-

and user-level software running on the hardware [5,18,21,22,30,34,

35, 41, 44]. Such techniques, however, have weaknesses along one

or more axis of fault coverage; time, power, and area overhead; and

circuit complexity. As devices become more unreliable, the ways

in which faults manifest are likely to increase, with a consequen-

tial increase in the complexity and overhead of the techniques to

tolerate the faults. It is increasingly unlikely (and perhaps not even

desirable) that techniques to tolerate faults could do so in a manner

that is completely transparent to system and application software.

Tolerating intermittent faults presents further challenges for de-

signers. Unlike transient faults, which disappear immediately, in-

termittent faults occur in bursts which can last from several cycles

to several seconds or more. While it may be possible for complex

hardware and/or software fault tolerance schemes to deal with a va-

riety of intermittent faults, and do so transparently to software, we

believe that such schemes will be neither practical nor desirable.

Rather, various reliability enhancement mechanisms will require,

or be greatly simplified by, the ability to temporarily suspend the

execution of code on a core that is sustaining intermittent faults.

We believe that core suspension will be an effective policy for 1)

reducing several of the factors contributing to the faults in the first

place, 2) reducing the number of faults that must be corrected by

other components, and 3) aiding in the diagnosis of permanent cir-

cuit damage.

Naively suspending a processing core is not common practice

because it is not transparent to software and can have serious

system-level implications. Fortunately, multicore processors pro-

vide unique opportunities to enable several techniques for adapting

to the temporary loss of one or more cores. Through the use of

such techniques, the system can adapt to the dynamically changing

resource availability created by intermittent faults, possibly with-

out a drastic performance (or other) impact on the system. This

paper is concerned with understanding the system-level implica-

tions and effectiveness of these techniques. We present a qualita-

tive and quantitative comparison of three existing adaptation tech-

niques, and demonstrate their different system-level effects. The

techniques are 1) pausing execution on the faulty core without no-

tifying the OS, 2) using spare cores, and 3) asking the OS to stop us-

ing the faulty core. To remedy several drawbacks of first three, we

propose a fourth technique: using a thin hardware/firmware layer

to manage an overcommitted system — a term used by Wells, et al.,

to denote a system where the OS is configured to use more virtual

processors than the number of physical cores [50].

The primary objective of this paper is to analyze these four tech-

niques, and help determine how frequently they can be invoked

without unduly affecting system and application-level software.

Our experiments indicate that utilizing an overcommitted system is

the only technique to achieve high marks on all of the performance

metrics across a range of timescales, gracefully handle multiple

concurrent failures and high fault rates, and involve only moderate

complexity. But we also show that each of the other three adapta-

tion techniques may also be adequate in certain circumstances.

Because they can now do so without fear of negative system-

level consequences, we believe that researchers should thus con-

sider how the ability to suspend execution on a particular core

might be helpful, whether to simplify the design and improve cov-

erage of reliability mechanisms, or for other undiscovered uses.

Before exploring these and other results in more detail (Section

5), we discuss the causes of intermittent faults and the derivations



of our major assumptions (Section 2), explore the qualitative prop-

erties of the four adaptation techniques (Section 3), and provide

details of our experimental methodology (Section 4).

2. Background: Intermittent Faults
Intermittent hardware faults are hardware errors which occur

in bursts for a period of time, commonly due to process varia-

tion or in-progress wear-out, combined with voltage and temper-

ature fluctuations (often called PVT variations), among other fac-

tors [7, 9, 14, 15]. These variations can result in timing errors even

when operating conditions are well within the specified “accept-

able” noise margins.

Because intermittent faults are affected by a large number of fac-

tors, the duration of bursty faults can occur across a wide range of

timescales. For example, voltage fluctuations are typically short-

lived, on the order of several to hundreds of nanoseconds [9,24,37].

Temperature fluctuations alter a device’s timing characteristics over

millisecond to second time scales [36]. Different software phases,

which can change on the order of 100msec to several seconds [39],

can exercise different components of a core, activating different in-

termittent faults. Finally, as wear-out progresses over the course

of days [44], it can cause intermittent faults to become frequent

enough to be classified as permanent [14].

In this paper, we make three primary assumptions regarding in-

termittent faults. Below we examine the insights that lead us to

believe these assumptions are reasonable.

1) Bursty “intermittent” faults will occur frequently.

While it is not clear what the exact rates of various faults will

be for future processors, current technology trends clearly indicate

that even the design of commodity processors will be greatly af-

fected by these faults. First, wear-out failures are expected to be-

come much more frequent [8,9,38], but devices typically do not fail

suddenly, they display intermittent behavior for a period of time be-

forehand [14, 15, 44]. Second, continued device scaling will result

in increased PVT variations, increased cross-talk, and decreased

noise margins [8, 9, 11, 14, 15, 38], all of which lead to increased

susceptibility to intermittent timing faults. In this paper, we choose

to examine fault rates in the range where they begin to impact sys-

tem performance.

2) Practical circuits cannot mask all intermittent faults.

While many techniques for tolerating various faults have been

proposed [5, 18, 21, 22, 30, 34, 35, 41, 44], the ways in which faults

manifest are likely to increase as devices become more unreliable.

This will lead to a continued increase in the complexity and over-

head of the techniques to tolerate the faults. We believe circuit,

and higher-level, techniques will thus be employed to reduce the

frequency of intermittent faults, but cost-effective techniques are

unlikely to completely eliminate these faults, or prevent their oc-

currence from being noticed by system or application software.

For example, techniques such as Razor [18] can detect and cor-

rect many timing related faults until the timing errors become too

large. After that point, techniques like Razor will be forced to ei-

ther fall back on another, much more complex and higher overhead

reliability technique, or adopt a simpler policy of suspending the

use of a core while conditions stabilize.

3a) Suspending use of a core . . . reduces factors causing faults.

Suspending the use of a core cannot repair manufacturing vari-

ations or in-progress wear-out. However, suspending the use of a

core will cause temperature and voltages to stabilize, two major

factors contributing to the occurrence of intermittent faults.

3b) . . . reduces faults.

All reliability techniques have a certain probability of protect-

ing against faults, which may be, for example, 90% or 99.999%.

Certain events (e.g., multiple concurrent faults, or faults affecting

critical structures) will still be permitted to manifest as an unpro-

tected error. Suspending the use of a core when a burst of faults

begins, or is expected to occur, can dramatically reduce the number

of faults that must be protected by other techniques. If the number

of faults requiring protection is reduced, then the number of events

that remain unprotected will also be reduced, thus improving the

overall reliability of the system.

Current high-availability systems already do something similar

by having service technicians replacing chips when intermittent

faults begin to occur [14]. However, the granularity of failure in a

multicore (portions as opposed to an entire chip), and the increas-

ing frequency of these faults even for commodity processors, make

chip-level replacement undesireable.

3c) . . . is likely to be useful for other purposes.

Several proposals have appeared that call for fine-grained recon-

figuration of a core’s components (e.g., [10, 41]), or match a pro-

gram’s requirements to a particular core’s degraded capabilities,

(e.g., [23]). We believe that the ability to suspend execution on a

core, without significantly impacting the rest of the system, makes

these techniques more feasible. Additional uses for suspending a

core will likely be discovered as architects reconsider the plausibil-

ity of such a policy.

3. Adapting to Intermittent Faults
Naively suspending a processing core is not common practice

because it is not transparent to software and can have serious

system-level implications. Fortunately, multicore processors pro-

vide unique opportunities, including inherent redundancy, low on-

chip latency, and high bandwidth, which enable several techniques

for adapting to the temporary loss of one or more cores. In this sec-

tion, we discuss three such techniques which represent the current

state-of-the-art, and propose a fourth technique to remedy serious

drawbacks of each of the first three. In our discussions, we pay

particular attention to the system-level implications of these tech-

niques. In Section 5, we present a quantitative comparison of all

four techniques, considering throughput, effects on latency-critical

applications, fairness, and overheads at different fault rates.

Throughout this discussion, we refer to the chip’s physical cores

as simply cores. We refer to the software-visible processing units

as virtual processors or VCPUs. In many cases, the two are equiv-

alent. However, in certain circumstances, the hardware/firmware

may expose more or fewer virtual processors to software than there

are physical cores, or it may transparently reassign a VCPU from

one core to another.

3.1 Existing Adaptation Techniques

Technique 1: Pause Execution The first technique we examine

for suspending the use of a core is to just pause the execution of

instructions for a period of time. As shown in Figure 1(a), when a

core (C2 in this case) sustains an intermittent fault, the microarchi-

tecture pauses the execution of instructions from the virtual proces-

sor assigned to that core (V2).

Pausing execution is the simplest technique we examine, and has

been used, in a uniprocessor at least, for thermal management [20].

In a multicore, other cores continue to execute instructions, thus

pausing execution on one core will not drastically affect the other

cores as long as they do not attempt to communicate with the



(a) Pause Execution (b) Spare Cores

(c) OS Reconfiguration (d) Overcommitted

Figure 1: Core Suspension Techniques

paused core. If communication is present, however, pausing one

core can cause a cascading effect, livelocking other cores.

This technique is not fair, because any threads scheduled on the

paused virtual processor are starved, and it can similarly impact the

latency of critical applications. We would expect to observe low

throughput for workloads where threads frequently communicate,

but for faults of short duration, this technique may be adequate for

some applications.

Technique 2: Spare Cores Unlike pausing, setting aside one (or

more) cores as spares is expected to have little impact on software

during a fault. For an eight-core chip, only seven might be exposed

to the OS. During a fault, the chip, using a hardware/firmware

layer, can transparently remap the affected virtual processor from

the faulty core to the spare. (We discuss recovering the state of the

VCPU in Section 3.3.) Core sparing is depicted in Figure 1(b).

Hot (powered up) spares are appropriate for short duration inter-

mittent faults as circuit techniques can reduce leakage power when

the core is not needed [47]. Since the performance degradation is

negligible during a fault (as long as the number of faults do not

exceed the number of spares), spare cores are also effective for

long-duration or permanent faults. Partly for these reason, spares

are used in real systems (though to our knowledge, for permanent

faults only) [4, 43].

The major drawback of setting aside spare cores, especially for

commodity processors, is the high overhead of not using these

cores during fault-free execution. In addition, using spare cores

cannot tolerate more concurrent failures that the number of spares

without an additional fall-back mechanism.

Technique 3: OS/Hypervisor Reconfiguration A third possi-

ble technique is to ask the operating system (OS) or hypervisor to

reconfigure itself to only use the remaining fault-free cores. This

technique is depicted in Figure 1(c), where the de-configured vir-

tual processor is not assigned any software threads or guest vir-

tual machines to run. Though software intrusive, some current OSs

(such as Solaris) and hypervisors (such as those that run on the IBM

zSeries) already contain this functionality [2, 46].

Software reconfiguration can take several milliseconds, and can

cause high overheads for faults of short duration. But the perfor-

mance of the system should gracefully degrade once reconfigura-

tion is complete, since the OS/hypervisor retains responsibility for

scheduling threads, maintaining fairness, and achieving low latency

for critical applications.

On the surface, this technique also appears to eliminate the need

for hardware adaptation mechanisms. Unfortunately, that is not the

case, since current system software requires the faulty core, and all

other cores, to operate correctly until reconfiguration is complete

[31, 46]. For the evaluations in Section 5, we utilize our proposed

technique (discussed next) during reconfiguration, though it is not

needed once reconfiguration has taken place.

3.2 Utilizing an Overcommitted System
A qualitative look at three existing techniques for suspending

the use of a core has revealed several deficiencies: fairness and

latency concerns, along with the possibility of cascading livelock;

high fault-free overhead and the need for a fall-back mechanism;

and OS-intrusive modifications plus the need for advanced notice

of an upcoming fault.

Technique Overview To alleviate these drawbacks, we propose

a fourth technique: using a thin hardware/firmware layer to man-

age an overcommitted system — one where the OS is configured

to use more virtual processors than the number of currently avail-

able physical cores. Unlike the overcommitted system used in [50],

however, we propose a simple hardware/firmware layer that is hid-

den under the ISA, and thus operates beneath both the OS and a

traditional hypervisor such as VMWare or IBM’s Power5 Hypervi-

sor. For simplicity, we typically refer to the lowest software layer as

the OS, though that could be replaced with hypervisor throughout

with no loss of generality.

In an overcommitted system, two (or more) OS-visible virtual

processors (VCPUs) must share a single physical core. Figure 1(d)

shows this technique, with virtual processors V2 and V3 sharing

core C3. V2 is currently executing, while V3 is paused, but they

can frequently switch to avoid the issues associated with pausing.

The virtual processors that are co-assigned are rotated to achieve

fairness; for example, at some point, V2 may have C3 to itself while

V3 and V0 share C0.

We use hardware spin detection to facilitate overcommitting un-

modified Solaris [29, 50], where a virtual processor that is not cur-

rently running could be holding a kernel lock or be the recipient

of a CPU cross-call. Spin detection preempts requesters spinning

on the lock, or initiators waiting for acknowledgment of the cross-

call, in favor of virtual processors that are performing useful work.

Spin detection is not required for correctness, as long as the hard-

ware/firmware periodically forces a context switch. Spin detection

is, however, an important performance optimization.

Hardware/Firmware Complexity This technique involves

modest hardware/firmware complexity. Required features involve

a mechanism to context switch a virtual processor, a VCPU to core

mapping table, spin detection hardware, and control logic.

In our model, transferring a VCPU from one core to another in-

volves first moving all of the processor state, including visible state

and control registers, into the caches. The state is then restored on

another core (or later on the same core), allowing the coherence

protocol to transparently migrate the data when necessary. To re-

duce complexity, we assume that this functionality is implemented

in firmware/microcode using loads and stores to a reserved portion

of the physical address space. This support for transferring state is

similar to that contained in current products [1, 48].

A table mapping VCPUs to their currently assigned cores is nec-

essary both for scheduling decisions and for interrupt delivery. We

assume this small, infrequently accessed table is implemented in

hardware, and is hardened or replicated to protect against faults.

While spin detection hardware is helpful with unmodified So-

laris, virtualization-aware OSs, or ISAs that suggest the use of a

particular instruction to indicate spinning or idle processors (simi-



lar to X86’s hlt instruction) can eliminate this requirement [2,49].

Finally, we need control logic with inputs from the fault detec-

tion mechanism, spin detection hardware, and mapping table. This

logic needs to perform simple scheduling decisions, direct the mi-

gration of virtual processors, and maintain the mapping table. We

assume this simple logic is implemented in hardware.

Overall, this is a modest amount of complexity, though certainly

more than is required for the Pausing technique. However, all of

these components except spin detection are already required in or-

der to use spare cores.

ISA Transparency By placing control over the use of faulty and

non-faulty cores below the ISA, chip manufacturers can ship a chip

that is expected to experience intermittent faults, but will continue

to operate correctly regardless of the system software installed on

the machine. Such a model has several advantages for chip makers.

First, the burden of correct hardware operation remains with the

hardware vendor, not the system software vendor. Second, the new

chip automatically works with products from multiple system soft-

ware vendors, and with legacy system software as well. Finally, as

we will see in Section 5, placing control of faulty cores beneath the

ISA allows some of the functionality to be implemented in hard-

ware, making it easier to quickly adapt to frequent changes in hard-

ware configuration.

3.3 Other Issues
We make two additional assumptions about hardware detec-

tion and recovery mechanisms to frame our continued discussions.

First, three of the mechanisms require that the virtual processor ex-

ecuting on the suspended core be moved to a different core. Though

recovering the state from a suspended core may be possible in cer-

tain circumstances (e.g., [31]), it is clearly infeasible for others.

Instead, we assume that the fault recovery mechanism periodically

creates checkpoints, similar to [41], [27], or [45]. The checkpoints

are stored into the cache every 10k cycles, and on I/O, and are con-

sistent across the on-chip cores [27, 45].

Second, we assume that circuit-level techniques exist within a

single core for detecting and recovering from many simple faults,

whereas upon detecting a rash of intermittent faults on a core,

the circuit mechanisms initiate a rollback to the previous validated

checkpoint and then begin the adaptation mechanisms. The use of

Dual-Modular Redundancy (DMR), or triple redundancy (TMR),

as a detection and recovery mechanism is also be possible. Since

we are primarily interested in the effects on software, the results

of this paper would remain unchanged if one considers DMR cores

to form one logical processing core, and then performs the adapta-

tion techniques only on the logical core. Depending upon the exact

detection mechanisms, however, it may be possible to separate one

faulty core from a logical pair and allow the non-faulty core to form

a logical pair with another physical core (e.g. [27]).

If using TMR, the temporary loss of only one of the three redun-

dant cores might still allow the continued use of DMR on the re-

maining cores. Though several nice properties of TMR disappear,

including extremely high coverage and forward error correction,

the continued coverage may be sufficient, reducing the amount of

time it may be necessary to invoke core suspension mechanisms.

4. Experimental Methodology

4.1 Simulation
For the experiments in Section 5, we use Virtutech Simics [32],

an execution driven, full-system simulator which functionally mod-

els a SunFire 6800 server in sufficient detail to boot unmodified

operating systems. We use Simics as a functional simulator only,

and model timing using Simics MAI with our own cycle-accurate

processor and memory hierarchy module.

We model both an OOO core and, for longer experiments, an in-

order core to reduce simulation time. We model each OOO core

as a 2-wide, 128-entry window core at 3 GHz. The in-order core

is a simple blocking model. The chip exposes eight cores to the

OS in most experiments. Each core contains split 16k, 2-way I&D

caches, and a unified 512k, 4-way private L2. We also model a

16MB, 16-way, shared L3 that is exclusive with the L2s. Cores

maintain coherence via a MOSI directory protocol over a point-to-

point interconnect with an average 10 cycle latency. The L2 di-

rectory uses shadow tags, which are co-located with each L3 bank.

Main memory is 350 cycles load-to-use, with 40 GB/sec of off-

chip bandwidth. These microarchitecture parameters of the cores

and caches have little practical impact on our results.

For experiments which use processor virtualization, we evalu-

ate a thin virtual-machine layer assuming low-level firmware with

hardware support. We do model the overhead of firmware execu-

tion to migrate VCPUs. This task is performed by storing the run-

ning VCPU’s state in a portion of cacheable physical memory and

loading it later from the same or a different core. The state can be

transparently migrated to other cores using the on-chip coherence

protocol. Swapping VCPUs on a core requires several hundred cy-

cles to store and then load the large SPARC V9 architected register

state, and migrating costs up to 1000 cycles. We use the Spin De-

tection Buffer from [50].

In all simulations, we pause all cores for 10k cycles (3.3µsec)

upon initiation of fault recovery to roll back to the latest verified

checkpoint and account for the work lost.

OS Reconfiguration For the experiments in Section 3.1, we in-

struct Solaris to unconfigure one of its eight virtual processors,

CPU4. To perform this task in our simulations, we send an in-

terrupt to a second processor, CPU3. As the interrupt is execut-

ing on CPU3, we force it to call sbd ioctl() with the neces-

sary arguments to unconfigure CPU4. The function and arguments

are the same as would be called by the command cfgadm -C

unconfigure CPU4, but the interrupt mechanism allows us to

call this function at arbitrary points without the overhead of the

command. Note that the Solaris psradm command, which can

take CPU4 ‘off-line’ is insufficient, as the processor is still required

to process cross-calls. Also note that due to limitations in the Sim-

ics functional model, we are unable to perform this experiment with

newer versions of Solaris, or to perform the analogous experiment

of reconfiguring a CPU. We use the overcommitted technique as the

fall-back mechanism until the virtual processor is unconfigured.

Spare cores Due to our methodology, comparing runs using sep-

arate commercial workload checkpoints with different numbers of

OS-visible VCPUs is impractical. Thus, for the throughput exper-

iments, we model spare cores using the overcommitted technique

with oracle spin detection and without charging overhead for stor-

ing, migrating, or switching VCPU state. We do properly simulate

a seven processor system with our microbenchmark for latency and

fairness experiments, since our microbenchmark is very regular and

is dominated by user code.

4.2 Workloads
We use several workloads for these experiments. vortexMIX is a

simple multiprogramming workload consisting of 8 copies or vor-

tex from SpecINT2000 running ref inputs. OLTP is a TPC-C-like

workload using IBM’s DB2 database. The database is scaled down

from TPC-C specification to about 800MB and runs 192 concur-



rent user threads with no think time. Apache and Zeus are static

web servers driven by the Surge client [3]. We do not use any think

time in the Surge client. pmake is a parallel compile of PostgreSQL

using GNU make and the Sun Forte Developer 7 C compiler. We

do not include serial phases. Due to workload variability, we simu-

late multiple runs and report average results, though we omit con-

fidence intervals for readability. We use a microbenchmark in Sec-

tion 5.3, which consists of one thread per processor, which each

execute short CPU-bound transactions, and have no communica-

tion. We use committed user instructions as our metric for work

in all experiments. User commits has been shown to correlate well

with other ‘work’ metrics, such as workload transactions [51].

5. Experimental Results
Intermittent faults requiring the suspension of a core can be

caused by a variety of factors, and can last for a range of dura-

tions, and can affect applications in different ways. We first discuss

our experiments, and then quantify the strengths and weaknesses of

the four techniques along several axes.

5.1 Experiments

Measuring Throughput For throughput experiments in Section

5.2, one core experiences a detected fault at the beginning of exe-

cution; simulations are then run for a range of times from 100µsec

to 1 second. We use the in-order processor for 1sec data points and

the OOO for the rest.

Measuring Latency and Fairness For both the latency and fair-

ness experiments in Section 5.3, we use our microbenchmark and

simulate a single 10msec fault beginning at 100µsec of simulation,

and then run for 11msec. The spare core experiments have seven

threads and seven processors, with eight threads and eight proces-

sors for the rest. We use the OOO processor.

Measuring Overhead To determine overheads, including peri-

ods of fault-free execution, we run several experiments with faults

randomly occurring at a particular rate. The fault duration is fixed

in each experiment, but the inter-arrival time of faults is sampled,

independently for each core, from a normal distribution of moder-

ate variance ( µ

σ
= 10). We run simulations for 1sec and use the

in-order processor.

We properly randomize in-progress faults and inter-arrival laten-

cies at the beginning of simulation, and run enough randomized

trials to achieve a proper distribution of long faults with only 1sec

simulations. However, we cannot properly setup the system soft-

ware at the beginning of simulation to be already affected by an in-

progress fault, and thus the results reported for the Pause scheme

are optimistic for the longer fault durations. Using much longer

trials would be computationally intractable for these experiments.

Tracing Faults In order to better understand the results of the

other experiments, Figures 3 and 5 trace the number of cores per-

forming useful work during a fault of 100msec. We define useful

work for each processor as whether or not any user instructions

were executed in each 100µs period, and sum this boolean value

over all eight OS-visible processors. These plots both use the OOO

processor.

5.2 Throughput During a Fault
In this section, we demonstrate the throughput of all four tech-

niques during intermittent faults of various duration. We discuss

each technique in turn below. A line is drawn at 7

8
in throughput

graphs to represent the expected slowdown of losing one core.
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Pause Execution Figure 2 shows the throughput of each bench-

mark when pausing execution for faults of various duration. For the

shorter duration faults, 100µsec and 1msec, all workloads observe

throughput that is within 25% of the expected case after losing one

core. Across a range of fault durations, vortex continues to have

throughput similar to the expected case, while art is only slightly

lower than that. The commercial workloads, on the other hand,

which have significant OS activity and communication between

cores, observe much lower throughput for faults of duration greater

than 1msec — even approaching zero throughput for 100msec and

1sec duration faults.

Figure 3 helps explain this loss of throughput for longer faults.

This figure shows the first half of a trace of the number of cores

performing useful work during every 0.3msec of a 20msec fault.

For all workloads, the number of cores performing useful work im-

mediately drops to seven (or lower) after the fault. For artOMP, a

second core quickly stops performing work because it has blocked

waiting on a lock held by the paused core. We do not move the

VCPU executing on the faulty core elsewhere, so the lock is never

released. Other VCPUs for artOMP remain unaffected well beyond

the 50msec shown in the graph. We do not graph pmake or vortex

for clarity.

The other workloads, however, have much more frequent interac-

tion among cores, causing rapid degeneration of the entire system’s

forward progress. For Apache and Zeus, nearly half of the VCPUs

in the system stop making forward progress within 1msec. For the

three commercial workloads in this graph, all VCPUs stop mak-

ing forward within 7–32msec. The fault-free processors are simply

executing OS spin loops waiting for either cross calls to complete,
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Figure 4: Throughput of OS Reconfiguration During a Fault

Apache artOMP OLTP pmake vortex Zeus
1.81 1.55 1.50 1.19 1.41 3.22

Table 1: Reconfiguration Latency (msec)

or locks to be unlocked by the faulting processor [50]. While not

shown in the graph, all processors will eventually return to work af-

ter the paused core is resumed, provided the paused interval is short

enough that the OS kernel doesn’t panic (≈1 second for Solaris 9).

Despite its simplicity, Figures 2 and 3 shows that the cascad-

ing livelock suffered by many workloads makes Pausing Execution

unattractive for long faults. On the other hand, for short (<1ms)

periods, this technique may be appropriate in some environments.

OS Reconfiguration To determine the performance of OS Re-

configuration, we again simulate faults of various duration. For

these experiments we send an interrupt to the OS to tell it to uncon-

figure its VCPU that was running on the core sustaining the fault,

as described in Section 4.

During the longer 100ms and 1sec fault durations, the cost of

OS reconfiguration begins to be amortized, and the throughput of

all the workloads approaches the expected value of one less core

compared to the baseline. For the shorter intervals, however, the

cost of reconfiguration is not amortized — the loss in throughput is

2–6 times the loss expected from a single disabled core.

The time required for reconfiguration to complete is shown in Ta-

ble 1, and is interesting because this is the length of time that this

technique requires a fall-back mechanism.This latency also repre-

sents the minimum length of time that overheads from reconfigura-

tion will be incurred, even if the suspended core is reenabled in the

meantime (since reconfiguration cannot simply be stopped once in

progress). With this in mind, the first point for each benchmark

is placed on the x-axis (and measured agains the baseline) at the

location that the VCPU is finally disabled.

Again, we turn to our tracing experiments, and Figure 5, for help

explaining this data. At 1.3msec (label ‘Fault’), both the VCPU ex-

ecuting on the faulty core (Solaris’s CPU4) and the recipient of the

interrupt (Solaris’s CPU3), stop committing user instructions. At

3.6ms (label ‘Unconfig.’), CPU4 is finally unconfigured and enters

a PROM idle loop. Note that all processors in the system are qui-

esced twice (to avoid possible deadlock arising from outstanding

cross calls, according to comments in the source code). Also note

that the 3.2ms latency the table of Figure 4 is an average — this

particular trace took only 2.3ms.

Spare Cores Using spare cores can provide throughput during a

fault that matches the fault-free throughput with one less core than

the baseline configuration. The dashed lines in Figure 6 demon-
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Figure 5: OS Reconfiguration of Zeus
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Figure 6: Throughput of Spare Cores

strate the this fact. For the shortest fault, 100µsec, the 10k cycles

we assume for recovering from the fault introduces some overhead.

Likewise, the process of transferring VCPU state and then incur-

ring misses on all cached data causes additional initial overhead.

For all the longer durations, however, there is practically no loss in

throughput compared to the expected case. artOMP appears to in-

cur sub-linear slowdown for certain runs. This is an artifact of our

methodology for simulating spare cores (see Section 4): one VCPU

in the baseline system becomes idle for part of the simulation due

to benchmark synchronization, causing our perfect spin detection

to yield the core to a productive thread. The slowdown for pmake

can be attributed to workload variability.

Overcommitted System Figure 7 demonstrates the high perfor-

mance of the Overcommitted System. Similar to using spare cores,

this technique incurs some overhead for the shortest faults due to

recovery time and cache misses, however, this overhead is small

and is quickly amortized for longer fault rates.

Using an overcommitted system with spin detection during pe-

riods of intermittent faults yields throughput similar to using spare

cores, yet retains the ability to utilize the entire machine during

periods of fault-free execution.
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Figure 7: Throughput of an Overcommitted System
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Figure 8: Microbenchmark Transaction Latencies

Base Spare Pause OS OverC
1.00 0.99 1.12 1.42 1.12

Table 2: Average Latency (Relative to Baseline)

5.3 Microbenchmarking Latency & Fairness
While throughput is important, other performance metrics are

equally important for certain applications. For example, latency

is critical for Multiplayer Online Games [17], or for telemetry ap-

plications, and fairness may be important for consilidated servers.

Other metrics may be of interest as well. Ideally, we would use

these target applications to measure transaction latency and fair-

ness, but the complexity of building such workloads, combined

with irregular or long transactions and the distorting effects of other

software components, conspire to make such an evaluation partic-

ularly difficult. Instead, we use a microbenchmark, described in

Section 4, to understand the underlying behavior of our four adap-

tation techniques. We omit the data for different fault durations for

brevity, but the results are straightforward to extrapolate from the

data for 10ms.

5.3.1 Latency

Figure 8 figure shows the cumulative distribution of transaction

latencies from each software thread for our microbenchmark. Both

axes are logarithmic to highlight transactions that deviate from the

the common case.

In the baseline, fault-free system, we see that 99.5% of trans-

actions take 16µsec or less, while several transactions take 40–

100µsec. We see very similar data when using a spare core, and

when pausing execution, except that one transaction, the one on

the paused core, takes over 10msec. Note that our microbench-

mark, dominated by user code with no communication, represents

the best case for pausing execution. Average latencies are shown

in Table 2, and we see that the spare cores is again similar to the

baseline, since no transactions are ever started on the core that will

sustain a fault. The outlier when pausing execution increases the

average for that technique by 12%.

With OS reconfiguration, many transactions are delayed by

100µsec–1msec while the OS quiesces all processors in the sys-

tem. But because the OS migrates threads off the faulty core, no

transactions are delayed quite as long as the 10msec fault, but there

are many outliers, and average latency 42% higher than the base-

line.

Software Thread ID
0 1 2 3 4 5 6

C
om

m
itt

ed
 T

ra
ns

ac
tio

ns

0

100

200

300

400

500

600

700

800
Spare Core

Software Thread ID
0 1 2 3 4 5 6 7

Pause Execution

Software Thread ID
0 1 2 3 4 5 6 7

C
om

m
itt

ed
 T

ra
ns

ac
tio

ns

0

100

200

300

400

500

600

700

800
OS Reconfiguration

Software Thread ID
0 1 2 3 4 5 6 7

Overcommitted

Figure 9: Committed Transactions from each Software Thread

Base Spare Pause OS OverC
F.S. [13] ↑ 1.00 1.00 0.44 0.49 0.94
ΣM0 [26] ↓ 0.92 1.00 5.47 7.14 1.17

Table 3: Fairness of Metrics for Different Techniques

When using an overcommitted system, the frequency with which

VCPU context switching occurs can impact latency-sensitive appli-

cations. However, this frequency is configurable in firmware, and

can be increased if necessary for a small increase in switching over-

head. We have tuned our simulated firmware to perform a VCPU

context-switch at least every 20µsec, and thus observe that approx-

imately 10% of transactions take approximately 20µsec longer than

the baseline (since two VCPUs are vying for the same core). This

yields an average latency equivalent to pausing, but unlike pausing

or OS reconfiguration, there are no extreme outliers.

5.3.2 Fairness

To measure fairness, we examine the total number of transac-

tions committed by each software thread. In Figure 9 we observe

that the system with a Spare Core commits a nearly equal number

of transactions per thread, and thus provides similar fairness as the

baseline (not shown). This result assumes that the application soft-

ware can be partitioned seven ways like our microbenchmark can.

Note that the the graph for spare cores only has seven bars, while

the others have eight.

We observe that the Overcommitted system is able to provide

conceptually similar fairness as spare cores and the baseline, even

during the failure of one core. On the other hand, Pausing Exe-

cution has one thread which is significantly impeded by the fault.

Since the OS is still scheduling software threads among all eight

VCPUs, one application thread is starved when pausing.

Due to the overhead of using at least one VCPU to orchestrate

reconfiguration, and the quiescing of all VCPUs, OS Reconfigura-

tion cannot maintain fairness among software threads during the

10ms interval we simulate. We would expect that for longer fault

durations, the OS might fare better.

To quantify the degree of fairness, we examine both the Fair

Speedup (F.S.) metric used by Chang, et al. [13], and the ΣM0 met-

ric from Kim, et al. [26]. For fair speedup, we take the harmonic
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Figure 10: Overhead with Different Fault Duty-Cycles (Ana-

lytic Model) Solid Gray Lines: 10%, Dark Dashed Lines: 1%,
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mean of the speedup between each software thread and the most

productive thread in that experiment. ΣM0 is derived from the sum

of M0 across all pairs of threads i, j, where M
ij
0

= ‖Xi − Xj‖,

Xi =
Transi

Transp
, and p is the most productive thread.

For fair speedup, higher is better, and for ΣM0, lower is better.

These metrics are shown in Table 3. For both metrics, the baseline

and spare cores are very close, while the Overcommitted system is

only slightly worse than both of them. Pausing and OS Reconfig-

uration are significantly worse. Though the metrics differ in how

much they penalize the OS and Pausing schemes, they both clearly

show that both are inferior in terms of fairness.

5.4 Overhead of Different Fault Rates
Thus far we have examined throughput during faults without

considering intervening periods of fault-free execution. Now we

look at the overheads of the four techniques across a range of fault

durations and frequencies.

Using an analytic model, we extrapolate the throughput data

from Section 5.2 to determine the overhead at various fault rates.

We use an analytic model to examine overheads in a more con-

trolled environment, because we cannot perform an execution-

driven simulation of either OS reconfiguration due to limitations

is Simics, or spare cores due to its inability to handle more con-

current faults than spares (see Section 4). We also present data for

execution-driven simulations to back up the model, and to explore

the case of multiple concurrent failures.

5.4.1 Analytic Model

In our simple analytic model, we first average the overhead (1

- throughput) from all 6 benchmarks. We break the pause scheme

into two groups, Pause 1, containing the commercial workloads

(Apache, Zeus, OLTP, and pmake) for which pausing works poorly,

and Pause 2, containing vortex and artOMP, for which pausing

works well. Then, we factor in the expected fraction of time these

techniques are employed during runs with various fault rates. For

simplicity, we assume no concurrent faults (an unlikely case for

higher fault rates).

In Figure 10, each line in the graph holds the Duty-Cycle con-

stant, i.e., the fraction of the time each core is experiencing a fault.

Thus, 100µsec faults with a duty cycle of 1% are occuring, on aver-
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Figure 11: Overhead with Different Fault Duty-Cycles (Execu-

tion Driven Simulation) Solid Gray Lines: 50%, Dark Dashed
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age, every 10msec, and 1sec faults are occuring, on average every

100sec. The solid grey lines near the top of the graph represent a

duty cycle of 10%. The roughly middle set of dark dashed lines

represent a duty cycle of 1%, and the lower ligher dashed lines rep-

resent 0.1%. Both axis are logarithmic. Because we assume no

concurrent faults, Spare Cores incurs ∼12.5% overhead in all ex-

periments.

In all experiments, we see that the group Pause 2, as well as

the Overcommitted scheme, incur overheads from 1–2 times the

duty cycle. The same is true for the group Pause 1 for 100µsec

faults, and for OS Reconfiguration for 1sec faults. However, for

longer faults, we observe overheads of approximately 8 times the

duty cycle for Pause 2, since a fault on each core affects the other 8

as well. Similarly for OS reconfiguration, not only does a fault on

one core affect the others, but the latency of reconfiguration creates

overheads well beyond 100 times the duty cycle for the shortest

faults.

All techniques are expected to incur low overheads when fault

rates are low, but even when fault rates create fault duty cycles of

0.1%, care must be taken when invoking the Pause or OS reconfig-

uration techniques.

5.4.2 Execution­Driven

The simple analytic model in the previous section was unable

to handle multiple concurrent failures, which is necessary in or-

der to experiment with higher fault duty-cycles. In this section,

we present results of execution-driven simulation using randomly

generated periods of intermittent faults.

For longer faults, multiple concurrent failures actually benefits

the pause scheme in comparison to the duty cycle, since other cores

that are likely to be affected by pausing one have some probability

of being paused already themselves. This is evidenced in Figure

11 by the 100ms duration on the 10% duty-cycle line: the Pause

1 incurs a 55% overhead with simulation, but an projected 80%

overhead from our model. On the other hand, for a duty cycle of

1%, where we do not expect concurrent failures, Pause 1 is much

worse than that expected by the model for 1sec faults.

Using an overcommitted system achieves overhead commensu-

rate with the duty-cycle in all experiments. It is also nearly the

same as the Pause 2 group (i.e., workloads which have little com-

munication). In summary, using an overcommitted system yields

low overhead, even when half of the cores, on average, are faulty.



Quantitative Goals Qualitative Goals Appropriate
Fairness Latency Throughput No-Fault Cost Complexity Concurrent Timescales

Pause Exec. X X
√

/X
√

Low
√ ≤1ms

Spare Cores
√ √ √

X Med. X 100µs–1sec+
OS Reconfig. X X

√
/X

√
High X ≥100ms

Overcommitted
√ √ √ √

Med.
√

100µs–1sec+

Table 4: Results Summary

The same is not true for any of the other schemes, except when

pausing certain applications.

5.5 Future Multicores
Future technologies will allow room for many more than eight

cores, and this will undoubtedly have an impact on techniques for

adapting to intermittent faults. We examine chips with eight cores

in part due to the practical limitations of full-system simulation,

and in part because we do not know how chips with hundreds of

cores will be used. Based on what we can assume, however, we

believe that the results of our experiments will generally hold.

If applications are partitioned so that they each use no more cores

that they do in our simulations, we would expect the results for

pausing execution to be similar. However, this technique could be

devastating if a single application, with occasional communication,

is using all cores of the chip. As long as all the cores are under the

control of a single OS, or single hypervisor, the system software

may still have to quiesce all cores to prevent deadlock, increasing

the latency and overheads of software reconfiguration.

Using spare cores becomes more viable as fault rates increase

and the granularity of spares decreases. However, it still cannot

easily adapt to long or short-term changes is the number of concur-

rent faults. For example, when using a laptop on an airplane, or

when one section of a datacenter becomes extra warm, fault rates

may increase, requiring more spares. At other times, few if any

spares may be necessary. Setting the number of spares too high

introduces overhead, and setting it too low increases the probabil-

ity of observing more than that number of concurrent faults. An

overcommitted system, on the other hand, had a distinct advantage

since it can automatically adapt to these changes.

6. Related Work

Intermittent faults Many circuit-level techniques for tolerating

intermittent faults have been proposed [5, 21, 22, 35], but they are

generally applicable only to individual components. Consequently,

they are likely to be useful for reducing the frequency, but not elim-

inating, intermittent faults. Similarly, thermal management tech-

niques (e.g., [12, 36, 42]) can be used to reduce the frequency of

faults by managing thermal variations. However, for future proces-

sors, avoiding intermittent faults with these techniques will require

them to be overly conservative, thus providing low performance.

Reconfiguring after Device­level Faults Several methods have

been presented to continue use of a core despite permanent faults.

These techniques involve fine-grained diagnosis and reconfigura-

tion of a core’s components [10, 41], or attempt to match a pro-

gram’s requirements and a core’s capabilities, such as Core Sal-

vage [23]. We believe that the ability to suspend execution on a

core in order to perform diagnosis and reconfiguration would likely

be a simplifying addition to these techniques.

Fault Tolerance in Distributed Systems Much distributed sys-

tems research has addressed fault tolerance for clusters of comput-

ers, e.g., [4, 6, 16, 19, 25, 28, 33]. For most of this research, the unit

of failure is an entire machine, including the cpu(s), memory, and

system software. Such course-grained units are not applicable to

systems comprised of only a few, or even one, multicore chip.

The comparatively short timescales of device-level intermittent

faults render software-based adaptation techniques ineffective be-

cause they cannot adapt quickly enough (see Section 3.1). For ex-

ample, if certain cores on a chip observe intermittent faults every

few seconds, software techniques will, by necessity, consider the

entire chip to be permanently faulty.

Chameleon [25] provides a reliable software-based fault tolerant

system. They use the term Adaptive Fault Tolerance to describe a

system that is flexible to the dynamic demands of applications, but

not necessarily to the dynamic conditions of the hardware.

7. Conclusions
As technology continues to scale, the effects of intermittent

faults will become important multicore design considerations. Al-

though complex reliability techniques may tolerate many intermit-

tent faults without affecting the rest of the system, we believe these

approaches will require, or be greatly simplified by, the ability to

temporarily suspend a core during periods of intermittent faults.

In this paper, we examine the system-level implications of four

mechanisms for adapting to the loss of one or more cores. Table

4 summarizes these results. Although simply pausing execution is

the most naive approach, it performs adequately for short duration

faults, and is very simple. However, it can incur cascading livelock

for faults over 1msec.

Setting aside one or more cores as spares avoids the problems of

pausing, but has a high cost during fault-free execution, and cannot

handle more concurrent faults the the number of spares. Expecting

the Operating System (OS) to suspend its use of a core requires a

long lead-time and has high overhead. Both techniques are hard to

recommend for tolerating intermittent faults.

To remedy these drawbacks, we propose a fourth technique: us-

ing a thin hardware/firmware layer to manage an overcommitted

system — one where the OS is configured to use more virtual pro-

cessors than the number of currently available physical cores. Uti-

lizing an overcommitted system is the only mechanism to achieve

high marks on all of the performance metrics across a range of

timescales, gracefully handle multiple concurrent failures, and in-

volve only moderate complexity.

Finally, we argue that, by eliminating the system-level concerns

through our proposed overcommitted system, researchers will find

the ability to suspend execution on a core to be a useful tool —

both for simplifying the design and improving coverage of reliable

chips, and for other uses that have yet to be discovered.
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