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ABSTRACT

Numeric program analysis is of great importance for the satdasoftware engineering, soft-
ware verification, and security: to identify many programoes, such as out-of-bounds array
accesses and integer overflows, which constitute the lisimse of security vulnerabilities re-
ported by CERT, an analyzer needs to establish numeric grep®f program variables. Many
important program analyses, such as low-level code arsalypsemory-cleanness analysis, and
shape analysis, rely in some ways on numeric-program-gisalchniques. However, existing nu-
meric abstractions are complex (numeric abstract domagiypically non-distributive, and form
infinite-height lattices); thus, obtaining precise nuroemalysis results is by no means a trivial
undertaking.

In this thesis, we develop a suite of techniques with the comgoal of improving the pre-
cision and applicability of numeric program analysis. Teehniques address various aspects of
numeric analysis, such as handling dynamically-allocatesnory, dealing with programs that
manipulate arrays, improving the precision of extrapola(widening), and performing interpro-
cedural analysis. The techniques use existing numericaasins as building blocks. The com-
munication with existing abstractions is done strictlyotlgh a generic abstract-domain interface.
The abstractions constructed by our techniques also expassame interface, and thus, are com-
patible with existing analysis engines. As a result, ountégques are independent from specific ab-
stractions and specific analysis engines, can be easilypaated into existing program-analysis

tools, and should be readily compatible with new abstrastio be introduced in the future.



Xil

A practical application of numeric analysis that we consiiethis thesis is the automatic
generation of summaries for library functions from thewwvitevel implementation (that is, from
a library’s binary). The source code for library functiossypically not available. This poses a
stumbling block for many source-level program analysedofatic generation of summary func-
tions will both speed up and improve the accuracy of libnaydeling, a process that is currently
carried out by hand. This thesis addresses the automateragen of summaries for memory-

safety analysis.



Chapter 1

Introduction

The second half of the twentieth century saw the birth angbtbkferation of computers from
one per nation to several per household. Today, computeesieome an inseparable part of our
lives: we routinely entrust them with handling sensitiveormation, such as credit card numbers
and social-security numbers; we rely on them in situatiohemhuman life is at stake, such as in
airplanes’ flight-control systems and in cars’ anti-loclkle systems. Accordingly, ensuring that
computers, and the software they execute, behave propesligdcome a very important problem.
Simple programming errors may have grave consequencesutasf-bounds array access may
lead to someone’s identity being stolen, a floating-poimieosion error may lead to a spacecraft
explosion (Ariane 5 crash, 1996 [40]), a division by zero nragapacitate an entire Navy ship
(USS Yorktown, 1997 [36]). The problem does not stop theveneaf such errors were identified
and eliminated from the program code, there is a possititig¢ new errors will be introduced
during compilation (the WYSINWY X phenomenon [10]), or dwegdrogram interaction with a
library implementation that does not entirely conform ssipecification. The techniques presented
in this thesis are aimed at improving the applicability anepsion of automatic program analysis,
which is dedicated to reasoning about and understandirgggamobehavior to detect and eliminate

such errors.

1.1 Program Analysis Basics

There are many different approaches to discovering andrelimg software errors. They

range from testing, in which the program’s functionalityeieercised by an extensive test suite,



to program analysis, in which the program in never execuxptiatly — instead, the code of the
program is analyzed. Program analysis, itself, encompasseide range of techniques: from
bug-hunting- lightweight techniques that choose to ignore some prodraimaviors (and, conse-
guently, to miss some program errors) in order to achievialitidy and to generate more precise
error reports; tesoftware verification- heavyweight techniques that are able to guarantee the ab-
sence of errors in the program, but are much more computdlyantensive. The material in this
thesis is presented in the setting of software verificathmwever, we believe that our techniques
can also benefit other branches of program analysis.

To verify that a program has no error, an analysis must syaieaily explore all possible pro-
gram executions (we will use the teprogram statdo refer to a snapshot of program execution).
If the set of program states that can arise over all possiolgram executions (referred to as the
set ofreachable statgsdoes not contain states that constitute errors (refeoed error states,
the analysis may conclude that the program is correct. Hewy@omputing the set of reachable
program states is by no means trivial: numeric variables taks infinitely many valuésdynamic
memory allocation precludes the analysis from knovargriori the set of memory locations that
must be tracked, and recursion allows program functiongtmtoked in an unbounded number
of contexts. In fact, the problem of computing the set of hedate program states is undecidable,
in general.

Program analysis sidesteps undecidability by approximgagets of reachable states by larger
sets (i.e.supersetsthat are decidable and that can be effectively represemddnanipulated by
a computer. These approximations are calledtractions Since abstractions over-approximate
the sets of states that they represent, the analysis is@btertpute an over-approximation for the
set of reachable program states — and consequently, anyapndaghavior that leads to an error
state will be identified. However, these over-approxintagimay contain states that do not arise on
any program execution. If these extra states happen tdysati®r conditions, program analysis
generates spurious error reports (also knowfakse positives The central problem of program

analysis is searching for abstractions that are both caatipoglly efficient and precise (that is,

LOr at least a large number of values



produce a low number of false positives). Generally, nolsiafystraction is able to work well in
all possible situations. Thus, a large number of abstrastieach of which is tailored to a specific
sets of programs and/or properties, has been designed.

Conceptually, a program analyzer consists of two compane(it an abstract domainap-
proximates sets of reachable states and manipulates thpseanations (referred to aostract
state3 to reflect the effects of program statements; and (iiaalysis engingpropagates abstract
states through the program. The two components are comhrtaigh a generic interface. This
modular design provides for program-analysis impleméoriatthat are parametrized by an ab-
stract domain: as more sophisticated abstractions argriEkithey can be plugged into existing
program-analysis tools, as long as these new abstractitirese@to the interface. Similarly, more
sophisticated analysis engines can reuse existing abstracMany of the techniques presented in
this dissertation are positioned on this border betweerbatract domain and an analysis engine,
and make heavy use of the interface between the two.

Algebraically, abstract domains are best thought of aggbantders, where order is given by
set containment: the smaller the set represented by araabstate, the more precise that abstract
state is. Two properties of abstract domains are of padiduterest: (i) an abstract domain is
said to bedistributiveif no information is lost when the abstract states computedgadifferent
program paths are combined; (ii) an abstract domain satifieascending-chain conditioff
it is impossible to construct an infinite sequence of absstates that have strictly decreasing
precision. If an abstract domain possess both propertian,@¢ven the simplest analysis engine is
able to compute the optimal results with respect to thatrabison: intuitively, the distributivity
allows the analysis to merge paths with no penalty in precisand the ascending-chain condition

allows to handle loops effectively and precisely.

1.2 A Few Words on Terminology

The field of software verification comprises a number diveesearch groups, each with its
own background and its own interpretation of the common itgotogy. To avoid confusion, we

would like to briefly explain our use of some cornerstone paiagverification terms. In particular,



we use the terms “sound” and “complete” in the sense of atisimgerpretation community: the
sense of the terms is with respect to the set of program statesver-approximation of the set is
sound butincomplete In contrast, in model-checking community, these termo&en used with
respect to errors reported; in this sense, static-anadyswers are complete (all true errors are
reported), but error reports are unsound (reports candedialse positives).

Throughout this thesis, we often use the word “precise” tratterize the quality of program-
analysis results. In most cases, our use of “precise” isrsymous to “good” or “reasonable” on
intuitive level. In case, there is a certain precision gotea (e.g., a particular techniqgue computes
a meet-over-all-valid-path (MOVRjolution), we will state so explicitly. Also, we never use th
word “imprecise” to meannsoundthat is, anmprecisesolution is always an over-approximation

of the optimal solution.

1.3 Numeric Program Analysis

The material presented in this dissertation is centereauomeric program analysesinalyses
that discover numeric properties of a program. A simple gdarof numeric analysis is one that
discovers a range of values that a variable may have at aylartiprogram location. A more
involved example is an analysis that discovers numeridiogiships that hold among values of
program variables, e.g., establishing that the relatigngh= 4 % b + ¢ always holds among the
values of variables, b, andc at a certain program point. Such numeric properties can bé us
directly to identify program errors, such as out-of-bouadsy accesses, integer overflow, and
division by zero. While seemingly simple, such errors actdor the majority of known security
vulnerabilities according to CERT [19, 60, 114].

The origins of numeric program analysis date back to theyed®70s. Over the years, a rich
set of numeric abstractions has been developed. Thesaeisis range from simple ones like
intervals which only keep track of upper and lower bounds for eachatde; to relational ones,
like polyhedra which are able to establish linear relationships amonigobes; to automata-based
numeric decision diagramsvhich are able to represent arbitrary Presburger formulasse ab-

stractions exhibit varying precision/cost trade-offs dnrae been successfully used in practice.



However, the majority of numeric abstractions aredistributiveand do not satisfy thascending-
chain condition Thus, obtaining precise analysis results — or even reddppaecise results —
remains somewhat of a black art.

Many program analyses, even those that are not directlyecoad with numeric behavior of a

program, often rely on numeric program-analysis techrgqtie list a few examples:

e Low-level code analysisuch as analysis of x86 binaries, is essential for the fieldse-
curity and reverse engineering. In low-level code, typicdhere are no explicit variables;
rather, variables correspond to offsets from the beginofran activation record or the be-
ginning of the data section. Numeric operations are usedatipulate these offsets. Thus,
a sophisticated numeric analysis is required just to deternvhich memory locations are

accessed by each instruction [8].

e Shape analysjsan analysis that establishes properties of heap-allddatieed data struc-
tures, may use numeric quantities to represent some asgextshape abstraction, such as

the length of a linked-list segment, or the depth of a tree 135].

e Memory-cleanness analysan analysis that checks for memory-safety violationss unse
meric quantities to track the amount of memory allocate@&wh buffer, the offsets of point-
ers within the corresponding buffers, and the lengths ofy@zero-terminated strings [1,
37, 38,107, 114].

e Model checkinga technique for verifying program properties, uses nuormogram analy-
sis techniques either directly (to represent numeric postiof the states of an infinite-state
system [13, 20]) or indirectly (to aid predicate abstractiy strengthening the transition

relation of a program [62]).

Numeric program-analysis techniques are also used in midugy areas, such as the analysis of
synchronous systerfts7], real-time systemsimed automat$o2], hybrid systemsonstraint logic

programs (CLP)for establishing termination of Prolog programs, etc.



1.4 Thesis Contributions

In this thesis, we develop a suite of techniques with the comgoal of improving the pre-
cision of numeric program analysis. The techniques addf@ssus aspects of numeric analysis,
such as handling dynamically-allocated memory, dealinty wrograms that manipulate arrays,
improving the precision of extrapolation (widening), armfprming interprocedural analysis. The
techniques use existing numeric abstractions as buildimgkb. The communication with exist-
ing abstractions is done strictly through the generic alostiomain interface. The abstractions
constructed by our techniques also expose that same icgedad thus, are compatible with ex-
isting analysis engines. The only exception to this rulénes framework ofguided static anal-
ysis (Chapter 5), which imposes an interface on the entire progaaalysis run and adheres to
that interface. As the result, our techniques are indepdricEm specific abstractions and specific
analysis engines, can be easily incorporated into exigtrogram-analysis tools, and should be
readily compatible with new abstractions to be introducethe future.

There is nothing specific about our techniques that limigsrtapplicability only to numeric
abstractions. In fact, the techniques can be applied to bslyation, as long as that abstraction
supports the required interface. However, the problemsesddd by our techniques are common
to numeric abstractions, and so far, we only evaluated aimiques in the setting of numeric

program analysis.

1.4.1 Contributions at a Glance

This thesis makes the following contributions:

e Summarizing abstractions [47]. We design a systematic approach for extending “stan-
dard” abstractions (that is, the abstractions that are ahlg to model and capture rela-
tionships among a fixed, finite set of individual program abkes) with the ability to model
and capture universal properties of potentially-unbodrgteups of variables. Summarizing

abstractions are of benefit to analyses that verify proggedf systems with an unbounded



number of numeric objects, such as shape analysis, or systewhich the number of nu-

meric objects is bounded, but large.

e Array analysis [51]. We construct an analysis that is capable of synthesizingeusal
properties of array elements, such as establishingthatray elements have been initialized
(an array kill) and discovering constraints on the values of initializiedrents. The analysis

utilizes summarizing abstractions to capture and reptgseperties of array elements.

e Guided static analysis [48, 49]: We propose a framework for guiding state-space explo-
ration performed by the analysis, and present two instiortia of the framework, which
improve the precision of widening in loops with complex béba Widening is gener-
ally viewed as the “weakest link” of numeric analysis: ad:bechniques and heuristics are
typically used to retain the precision of the analysis. Téehhiques we propose are both

systematic and self-contained, and can be easily inteynatie existing analysis tools.

e Interprocedural analysis. We investigate the use ofeighted pushdown systems (WPDSSs)
as an engine for interprocedural numeric analysis. Our mameric-program-analysis tool

is implemented on top of an off-the-shelf library for WPDSs.

e Low-level library analysis and summarization [50]: We propose a method for construct-
ing summary information for a library function by analyziitg low-level implementation
(i.e., alibrary’s binary). Such summary information isegsal for the existing source-level
program analyses to be able to analyze library calls, wherstiurce code for the library
is not available. At the heart of the method, the disasseaunlibeary code is converted
into a numeric program, and the resulting program is andlyzé the use of the numeric-

program-analysis techniques described above.

1.4.2 Implementation

Theoretically, all of the techniques that we propose aré bobund the same interface: the

generic interface of an abstract domain, and it should bg eambine them within a single



program-analysis tool. While this is indeed the case, duére constraints and certain practi-
cal considerations, we chose to build two implementatieash of which implements a subset of

the techniques:

e WPDS-based analyzer: This analyzer implements an interprocedural numeric @nogr
analysis that supports recursion, global and local vagtdndy-valueparameter passing.
The implementation is based on the Parma Polyhedral Li{R¥#®y) [7] and the WPDS++
library [69] for weighted pushdown systems. Local varialdee handled witimerge func-
tions[75]. Guided-static-analysis techniques are used to ingvadening precision. This

analysis tool is used for low-level library analysis and suemization.

e TVLA-based analyzer: This analyzer implements an intraprocedural array aralyBhe
implementation is based on TVLA [78], a state-of-the-adstanalysis tool, extended (via
the use of summarizing abstractions) with the capabilitjmamlel numeric properties. This
implementation also uses the Parma Polyhedral Library Y#ALto manipulate abstract

numeric states and guided-static-analysis techniquesooive widening precision.

1.4.3 Summarizing Abstractions

Existing numeric abstractions are only able to keep track fofed, finite set of numeric vari-
ables. However, if a program manages memory dynamicabyséh of variables that the analysis
must keep track of may change as the program executes, andahbhg statically bounded. For
instance, keeping track of values that are stored in a lifikepgoses a problem to existing numeric
program analyses because it is impossible to model eachidodi list element. A typical ap-
proach that pointer analyses use to deal with dynamicdtigailed memory is to partition memory
locations into a fixed, finite set of groups and reason abautions in each group collectively.
Partitioning can be as simple as grouping together all mgrtmations created at a particular
allocation site, as is done by many pointer-analysis algars; or as complex as maintaining a

fluid partitioning that changes during the course of the anglgsigs done by state-of-the-art shape



analyses [100]. However, existing numeric abstractiomsogbe used in this setting because they
are incapable of such collective reasoning.

In Chapter 3, we present a framework for automaticallyrigtstandardnumeric abstractions
to support reasoning about potentially unbounded groupsioferic variables: instead of estab-
lishing numeric properties of individual variables, Idtabstractions captuteniversalproperties
of groups of variables. For instance, a lifted polyhedratedrtion can capture the property that
the value of each element in an array is equal to its indexgitwe. Lifting is done by assigning
a non-standard meaning to the existing abstraction. Sondgeecise transformers for the lifted
abstraction are automatically constructed from the t@nsérs for the original abstraction. We
used summarizing abstractions to add numeric support toAl dlstate-of-the-art shape-analysis
framework.

We collaborated with Bertrand Jeannet (IRISA, France) atilliing the ideas behind summa-
rizing abstractions into a novel relational abstractionfémctions [64, 65]; however, that work is

beyond the scope of this dissertation.

1.4.4 Array Analysis

An array is a simple and efficient data structure that is hgasdged. In many cases, to verify
the correctness of programs that use arrays an analysis teéé able to discover relationships
among values of array elements, as well as their relatipsgbiscalar variables. For example, in
scientific programing, sparse matrices are typically regméed with several arrays, and indirect
indexing is used to access matrix elements. In this casegrity\vthat all array accesses are in
bounds, an analysis has to discover upper and lower bountteecgiements stored in the index
arrays. Mutual-exclusion protocols, such as the Bakery Retgrson algorithms [76, 90], use
certain relationships among the values stored in a shatedgenarray to decide which processes
may enter their critical section. To verify the correctnesghese protocols, an analysis must be
capable of capturing these relationships.

Static reasoning about array elements is problematic dilnetonbounded nature of arrays. Ar-

ray operations tend to be implemented without having aqaetr fixed array size in mind. Rather,
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the code is parametrized by scalar variables that haveicertaneric relationships to the actual
size of the array. The proper verification of such code reguéstablishing the desired property
for all possible values of those parameters. These symbatistraints on the size of the array pre-
clude the analysis from modeling each array element as @apeérdient scalar variable and using
standard numeric-analysis techniques to verify the ptgpéiternatively, an entire array may be
modeled as a singleummarynumeric variable. In this case, numeric properties esthbd for
this summary variable must be universally shared by alyagtements. This approach, known as
array smashing14], resolves the unboundedness issue. However, theguroblth this approach,
as with any approach that uses such aggregation, is thdiipabiperform strong updatesvhen
assigning to individual array elemerftshis can lead to significant precision loss.

In Chapter 4, we develop an analysis framework that comlziaesnical abstractiofi78, 100],
an abstraction that dynamically partitions memory loagadimto groups based on their properties,
and summarizing abstractiongl7]. The analysis uses canonical abstraction to partéionn-
bounded set of array elements into a bounded number of grd@gditioning is done based on
certain properties of array elements, in particular, on @ucrelationships between their indices
and values of scalar variables: the elements with similapgrties are grouped together. Each
group is represented by a single abstract array element.m@uzing numeric abstractions are
used to keep track of the values and indices of array elements

Canonical abstraction allows us to partition the set ofyagl@ments into groups, which dy-
namically change during the course of the analysis. Foairts, if we partition array elements
with respect to a loop induction variable(i.e., yielding three groups of array elements: (i) the
elements with indices less than the value ofii) the element [i] by itself, and (iii) the elements
with indices greater than the value f then the groups of array elements, which are summarized
together, change on each iteration of the loop. In partictiee indexed array elemeafi] is
always a single element in its group, which allows the analgsperform strong updates. Also,

the elements that have already been processed by the prég@nthe ones with indices less than

2A strong update corresponds to a kill of a scalar variablegpresents a definite change in value to all concrete
objects that the abstract object represents. Strong updatemot generally be performed on summary objects because
a (concrete) update only affects oofiethe summarized concrete objects.
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the value ofi) are kept separate from the elements that have not yet beeagsed (e.g., the ones
with indices greater than the valuedf which allows the analysis to capture and maintain sharper
properties for the processed array elements.

We implemented this approach to array analysis within the A¥famework [78] and used it

to analyze a number of small, but non-trivial array-maragialg programs.

1.4.5 Guided Static Analysis

Many existing numeric abstractions must rely exirapolation(also referred to asidening
to be usable in practice. Widening attempts to guess logiamts by observing how the program
properties inferred by the analysis change during earlp iterations. Widening works well for
programs with simple and easily-predictable behavior; én@w, as the complexity of a program
increases, widening starts to lose precision. This lossexfipion makes the use of widening very
tricky in practice: the well-known adage goes: “If you widerthout principles, you converge
with no precision!” [56]. A number o&d hoctechniques for reclaiming lost precision have been
proposed over the years. These techniques mostly rely aniamt guesses supplied by either a
programmer or by a separate analysis.

In Chapter 5, we design a general framework doiiding the state-space exploration per-
formed by program analysis and use instantiations of tlaimé&work to improve the precision of
widening [48, 49]. The framework controls state-space@gion by applying standard program-
analysis technigues to a sequencepadgram restrictions which are modified versions of the
analyzed program. The result of each standard-analysissrused to derive the next program
restriction in the sequence, and also serves as an apprixmiar the set of initial states used
in the next analysis run. The existing program-analysikriggies are utilized “as is”, making it
easy to integrate the framework into existing tools. Thenavork is instantiated by specifying a
procedure for deriving program restrictions.

To improve the precision of widening, we instantiate therfesvork with procedures that de-

compose a program with complex behavior into a sequenceplsr programs, whose complexity
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gradually increases. In the end, the sequence convergles twiginal program. Standard widen-
ing techniques are able to obtain precise results on thegmoestrictions that appear early in the
sequence. These precise results, in turn, help obtain rmecesp results for later, more complex
programs in the sequence, much in the same way as how sudagss$ses of (good) invariants
help existing techniques. The two instantiations we pregonghis thesis address two scenarios

that are problematic to existing widening techniques:

e Loops that have multiple phases: that is, loops in whichtém@iion behavior changes after

a certain number of iterations;

e Loops in which the behavior on each iteration is chosen reierchinistically; such loops
commonly arise in the analysis of synchronous systems [4pdbe to non-deterministic

modeling of the environment (e.g., sensor signals, etc.).

As anecdotal evidence of the success of our approach, thve atstantiations were able to auto-
matically infer precise loop invariants for the two exangplesed by the Astrée team to motivate
the use othreshold wideninga semi-automatic technique that relies on user-supptiexsholds

(invariant guesses) [14].

1.4.6 Interprocedural Analysis

Recently, Weighted Pushdown Systems (WPDSs) emerged disattiae engine for perform-
ing interprocedural program analysis [97]: on the one hANBDSs are expressive enough to
capture precisely fairly complex control structure présemodern programming languages, such
as Java exceptions [89]; on the other hand, WPDSs serve assddrahigher-level analysis tech-
niques, such as the analysis of concurrent programs [1R11Adopting WPDSs as an engine
for numeric program analysis allows for easy integratiothwihese analysis techniques. An ad-
ditional advantage of WPDSs is the ability to answick-qualifiedjueries, that is, the ability to

determine properties that arise at a program point in a Bpedet of calling contexts.
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In WPDSs weightsabstract the effect of program statements on program stEtéscontrasts
to most existing numeric or quasi-numeéranalyses, in which “units of abstraction” asets of
program statesis opposed to theansformations of program statésowever, there are techniques
for using numeric abstractions to represent program-statsformations [30, 66]). Generally,
representing program-state transformations precisdhaider than representing sets of program
states. However, there are definite advantages to abetyaciinsformations: recursive functions
can be handled precisely, the same weights can be used formarg both backward and forward
analyses, a single analysis run can be used to compute bogic@nglition for reaching a program
point and the set of program states that may arise at that liprojecting the weight computed
for that program point to its domain and its range, respebtjv

WPDS-based program-analysis techniques guarantee gmesslts for weights that are dis-
tributive and that satisfy the ascending-chain conditidbtumeric abstractions, however, rarely
poses either of these properties. Chapter 6, we investgaietical implications of building
WPDS-based numeric program analysis: our program-asatgel is built on top of an off-the-
shelf library for WPDSs [69]. It usgsolyhedralnumeric abstraction [32, 57] implemented via the
Parma Polyherdral Library [7]. The weights are construateal way similar to relational analy-
sis [30, 66]: that is, a polyhedron is used to capture thediogiships among the values of program

variables before and after a transformation.

1.4.7 Library Summarization

Static program analysis works best when it operates on @&e@nbgram. In practice, however,
this is rarely possible. For the sake of maintainability gnccker development times, software is
kept modular with large parts of the program hidden in lilgsr Often, commercial off-the-shelf
(COTS) modules are used. The source code for COTS compa@htbraries (such as Windows
dynamically linked libraries) is not usually available.dractice, source-level analysis tools resort

to either of the following two techniques:

3That is, program analyses in which only part of the abstwads numeric.
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e abstract transformers for a setiafportantlibrary calls (such asnemcpyand strlen) are
hardcoded into the analysis; the remaining calls are tieaither conservatively (e.g., by
assuming that any part of memory can be affected) or unsgyed)., by assuming that the

function call does not affect the state of the program);

e a collection of hand-written source-code stubs that eraidatme aspects of library code is

used by the analysis as a model of the effects of calls orrlilaatry points.

Both approaches are less than ideal. The former approaott isxtensible: modeling of new
library functions necessitates changes to the analysie.|dtter approach provides the means for
modeling new libraries without changing the analysis; hasvelibrary-function stubs have to be
created manually — a process that is both error-prone amnougd

An attractive goal for program analysis is to derive autocadly the summariedor library
calls by analyzing the low-level implementation of the &by (e.g., the library’s binary). Such
summaries should consist of a set of assertienf triggers) that must be checked at the call-
site of a library function to ensure that no run-time errorgynoccur during the invocation of
the function, and a program-state transformer that spedifiev to map the program state at the
function call-site into the program state at the correspanceturn-site.

We believe that there are certain benefits to constructiagrtdels of library calls from the
low-level implementation of the library, as opposed to daiinfrom the high-level specifications.

In particular,

o formal library specifications are hard to get hold of, whibevllevel implementations are

readily available;

e even if a formal specification is available, there is no eaay v verify that a particular

library implementation conforms to the specification;

¢ the analysis of an actual library implementation may unctwgs and undesirable features

in the library itself.
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In this thesis, we take the first steps towards automaticalhstructing summaries for library
functions. We design a tool that constructs library-fumesummaries for memory-safety analysis.

The tool works directly on the library implementations (x8&le, at the moment):

e First, CodeSurfer/x86, an off-the-shelf tool for binaryde analysis, is used to perform ini-

tial analysis of the binary and to constructintermediate representation (IR the function;

e The IR is used to generate a numeric program that captures¢hneory-related behavior
of the function: auxiliary numeric variables are assodatgth each pointer variable to
keep track of its allocation bounds in the spirit of other noeyrsafety analyses [37, 38].
At memory dereferences, the allocation bounds of the thefeleanced pointer variable are
checked explicitly, and in case of an error, the control amsferred to specially-inserted

error points.

e The numeric program, generated in the previous step, iyzedhith an off-the-shelf nu-
meric program-analysis tool. We used our WPDS-based agralyhich was described in

the previous section.

e The numeric-analysis results are used to generate errertiass and program-state trans-
formers. At this step, we get extra millage from the WPDSeblaanalysis tool: weights
computed by the analysis for the set of return statementasae directly as the program-
state transformers; error triggers are obtained by comgutreconditions for reaching the

error points.

In this work, we concentrated primarily on the issues that@rimmediate relevance to nu-
meric program analysis: i.e., the generation and the aisabfsa numeric program. A number
of problems that must be addressed to make our method usaptadtice still remain open. For
instance, our tool produces an error trigger for each meraocgss in the function (which may
number in the hundreds). Many of these error triggers anengait; others could be consolidated
into a single, simpler error condition; hoverer, techngte performing such consolidation still

need to be developed.
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1.5 Thesis Organization

The remainder of the thesis is organized as follows. Chédpiatroduceshumeric program
analysis it describes commonly used numeric abstractions, and stmw to instantiate these
analyses in the framework of abstract interpretation. @hrappresents the framework for extend-
ing standardnumeric abstractions with the capability to express usiigoroperties for groups of
numeric quantities. Chapter 4 uses the framework of Ch&aiedefine a numeric analysis that is
able to synthesize universal properties of array elem&tiapter 5 presents a general framework
for guiding the analysis through the state-space of theyaadl program: two instantiations of
the framework, which improve the precision of extrapolatiare presented. Chapter 6 addresses
the use of WPDSs as an engine for numeric program analysiapt&h7 discusses a particular
application of numeric program analysis: analyzing loweldibrary implementations to create

summaries for library functions.
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Chapter 2

Numeric Program Analysis

This chapter presents the foundations of numeric prograatysis. Of particular importance
is the notion of arabstract domain the techniques in Chapters 3, 4, and 5 use generic abstract
domains as basic building blocks. We describe how to instiEnd simple intraprocedural numeric
program analysis within the framework of abstract intetgtien [27, 29]. For further reading
we suggest an excellent in-depth coverage of numeric pmograalysis by Mine [87, Chapter 2].
Additional background material and definitions that arec#eto particular techniques will be

given in the corresponding chapters.

2.1 Numeric Programs

A program is specified by eontrol flow graph (CFG)— i.e., a directed grapty = (V, E),
whereV is a set of program locations, addC 1V x V is a set of edges that represent the flow of
control. A noden, € V denotes a unique entry point into the program. Nodes not allowed to
have predecessors.

The state of a program is often modeled using a fixed, finitefsetriablesVars whose values
range over a sé&f. We assume that the s@tis application specific, e.gV, can be the set of integers
(Z), the set of rationals(), or the set of realsK). We will useB to denote the set of Boolean
values, i.e.]B = {true, false} .

A program states is a function that maps each program variable to a correspgndlue, i.e.,

S : Vars— V. We will use = Vars— V to denote the set of all possible program states.
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2.1.1 Numerical Expressions and Conditionals

We do not impose any constraints on the numeric expressimhsa@nditionals that can be
used in the program: that is+ y, ¢y, + mod 5 = 0, andsin®(z) + cos*(z) = 1 all represent
valid numeric expressions and conditionals. The semaafitse expressions and conditionals is
defined by a family of function$:], which map the values assigned to the free variables in the
expression (conditional) to the result of the expressiomddional). That is]x + y[(3,5) yields
8 and[z mod 5 = 0](25) yieldstrue. More formally, let® denote the set of all valid numeric
expressions, and létvy, ..., v,) € ® be ak-ary expression. Then, the semanticga$ given by
a function

[o(vy,...,0)] : VF = V.

Similarly, let ¥ denote the set of all valid numeric conditionals, andylét;, ..., v;) € ¥ be a

k-ary conditional. Then the semanticswofs given by a function
[(vi,...,00)] : VP — B.

2.1.2 Support for Nondeterminism

Sometimes it is convenient to be able to specify a certaimegegf non-determinism in the
program. For instance, nondeterminism can be used to mioelefffects of the environment, e.g.,
to model user input. We support nondeterminism by allowirgpecial constant?’ to be used
within an expression:?* chooses a value frorly nondeterministically. To accommodat&, ‘we
lift the semantics of expressions and conditionals to resets of values: e.glz+7]yp YieldsV
for any value ofr, and[? mod 3] xp yields the se{0, 1, 2}.

Without loss of generality, let expressiarivy, ..., v;) haver occurrences of?” in it. Let
é(vl, ..., U, Wy, ..., w,) denote an expression obtained by substituting each ocwerraf 7’ in

¢ with a fresh variablev; € Vars Then, the semantics faris defined as follows (let € V*):

[6(vr,. .., ve)]wp(@) = {[[95@1, s, w)](@ B) | B e V"}

The nondeterministic semantics for conditionals is defsiedlarly.
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2.1.3 Evaluation of Expressions and Conditionals

We define the semantics for evaluating expressions and tommals in a program state in a
straightforward way. LetS € X denote an arbitrary program state, anddeét,, ..., v.) € ®,
wherewv; € Vars be an expression. The functidna(v,...,v)] : £ — (V) is defined as

follows:
[6(v1, ..., 06)](S) = [d(v1, ..., 06)]nD(S(v1), ..., S(vk)).

Similarly, lety)(vy, ..., v;) € ¥, wherev; € Vars be a conditional. The functiofy(vy, ..., v)] :

Y. — p(B) is defined as follows:

[V(v1, ..., 06)](S) = [Y(v1, ... 06) N (S(v1), .. ., S(vg)).

From now on, we will omit the lists of free variables when refeg to expressions and condition-

als, unless those lists are important to the discussion.

2.1.4 Concrete Semantics of a Program

The functionll; : £ — (X — X) assigns to each edge in the CFG the concrete semantics of

the corresponding program-state transition. Two typesaoisitions are allowed:

e Assignment transition, z < ¢: An assignment transition allows multiple variables to be
updated in parallel; i.ez € Vars™, wherel < m < |Varg, with an additional constraint that
each variable may appear at most oncg.illso, ¢ € U™. As an example, the assignment
transition(z, y) < (y,x + 1) assigns the value of variableto variablez, and the value of
x + 1 to variabley. The semantics of an assignment transition is defined asafsl{we use

x[i] to denote the-th component of vectar):

_ S'(v) € [oli S) ifv=uzli, i€l

[z — ¢](S)=<S"€X | YveVars (v) € [lllvp(5) it v=2li], i € [, m]
S'(v) = S(v) otherwise

Typically, only a single variable is updated by an assignnramsition. In that case, we will

omit the vector notation, e.gr, < x + 1. The assignment transition«<— 7 “forgets” the

value of variabler.
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e Assume transition, assume(y’): An assume transition filters out program states in which
the condition) € ¥ does not hold. For uniformity, we define the semantics of iuesition
to map a program state to a singleton set containing thatrgnogtate, if the conditiog

holds in that state; otherwise, a program state is mappédukternpty set

{S} if true € [[@D]]ND(S)
(¢  otherwise

[assume)[(S) =

The semantics of program-state transitions is extendédltyito operate on sets of program states

He(e)(S9 = | Male)(s),

SeSS
wheree € ¥ andSSC Y.

2.1.5 Collecting Semantics of a Program

We will use map® : V' — p(X) from program locations to program states to collect the sets
of reachable states. L€t denote a map that represents the initial state of the pragFrgpically,
we assume that the program execution starts at the entryqgiand that program variables are

not initialized:

Y ifuo=n.
00 (v) = YT torallvev
() otherwise

Thecollecting semanticef a program (that is, a function that maps each programitocéd the
set of program states that arise at that location), is giwethb least ma®, that satisfies the
following conditions:

0.(t) 20.(v), and O,(v)= |J Me((u,)(Ou(w)), forallveV (2.1)

(u,v)EE
The goal of program analysis is, givéh., compute©,. However, this problem is generally

undecidable.

2.1.6 Textual Representation of a Program

Our primary view of the program is that of a control flow graphwhich nodes correspond

to program locations and edges are annotated with prograi®-sansitions. In fact, the input
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languages for the program-analysis tools that we have mmghéed also maintain this view of
programs. However, for the sake of readability, we predeatprograms that appear in various
part of this thesis in a C-like language. The language suppimple control structures, such as
if statementsyhile statements, angbto statements. These control structures are converted into
a CFG in straightforward way. The statemestert (1)) corresponds to anf (/) statement in
which theelseclause transfers the control to amor node a unique error node is created for
eachassert statement. Error nodes are sink nodes, i.e., they have messars. The statement
“if (x)” chooses control non-deterministically, i.e., the trédnsiassumérue) is used to transfer
control to both theéhenclause anelseclause. Whenever possible, we show the program’s CFG

alongside the textual representation of the program.

2.2 Program Analysis

Program analysis sidesteps undecidability by using atiftra sets of program states are over-
approximated by elements of an abstract doni&ais- (D, C, T, L, 1, M), whereC is a binary
relation that is reflexive, transitive, and anti-symmetiiémposes a partial order oR; T and L
denote, respectively, the greatest and the least elemieitsvith respect ta_; LI andr1 denote the
least upper bounddin) operator and the greatest lower bourne€j operator, respectively.

The elements o are linked to sets of concrete program states by a pair otifums(«, ),
wherea : p(¥) — D is anabstraction functionwhich constructs an approximation for a set of
states, and : D — p(X) is aconcretization functiopwhich gives meaning to domain elements;

The functionsy and~ are chosen to form a Galois connection, that is
VSepX)VdeD [a(S)Ed & S C(d)]

It follows immediately thatd; C dy = ~(d;) C 7(ds); thus, the smaller the abstract-domain
element with respect t@, the smaller is the set of program states it represents. egst élement,
1, typically represents the empty set, i.(,L) = (). The greatest element,, represents the
entire set of program states, i.e,T) = X. The join operator and the meet operator soundly

approximate set union and set intersection, respectively.
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2.2.1 Abstract Semantics of a Program

To perform program analysis, the program-state transttbat are associated with the edges
of a control flow graph also need to be abstracted. We will beeiaplly, : £ — (D — D) to
specify corresponding abstract transformers for each edpe CFG. We say thdt[ﬁG is asound

approximatiorof Il if the following condition holds:
Vee B vde D | Tlg(e)(1(d) € 2(IlE(e)(d) |-

Also, for a program-state transitiofnwe say that its abstraction is thebestabstract transformer,

if ¥ = avo 7 0 ; and we say that! is theexactabstract transformer, if o 7% = 70 ~.

2.2.2 Abstract Collecting Semantics

To refer to abstract states at multiple program locatiore defineabstract-state map®* :
V — D. We also define the operations v, C, andU for ©f as point-wise extensions of the
corresponding operations for the abstract doniain

Program analysis computes a sound approximation for thef pebgram states that are reach-
able fromO,.. Typically, the result of program analysis is an abstraatesmapo* that satisfies

the following property
YoeV: |OLw)u 1T, (0% (u))| C 6k v), (2.2)
(u,v)eE

where®’. = «(6.) is the approximation for the set of initial states of the pasg. It follows
trivially from the definition that the resulting approxintat is sound, that i®, (v) C (6% (v))

forallv e V.

2.3 Iterative Computation

This section explains one methodology for computiig the abstract collecting semantics of

a program, by means of an iterative process of successivexapyation.
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2.3.1 Kleene lteration

If the abstract domaif® and the set of abstract transformersl'ib possess certain algebraic
properties, thet®® can be obtained by computing the following sequence of atisstate maps

until it stabilizes:

O, =0L and O}, (v)= || T&((u,0)(6}(u)) (2.3)

(u,v)EE

In particular, the abstract transformerslIj must bemonotonegi.e.,
Ve € B Vdy,dy € D [dl Cdy = I(e)(dy) T HﬂG(e)(d2)] .

To ensure termination, the abstract domBimust satisfy theascending-chain conditign.e.,
every sequence of elemer(i$.) € D such thatd; C dy T d3 C ... must eventually become
stationary.

Additionally, if the transformers iMﬁG distributeover the join operator db, i.e., if
Ve € E Vdy,dy € D [Hg(e)(dl Udy) = I (e)(dy) LTI (e)(ds) |

then the solution obtained f@" is the most precise (i.e., least) solution that satisfies E2j8).

2.3.2 Widening

If the domain does not satisfy the ascending-chain comditiben the sequence defined in
Eqgn. (2.3) may not necessarily converge. To make use of soelaiths in practice, an extrapola-
tion operator, calledvidening is defined. A widening operatdK/;) must possess the following

properties:
e For a”dl,dg eD, for all ¢ >0, dl,dg C d; V; ds.

e For any ascending chaii,) € D, the chain defined by, = d, andd;,, = d;V,;d;;, is

not strictly increasing.

To make an iterative computation converge, a&et 1 of widening points is identifiedi’ must

be chosen in such a way that every loodlns cut by a node ini¥. Typically, W is chosen to
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contain the heads of all of the loops in the program. Thetitamgroceeds as follows:

0 =0%L and O, (v)=0i(v) x| | M5((u,0)(6}(u)) (2.4)

(u)EE
wherex is V; if v € W andU, otherwise.

Intuitively, widening attempts to guess loop invariantsdiserving program states that arise
on the first few iterations of the loop. Typically, delayingetapplication of widening for a few
iterations tends to increase the precision of the analyfsislelay the application of widening for
k iterations, the widening operator can be redefined as fatlow
L ifi <k

v —
V._, otherwise

Often the definition of the widening operator is independeorn the iteration number on which

the operator is invoked. In that case, we denote the widespegator byV, with no subscripts.

2.3.3 Narrowing

The limit of the sequence in Egn. (2.4), which we will denoye(—}zL, is sound, but generally
overly conservative. It can be refined to a more precise isolily computing adescending-

iteration sequence
0f =04 and O, (v)= || If((u0)(O(u) (2.5)
(u,v)EE
However, for this sequence to converge, the abstract domast satisfy thedescending-chain
condition that is, the domain must contain no infinite strictly-desiag chains. If the abstract

domain does not satisfy this property, convergence may foeasd with the use of aarrowing

operator. A narrowing operatorA,;) must possess the following properties:
° Fora”dl,dg eD, for all ¢ >0, doCdy = [dg C dlAidQ A dlAidQ C d; ]

e For any descending chaid;) € D, the chain defined by, = dy andd;,, = d; A;d;;, is

not strictly decreasing.
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The computation of the descending sequence proceeds @assoll
0f =04 and O, (v)=Oi(v) x| | T&((u,0))(O(u)) (2.6)
(u0)EE
wherexi is A, if v € W andr, otherwise.

The overall result of the analysi§)?, is the limit of the sequence computed in accordance
with Eqn. (2.6). Typically,©! is not the most precise abstraction of the program’s catigct
semantics with respect to the property in Eqn. (2.2). An irtgod thing to note is that with standard
abstract-interpretation methods the computation ofabeending sequend&qn. (2.4)) for the
entire program must precede the computation ofdescending sequen¢gqgn. (2.6)) for the
analysis to converge. The techniques that we developed —parsEnt in Chapter 5 — allow
the ascending and descending computations to be intedeawf@le still guaranteeing that the
analysis converges. Moreover, the techniques from Ch&pgenerally give more precise results
than standard techniques (S$g&e7).

Meaningful narrowing operators are much harder to definewidening operators; thus, many
abstract domains do not provide them. For those domainsigbeending-iteration sequence from
Eqgn. (2.5) is, typically, truncated after some fixed numtateyations. One way to truncate the
iteration sequence is to define a simple domain-indepenuEnbwing operator that “cuts off”
the decreasing sequence after some number of iterationta.¢runcate aftek iterations, the
narrowing operator can be defined as follows:
dy ifi<k

d1 AEM d2 -
d; otherwise

2.3.4 Chaotic lteration

Computing the sequence of abstract-state maps accordiagrs. (2.4) and (2.6) is not effi-
cient in practice: on each step, the mappingsalbprogram points are recomputed even though
only a small number of them actually change valGaaotic iterationallows one to speed up the
computation by only updating a value at single program poimeach iteration of the analysis:

given afair sequence of program poinisc V>° (that is, a sequence in which each program point
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appears infinitely often), the ascending-iteration seqa@an be computed as follows:

O{(v) Vi Ugyer (1, v))(0%(w))  if v = oli] andve W
0L (1) = 3 ©Xv) U yuyer s ((u,0))(©X(w)) if v =oli] andv ¢ W (2.7)
CHE) otherwise(v # o[i])

The descending iteration sequence is computed in a simégy with V replaced withA, andU
replaced with.

The use of chaotic iteration raises the question of an effetteration strategy— that is, an
order in which program points are visited that minimizes d@ineount of work that the analysis
performs. This problem was addressed by Bourdoncle [18]pridposed a number of successful
iteration strategies based on the idea of usingeak topological order (WTOJf the nodes in
the program’s control-flow graph. A WTO is a hierarchicausture that decomposasrongly-
connected components (SC@s}he graph into a set of nested WTO components. (In stradtur
programs, WTO components correspond to the loops in thegmag Of particular interest is the

recursiveiteration strategy.

Definition 2.1 (Recursive Iteration Strategy [18]) The recursive iteration strategy recursively sta-

bilizes the sub-components of a WTO component before statglthat WTO component.

Intuitively, the recursive iteration strategy forces timalgsis to stay within a loop until the stable
solution for that loop is obtained. Only then the analysalliswed to return to the outer loop. The
recursive iteration strategy has the property that one nabds to check for stabilization at the

head of the corresponding WTO component (intuitively, atlyhe head of the loop).

Theorem 2.2 (Recursive iteration stabilization [18, Theoem 5]) For the recursive iteration strat-

egy, the stabilization of a WTO component can be detectetdgtabilization of its head.

In Chapter 5, we make use of this property to guarantee theecgence of thiookahead-widening

technique.
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2.4 Abstract Domain Interface

The interface of an abstract domain consists of the domasnadipns (such as andLl) and
the abstract transformers IE”G. Typically, it is not the case that the transformer for eatztes
transition must be manually constructed. Rather, the attsfiomain provides a general scheme for
constructing classes of abstract transformers, i.e., @seHor constructing abstract transformers
for arbitrary assignment transitions and arbitrary asstraresitions. In this thesis, we assume that
abstract domains are equipped with abstract transformemy possible assignment transitions
and assume transitions.

The functionsy and~ are mostly theoretical devices; thus, we do not view themaaisgs the
interface. In particular, it is rarely computationally $#ale to usey directly. However, sometimes
we rely on thesymbolic-concretizatiofunction [96], which represents the meaning of an abstract
domain element as a formula in some suitable logic. &heinction typically would be used
exactly once, to compute the abstract domain element fanthal state; in practice, it is rare to
implementy as an explicit function in an analyzer (the TVLA system [Z8pne exception).

Formally, to be compatible with our techniques, an absttantain must provide the following

set of operations:

e the comparison operatorj;

the join operator((), and the meet operatdr;

the widening operator\{), and pptionally) the narrowing operatorY);

the constructors for the greatest elemény, @nd the smallest element;

the abstract transformers for arbitrary assignment tiansi (z < ¢]*) and for arbitrary

assume transitionggssumey)]*);

¢ (Optionally) the symbolic-concretization functiofy);

'In case an expression or conditional are beyond the cafiebitif the abstract domain, the abstract transformers
err on the safe (sound) side by returning
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2.5 Numeric Abstractions

The focus of this thesis is humeric program analysis. Below,briefly overview existing
numeric abstractions (that is, particular instantiatiohthe abstract-domain interface), and take a
detailed look at th@olyhedralabstraction, which we use in the implementations of ourstaold
to illustrate the techniques presented in this thesis.

Numeric analyses have been a research topic for severallelgcand a number of numeric
domains that allow to approximate the numeric state of anarachave been designed over the
years. These domains exhibit varying precision/cost tidte and target different types of nu-
meric properties. However, all numeric domains share threesaew of “the world”: each program
stateS : Vars — V is viewed as a point in a multi-dimensional sp&te wheren = |Varg. Intu-
itively, each variable is associated with a dimension of dtindimensional space; the coordinate
of the point along that dimension represents the value ofdhiable in the corresponding program
state. Sets of program states correspond to subsets ofdbe8p. Numeric abstract domains
represent and manipulate these subsets with varying degfgeecision.

Tab. 2.1 lists a number of existing abstract domains, aloitly thhe numeric properties those
domains are able to represent. In terms of precision, nerabstract domains can be categorized

into three groups:

e Non-relational domains: These domains are only able to represent properties ofichail/
variables, e.g., the range of values that a variable may. hdleey cannot represent rela-
tionships among variables. However, these domains areefgicient in practice and allow

scalable analyses to be constructed.

e Relational domains: These domains are able to represent arbitrary relatiosgbipa
certain class) among variables: e.g., polyhedra are camdbvepresenting arbitrafynear
relationships. However, these domains have poor computdtcomplexity and do not scale

well in practice.

e Weakly-relational domains: These domains attempt to strike a compromise between re-

lational and non-relational abstract domains by limitingsome way the kind of numeric
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Trapezoidal Congruence

S Zz Qi - U € [ﬁjv ’Y]] mod 6]'

Name Constraints Bibliography

‘_g Constant Propagation v = o Kildall [70]

-% Signs +v; >0 Cousot et al. [28]

SI:’ Intervals o < v < Bi Cousot et al. [28]

é Simple Congruences v; = a; mod j; Granger [52, 53]
Interval Congruences v; € [ay, B;] mod ~; Masdupuy [82]
Zones v —vj < ayj Miné [84]

Octagons +v; £v; < Miné [85]

c_gu Zone Congruences v; — v; = a;; mod [3;; Miné [86]

% TVPLI i v+ Bij v < g Simon et al. [109]

o

2 | octahedra 20 < 1 Clariso et al. [23, 24]

SE.S‘ a;; € {—1,0,1}, v; > 0

> g v <3
TCM «;; fixed throughout the | Sankaranarayanan et al. [10
analysis
Liner Equalities Yo = Karr [68]

‘_85 Linear Congruences > v = B, mod v, Granger [52]

% Polyhedra S v < B Cousot et al. [32]

o

Masdupuy [80]

Arithmetic automata

Arbitrary Presburger Formula

sBartzis et al. [12, 13]

Table 2.1 A list of existing numeric domains.

3]

relationships they can represent. Some domains, like T¥RI09], restrict the number of

variables that can participate in a relationship. Othéks, dctahedra [23, 24], restrict the

values of coefficients that can occur in the relationshipsn& like octagons [85], restrict

both.

2Two variables per linear inequality
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Numeric abstract domains also vary in terms of implememtattome domains, like TCM [103]
and TVPLI [109], rely on linear-programming techniquesh@s, like zones [84], octagons [85],
and zone congruences [86], are graph-based (in fact, thenatgpon a matrix representation of
a graph). One domain, arithmetic automata [12, 13], usesita-Btate automaton to recognize
binary representations of integer values. Below, we taketailéd look at the implementation of
the polyhedral domain [32, 57].

2.5.1 The Polyhedral Abstract Domain

The polyhedral abstract domain was introduced almost 3@syago by Cousot and Halb-
wachs [32]. Since then, a number of implementations of tmeado have been developed, e.g., the

New Polka library [63] and the Parma Polyhedral Library [7].

Representation. The implementation of the domain is based on a dual reprasemif polyhe-

dra. A polyhedronP C R" for some positive integer can be represented in two distinct ways:

e Constraint representation A polyhedron is represented as the intersection of a finitefse
linear constraintg’, where each constraift, b) € C', wherec € R™ andb € R, defines a
half space ofR™ as follows{z € R" | ¢- = < b}. The following polyhedron is represented

by the constraint systeni:

P=con(C)={peR"|VY(cbeC [¢c-p<b]}.

e Frame representationA polyhedron is represented by a systengeherators a finite set of
points@ C R™ and a finite set ofays R C R". Let || = ¢ and let|R| = r. The following
polyhedron is represented by a system of genergtr):

q
P =gen({Q,R)) = {Rp +Qr eR" | peR,, meRY, andZﬂ[i] = 1},

i=1

whereR , denotes the set of non-negative reals.

Some operations can be performed more efficiently on thet@nsrepresentation; others can be

performed more efficiently on the generator representatiopractice, implementations maintain
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both representations: the representations are syncliby converting the information in the
up-to-date representation to the out-of-date representafhese conversions are computationally

expensive and constitute a major scalability problem ferdbmain.

Abstract Transformers. In the following, letP; and P, denote two elements of the polyhedral

abstract domain.

e Comparison operator: The comparison operator uses both representations. Tdedeci
whetherP; C P, holds, the elements of the frame Bf are checked against the constraints

of P,: if every element of the frame is subsumed, the relationkbigs.

e The join and meet operators:The join operator utilizes the generator representation: t
computeP; LI P,, the union of their generator representations is taken. riiéet operator
relies on the constraint representatidi: M P, is computed as the union of the constraint
representations o, and P,. Both of these operations may cause redundancy in the re-
spective representation. The redundancy is typicallyiabted by a conversion to the other

representation and back.

¢ Widening operator. The widening operator uses both representations. Inélytivo com-
pute P,V P, one needs to remove fro, the constraints that are not satisfied By The
implementation, however, is much more tricky: the resulivafening P, with P, is a poly-
hedron that includes all of the constraintsfafthat are saturated by the same set of frame
elements of?; as some constraint @?, [6]. The necessary condition for this to work is that
P, C Ps.

e TheT and _L elements. The T element is a polyhedron with an empty constraint system.
The L element is a polyhedron whose constraint system contaimsfeasible constraint,

e.g.,1 <0.

e Abstract transformersAbstract transformers for polyhedra are only able to halikar ex-
pressions and linear conditionals. The— ¢]*(P;) transformer is computed by translating

each generator aP, according to the assignment transition— ¢. The [assumé))]*(P;)
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transformer is computed by adding the linear constraimd the constraint representation
of P;. Non-linear expressions are approximated by returfiingon-linear conditionals are

approximated by returning the original polyhedron.

e Symbolic concretization.The symbolic concretization of a polyhedray,; ), is the con-

junction of constraints in the constraint representatiof,0

Recently, a new approach to implementing the polyhedratatisiomain was proposed [101].
This approach is based on linear programming; it attempispoove the scalability of the analysis
by eliminating conversions between the two representatibiowever, the abstract transformers

are weakened as the result.
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Chapter 3

Summarizing abstractions

Often, in program analysis, the situations arise in whicivensal properties of an unbounded
collection of objects need to be established. The word “unbded” means that the number of
objects that must be taken into consideration by the arsmlysay not be determined statically.
That is, the number of objects may change from program runagrpm run depending on the user
input or the run-time environment. For instance, if the pamg uses dynamic memory allocation,
then the analysis may have to model an unbounded numbekefiihst elements. If the program
creates threads dynamically, then the analysis may neeattfoan unbounded number of instances
of thread-local variables. Recursive-function invocasianay create an unbounded number of
instances of local variables on the run-time stack.

As we showed in Chapter 2, traditional numeric abstractemesonly able to keep track of a
fixed, finite set of objects. Thus, they cannot be used diréctihe above situations. Maintaining
a separate abstract-domain element for each possible mwhlebjects (i.e., one-dimensional
domain element to represent program states with one olgjéato-dimensional domain element
to represent states with two objects, etc.) is also inféabibcause the object count is unbounded.
For example, consider representing a linked-list of aabyttength, each element of which stores
the valuel. While the property is trivial numerically, it is impossébto represent it with the
use of standard numeric abstractions: the analysis willl separate abstract-domain elements to
represent lists of length, 2, 3, ..., etc.

The typical approach to reasoning about an unbounded nuofilmjects (or simply a very

large number of objects) is by employing abstraction. Theo§ebjects is divided into a fixed
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number of groups based on certain criteria. Each group rsriqgresented (we will saystimma-
rized’) by a single abstract object. The groups themselves neetdenof bounded size. As an
example, TVLA, a framework for shape analysis, usasonical abstractiorio create bounded-
size representations of memory states [78, 100].

In this chapter, we present the techniques for using taditiabstract domains in this “summa-
rizing” setting. The set of abstract objects will serve asgat of variables for the abstract domain,
and the standard semantics of the domain will be lifted t@antfor summaryabstract objects,
i.e., those abstract objects that represent (summarizey than one concrete object. To lift the
semantics, we propose a non-standard concretizationdatibtract-domain elements. Then, we
show how to construct sound abstract transformers for theaomcretization from existing ab-

stract transformers.

3.1 Preliminaries

We need to extend some of the definitions of Chapter 2 and defim= new notation to be
able to talk about program states with a varying number abisées. In this section, we slightly

extend the concrete semantics of the program and define tios d summarization

3.1.1 Extended Concrete Semantics

In contrast to Chapter 2, this chapter does not define a urséiedf variables that is shared by
all program states. Instead, each program sfaseassociated with a corresponding set of obfects
Us that exist in that state. The S€t is referred to as theniverseof S. A concrete program state
maps each object in its universe to the corresponding vatug$§ : Us — V.

Because there is no fixed universe, we introduce a level afaation to specify arbitrary ex-
pressions and conditionals in a state-independent maratber than referencing concrete objects

directly, expressions and conditionals use free variabigisare mapped to the concrete objects in

'In this section, we use the term “object” instead of the tewariable” to refer to the entities that the program
manipulates. The “objects” in this chapter are more gerikeal the “variables” in Chapter 2: they may refer to array
elements, linked-list elements, etc.§8.6, we will extend the abstraction to handle multiple numealues attached
to the same object.
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a particular state by a state-specific functign: Fv — Ug, whereFv is a set of free variables. An
arbitrary expression(w, . . ., wy), Wwherew; € Fv, is evaluated in the stateas follows (note that

we use the non-deterministic expression semantics defirgii.2):

[o(ws, ... wp)[(S) = [@(wr, ..., wi)[np(S(os(wn), - -, S(os(wy)))

Similarly, an arbitrary boolean condition(w;, . . ., wy), wherew; € Fv, is evaluated as follows:

[[w(wlv s 7wk)]](5) = [[w(wlv s 7wk’)]]ND(S(US(w1))v SR S(Us(wk’)))

The semantics for the assign and assume transitions, asasvétle collecting semantics of the
program, are defined similarly to their counterparts in Gaap, with the exception that the above
semantics for evaluating expressions and conditionalsad in place of the one k2.1.3.

Let us stress one more time the primary difference betweerctincrete semantics defined
in Chapter 2 and the concrete semantics defined above. Int€&hamll program states share
the same universe and the mapping of variables in expresaiwh conditionals to the objects in
the universe is program-state independent. This allowstmerete semantics of Chapter 2 to
be effectively abstracted with the use of standard numdrstract domains. In contrast, in this
chapter, the universe varies from program state to progtate;sprogram states with different
universes may arise at the same program location. Thugirgxisumeric abstractions cannot be

used directly.

3.1.2 Summarization

We assume that some abstraction is used to partition thensewf each concrete stefento
m groups and that each group is represented by an object fr@n & s- {uﬁl, . uf . We refer
to U* as theabstract universelLet g : Us — U* denote a function that maps concrete objects in
stateS to the corresponding abstract objectg/in For convenience, we also define the inverse of
this functionsys! : U* — o(Us). Note that this scheme is general enough to specify a widgeran
of possible abstractions: the abstraction can be as sirsgjecaiping together the objects created

at the same allocation site, or it can be as complex as ca@bstraction, in which the grouping
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of concrete objects change from state to state. We refeetalibtract objects that represent more
than a single concrete objectsismmaryobjects.

In this chapter, to simplify the presentation, we assume ttiere is only a single abstract
universeU*. In practice, however, a number of separate abstract \g@genay be maintained
by the analysis. For instance, in TVLA, each class of isorhimrghape graphs forms a separate
abstract universe. The techniques in this chapter carbstiipplied to each individual abstract
universe. However, the numeric abstractions that are egedowvith separate abstract universes
must be collected and propagated separately.

Another simplification that we make is that, in each expssir conditional in the program,
free variables are mapped to the same abstract objectgmihjfacross all of the program states
that arise at that point. That is, we assume that thereuisifarm assignment functiér* that
agrees withrg o g in each concrete program stefehat arises at a given program point. This is
often the case in practice because concrete objects aoallymummarized based on theemory-
access patternthat occur in the program’s expressions, e.g., a C expmes$sio-v” may refer to
different memory locations in different program statesybeer, all of these memory locations are
likely to be represented by the same abstract object, Bgsame node in the shape graph. If this
is not the case, the situation can be handled by case splitiecausé/* is finite, there are only

finitely many possible assignment functions that may arise.

3.1.3 Standard Abstract Domains Revisited

In Chapter 2, we showed that standard abstract domainsderalstract transformer§z «—
#]* and[assuméyp)]* that approximate the state transitions for sets of progtates with a fixed
universe (these were defined §82.1.4). In this chapter, we will use these state transitimns
transform sets of functions with fixed domdine slightly extend the notation, and refer to these
state transitions as

[z —#]"° and  [assumé&y)]",

2In this context, tinifornT should be understood as uniform acr@dsconcrete states that arise at the program
point where the corresponding expression or conditionayéduated, bunotas uniform forall program points.
3In Chapter 2, sets of program states are defined as sets dibiusiwith a fixed domaivars
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wherelV denotes the fixed domain for the functions, anthaps free variables in the vector of
expressions and the conditionad to the corresponding memberslof.
Recall from§2.1.4, that these transformers operate on each functidreisdt independently.

Thatis, letS : W — V:

e The transformefz « ¢]"7(S), for each functionf € S, evaluates the set of expressions
¢ by substituting a valueS (o (w;)) for each free variabley; in ¢, updates the mappings
for objectsa(z[-]), and places the resulting function (or a collection of fims, if ¢ is
nondeterministic) into the output set. We define the fumctialues , : (W — V) — o(V),

for an arbitraryk-ary ¢ € ®, as follows (letf : W — V be an arbitrary function):

Valueso(f) = [lillvp(f(o(w)), ..., fo(wy))).
Note that this function simply evaluates the expressionfunction f using the free-variable
assignment function. Letz € FV', ¢ € ", and leti € [1,r]:

F/(v) € Valuesy o (f) if v = o(ali)) ] }

[[xHQS]]W’U(S){f’ Af eSS YweWw { _
f'(w) = f(v) otherwise

e The transformefassuméy)]"7(.9), for each functionf € S, evaluates the condition
by substituting valueS(o(w;)) for each free variablev; in . If the resulting value (set
of values, ify is nondeterministic) equalsue (containstrue), the functionf is added to
the output set. Similarly to the assignment transformerdefine the functiotvalues, , :
(W = V) — o(V), for an arbitraryk-ary ¢ € U, as follows (letf : W — V be an arbitrary
function):

Values,,(f) = [Wlxp(f(o(wr)), ..., flo(wk).

The actual transformer is defined as follows:
[assuméy))]"7(S) = {f € S | true € Values, ,(f)}
In the later sections of this chapter, we will use these foangers to manipulate sets of functions

with a fixed domainU*, while using the uniform assignment functiet for binding free vari-

ables in expressions and conditionals to the objects‘inAccording to the notation we use, the
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corresponding version of the transformers defined aboudeidienoted by
[z — ¢]"""  and  [assumép)]V .
3.2 Summarizing abstraction

Let Q € p(X) denote a set of concrete program states. [[‘ebe the sel{ui, ., uf }, and let
the family of functionsrg, for S € @, specify how the universe of each statelns summarized.
In this section, we show how to approximate the set of coagraigram stateQ by an element of

anm-dimensional standard abstract domain.

Example 3.1 We will use the following example throughout this sectionlliastrate the abstrac-

tion. Let the set of concrete states be

0 [ug = 1, ug — 2, u3 +— 3,uy — 4],

[us — 2, ug — 3, u7 — 4, ug — 5]

Let the abstract universe b€ = {u}, 4}, and let the concrete objects in both states be summa-

rized as follows:

T = [Ul Hug, Uz'—>uﬁ27 USHUgy U4’_>Uﬁ2} )

Ty = [u5l—>u§, u6Hug, u7|—>uﬁ2, ugHug} .

The abstraction proceeds in three conceptual steps (egures Galois insertiongoy, 1),

(a2, 72), and(as, 73)):

1. Abstracting function domaindn the first step, we abstract each functien Us — V in
Q by a functionS; : U* — o(V): each abstract objeet € U* is mapped to the set that

containsS-images of objects represented &y

Vui € UF [ S1(uf) = {S(u) [ v € mg' (uf) } ]

for someS € Q)

Q1= (Q) =% 51 : U — p(V)
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The respective concretization function is defined as fadtow

Vut € U* Va € Sy(uf) Fu € m5'(ut) [S(u) = a] }

for somesS; € Q,

Q' =m(@Q1) = {SZUS*V

Example 3.2 The application of this abstraction step to the set of siatdee Ex. 3.1 yields

the following set:

Q=@ = {[u = {1}, &b — {2.3.4}], [l — {2}, i = {3.4,5}] }

Note that this abstraction step loses relationships amaihges associated with concrete

objects that are summarized together. For instance, tlgggrostate
S =[uy — 1uy — 4, uz — 3, ug — 2]
is also iny;(Qy).

. Flattening function imagesdn the second step, each functiép: U* — (V) in the setQ,
is represented by a set of functions with signafiite— V by exhaustively enumerating for

eachu! € U* all possible mappings from the sg(uf):

Q2 = a2(Q1) = Sy : Ut - v

Vut € U [ Sy(uf) € Sy(uf) ]
for somesS; € Q

The respective concretization function is defined as fadtow
Q) =12(Q2) = {S1: U = o(V) | a2(S1) C Q2}

Example 3.3 Applying this abstraction step to the set of functiégnsfrom Ex. 3.2 yields:
{ug — 1,uﬁ2 — 2},{u§ — 1,uﬁ2 — 3},{u§ — 1,uﬁ2 — 4},
@2 = a2(Q1) = ‘ g : g : g
{ul — 2, uy 3},{u1 — 2, U5 »—>4},{u1 = 2, uy 5}
This abstraction steps loses some of the relationships gifenvalues of concrete objects

that arenotsummarized together. For instance, the program state

S =lus— 1,uy — 2,u3 — 2, uy — 2]
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is in the concretizatiofty, o v,)(Q2), but not in the concretization, (), ). However, some
relationships are still preserved: for instance, one ptygpeat is preserved is that, if the
value of the concrete object summarizeddﬁyis 1, then the values of the concrete objects

summarized by} must be in the sef2, 3, 4}.

3. Standard numeric abstractiom the last step, we use standard abstraction techniques fro
§2.5 to represent the set of functiofs € p(U* — V) with an element of an abstract

numeric domain.

Example 3.4 In polyhedral domain, the sél, from Ex. 3.3 is represented by the following
polyhedron:
ng{lguﬁgl uﬁ—i—lguggu%—i—?)}.

The first two steps form the crux of the abstraction. Throwghbe rest of this chapter we
primarily focus on the partial abstractien o o4, rather than on the full abstraction all the way
to the abstract domain. We will use a special notation, arsepptb, to distinguish sets and set
operations at this level from their counterparts at the oeteclevel, e.g., leE* = p(U* — V)
denote the set of afiartial abstract states.

Trivially, 1> = (” exactly represents the empty set of concrete states. Siynild = ¥ rep-
resents all possible concrete states. To see this, obsave tT’) = p(U* — o(V)), from which
1 can construct any concrete stat&inNext, observe that’ andn’ are sound abstractions of
andn, respectively. This follows trivially from the construeti of the abstraction. Furthermore,

note that’ is exact; that is,

(M oP)(S) N7 S5) = (Mmo)(S) N (no)(S;) forall sy, s; e,
while U’ overapproximates’:

(11 072)(S7 U 83) 2 (11 09)(5]) U (m0om2)(Sy) forall 7,55 €3,

Thus, at the level of the abstract domain, the operatioasdr, as well asT and_L, are sound
with respect to the concrete semantics, because they soappoifoximate”, N°, T°, and_L’ (see

Chapter 2). Alsoy andA form valid widening and narrowing operators for the oveatraction.
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In the next few sections, we will concentrate on defining sbabstract transformers for the
assignment transition and the assume transition. The Wstabstraction steps approximate a
set of functions with arbitrary domains by a set of functiaith a fixed domain/*. Thus, it is

tempting to use transformers fro§8.1.3, e.g.,
[ — o]’ =[z — ¢]""* and [assuméy)]’ = [assumey)]V" " (3.1)

wherec* is the uniform assignment function (sg&.1.2). The transformers]’ could then triv-
ially be approximated by the corresponding transfornjdfsof the underlying abstract domain.
However, as the following example demonstrates, doing sotisound

In Ex. 3.5, we show that the abstract transformers definedim .1) are unsound by picking a
concrete state from the concretization of a partial absstateS®, transforming that concrete state
according to the concrete semantics, and showing that sitireg state is not in the concretization

of S5, a partial abstract state obtained by applying the transfofrom Eqgn. (3.1) tc?.
Example 3.5 Let U* = {u}, 3}, whereu} is summary; letS? be the partial abstract state:
S) = {{u’i = 1,ub - 2} , {u’i — 1, ub — 3} , {u?l — 1, ub — 4}}

Let S, denote the result of transforming the abstract s$atevith respect to the assignmemnt «

v9, Where variable, is bound tOu’i, and variable, is bound tOug, i.e.,
S5 = [on = ' (8}) = [or = v il (sh),
The transformefz — gE]]Uﬁv"ﬁ updates each function it independently and yields:
Sh = {{uﬁ — 2,uﬁ2 — 2} , {uﬁ — 3,uﬁ2 — 3} , {uﬁ — 4,uﬁ2 — 4}}

Now, consider the concrete stafe = [u; — 1,us — 2,u3 — 3, uy — 4], in which the concrete

objects are summarized as follows:
T — i § f f
S, = ul’_)uly UZD—)UZ’U3D—)U2’U4D—>’UJ2

Note thatS; is clearly represented by, i.e., S; € (71 0 72)(S}). Now, letS, denote the result of

transforming concrete statg with respect to the assignment« v,. Let us assume that the free
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variables are assigned as followss, = [v; — uy, v2 — us], SO thatv, is bound to the (single)
concrete object represented b%/, anduw, is bound to one of the concrete objects represented by
uﬁ2 As aresultSy = [ug — 2,up — 2, ug — 3, uy — 4].

Now, if the abstract transformén, « v,]’ is sound, thers, must be represented I8, i.e.,

Sy € (71 09)(S3). However, this is not the case. To see this, observe thabisteagtion ofS,,

(az0a1)(85) = {{ui = 2. = 2} {ud = 2,0 — 3} {ud o 2,0f 4}

is not contained irs5, i.e., (004 )(Sy) €° S3. Thus, the abstract transformers defined in Eqn. (3.1)

are indeed not sound.

Intuitively, the abstract transformers in Eqn. (3.1) faechuse they transform each function in
a partial abstract stat#® independently. However, there are certain dependenceséethe func-
tions inS” that must be respected. In particular, each concrete stéte b v,)(S°) is represented
by multiple functions inS”. Also, each function irt can be used to (partially) represent multiple
concrete states ifty; o y,)(S”). In the next section, we define several operations that willdeful

in the construction of sound version of transformers[for— ¢]> and[assumé))]’.

3.3 New operations

In this section, we define four operations on sets of funstigith fixed domains: two primary
operations,add and drop, and two derived operationgxpandandfold. To be able to lift an
existing abstract domain for use in a summarizing abstracthe existing domain will have to
provide sound approximations for these operations. Thizetoperations can be expressed in
terms of the primary operatioresdd and drop, plus existing operations for transforming sets of
functions (i.e.,Jz «— ¢]"* and [assumé&y)]"-?). However, having explicit definitions for the
derived operations greatly simplifies the presentatiosoAlrom a practical standpoint, for many
domains it is possible to implement the derived operationshmmore efficiently, compared to
direct use of the general definitions we supply in this sectiWe will use the following notation
throughout the sectionl7 will denote a fixed set of objects; will denote a set of functions with
domainU: S € p(U — V).



43

3.3.1 Theadd operation.

Intuitively, theadd, (S) operation injects a new objegtinto the universd/ (we assume that
initially « ¢ U). No restrictions are imposed on the value associated withn the concrete

semantics, thadd,(5) operation models the allocation of a new object
[add,](S) ={f :UU{u} =V | f'lu)eV and IfeS st.VtelU [f(t)=f1t)]}.

In a standard abstract domdin the operatioradd, corresponds to adding a new dimension to
the multidimensional space and embedding the originaleduingo that space. Many existing
implementations of abstract domains already support thésadion. We think it is reasonable to

expect that the abstract transfornfadd, ]* can be implementeeixactlyin any abstract domain.

3.3.2 Thedrop operation.

Thedrop,(S) removes object from the universd/ (we assume that initially. € U). Each
function inS'is transformed to “forget” the mapping far In the concrete semantiarpop, models

the deallocation of objeat:

[drop,[(S) ={f": UN\{u} =V | 3f € S st. vie U\{u} [f'(t) = f(1) ]}

In a standard abstract domdinthe operatiomrop, corresponds to existentially projecting out the
dimension associated with the objectThe majority of standard abstract domain implementations
already provide this operation. In the polyhedral abstdmehain, thedrop, operation can be

computed precisely. We expect that this holds for the migjofiexisting abstract domains.

3.3.3 Thefold operation

Thefold, , operation formalizes the concept simmarizingobjects together: the objects
andv are summarized togetherdenotes the resulting summary object; and dropped from the

universe. In particularfold, , transforms each functiofi € S into two functionsf’ and f” over
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domainU \ {v}, such thatf’(u) = f(u) and f"(u) = f(v):*

vt € U\A{u, v} [f'(t) = f"(t) = f(#)]
Af'(u) = flu) A f'(u) = f(v)

Thefold, , operation can be expressed in terms of the standard tramsfeffor sets of functions

fold, ,(S) = { f/, f": U\ {v} -V [3fes

and thedrop operation as follows:
[fold, ,J(S) = [drop,](S U [w1 « w]77(S5)),

whereo = [w; — u, wy — v].
In a standard abstract doméinthe abstract transformgfiold, , ]* can be trivially implemented

by directly using the approximations of the operations mabove definition:
[fold, ,J}(5%) = [drop,[*(S* U [u « v]*(5%)), (3.2)

However, in some domains (notably, in weakly-relational aon-relational domains), internal
representation details can be used to implement this epematuch more efficiently, than a direct
implementation of Eqn. (3.2), which involves duplicatitg tabstract domain elemest.

Note that implementations ébld, , operation are likely to lose some precision. This is due to
the LI operator in the definition dffold, ,]*: in numeric abstractions, join operators tend to incur

precision loss.

3.3.4 Theexpand operation

In contrast to thdold operation, thexpandoperation formalizes a partial concretization pro-
cess. Semanticallgxpang , materializesan objectv from the group represented by summary
objectu. Because the summarizing abstraction loses distinctioreng objects that are sum-
marized together, the most that we can infer about the valuei® that it must have the same

relationship to the values of other objects as the value, dfut there should be no relationships

4Note that this corresponds to the first two steps of the sumingmbstraction: the first abstraction step transforms
each functiorf € S, into functionf, such thatf; (u) = {f(u), f(v)}; the second abstraction step breaks the function
f1 into the functionsf’ and f”.
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between the values efandu. We assume that ¢ U.

Vte U\ {u} [f(t) = fi(t) = fo(t)]
A f(u) = fiu) A f(v) = folu)

expang ,(S) = {f UU{v} -V

ifi, 2 €8 [

Theexpand , operation can be expressed in terms of the standard tramesfefor sets of functions

and theadd operation as follows:
[expand,](S) = [add.[(S) N [{wr, wz) — (ws,wi)]" 7 ([add ] (5)),

wheres = [w; — u,wy — v]. Note that we add an unconstrained objett the domain ofS,
make a copy of the resulting sstyvapobjectsv andwu in one of the sets, and take the intersection
of the two sets. Intuitively, one of the two sets creates p@ronapping forf (u), the other set (in
which u andv are swapped) creates a proper mappingffer). The intersection makes sure that
the functions in the resulting set have proper mappingsdtn (=) and f (v).

Similarly to thefold operation, thexpandoperation can be trivially implemented in an abstract

domainD as follows:
[expand ,[*(S%) = [add,]*(S*) M [(u,v) < (v,u)]* o [add,]*(5*)

However, given knowledge of the internal representatioedusy the domain, a more efficient
implementation can usually be constructed. For instandbg domain of polyhedra, the operation
[[expan%]]ti can be implemented by rewriting the constraint system: &@heconstraint in which
objectu participates, a similar constraint withsubstituted by is added to the constraint system.
Finally, in most numeric domains, both the meet operatiah[add,]* are exact. Thus, if the
domain is able to perform the assignment that swapedv exactly, then the above implementa-

tion for the[expandg ,]* is also exact.

3.4 Abstract Semantics

In this section, with the help of the new operations fr¢8r3, we define sound transformers for

[z « ¢]’ and[assumé&))]’. Inthe case ofz « ¢]’, to simplify the presentation, we only consider
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assignment transitions that update a single variable. Xtemgion toparallel assignmentsvhich
update multiple variables simultaneously, is trivial (§8et.1).

Let S* € p(U* — V) be a partial abstract state. Ideally, we would like to defingtract trans-
formers that operate on each functipre S° independently. However, as we pointed out before,
the functions inS” are not independent. In particular, an arbitrary functfoa S may belong to
the representations of multiple concrete states in theretimation of S’. The transformation of
each concrete state may affect the functfom a different way. We will deal with this issue by
expandingertain objects i/* based on the particular expression (or condition) that asada the
state transition. Intuitively, we wikompilecertain knowledge about the expression (or condition)
into the functions in5” to make the resulting functions independent with respetttabexpression
(or condition). Then, we will use the standard transfornoersiets of functions (which relies on
the independence of the functions in the set) to perform¢hehtransformation. Finally, we will
eliminate the extra objects, which we introduced ibito

In contrast to the unsound semantics defined in Eqgn. (3.lighadttempted to use the trans-

formers for sets of functions with fixed domain directly, redyn
[z — o]’ =[z — ¢]""" and  [assuméy)]’ = [assumey)]V" "
the sound transformers have the following form:
v — 6]’ = [drop,] o [+ — ¢]"5 717" o [expang],

and
[[assumelp)]]b = [[dropw]] o [[assumelp)]]agw(’fx) o [[expanc,ﬂ],

whereexpand, drop,, expand, anddrop,, are the extensions of operatioggpandanddrop, and
Ut, of, Uf, ando?, are the extensions of the abstract univei$eand the uniform assignment
functiono®. These extensions are specific to the expresgiand the condition). In the rest of

this section, we detail the construction of these transéosnand justify their soundness.
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3.4.1 Assignmenttransitions:z «— ¢(wy, .. ., wg)

Letz « ¢(wy,...,w;) be an arbitrary assignment transition, ancbfebe the uniform assign-
ment function that maps; to the objects irU/*. To transform a functiorf € S°, we need to be
able to compute the set of values to which the expressievaluates in each of the concrete states

in the concretization of” that havef in its representation. We define the function
Values; 4 : (U — V) — p(V),
which maps eaclf € S” to the corresponding set of values. The function is definddlmsvs:

Valuesy ,(f) = {[¢(wr,...,w)](S) | S € (Mo7)(S) A fe(aoa)(S)}. (3.3)

Note that if the functions ii5” were independent (that is, if there was a one-to-one carremce
between the concrete stategin o v,)(S*) and functions ins”), the above set could be evaluated

as follows:
Values ,(f) = [¢(ws, ..., w)lnp(f(o*(wr)), ..., f(o*(wr))).

However, we do not have this luxury.

A variablew; in the expressiom is either mapped to a summary abstract object or to a non-
summary abstract object. ¢f (w;) is @ non-summary object, the situation is simple: efich S°
maps each non-summary abstract object directly to the wdlilne corresponding concrete objéct.
So, when evaluating the expression, we can substitute the Y& *(w;)) for the variablew;.

However, ifw; is mapped to a summary object, the situation is more contplicalue to the
second abstraction step, the values of the concrete obmtssented by*(w;) may have been
spread over multiple functions if. Thus, substituting’(o*(w;)) for the variablew; only accounts
for a single possible value and is, consequently, unsourelh&dle this case gxpandinghe
abstract object*(w;) (i.e., by applying theexpang: ,,,) .+ operation), and substituting the value
f(v*) for the variablew; when evaluating the expression.

Intuitively, if some variablew; is mapped to a summary abstract objecby the assignment

function o#, we materializean objectv! from the collection of objects represented &y and

5This follows from the construction of the abstraction: thstfiabstraction step causes non-summary abstract
objects to be mapped to singleton sets of values.
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change the assignment function to magto v*. At a lower level, theexpand; ,: operation trans-
forms each functiorf € S” into a set of functiong f}, such that each of th¢ agree withf on
all uf ¢ U*, but map the new objeet to each value that the concrete objects represented by

may have in concrete states whose abstractions contaiidaryc

Evaluation of Numeric Expressions. Let ¢(wy, ..., w;) € ® be an arbitrary-ary expression.
We assume, without loss of generality, thatmaps the first: variables ofp to summary objects,
i.e.,1 < k < k. We define several pieces of notation to simplify the definitf the transformers.
First, we define a-specificexpandoperation, which expands all of the summary abstract object

to which the variables); are mapped by*:

[expand] = [[expangu(wﬁ) s Jo..o [[expanc(lju(wl) EE
k2 4k

Y 'm—41

We denote the expanded abstract universé/py= U* U {uBnH, ,ufmk} Additionally, we

define ap-specific mapping of free variables to objects’jibas follows:

ﬁ ub o if of(w;) is summary, i.e., if <k
og(wi) = .
of(w;) otherwise

Finally, we define a clean-up operation that eliminatesfaihe extra objects created lexpand:

[drop,] = [[dropugnﬂ]] o..o[drop; ]

m«H;

Armed with these primitives, we define an approximation fierfunctionvalues;, 4 as follows:

Vu € UF[f(u) = f'(u)]

Note that, compared to the definition of the functMalues; , in Eqn. (3.3), which involves enu-

[Values; ,]’(f) = {[[cb]]ND(f'(Ui(wl)), o f1 (0] (w))

/" € [expand](S”) A } (3.4)

merating the concrete states represented’pyhe definition of[[VaIue%b7¢,]]b is much more oper-
ational: the operatiofiexpand] (which can be trivially approximated by the underlying aaest
domain) is applied to the original set of functions; the egsion can then be evaluatedepen-
dentlyfor each function in the expanded set. The following lemnagest that the definition in

Eqn. (3.4) expresses the 8&tlues; 4(f), for any f € S°, exactly.



49

Lemma 3.6 Let S* € p(U* — V) be a partial abstract state. And letc ® be an arbitrary

expression. Then,
Vf e S [Values ,(f) = [Valuess ,]°(f)]

Proof. See the Appendix. |

Let us now define the abstract transformer for the assigniremdition. Two cases must be con-
sidered: (i) the case when variahles mapped to aon-summarybject, and (ii) the case when
variablexr is mapped to aummaryobject. We start with the simpler case ©f(x) being anon-

summaryobjectu.

Non-summary assignment. The non-summary abstract object = of(x) represents a single
concrete object, the one that is being assigned to. Thugrahsformer may directly update the
mapping foruf in each functionf € S” to reflect the effect of the assignment. The values to which
the object:! must be mapped by the functigne S* come from the seValues; 4(f) (recall, that
the setvalues; 4(f) contains values to which the expressipavaluates ireveryconcrete stat®
represented by®, such thatS also contains the functioi in its abstraction; thus, as each such
concrete stat® changes as the result of the assignment, the fungtimust change accordingly).
That is:

ut =o(x) A f'(u?) € Valuesy 4(f)
A VEe U\ {ut} [f'(t) = f(1)]

Note however, that this definition is not operational: tistiti is not clear how to apply it to an

[ — (S =L f U=V |Ifes (3.5)

element of an abstract domain.

We would like to express the definition in Eqn. (3.5) in termhe gtandard assignment trans-
former for sets of functions with a fixed domain and the operstfor the evaluation of numeric
expressions, which we have defined above. These operatwnbec approximated trivially by
the corresponding operations of the abstract domain. Weorethe idea from the definition of
[[Value%b7¢]]". First, we apply the operatiogjexpand] to the partial abstract staf®: as a result,
for each functionf € S” and each value ¢ Values 4, the expanded set contains a functjon

such that (i)f” agrees withf on all objects inU*; and (ii) the expression, when evaluated o’
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with variable-assignment functiafE), yields the value:.. We apply the standard assignment trans-
former from§3.1.3 to the expanded set of functions to update the mappinipé object*(z) in
eachf’ to a corresponding value from the &llues; ,(f). Finally, we get rid of the extra objects
introduced by thg¢expand ] operation by applying the operatigdrop,]. The abstract transformer

for the assignment transition is expressed as follows:
[v — 6] (5”) = [drop,] o [ — ¢] 5"l @] & [expand](5")

Note that the assignment functio@ is extended with the mapping for the left-hand-side vadabl
z. Also, note that because, according to Lem. $\&lues; ,]° = Values: ,, this definition is

equivalent to the definition in Eqgn. (3.5).

Theorem 3.7 The abstract transformér < ¢] is sound That is, for an arbitrary partial abstract

stateS?,

(nom2)([z — ¢’ (8") 2 [w = ¢] (11 072)(5"))

Proof. See the Appendix. [ |
At the level of the abstract domain, the transformer is imm@ated by using the approximations

for the above operations:

[v — ¢Ji(S%) = [drop, ] o [o(2)* — ¢F]* o [expandJ*(57),

where ¢? is obtained by substituting each variahle in ¢ with o—i(wi). Note that because the
abstract domain operations only approximate the opematiothe definition of the abstract trans-
former, the precision of the transformer implementatioped&ls heavily on how precise these

approximations are.

Summary assignment.In cases* () is a summary object, the situation is more complicated: the
objecto?(x) represents not only the concrete object that is updated dwaskignment, but also
other concrete objects whose values do not change. As &,rdsutransformer must perform a
weak update. One obvious way of implementing a weak upddtedsiplicate the abstract state,

update one of the copies of the state, and join both copietsheg However, the availability of the
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fold operation allows us to to perform such weak updatigslace i.e., we use a new objegt to
collect the values that are assignedtar) (the objectr*(x) is left unmodified), and then fold the

objectu* into o*(z):
[ — 0Lear(S°) = [drop,] o [fold, ) o] © [ — ¢]"4 (" 20l="] o [add,] o [expang](S”)

It can be easily seen that the above transformer is sourgligsron the non-summary transformer,
which we have shown to be sound (see Thm. 3.7). Then, it waeakenresult of the sound trans-
former further by joining it with the values that the targejext had before the transformation.

At the level of the abstract domain, the transformer is im@ated by using the approximations

for the above operations:

[v — 61, (%) = [drop,[* o [fold () ,e]* o [w* — ¢ o [add,s] o [expand]*(5%),

where¢* is obtained by substituting each variaklgin ¢ with Ui(wi).

Parallel assignments. The task of extending the above transformers to handlelpbaakignment
T « ¢ is trivial, but tedious. Thus, we will omit the derivation thfe transformer, and just point
out a few things that should be taken into consideration.useassume the assignment updates

variables in parallel, i.ez € Fv" and¢ € ®":
e The operatiorexpand anddrop; must be defined to operate on the entire veotor

e The setValues; ;(f) for somef < S* must be defined to colleettuples of values iV,

i.e.,Values 5(f) € V".

e Finally, some variables im may map to summary objects, while some others may map to
non-summary objects. The correspondady andfold operations must be added for the

components of that are mapped to summary abstract objects’by

3.4.2 Assume transitionsassume(y(wy, . . ., wy))

This section recreates the construction§#.1, but for the purpose of evaluating conditional

expressions. Because the material is very similgBtd.1, we keep the discussion to a minimum.
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Let assuméyp) denote an arbitrary assume transition, where U. Also, leto? denote the
function that binds free variables in to the corresponding abstract objectslih Let S° be a
partial abstract state. Consider a functipre S°: this function may belong to the representation
of multiple concrete states in the concretizationf If at least one of these concrete states
satisfies the conditional expressipnthe functionf must be added to the resulting partial abstract
state (becausgis a part of the abstraction of that concrete state).

Much like in the case of the assignment transition, we defieeftinctionvalues; ,,, which
maps each functiorf € S° to the set of values to whicty evaluates in each concrete state

represented by, such thatf belongs to the representation.$if

Values, () = {[¢(wr.....w)|(S) | S€(momn)(s) A felaoa)(S)}. (36)

The only difference with the assignment transition is thatgetvalues; ,,(f) may contain at most
two values:true andfalse
The abstract assume transformer for the partial abstratidefined with the use of function

Values; ,, as follows:
[assum@y)[’(S”) = {f € S" | true € Values; ,(f)} . (3.7)

However, this definition is not directly computable, beeaitiselies on the enumerating a possibly
infinite set of concrete states. To construct an operatidet@hition, we need to have a better way

to construct the séfalues; ,, for the functions inS’.
Evaluation of Conditional Expressions. Let ¢ (wy,...,w;) € ¥ be an arbitrary-ary condi-
tional expression. We assume, without loss of generaligat! maps the first: variables ofs to
summary objects, i.el, < k < k. We define new notation, which is similar in spirit to the rtinta
defined for the numeric expressions.

First, we define a)-specificexpandoperation, which expands all of the summary abstract
objects to which the variables; are mapped by*:

[[expanq)]] = [[expan(cjrﬁ(wkmu Jo...o [[expangu(wlw ]

m«H; m—+1
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We denote the expanded abstract universé/py= U* U {uﬁnH, ,ufn+k} Additionally, we

define a-specific mapping of free variables to objectﬁb as follows:

m-1

ﬁ uf if of(w;) is summary, i.e., if <k
Uw(wi) =

o*(w;) otherwise

Finally, we define a clean-up operation that eliminatesfeaie extra objects created lexpand:

[drop,] = [[dropugmﬂ]] o..o[drop: |

77L+/%

Similarly to §3.4.1, we define an approximation for the functMalues ,, as follows:

[Values; ,J'(f) = {[[cb]]ND(f'(Ui(wl))’ S UCAC))

/" € [expand](S°) A
Vu € UF [f(u) = f'(u)]

Lemma 3.8 Let S* € p(U* — V) be a partial abstract state. And ketc U be an arbitrary

expression. Then,
Vf e S [Values ,(f) = [Values ,]’(f)]

Proof. See the Appendix. |

Assume transformer. Lem. 3.8 gives us an effective way to compute the Satses; ,(f) for

the functionsf € S°. We apply the operatiofexpand,](S°) to the setS”. Note that if for some
function f € S’ the setvalues; ,(f) contains true, then there must be at least one fungtiom
ﬂexpangﬂ(sb), such that (i)f’ is constructed fronf (i.e., f’ agrees withf on all objects inU?),
and (ii) the conditional expressianevaluates térue on f’ under the variable-assignment function
af;. We collect all suchf’ by filtering the expanded set with the standard assume transf
(using variable-assignment functiof}). In the last step, we eliminate the extra objects introduce
by the [expand ] operation: thus, all th¢’ that remain in the set after filtering are reduced to the
corresponding functiong from S° (this follows from (i) above). The abstract transformer tioe

assume transition is expressed as follows:

[assumép)]’(S”) = [drop,] o [assumé))]Vs % o [expand](S”).
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(©) S"

asgn

(d) S3

Figure 3.1 The application of a partial summarizing abstransformer: (af? is the initial partial
abstract state; (b)?, is obtained froms? by expanding summary objeai; (c) stgn is obtained

erp

from S?,, by preforming an assignment «— «5; (d) the resulting stats’ is obtained froms?,

erp

by dropping the object?..

Theorem 3.9 The abstract transformdassuméy)]’ is sound That is, for an arbitrary partial

abstract stats”,

(1 0 72)([assume)[’(5”)) 2 [assume)[((71 ©72)(S"))

Proof. See the Appendix. [ |
At the level of the abstract domain, the transformer is immated by using the approximations

for the above operations:
[assuméy)](S*) = [drop,]* o [assumé)*)]* o [expand J*(5*),

wherey* is obtained by substituting each variablgin ¢ by Ufp(wi).
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3.4.3 Example

Let us illustrate the abstract transformers defined abovewgiting Ex. 3.5. Recall the exam-

ple setting:U* = {u},u}}, whereu, is summary, and” is the partial abstract state:

Sli = {{uq — 17uﬁ2D—)2}7{u§ — l,ug»—>3},{u§ — l,ug»—>4}}.

We would like to transforn;S{ with respect to the assignment <« v, where the free variables
anduv, are mapped to the objectsiiff as follows:o? = [vl =l vy — ug] .

Fig. 3.1 shows the intermediate sets of functions that argcted by the summarizing (partial)
abstract state transformfr, « v,]’. We represent sets of functions with some fixed dongain
graphically, as tables: each row corresponds to an objéct amd each column represents a single
function in the set. Fig. 3.1(a) shows this representatiotife setS;.

The variablev, is mapped by to a summary objeetg; thus, first, the transformexxpands

the objectu}, yielding the sets?, , (see Fig. 3.1(b)):

.y = lexpang ;1(51)

erp

Note that, as the result of ttexpand each function inS; is transformed into three functions in
Sb

exp!?

one for each possible value that a concrete object remﬁsbyug may hold: the objeozug
is mapped to the corresponding value by each function.

Next, the standard assignment transformer for functiotis fixied domairl/* U {u%} is applied
to the seﬁzxp (note that the variable, is mapped to the objeuﬂ, which was created by tlexpand
operation):

S R it e (O

The resulting set of function§gsgn is shown in Fig. 3.1(c). The effect of the transformation is
readily seen in the table form: in each row of the table, tlségasnent moves the value from the
third column () to the first column«?).

Finally, the resulting partial abstract staftgis obtained by dropping the objeza;ﬁ from Sgsgn,

which corresponds to eliminating the column correspondind; from the table:

asgn

Sy = [drop,](Spn)-
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The final result is shown in Fig. 3.1(d). Note th#t represents exactly the set of concrete states
that arises as a result of applying the corresponding as&ghtransition to the set of concrete

states represented I5§).

3.5 Symbolic Concretization

A symbolic-concretization functiofy for a given abstract domain expresses the meaning of
an abstract element of that domain as a formula in some foddgmbolic concretization is a
useful device for formalizing the set of properties that banepresented with a given abstraction.
Also, symbolic concretization can be used in conjunctiothwiheorem provers to automatically
constructbestabstract transformers for certain domains [96, 118]. Fostnexisting numeric
domains, with the exception of arithmetic automata [12, &33ymbolic-concretization function
4 can be constructed trivially. For instance, an element oblgh@dral abstract domain can be
expressed as a conjunction of the constraints that formdtyedron.

In this section, we discuss the symbolic-concretizatiowfion, for the summarizing abstrac-
tion. Because the summarizing abstraction utilizes a stahabstract domain in its last abstraction
step, we will express, in terms ofy for that abstract domain.

First, lets formally define the symbolic concretization &iandard numeric domains. Let
Vars = {uy,...,u,} be a set of variables. Thus, each program state is a functittnsigna-
tureVars — V. Let D" denote an abstract domain that is able to represent setslofpsogram
states. LetS* denote an element @". Then,4(S*) yields a logical formula)(v,, ..., v,), such

that for all program stateS : Vars — V the following holds:

true if S € y(S%)

(S(uy), ..., S(uy,)) = _
false if S ¢ v(S¥)

Example 3.10 Recall the polyhedrofy; from Ex. 3.4.

4(Qs) 2 (1< <2) A (n+1<w<uv+3)

SFor instance, for standalone numeric domains, Presburiglemetic provides a sufficient language for expressing
the meaning of domain elements. However, if numeric abstracs a part of a more complex abstraction, a more
expressive logic may be required. For instance, the meafiagl VLA structure with associated numeric state can
only be expressed in first-order logic.
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In the summarizing abstraction setting, the universedifi@m program state to program state.
However, for each program statewe have a mappings : Us — U*, whereU* = {ut{, ey u,’i}.
In the course of the abstraction, sets of program statesepresented by sets of functions with
the signaturé/* — V, which are in turn abstracted by elements of some abstracanhd*. Let
St denote an element @"*, and lety, = 7, o 5 o 73 denote the concretization function for the
summarizing abstraction. The set of concrete programsstafgesented byg* can be logically
characterized as follows:

Yu, € wgl(uﬁ) oYy € ng(ui) H(Sﬁ)(S(ul), cee S(Uk:))] = frue i § € 1(5)

false if S & ~,(5%)

Note that we cannot expressfully in the sense that we cannot express the limited quaatibn
Yu; € wgl(ug) without knowing how the universe of each program state isitmared. Rather,

these parts of formula will have to be filled in by the “clieafistraction, such as TVLA.
Example 3.11 Recall the polyhedroty; from Ex. 3.4.
4(Q3) = Vu € ﬂgl(uﬁ) Yuy € ﬂgl(ug) [1<u; <2 A up+1<uy <wuy+ 3]

From this construction we learn that the summarizing abstna is able to represent certain
universal properties of the concrete objects that are suimethtogether. The class of properties
that can be represented is limited by the capabilities o$taedard abstract domain that is used by

the last abstraction step.

3.6 Support for Multiple Values

In some circumstances, it may be desirable to associatépheuluantities with an individual
concrete object. For instance, concrete objects may repredjects of a C++ class that defines
multiple numeric fields; they may represents threads that haultiple thread-local variables; or
they may represent activation records that have multiglallgariables associated with them. In
Chapter 4, we will need to summarize sets of array elemeimighmwvill have two quantities asso-
ciated with them: the value and the index. In this sectionstw@v how to extend the abstraction

with the ability to handle multiple values.
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In the following, we assume that each concrete objeclfadds associated with it. We will
denote the set of fields by = {fi,..., f,}, and we will use the dot notation. f to refer to
a field f associated with objeat. Also, we assume that the free variables in the expressions
and conditionals are bound to objects rather than fields the expressions will look as follows:
v1.f1 + 2. f4.

The straightforward way of handling this situation istgplodethe universe of concrete objects
by including a separate object for each field of each originatrete object. The abstract universe

must be exploded similarly, ang; must be updated to summarize the fields properly, i.e.,

~ u; € US, A Ug € Uﬁ? ~
Ug = ui~fj Ut = ug.fj Ws(ui.fj) = WS(Ui)-fj
1<j<gq 1<j<gq

Then, the summarizing abstraction can be applied exactessribed ir§3.2. The disadvan-
tage of this approach is that the fields of the concrete objedtich are summarized together, are
represented by separate summary abstract objects. Thtanaelationships among fields that
are associated with the same concrete object may not besegpeel. For instance, consider ar-
ray elements that have two fieldsgglueandindex associated with them. The following property

cannot be represented with this approach:
Vu € 71 (AY) [u.value= 2 x u.index+ 3],

where A* represents all of the concrete array elements. The reasahifobecomes apparent
when we recall the symbolic concretization functignfrom §3.5: with this approach, the only
quantification choices that we have atevaluee n~!(A*.value andvu.indexe 7=!(A’.index),
but notvu € 7~ 1(A¥").

An alternative approach is to allow concrete objects to Be@ated with tuples of values. That
is, each program statenow becomes a functiofi : Us — V¢, i.e., each concrete objectis now
mapped to a vector that contains values of its fields, e.g.v#lue ofw.f; is given by S(u)]i].
The summarizing abstraction can be applied to sets of sabtéssbnly partially: the application of
the first two abstraction steps yields a set of functions wigimaturel/* — V¢, which, however,

cannot be directly represented by an element of a standatthabdomain.
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To handle this issue we add an extra abstraction step, wiegtesents sets of functions
with signatureU* — V¢ by sets of functions with signatur(éﬁ — V, whereU! is the ab-
stract universe that is exploded in the same way as in thglstrarward approach, ielji =
{uf.fj | uf ceUt, j= 1..q}. The resulting set of functions can be trivially approxigthtvith an
element of g8k x ¢)-dimensional numeric abstract domain.

For the abstract transformers fro§.4 to work on this representation, we must provide the
operationsadd,;, drop,;, expand; ,:, andfold,; .. that can operate on sets of function§oi(ri]* #—

V). In particular, these operations must now opesiteultaneouslyn groups of objects i,
The semantics for the operatioadd,: anddrop,; can be defined as compositionsaafdanddrop

operations for the objects i that represent individual fields af, that is

[add,:] = [add,: ;] o... o [add, ;] and [drop,:] = [[dropuu.fl]] 0...0 [[dropuu.fq]].

Theexpang: . andfold,; .. cannot be defined as the compositiorempandandfold operations
for the objects that represent individual fields. These ap@ns must truly operate in parallel on

all of the fields ofu? andv?. We define them as follows (I&t € o(Ut — V)):
[fold,,:](S) = [drop,:](S U [ — g1”"(S)).
whereo = [z — ub.fi, ... xq — U fy, v — v i,y — vhfy]. And
[expand: :](S) = [add](S) N [(#,7) — (7, #7007 o [add,] (),

whereo = [xl U fy, e mg o Py, g VR f Ly vﬁ.fq}.
3.7 Numeric extension of TVLA

In this section, we sketch how the techniques of this chap&e integrated into TVLA, a
three-valued-logic-based framework for shape analydls I00]. We extended the TVLA spec-
ification language with primitives for specifying numerionditional expressions in logic formu-
lae, and for specifying numeric updates in TVLA actions.(ispecifications for program-state

transitions). The TVLA implementation was extended to rteamand query the numeric state
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associated with each abstract memory configuration. We the&eesulting numeric extension of
TVLA to implement the prototype for the array analysis taghich we describe in more detail in
Chapter 4.

TVLA models concrete states by first-order logical struesurthe universe of a logical struc-
ture represents the set of concrete objects; the propeftascrete objects are encoded with the
help of a finite set of predicates. Historically, the objentghe universe of a structure are called
nodes’

Abstract states are representedtbyee-valued logical structureswhich (conceptually) are
constructed by applying canonical abstraction to the set®ocrete states. The abstraction is
defined by a vector of unary predicates, and summarizestegete concrete objects whose pred-
icates evaluate to the same vector of values. When nodes@rearized together, the interpreta-
tions of predicates for those nodes are joined using thenrmdton-order semi-lattice of 3-valued
logic2®

TVLA distinguishes between two types of predicatesire predicates andstrumentation
predicates. Core predicates are the predicates that aesgaag to model the concrete states.
Instrumentation predicates are defined in terms of coreigatss, and are introduced to capture
properties that are lost by the abstraction.

TVLA provides two operations to dynamically regroup sumizea nodes:

e A focusoperation replaces a three-valued structure by a set of prese three-valued
structures that represent the same set of concrete statks adginal structure. Usually,
focus is used to “materialize” a non-summary node from a sargmode. (The structures
resulting from a focus are not necessarily images of caabaigstraction, in the sense that
they may have multiple nodes for which the abstraction pedds evaluate to the same

values.)

e A coerceoperation is a cleanup operation that “sharpens” updateetalued structures by

making them comply with a set of globally defined integritystraints.

“In shape analysis, these objects correspond to the nodes stfiipe graph.
81n the information order) C 1/2, 1 C 1/2, and0 and1 are incomparable.
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The numeric extension of TVLA allows to associate a numbenwheric fields with each
concrete object in the universe. When abstraction is agptige values of numeric fields are
approximated by an element of a summarizing abstract dothains attached to each 3-valued
structure.

To specify numeric properties, TVLA's specification langaavas extended to allow numeric
comparisons to be used in logical formulas, exgu) A data(v) > 0, wherex is a unary predicate
anddata is a numeric field. Numeric updates are specified via two kafdgrmulas: (i) a numeric
update formula, e.gdata(v,) = 2xdata(ve)+3, and (ii) a logical formula that binds free variables
in the numeric formula to the nodes in the structure, e@y) A n(vy, v2). Both comparisons and
updates are evaluated by determining the assignment shabsbjects to the free variables in the
formula, and then executing a corresponding method of thersarizing abstract domain.

The focus and coerce operations are slightly harder to imegie: to impose the numeric prop-
erties from focus formulas and from global integrity coastts onto the element of a summarizing
domain, we use the assume operation provided by the domadre duplication, which is inherent
to focus, is handled by thexpandoperation. Similarly, to reflect the merge of two nodes,ftid

operation is used.

3.8 Related Work

Standard abstract domains. In Chapter 2, we discussed at length existing numeric atistra
domains. These domains includedn-relational domainsintervals [28], congruences [52], and
interval congruences [82]yeakly relational domainszones [84], octagons [85], zone congru-
ences [86], TVPLI [109], and octahedra [23, 24]; as welkeaational domains linear equali-
ties [68], linear congruences [52], polyhedra [32, 57fp&zoidal congruences [81], and arithmetic
automata [12, 13]. All these domains make the assumptidrthiee is a fixed, finite number of
numeric objects that need to be tracked. In contrast, ouk wanvides techniques for performing
static analysis in the presence of an unbounded number afe@numeric objects (which are

then summarized by some fixed, finite numbeswhmaryobjects).
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TVLA. The closest approach to the summarizing abstraction iganecivork for shape analysis
based on 3-valued logic [78, 100]. In fact, this framewordviled the primary motivation for our

work. In contrast to summarizing abstraction, in 3-vallegic abstraction only Boolean values
(in the form of unary predicates) are associated with the@ia elements. Also, the abstraction
for sets of Boolean values is hardcoded into the framewokir(gle non-relational abstraction
is used), whereas the summarizing abstraction allows aisyirex numeric domain to be used to

represent the final abstract states.

Pointer and shape analysisMany shape-analysis techniques use certain numeric iafitomto
enhance the expressibility of the shape abstraction. &jlgj¢the numeric information represents
things like the length of list segments, or the number of reige “p = p->next” dereferences
that need to be made to get to a corresponding memory loc&&low, we give a brief survey of
such techniques. In all of them, the number of numeric qtiaatihat are tracked by the analysis
is actually fixed and finite. Thus, standard numeric domaiegmployed to abstract that numeric
information.

Yavuz-Kahveci and Bultan present an algorithm for shapéyaisan which numeric informa-
tion is attached to summary nodes [117]; the numeric quaasisociated with the summary node
u* in a shape-grapl§ indicates the number of concrete nodes that are representeéd An el-
ement of some standard numeric abstract domain is attachbe shape graph to keep track of
these quantities. This approach differs from our work inftiiwing way: in [117], each sum-
marized object contributesto the quantity associated with the summary object; in @sbtrin
the summarizing abstraction, when objects are summaraggther, the effect is to collect their
values into a set.

Alain Deutsch proposed an alias analysis [35] that is basetkpresenting access paths to
particular objects as a regular expression annotated witlenic quantities, e.g., access path»
next’ — prev’ specifies an object that is reachable from poiptby i consecutive dereferences
of the fieldnext, followed by; consecutive dereferences of the figlebv. To check whether two

access paths specify the same object, certain numerimredhtps between the numeric quantities
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that appear in both access paths are checked. An elememhefstandard numeric domain is used
to track the above numeric quantities for each pair of acpatss.

Arnaud Venet proposedreon-uniformpointer analysis [112, 113] (that is, the analysis is able to
distinguish among elements of collections). The analgdimsed on associating each dynamically-
allocated object with a numeric timestamp, i.e., distingeots have distinct timestamps. In the
course of the analysis, the numeric relationships amonglifert’s timestamp and its position in
the collection (e.qg., its array index) are captured. In the, @lias queries are reduced to checking

certain numeric properties.
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Chapter 4

Analysis of Array Operations

An array is a simple and efficient data structure that is hgagied in practice. In many cases,
to verify the correctness of programs that use arrays, aano@nalyzer must be able to discover
relationships among values of array elements, as well ag#hationships to scalar variables in the
program. However, the implementations of array operatavagypically parameterized by scalar
variables that bear certain numeric relationships to theehsize of the array. Thus, verification of
a property in the presence of such operations usually regjestablishing that the desired property
holds for any possible values of the parameters with whielogperation may be invoked. In other
words, the analysis may have to reason about arrays of vamy@ssibly unbounded size.

Reasoning about unbounded collections of objects posedliaiehe for existing numeric anal-
ysis techniques. However, the summarizing abstractioms¢chwwve introduced in Chapter 3,
specifically target this situation. Thus, one possible apph to this problem is tsummarize
the potentially-unbounded set of array elements with a finedber of abstract array elements (in
the extreme—uwith a single summary elent¢rind use summarizing numeric abstractions to rep-
resent and manipulate the numeric state of the program. dteapal problem with this approach
is the precision loss due weak updatesthat is, updates that modify a single concrete object
in a summarized collection must be modeled by accumulatitay+rather than overwriting—the
value kept for the summarized collection; because the suinimg abstraction can only maintain
the universal properties of the entire summarized cobhectihe update to a single element may

not be captured precisely (see the discussion of summagnassnts ing3.4.1).

1This technique is calledrray smashing14]



65

In this chapter, we develop a static-analysis frameworkafwalyzing array operations. The
framework is based onanonical abstractiorj78, 100], a family of abstractions that employs a
client-defined set of properties to partition, and sumnea@azotentially-unbounded set of concrete
objects, i.e., the objects that share similar propertiesammarized together. In our framework,
array elements are partitioned with respect to the numelationships between the indices of the
array elements and the values of scalar variables that actosndex into the array. Note that
the resulting abstraction &orelessthat is, there is no fixed connection between a concretg arra
element and an abstract array elemerthat represents it: after the properties of concrete elemen
¢ change (e.g., if the scalar variable that is used to pantitie array is incremented),may be
represented by an abstract element other than

The analysis uses summarizing numeric abstractions froap@€h 3 to keep track of the values
and indices of array elements. In our framework, indiceg@yeelements are modeled explicitly;
that is, two numeric quantities are associated with eadyatement: (i) the actual value of the
element and (ii) its index.

Given an array and a set of scalar variables, we partitiorlgments of the array as follows.
The array elements that are indexed by scalar variableslacegby themselves into individual
groups, which are represented by non-summary abstraceatesmArray segments in-between
the indexed elements are also placed into individual groopisthese groups are represented by
summary abstract elements. In practice, pletitioning setfor an array will contain the scalar
variables that are usexyntacticallyto index into the array (i.e., variableis added to the parti-
tioning set of arra, if a[i] appears in the code of the program). Note that in this pamirtig
scheme, indexed array elements are always representechksunamary abstract elements; thus,
a strong updatecan always be applied when there is a write to such an elentanthermore,
for the array operations that scan the array linearly, thisifioning scheme separates the array
elements that have already been processed (e.g., iretiabzsorted), from the ones that have not;
this allows the summarizing abstraction to capture stronge/ersal properties for the processed

array elements.
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void copy.-array(int a[l, int b[], int n) {
i« 0; (%)
while(i < n) {
bl[i] « alil;
i«— i+ 1;

b o)

Figure 4.1 Simple array-copy function.

One limitation of the summarizing abstraction is that it maincapture the relations among
individual array elements that are summarized togethernstance, the property that the elements
of an array are in a certain order (e.g., the array is sor@wh)at be represented with a summarizing
abstraction. To address this issue{4n3.3, we introduce auxiliary predicates that are attacbed
each abstract array element and capture numeric propdrdesre beyond the capabilities of a
summarizing numeric domain on its own. At present, the @&rilpredicates, as well as their
abstract transformers, are supplied manually. We expecstbp to be automated in the future.

We implemented a prototype of the array analysis with theofisee numeric extension of the
TVLA tool [78], which we described i§3.7. With this prototype implementation, we were able to
analyze successfully several small, but challenging exesnpcluding verifying the correctness

of an insertion-sort implementation.

4.1 Overview of Array Analysis

In this section, we illustrate the analysis using a simplenegle. The procedure in Fig. 4.1
copies the contents of arrayinto arrayb. Both arrays are of size, which is specified as a
parameter to the procedure. Suppose that the analysis feashaldetermined some facts about
values stored in array. For instance, suppose that the values of elemenisange from-5 to 5.

At the exit of the procedure, we would like to establish timat values stored in arrayalso range
from —5 to 5. Furthermore, we would like to establish this property floy eeasonable array size,

i.e., for all values of variable greater than or equal tb



67

Our technigue operates by partitioning the unbounded nuofEoncrete array elements into
a bounded number of groups. Each group is represented bystnacthbarray element. The parti-
tioning is done based on numeric relationships betweemttieds of array elements and the value
of loop induction variable. In particular, for the example in Fig. 4.1, our techniqué represent
the elements of the two arrays with indices less thdry two summaryabstract objects (which
we will denote byu_; andb_;, respectively). Array elements with indices greater thamne repre-
sented by two othesummaryabstract objectsi(.; andb-.;). Array elementa[i] andb[i] are not
grouped with any other array elements, and are represegtedinon-summargabstract objects
(a; andbd;). Such partitioning allows the analysis to perform a strapdate when it interprets the
assignment statement in the body of the loop.

Fig. 4.2(a) shows how the elements of both arrays are maréiti during the first iteration of the
loop. The non-summary objects andb; represent array elemerd$0] andb[0], respectively.
The value of an element representedibyanges from-5 to 5 due to our initial assumption; thus,
after interpreting the assignmemii] < al[i] in the body of the loop, the analysis establishes
that the value of the element represented slso ranges from-5 to 5.

At the end of the iteration, as the induction variablgets incremented, the grouping of con-
crete array elements changes. The elemef$ andb [0] move into the groups of concrete array
elements that are representedday andb.;, respectively; thus, objects ; andb_; inherit the
numeric properties that have been synthesized for the tshjeandb;, respectively. The new ab-
stract elements; andb;, which now represent the array elemeafd] andb[1], are constructed
by materializing(with the use of theexpandoperation—seg3.3.4) two objects from the corre-
sponding groups of concrete array elements represented;l@ndo-;, respectively. Fig. 4.2(b)
shows how the arraysandb are partitioned during the second iteration. The net reatthe end
of the first iteration, is that the analysis has establishatthe value of the concrete array element
represented by._; ranges from-5 to 5.

On the second iteration, the situation repeats with oneptiare at the end of the iteration,
when the array elements are again repartitioned, the neveniciproperties for the abstract objects

a-; andb_; are constructed bmerging(with the use of théold operation—se€3.3.3) the current
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Figure 4.2 Partitionings of array elements at differeninpoin the execution of the array-copy
function: (a) on the 1-st loop iteration; (b) on the 2-ndatewn; (c) on thek-th iteration; (d) on the
last iteration; (e) after exiting the loop.

numeric properties foti; andb_; with the numeric properties that have been synthesizedr t
objectsa; andb;, respectively. Note that because the values of the arrayegits that were repre-
sented by, range from-5 to 5 (the analysis established that at the end of the first itargtand
the value of the element that is represented;taiso ranges form-5 to 5 (due to the assignment
b[i] < al[il), the analysis concludes that the values of the array elemrepresented by.;
after the second iteration also range frerfito 5.

As the value of variable increases with each iteration, more and more of the coneresy
elements of both arrays move from the two groups represdmyt@thjectsa-.; andb-;, to the two
groups represented by objeatsandb;, and finally, to the two groups represented by objects
andb,. Fig. 4.2(c) shows how the arrays are partitioned onithel-st iteration. The concrete
array elements that are represented byare the elements that have been initialized.

One can view this process of state-space exploration agrp@rfg an inductive argument. On
each iteration, the numeric properties of the abstract et ; are mergedfplded with the
numeric properties of the abstract elem&ntvhich has been initialized on that iteration. As the

result, the invariant that the values of array elementsesgted by._; range from—5 to 5 is
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maintained throughout the analysis. In this regard, thdyarsaimplements a form oihductive
reasoning

An important thing to observe is that, even though the areatitppns shown in Fig. 4.2 (b) and
(c) describe different groupings of concrete array eles\dmith partitions have the same sets of
abstract array elements. Therefore, from the point of viethe analysis these partitions are the
same. To establish which concrete array elements are egpieesby a particular abstract element,
the analysis directly models the indices of array elementise numeric state associated with each
partition.

Fig. 4.2(e) shows how the array elements are partitionet akiting from the loop: all ele-
ments of both arrays are representedubyandb_;, respectively. As we have just shown above,
the analysis is able to establish that the values of the etmarray elements representedhbyat
the end of each iteration ranged fron to 5. Thus, after exiting the loop, the analysis concludes
that (i) all elements of array were initialized, and (ii) the values stored in artayange from—>5
to 5.

In practice, for the program in Fig. 4.1, a more general prigp@ay be of interest, such as
“the value of each element of arrayis equal to the value of the element of arrayith the
same index”. However, this property is beyond the capasliof the summarizing abstractién.
To capture such properties, we augment each abstract abjie representation of arraywith
an extra value that indicates whether the property holds$i¥ail, (ii) some, or (iii) none of the
concrete array elements represented by that abstract.objenally, we do it by introducing an
auxiliary three-valued unary predicatgwhich evaluates to the valuésl /2, and0 on the abstract

elements of arrayp to represent cases (i), (ii), and (iii), respectively.

21t may be argued that this property is, in faghiversal Let A andB denote sets of elements of arrayandb,
respectively. The property can be expressed as follows:

Va € AVb € B|a.index= b.index = a.value= b.valug],

and thus, a summarizing abstraction should be able to @fturHowever, note that to capture this property, a
summarizing abstraction must use a numeric abstract dotmatifis able to represent implication ($Ee5); however,
it is extremely rare for a numeric domains to be capable afesgting implication.
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The analysis proceeds as follows: the abstract objectsdpedsent the elements of artagtart
with ¢ having the valud /2, which indicates that the analysis has no knowledge abeutdlues
stored in arrayp. On each iteration, the property is established for theyagl@ament represented
by b;; i.e.,0(b;) is set tol. At the end of each iteration, the new value §gb_;) is obtained by
joining the current value fof(b.;) with 6(b;): on the first iteration, the objeét ; does not exist,
s0d(b.;) is set to be equal té(b;), which is equal td; on the following iterations, the new value
for 6(b-;) is determined by joining its current value, whichliswith the values(b;), which also
equals tol. Thus, the analysis establishes thdt ;) is 1 after each iteration, which indicates that

the property holds for all initialized array elements.

4.2 Concrete semantics

In this section, we extend the concrete program semantios §2.1 to support a fixed, finite
number of arrays. Understandably, the structure of therprogstate will become more compli-
cated: in addition to the function that maps program vaeslib the corresponding values, we
add a corresponding function for each array. These funetigth map each array element of the
corresponding array to a pair of numeric quantities: theealf the element and its index. Also,
we add two new program-state transitions: one for readirayi@y element and one for writing an

array element.

4.2.1 Concrete Program States

We denote the set of scalar variables and the set of arragsmu#ige program by
S= {Ul,...,Un} and A= {Al,...,Ak},

respectively. These sets will be the same across all canpregram states that may arise as a
result of program execution. Note that the Sedirectly corresponds to the set of variab\és's
which we defined in Chapter 2. The set of elements of each anegydiffer from state to state.

We will use the notatiom 5 to denote the set of elements of artdy= A in program stateS. To
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ensure proper sequencing of array elements, we assumedbatiete state explicitly assigns to
each array element its proper index position in the cornedipg array.

Each concrete program staiés encoded with the following set of functions:

e Valugy : S — V maps each scalar variable to its corresponding value. Thies&ons are
similar to the functions that we used to define the progratestia Chapter 2. In fact, all of
the program constructs that are not related to arrays iiueneric expressions, conditional
expressions, assignment transitions, and assume toargitioperate on these functions in

the exact same way as was defined in Chapter 2.

e Elemen{ : As — V? is a family of functions (one for each array j4) that maps the
elements of a given arrayf € A to a pair of quantities: the value of the element and its

index.

Example 4.1 Suppose that a program operates on two scalar variabses] j, and an arrag of
size 10. Suppose that at some point in the execution of trgrgama the values of variablesand;
are4 and?7, respectively, and the values that are stored in &rane{1,3,8,12,5,7,4, —2,15,6}.

We encode the concrete sta&t@f the program as follows:
S:{'La]}v A:{B}v BS:{bmabQ}
Valuey = [i — 4,j — T
Elemenf = [by — (1,0), by — (3,1), by (8,2), ..., by — (6,9)]

To simplify the presentation, we define functioveuel andindex; with the signaturelg —

V to retrieve the value and the index of a given element of afraespectively:
Valuel (a) = Element (a)[1] and  Index;(a) = Element (a)[2]

4.2.2 Array Transitions

We extend the set of program-state transitions with treomstfor reading and writing array

elements. The transition «— A [v,], wherev,, v, € S andA € A, reads the value of the element
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of array A whose index is specified by the value of varialleand assigns that value to variable
The A [v,] «— vy assigns the value of variable to the element of arrayl whose index is specified
by the value of variable,. Let.S denote an arbitrary program state. The concrete semaaties f

array-read transition is specified as follows:

Ju € Ag [Index;(u) = Valuey(vs)]

{ Valug (u) if v =1,

[y — A[w]](S) = 5" s.t. Valuey (v) =
Value;(v) otherwise

| VB e A Vbe B [Elemenf (b)) = Elemen§(b)] |

The concrete semantics for an array-write transition isigivy:

Ju € Ag [Inde)é(u) = Value (vs)]
Vv € S [Valuey (v) = Values(v)]
[A[vg] = ui](S) = 5" st VB € A\ {A} Vb€ B [Elemenf (b) = Elemenf (b)]

Element, (a) = {

(Values(vy), Values(vy))  if a=u

Element (a) otherwise

The semantics for the transformers is defined in a straigh#ial way (the definitions primarily
ensure that the part of the state that is not modified is predigr Note, however, that the above

transformers arpartial: that is, if the condition
Ju € Ag [Index;(u) = Values(vs)]

is not satisfied, the result of either transformer is undefiftecan be easily seen that this condition
implements arout-of-boundscheck for the array access. That is, we assume that if anfeut-o

bounds array access occurs during program execution, tigegm terminates.

4.3 Array Abstraction

In this section, we show how the sets of concrete prograrestae abstracted. Each abstract
program state* is a functionS* : P — A x X, whereP denotes the space of possible array par-

titions, \ denotes the space of possible numeric statesfadenotes space of possible valuations
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of auxiliary predicates. In the next few sections, we defihateach of these spaces look like. We
will refer to a triple(P#, QF, A*), whereP? € P, O € N, Af € X, andS*(P*) = (QF, A%), as an
abstract memory configuration

The standard operations for the abstract state are definetise, that is, for allP* € P
(ST SEY(PH) = SHPHY LU SE(PY),  where <Q§,A§> U <Qg, Ag> — <Q§ LOb, AL Ag>
and
(S M S8)(PY) = S4(PH) M SE(PY),  where <Q§,A§> M <Qg, Ag> - <Q§ nos AN Ag>.
The partial order is defined as
SiCSi A vwptep [Sﬁ(Pﬁ) C sg(Pﬁ)] ,

where
<Q§,A§> C <Q§,Ag> 2 0lC Ol A ALC AL

Note that some array partitions may not arise (and, in fatdt,net arise) in the analysis of the
program. We assume that the abstract state maps the pertthat did not arise to the tuple
(L, L)

In the next three sections, we will show how, givesiagle concrete state, to construct the
abstract state that represents it. The abstraction foraf sehcrete states is constructed by joining

the abstractions of the individual concrete states in the se

4.3.1 Array Partitioning

The goals of array partitioning are two-fold. First, we wablike to isolate in separate groups
the array elements that are assigned to. This allows thgsiedb perform strong updates when
assigning to these elements. Second, we would like to gréemests with similar properties
together to minimize the precision loss due to summarinatio

In this thesis, we propose an array-partitioning schemedas numeric relationships among

indices of array elements and values of scalar variablgzatticular, given a set of scalar variables,
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we partition an array so that each element whose index id &gtlee value of any of the variables
in the setis placed in a group by itself. Such groups are septed byron-summargabstract array
elements. The consecutive array segments in-betweendbrdd elements are grouped together.
Such groups are representeddoynmaryabstract array elements. We will refer to this partitioning
scheme aBnear array partitioning

We define array partitions by using a fixed sefpatftitioning functions denoted byll. Each
functionp € Il is parametrized by an array and a single scalar variabledlet4 andv € S. In

a concrete statg, a functionp, , is interpreted as:

PAw * AS - {_1707 1}7
and is evaluated as follows:

—1 if Index; (u) < Values(v)
pav(u) =14 0 if Indexi(u) = Valuey(v)
1 if Index;(u) > Valuey(v)

The choice of values is completely arbitrary as long as thetfan evaluates to a different value
for each of the three cases. We denote the set of partitidomgions parameterized by array
by I14.

In a given concrete state, we partition each artay .A by grouping together elements dffor
which all partitioning functions ifll 4, evaluate to the same values. Each group is represented by
an abstract array elementnan-summaryelement, if at least one partitioning function evaluates
to 0 for the array elements in the groupsammaryelement, otherwise. If the sét, is empty, all
of the elements of arrayt are grouped together into a single summary element.

The values to which partitioning functions evaluate on thrayaelements in a group uniquely
determine the abstract element that is used to represdamgrihid. We will continue to use the
intuitive abstract-element naming introducedsih 1, e.g., the summary abstract array element
b-i <; represents the group of array elements whose indices aagegtban the value of variable

i, but less than the value of variabje
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Formally, array partition”* maps each array il to a corresponding set of abstract array

elements. We say that two array partitions are equal if they adl arrays in4 to the same sets:
Pl=Pl 2 vAcA |PiA) = Pg(A)]
The following example illustrates array partitioning.

Example 4.2 Assume the same situation as in Ex. 4.1. Let the set of maniitg functiondl be

{pB.i,ps;}- The elements of arra§ are partitioned into five groups, each of which is represknte

by an abstract array element:

Concrete Elements Abstract Element Summary
(i) {00, b1, b2, b3} bei<j *
(ii) {ba} bi.<;
(ii) {bs, be } b>i<j *
(iv) {or} bi
(v) {bs,bo} bsi>j *

The x in the last column marks summary abstract array elementss,Th
P = [B — {beij, bicj, bsi<js bsij, bsisj)}]

Note, that each abstract element of arfagorresponds to a valuation of partitioning functions
in IT4: there are3™! possible valuations. However, not all valuations of pimiihg functions
are consistent with the respect to the array structure. di) taie to linear nature of partitioning,
there can be at mosgt x |I14| + 1 abstract array elements. Still, the number of possibleyarra
partitions (i.e., the number of sets of abstract array elegihat represent the corresponding array
in a consistent manner) is combinatorially large. Howewer,observations show that only a small
fraction of these partitions actually occur in practice.

The approach that is presented in this section illustratgs ane of the possibilities for par-
titioning an array. We found this partitioning to be usefuiem consecutive array elements share

similar properties, e.g., when analyzing simple arragiafization loops and simple array-sorting
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algorithms, which constitute a large portion of actual uskearrays. However, in more compli-
cated examples, e.g., when using double indexing to iiaéan array and using an array to store
a complex data structure (such as a tree), the above arrétyguaing is not likely to succeed. This

issue remains to be addressed in the future.

4.3.2 Numeric Abstraction

We represent the numeric state associated with an arratigravtith an element of a summa-
rizing abstract domain, which we described in Chapter 3hisdection, we show how to construct
the corresponding domain element for a given concrete.state

Conceptually, we apply thgartial summarizing abstraction to each array individually (we use
the extension that handles multiple values frgBr6). For an arrayl € A, the concrete universe
U, corresponds tolg, and the abstract univeréég corresponds t@*(A). The concrete state is
given by the functiorElement : Ag — V2. The set of fields ig” = {value index}. The function
7 : Ag — P*(A) is defined naturally by the array-partitioning functiongip.

The partial summarizing abstraction represents the fan&lemenf : As — V? by a set
of functions with signaturé®*(A) — V2 in the manner described §8.2. This representation is
further flattenedto a set of functions with signaturéféﬁ — V in the manner described §8.6,

wherel! denotes thexplodedabstract universe:
U:i = {ul.value ’.index | u* € P*(A)}.

We denote the resulting set of functionslblpmeni‘ € p(UAﬁ — V).
In the next abstraction step, we merge together the setsnofitflmsEIemeni for each array
A € A, and the functioivalue; : S — V, which maps scalar variables to corresponding values, to
form a set of function$) with the domain:
vi=Su | J Ut
AeA
This set of functions is then represented wit’h}a)-dimensional element of some existing numeric
abstract domain. The choice of the domain depends on theydartproperties the analysis needs

to establish. In the rest of the chapter, we assume that tlgagural abstract domain is used.
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The numeric state is manipulated by the operations andaab$tansformers that we defined
in Chapter 3. To apply a particular transformer, the scadaiiables and array elements are duly

remapped to the corresponding dimensions in the abstratido

Example 4.3 Assume the same situation as in Ex. 4.2. Fig. 4.3 illustragigidual steps in the
abstraction of the numeric state. The concrete state isrshothe top. The tables represent sets of
functions (functions correspond to the rows in the tableg. abbreviate the names of fieldalue
andindexby v andi, respectively. The set of functiorEemen&‘ is not shown, but it is similar
to the sef) with the first two columns (fot andj) taken out. The resulting set of functiofisis

abstracted by &2-dimensional polyhedron, specified by the following setioéar constraints:
i=4, j=T,
boicii+1<beicjv, 3Xbejcjv <11 Xbejcji+3, 2Xbecjv>9xbeg<ji+3,
bicjt =4, bj<jv=0>5,
5 < boicj 0 <6, bojojv=22—3 X bsi i,
buiji="T7, bsijv=-2,
6 <bsisjv <15, by =287—9Xbs;~j.i

We show the constraints for each abstract array element eparae line. Note that, for non-
summary element; .; andb.,; ;, the values and the indices correspond to those of the dencre
elements that they represent. Also note that, for summamehts, some relationships between

the indices and values of the concrete elements are retained

4.3.3 Beyond summarizing domains

Summarizing numeric domains can be used to reason abowraaivnumeric properties of
summarized array elements. However, the relationshipsngmalues of objects that are sum-
marized together are lost. This precludes a summarizingengrabstraction from being able to

express certain properties of interest, e.g., it is impnedb express the fact that a set of array
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Figure 4.3 Numeric abstraction for the program state in Ek. 4
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elements that are summarized together are in sorted ordé&ix.14.3, the resulting numeric state
is only able to capture the property that the values of thea array elements represented by
b(<i,<j) range froml to 12, but not that those elements are sorted in ascending order.

To capture properties that are beyond the capabilities winsarizing numeric domains, we
introduce a set of auxiliary predicates, denoted¥yin a concrete statg, a predicate in, € A
maps each element of array/to a boolean value: ta if the property of interest holds for that
element, and t0 otherwise:

6a: A% = {0,1}.

The semantics of an auxiliary predicate is specified via mida that is evaluated in the concrete
state.

When the elements of array are summarized, wmin the corresponding values 6f, in a
3-valued logic latticd100]. In 3-valued logic, an extra value, denoted1h{, is added to the set

of Boolean valueg0, 1}. The order is defined as follows:
1 C Iy iff li=100rly, = 1/2

Thus,
1/200=1/2U1=0U1=1/2.

The resulting value is attached to the corresponding atisireay element.
In an abstract memory configuration, we use an abstract emqanrt of the predicate, denoted

by 5?4, to map abstract array elements to corresponding values:
&+ PY(A) — {0,1,1/2}

Letu € P*(A) be an arbitrary abstract array element. The valug,6i) is interpreted as follows:
the valuel indicates that the property holds for all of the array eletsegpresented by, the value
0 indicates that the property does not hold for any of the aetaynents represented byand the
value1/2 indicates that property may hold for some of the array elémmpresented by, but

may not hold for the rest of the elements.
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Example 4.4 Assume the same situation as in Ex. 4.3. We introduce a @tedig that evaluates

to 1 for array elements that are in ascending order, aridféo the elements that are not:
6p(u) = Vte B [Index(t) < Indext(u) = Values(t) < Valuej(u)],

where variable: is a free variable that binds to an array element when thagqatdis evaluated.
In the concrete state shown in Ex. 48k, evaluates td for the element$, b, by, b3, andbs;
and to0 for the remaining elements. The values associated withlte&act array elements are

constructed as follows:

0(beic;) = 0p(bo) Udg(b) Udp(by) Udp(bs)  =1U1U1U1 =1
Oh(bicy) = 6(b) )
Oh(bsicg) = 0p(bs) LU dp(bs) —0U0 =0
0 (b>i) = dp(br) =0
Oh(bsing) = 0p(bs) LU og(bo) =110 =1/2

The part of an abstract memory configuration that storesriteggdretation of auxiliary predi-

cates is denoted bi* € X and is defined as:
Af (84, u) = 8 (u)
We define a partial-order relation for interpretations ofibary predicates as follows:
APCAL 2 VAe A Vo€ A Vue PHA) [Ag(aA,u) C Ag(aA,u)] .

The join operation for interpretations of auxiliary preaties is defined as follows: we say that
A* AL = Af, where forallA € A, forall 6, € A, and for allu € P*(A)

A¥ (4, u) = A5 (04, u) LAY (64, u).
4.4 Array Copy Revisited

In this section, we flesh out the schematic illustration efdhalysis that was given id.1. The

analysis is applied to the code shown in Fig. 4.1. We dep&abistract memory configurations that
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r———== 1
. i a
. n L [
1 2 re—_--— 1
b ]
. n>2,1=0,
n= 1, i=0, a;.index = b;.index = 0
O a;.inder = 0 1 <asgindexr <n—1
-5 < 'ai-value <5 —5 < a;.value < 5
b;.index =0 —5 < as;value <5
1 <bs;index <n—1
Al 55:[(71-»—»1/2] 5£:[bi'—>1/27b>i’—’1/2]
st S}

Figure 4.4 Abstract memory configurations (AMCs) that rethehhead of the loop in Fig. 4.1 on
the first iteration. The first AMC represents arrays of lerigtthe second AMC represents arrays
of length 2 and greater.

arise in the course of the analysis as follows. The partitidhe arrays is shown graphically: solid
boxes represent non-summary abstract array elementsdlasites represent summary abstract
array elements. Numeric states are shown as sets of lineatramts. Auxiliary predicates are
shown as maps from sets of abstract array elements to comgisiy values if0, 1,1/2}.

Consider the program in Fig. 4.1. The set of scalar variadhesthe set of arrays are defined
as follows: § = {i,n} and A = {a,b}. The analysis uses the set of partitioning functions
II = {pa;i, pvi}- As we suggested if4.1, it is impossible for the summarizing abstraction to
express the property “for every indéx the value ofb [k] is equal to the value oi[k]”. To

capture this property, we introduce an auxiliary predidgtevhose semantics is defined by
S(u) = Vtea® [IndeX(u) = Index,(t) = Valué(u) = Valug,(t)] .

Fig. 4.4 shows the abstract state that reaches the headlobihbefore the first iteration. The
abstract state contains two abstract memory configuratitfrendS?. ConfigurationS? represents
the case in which each array contains only a single elememis,Teach array is represented by
a single abstract array element,andb;, respectively. The indices of both andb,; are equal to

zero, and the value af; ranges from-5 to 5.
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Abstract memory configuratioﬂ§ represents the concrete states in which both arrays are of
length greater than or equal to two. In this situation, eacayais represented by two abstract
elements:a; andb; represent the first elements of the corresponding arrayse wh; and b,
represent the remaining elements. The numeric state assoavith this partition indicates that
the indices of the concrete array elements representeddnyds; are equal to zero, the indices of
the concrete array elements representedyandb-; range froml ton — 1, and the values of all
concrete elements of arrayrange from—5 to 5.

The auxiliary predicatég evaluates td /2 for all array elements in the abstract memory con-
figurationsS? and.S%. This means that, in the concrete states representéd agd S, the values
of the concrete elements of arraynay either be equal to the values of the corresponding eltsmen
of arraya or not.

Fig. 4.5 shows the abstract memory configurations that aranaclated at the head of the
loop (in addition to the AMCSS§i and Sg shown in Fig. 4.4) on each iteration of the analysis.
Fig. 4.6 shows the evolution, on successive iterationseétialysis, of the single abstract memory
configuration that reaches the exit of the loop.

The analysis proceeds as follows. Bélfnanng satisfy the loop condition and are propagated
into the body of the loop. After the assignmemt[i] < a[i]”, two changes happen to both
abstract memory configurations: (i) the constraintalue = b;.value is added to their numeric
states, and (ii) the value of auxiliary predicéﬁebz-) is changed td.

At the end of the first iteration, as variahieis incremented, abstract memory configuration
Sﬁ is transformed into configuratioﬁlg (shown in Fig. 4.6). The loop condition does not hold in
Sg; thus, this memory configuration is propagated to the prograint () at the exit of the loop.
Abstract memory configuratioﬁg is transformed into two new abstract memory configuratiﬁfns
andSﬁ. These memory configurations, along WﬂbandSﬁ, form the abstract state at the head of
the loop at the beginning of the second iteration.

On the second iteration, the abstract memory configuraﬂémdsﬁ are propagated through
the assignment'[i] « a[il]”. Asthe result, their numeric states are updated to makelue =

b;.value, and their valuations of auxiliary predica&#bi) are changed to.
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a a; a a; a
3 Fr=m=——— 1 4 pm——— 1 re———-—-— 1
b 1[bi] b a[bi]y bei
i=1,n>3,
1=1,n=2, a;.inder = b;.index =1
N a;.index = b;.index = 1 2 <as;inder <n—1
a3 a<iinder =0 a<iindexr =0
T QF =5 < a;.value < 5 —5 < a;.value < 5
g_ =5 <acivalue <5 -5 < as;value <5
S bejindex =0 —5 < ac;value <5
beivalue = a«;.value 2 < bsiinder <n—1
be;value = ac;.value
# #
S3 S
1<i<?2 l<i<2
n — Zl 1 i = a;.index = b;.index
o ainder = i 0<ac;inder <i—1
3 0<ac;inder <i—1 i+1<asginder <n—1
T Of —5 < a;.value < 5 —5 < aj.value <5
g -5 < acivalue <5 =5 < ax;.value <5
S b;.index = i -5 < a’<i.value S 5
0 < beyinder <i—1 0 beidnder < i—1
—_5<b<-.valu_e<5 1+ 1 <bs;index <n-—1
- - =5 < b.jwalue < 5
# #
S5 Se
1<i Iz
n :;_‘_ 1 i = a;.index = b;.index
aw ainder — i 0<ac;inder <i—1
gé_ 0 < avsinder <i—1 i+ 1<as;inder <n-—1
S5 Ot —5 < a;.value <5 —5 < a;.value <5
g -5 < acivalue <5 =5 < ax;.value <5
3. 5 b index — i =5 < acjwalue < 5
59 i.indexr = 1 ) -
Qe 0 < boyindex <i—1 0 <boiindexr <i-—1
—_5<b<-.valu_e<5 1+ 1 <bs;index <n—1
- - =5 < b.jwalue < 5
AF 8 = [bei = 1,b; > 1/2] 8 = [bei > 1,b; > 1/2,bs > 1/2]
# #
st st
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Figure 4.5 New abstract memory configurations (ACMs) thatinethe head of the loop in Fig. 4.1
on the 2-nd and 3-rd iterations of the analysis. The last foaws the effect of widening on the
numeric portion of abstract state: the numeric states dtaon the 2-nd iteration are widened
with respect to the corresponding numeric states obtaingden3-rd iteration.
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pt after 1-st iteration after 2-nd iteration after 3-rd iteration
Pﬁ' n=1,1=n, 1<n<2,7=n, 1<n,i=n
5 - a<;index =0 0 <aciinder <n-—1 0 <acjinder <n-—1
P _a_<2._ _': Of =5 < acivalue < 5 —5 < acjvalue < 5 =5 < acjwvalue < 5
[P beiindex =0 0<bsiinder <n-—1 0 <bgjinder <n-—1
:l__ _b;_ _-: bei.value = a;.value —5 < bejvalue < 5 —5 < bojwalue <5
Al 0f = i — 1] 0f = [bei 1] 0f = [ > 1]
S Sto st

Figure 4.6 The abstract state (consisting of a single atistnamory configuration) that reaches
program pointxx) after the 1-st, 2-nd, and 3-d iterations of the loop in Fid. &he last column
shows the stabilized abstract stat¢-at).

At the end of the second iteration, the abstract memory corsigpn S§ is transformed into
a configuration that has array partitidrj. This abstract memory configuration is propagated to
the program pointxx) and is joined Withsg to yield Sﬁo. The abstract memory configuration
Sﬁ is transformed into two new abstract memory configurationt) array partitionsP?Ei and Pj.
These configurations are propagated back to the head of tipe émd are joined WitIS§ and
St resulting in abstract memory configuratioﬁ$ and ¢, respectively. At this moment, the
analysis extrapolates the loop behavior by widening theerigrstate ofS§ with respect to the
numeric state of?, and by widening the numeric state@j‘ with respect to the numeric state of
Sé. The application of widening produces abstract memory gum&itionsSg and Sg. Thus, the
abstract state at the head of the loop at the beginning ofitftkiteration contains abstract memory
configurationsS?, S%, S* and S,

At the end of the third iteration, abstract memory config’orab’g is transformed into a con-
figuration with array partitiorPﬁ, which is propagated to the program poixt), where it is joined
with S%,, resulting inS?,. Abstract memory configuratiofi’ is transformed into two memory
configurations, which are propagated to the head of the Ibtmpvever, those configurations are
equivalent toS§ and 5S¢, which were previously encountered by the analysis. Thuthisstage,

the abstract state at the head of the loop stabilizes andh#igsis terminates.



85

The abstract state accumulated at the program peiptcontains a single non-trivial memory
configurationSf1 (shown in Fig. 4.6). Itis easy to see that this configuratepresents only the
concrete states in which (i) the values stored in the asreange from—>5 to 5 (this follows from
the constraint -5 < b, < 5"in the numeric state); and (ii) the value of each elementradyeb
is equal to the value of the element of areawith the same index (this follows from the fact that

5% (b.;) evaluates to the definite value 1).

4.5 Implementation of an Array-Analysis Tool

We built a prototype of our array analysis using the numeriergsion that we implemented of
TVLA tool [78] (which was described i§3.7). The implementation is based on the ideas that have
been described above. However, to make the abstractionlges$m previous sections usable, we
have to define the abstract counterparts for the concratetstasformers shown i4.2.

In [31], it is shown that for a Galois connection defined bytedagion functiona and con-
cretization functiony, the best abstract transformer for a concrete transformeenoted byr?,
can be expressed as® = « o 7 o 7. This defines the limit of precision obtainable using a given
abstract domain; however, it is a non-constructive definitit does not provide aalgorithmfor
finding or applyingr.

For our tool, we definedverapproximationsor the best abstract state transformers by using
TVLA mechanisms. In the rest of this section, we give a brigfrgiew of TVLA, and sketch the

techniques for modeling arrays and defining abstract toaumsdrs.

45.1 Overview of TVLA

TVLA models concrete states by first-order logical struesurThe elements of a structure’s
universe represent the concrete objects. Predicates emetadionships among the concrete ob-
jects. The abstract states are representeatifeg-valued logical structuresvhich are constructed
by applying canonical abstraction to the sets of concretiest The abstraction is performed by
identifying a vector of unary predicates and representiggconcrete objects for which these ab-

straction predicates evaluate to the same vector of valpesdingle element in the universe of
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a three-valued structure. In the rest of the paper, we reférdse abstract elementsrasdes A
node that represents a single concrete object is calleduomary node, and a node that represent
multiple concrete objects is called summary node.

TVLA distinguishes between two types of predicatesire predicates anghstrumentation
predicates. Core predicates are the predicates that aessaag to model the concrete states.
Instrumentation predicates, which are defined in terms @& poedicates, are introduced to capture
properties that would otherwise be lost due to abstraction.

An abstract state transformer is defined in TVLA as a sequeh@gptional) steps:

e A focus stepeplaces a three-valued structure by a set of more precese-tlalued structures
that represent the same set of concrete states as the bsiguure. Usually, focus is used
to “materialize” a non-summary node from a summary node. sthectures resulting from
a focus step are not necessarily images of canonical abstraim the sense that they may

have multiple nodes for which the abstraction predicatetuate to the same values.

e A precondition stegilters out the structures for which a specified property doashold
from the set of structures produced by focus. Generallycgrditions are used to model

conditional statements.

e An update stepransforms each structure that satisfies the preconditiareflect the effect
of an assignment statement. This is done by creating a neatste in which the core and

instrumentation predicates are assigned appropriatedaend) values.

e A coerce stejis a cleanup operation that “sharpens” updated three-gialnactures by mak-

ing them comply with a set of globally defined integrity coastts.

e A blur steprestores the “canonicity” of coerced three-valued stmasiny applying canoni-
cal abstraction to them, i.e., merging together the nodesliiich the abstraction predicates

evaluate to the same values.

In §3.7, we extended TVLA with the capability to explicitly mddeimeric quantities. In par-

ticular, we added the facilities to associate a set of nwrggrantities with each concrete object,
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and equipped each three-valued logical structure with ameht of a summarizing numeric do-
main to represent the values of these quantities in abstaiets: i.e., each node in a three-valued
structure is associated with a set of dimensions of a sunaimgmumeric domain. TVLAS spec-
ification language was extended to permit using numeric @isgns in logical formulas, and to

specify numeric updates.

4.5.2 Modeling arrays

We encode concrete states of a program as follows. Eaclr seaiable and each array element
corresponds to an element in the universe of the first-omtgcal structure. We also introduce a
core unary predicate for each scalar variable and for each aifhgse predicates evaluate ito
on the elements of the first-order structure that repre$entaorresponding scalar variable or the
element of the corresponding array, anditéor the rest of the elements. Each element in the
universe is associated with a numeric quantity that reptssés value. Each array element is
associated with an extra numeric quantity that represeniisdex position in the array.

To model the array structure in TVLA correctly, extra predes are required. We model the
adjacency relation among array elements by introducingharpiinstrumentation predicate for
each array. This predicate evaluates wwhen evaluated on two adjacent elements of an array. To
model the property that indices of array elements are coatig and do not repeat, we introduce
a unary instrumentation predicate for each array that esgtrdnsitive closure of the adjacency
relation.

Partitioning functions are defined by unangtrumentatiorpredicates. Because a partitioning
function may evaluate to three different values, whereasedigate can only evaluate toor 1,
we use two predicates to encode each partitioning func#arxiliary predicates fron§4.3.3 are
implemented as unaipstrumentatiorpredicates.

To perform the abstraction, we select a set of abstractiedipates that contains the predicates
corresponding to scalar variables and arrays, the predithat encode the transitive closure of ad-

jacency relations for each array, and the predicates thaement the partitioning functions. The
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auxiliary predicates are non-abstraction predicates. réhelting three-valued structures directly
correspond to the abstract memory configurations we defmgdl 3.

The transformers for the statements that do not requirg aefartitioning, e.g., conditional
statements, assignments to scalar variables that are edttasndex array elements, and array
reads and writes are modeled in a straightforward way. Tdrestormers for the statements that
cause a change in array partitioning, i.e., updates of isgal@ables that are used to index array

elements, are defined as follows:

o first, focusis applied to the structure to materialize the array elerttettwill be indexed by

the variable after the update;

¢ then, the value of the scalar variable, and the interpmatadf the partitioning predicates are

updated;

o finally, blur is used to merge the array element that was indexed by thelaipreviously,

into the appropriate summary node.

To update the interpretation of auxiliary predicates, thmypammer must supply predicate-
maintenance formulas for each statement that may changaliines of those predicates. Also, to
update the numeric state with the numeric properties ertlogéhe auxiliary as the grouping of the
concrete array elements changes, a set of integrity camistienplied by the auxiliary predicates
must be supplied.

Aside from the integrity constraints and update formuladlie auxiliary predicates, the con-
version of an arbitrary program into a TVLA specification danperformed fully automatically.
The remaining manual steps could also be automated by emtetite techniques fodifferenc-
ing logical formulas, described in [95], with the capabilityhandle atomic numeric conditions.

However, we did not pursue this direction in our research.

4.6 Experimental Evaluation

In this section, we describe the application of the analgsiotype to four simple examples,

which encompass array manipulations that often occur iotjgea We used a simple heuristic to
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obtain the set of partitioning functions for each array ie #malyzed examples. In particular, for
each array accesa[i]” in the program, we added a partitioning functiop; to the setll. This
approach worked well for all of the examples, except for tiseition-sort implementation, which

required the addition of an extra partitioning function.

4.6.1 Array initialization

Fig. 4.7(a) shows a piece of code that initializes arsagf sizen. Each array element is
assigned a value equal to twice its index position in theyaplas3. The purpose of this example
is to illustrate that the analysis is able to automaticaibcdver numeric constraints on the values
of array elements.

The array-partitioning heuristic produces a single parting functionr, ; for this example.
The analysis establishes that after the code is executegathes stored in the array range frém
to 2 x n + 1. No human intervention in the form of introducing auxiligmedicates is required.

In contrast, other approaches that are capable of handimgtample [43, 111] require that the
predicate that specifies the expected bounds for the vafeesay elements be supplied explicitly,

either by the user or by an automatic abstraction-refineteehnique [73].

4.6.2 Partial array initialization

Fig. 4.7(b) contains a more complex array-initializatiommple. The code repeatedly com-
pares elements of arragsandb and, in case they are equal, writes their index position tinéo
arrayc. The portion of array that is initialized depends on the values stored in the agandb.
Three scenarios are possible: (i) none of the elementsacd initialized; (ii) an initial segment of
c is initialized; (iii) all of c is initialized. The purpose of this example is to illustrdte handling
of multiple arrays, as well as partial array initialization

The array-partitioning heuristic derives a set of thredipaning functions for this example,
one for each arraytl = {r,;, m,;, 7. ;}. The analysis establishes that, after the loop, the elesment
of array c with indices betwee® and; — 1 were initialized to values ranging fromto n — 1.

Again, no auxiliary predicates are necessary.
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int aln], i, n; void sort(int al], int n) {
int i, j, k, t;
i «— 0;
while(i < n) { i «— 1;
ali] « 2 x i + 3; while(i < n) {
i «— i+ 1; j o« 1i;
} while(j > 0) {
(a) k «— j-1;

if(alj]l > alk]) break;

int a[n]l, blnl, clnl, i, j, n;

t «— aljl;
) aljl « alkl;
=0 alk] « t;
J =05 j—3-1;
while(i < n) { }
if(ali] == b[i]) { i— i+ 1;
cljl « i; }
Joarh } )
}
i «— i+ 1;
}

(b)

Figure 4.7 Array manipulation code: (a) array-initialinait loop; (b) partial array initialization;
(c) insertion-sort routine.

The abstract state that reaches the exit of the loop corftainabstract memory configurations.
The first configuration represents concrete states in wioak of the array elements are initialized.
The value ofj, in this domain element, is equal to zero, and, thus, they gragtition does not
contain the abstract element;.

The second and the third memory configurations represertadherete states in which only
an initial segment of array is initialized. Two different memory configurations are ueaed to
represent this case because the analysis distinguisheasbef variablg indexing an element in
the middle of the array from the case jpindexing the last element of the array.

The last abstract memory configuration represents the etmstates in which all elements of
arrayc are initialized. In the concrete states represented byntkeisiory configuration, the value
of variablej is equal to the value of variabte and all elements of arrayare represented by the
abstract array element;.

The initialized array elements are represented by the adiséirray element.;. The array

partition of the first memory configuration does not contdeneentc.;, which indicates that no
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elements were initialized. The numeric states associatgdtiae other abstract memory config-
urations capture the property that the values of initidliaeray elements range betwe@rand

n — 1.

4.6.3 Insertion sort

Fig. 4.7(c) shows a procedure that sorts an array usingtiosesort. Parameter specifies the
size of arraya. The invariant for the outer loop is that the array is soretiothe:-th element. The
inner loop inserts théth element into the sorted portion of the array. An intengstletail about
this implementation is that elements are inserted into treed portion of the array in reverse
order. The purpose of this example is to demonstrate thacapiph of the analysis to a more
challenging problem.

The application of the array-partitioning heuristic yield = {r, ;}. Unfortunately, this par-
titioning is not sufficient. We also need to use variabl® partition the array so that the sorted
segment of the array is separate from the unsorted segmenteuer, because is never explic-
itly used to index array elements, our array-partitioniregitistic fails to addr, ; to the set of
partitioning functions. To successfully analyze this epéamwe have to manually add, ; to II.

Summarizing humeric domains are not able to preserve ther @fdsummarized array ele-
ments. An auxiliary predicate, defined similarly to the pecate oz in EX. 4.4, needs to be in-
troduced. Our prototype implementation requires userlu@raent to specify the explicit update
formulas for this predicate for each of the program statémeRortunately, the majority of the
program statements do not affect this predicate. Thus,diresponding update formula for such
statements is the identity function. The only non-triviase is the assignment to an array element.

The human involvement necessitated by the analysis is (ipmand (ii) problem-specific. In
particular, only one auxiliary predicate needs to be intimal. Furthermore, this predicate is not
specific to a given implementation of a sorting algorithmthea it can be reused in the analysis

of other implementations, and even in the analysis of otbeirg algorithms.
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Example Abstract Memory Configurations (AMCSs) Time for Time

Max AMCs per prog. pt| Max nodes per AMC| Coerce & Focus (%) (sec)
Array initialization 7 8 68.3 1.7
Partial initialization 35 20 86.3| 194.0
Array copy 7 13 94.2] 338.1
Insertion sort 38 14 85.5| 485

Figure 4.8 Array-analysis measurements.

Also, this example identifies some directions for futureegsh: (i) designing better techniques
for the automatic array partitioning, and (ii) automatigaliscovering and maintaining auxiliary

predicates.

4.6.4 Analysis Measurements

We ran the analysis prototype on an Intel-based Linux machgquipped with a 2.4 GHz Pen-
tium 4 processor and 512Mb of memory. Fig. 4.8 shows the mmeasnts we collected while
analyzing the examples discussed above. We report the rabhrinamber of abstract memory
configurations encountered at a program point and the méxiomaber of abstract objects in an
abstract memory configuration (these objects include seat@ables and abstract array elements).
Also, we report the percentage of analysis time spent oropaifig TVLASs focusand coerce
operations.

Overall, the analysis results show that our prototype immglietation is able to establish inter-
esting properties of array-manipulation code, but, at Hmaestime, is not very efficient in terms
of the analysis time: it takes our prototype on the order afutes to analyze the simple examples
we have considered. In principle, we believe that a dedicatgplementation of the array analy-
sis (i.e., not within the confines of some general framewsukh as TVLA), as described in this
chapter, will be much more effective in practice. Below wat §ome of the factors that make us
believe so.

The analysis times are severely affected by our decisiompbament the analysis prototype in
TVLA. Because TVLA is a general framework, the structurembaray has to be modeled explic-

itly by introducing a number of instrumentation predicadasd integrity constraints. Consequently,
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the majority of the analysis time is spent executing focus @erce operations to ensure that the
array structure is preserved. The measurements in Figndi8ate that, on average, focus and
coerce account for abo80% of the overall analysis time. Building a dedicated analysigle-
mentation, in which the knowledge of the linear structureuwéys is built into the abstract state
transformers, would recover the majority of that time.

However, we must mention that our implementation reliesroolder version of TVLA. Recent
developments significantly improved the overall perforsenf TVLA, and the performance of
the coerce operation, in particular [15, 79]. The reporfskesgups range frod) x to 200 x.

Another factor that slows down the analysis is our use of tighedral numeric domain. While
offering superior precision, the polyhedral numeric dam@ddes not scale well as the number of
dimensions grows. This property is particularly apparehemwa polyhedron that represents the
abstract state is a multidimensional hypercube. In theyaropy example, the constraints on the
values of elements of both arrays formiadimensional hypercube, which provides an explanation
of why the analysis takes over 6 minutes. If the constraintthe values of array are excluded
from the initial abstract state, the analysis takes mefalgconds.

Observation of the numeric constraints that arise in thessaf the analysis led us to believe
that using the less precise, but more efficient weakly-mat domain of zone intervals [86], may
speed up the analysis of the above examples without saagfiecision. We reran the analysis
of the array-copy example, using a summarizing extensidhisfweakly-relational domain. The
analysis was able to synthesize the desired proper§ seconds, which is a significant improve-

ment over the time it takes to perform the analysis with a lpediyal domain.

4.7 Related work

The problem of reasoning about values stored in arrays leasduiressed in previous research.
Below, we present a comprehensive survey of existing aaralysis techniques.
Masdupuy, in his dissertation [81], uses numeric domaieapbure relationships among values

and index positions of elementssthtically initializedarrays. In contrast, our framework allows to
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discover such relationships fdiynamically initializedarrays. In particular, canonical abstraction
lets our approach retain precision by handling assignnterggay elements using strong updates.

Blanchet et al., while building apecial-purpose static program analyZ&#], recognized the
need for handling values of array elements. They proposedotactical approaches: @rray
expansioni.e., introducing an abstract element for each index irathey; and (iijarray smashing
i.e., using a single abstract element to represent all @lexgents. Array expansion is precise, but
in practice can only be used for arrays of small size, and isahte to handle unbounded-sized
arrays. Array smashing allows handling arbitrary arrafisiehtly, but suffers precision losses due
to the need to perform weak updates. Our approach combiadeetiefits of both array expansion
and array smashing by dynamically expanding the elemeatsatie read or written so as to avoid
weak updates, and smashing together the remaining elements

Flanagan and Qadeer used predicate abstraction to infegrgally-quantified loop invariants
[43]. To handle unbounded arrays, they used special priediceverSkolem constantsvhich are
synthetically introduced variables with unconstrainetliga. These variables are then quantified
out from the inferred invariants. The predicates are eisi@plied manually, or derived from the
program code with some simple heuristics. Our approacliferdit in that we model the values of
all array elements directly and usemmarizatiorto handle unbounded arrays. Also, our approach
uses abstract numeric domains to maintain the numeric stdte program, which obviates the
need for calls to a theorem prover and for performing abstnacefinement.

Lahiri et al., [73] proposed a heuristic for derivimglexedpredicates (similar to the predicates
in Flanagan and Qadeer’s technique) that can be used bycptedibstraction to infer universal
array properties. The heuristic computes the weakestalilpgecondition for the predicates that
appear in the property to be verified, and uses a set of simlas to select certain conjuncts from
the weakest-precondition formula. In contrast, our apgnagaodels the values of array elements
directly, and thus, in most cases, does not require spe@diqates to specify the properties of

array elements. However, in cases when our technique esgairxiliary predicates, either due
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to summarization (as in the insertion-sort example) or dugical implications in the univer-
sal property to be verified (as in array copy), predicaterabsbn (seeded with the right set of
predicates) may have an edge over our technique.

Cerny introduced the technique parametric predicate abstractiofi11], in which special-
purpose abstract domains are designed to reason abouttpsd array elements. The domains
are parametrized with numeric quantities that designaedthmtion of an array for which the de-
sired property holds. The abstract transformers are mgriefined for each domain. The analysis
instantiates the domains by explicitly modeling their paeters in the numeric state. Our approach
differs in two respects. First, in our approach numericestairectly model array elements, which
allows the analysis to automatically synthesize certamriants that involve values of array ele-
ments. Second, our approach separates the task of arréjoparg from the task of establishing
the properties of array elements. This separation alloesitier to concentrate directly on formu-
lating auxiliary predicates that capture the propertiesiarest.

Armando et al. proposed a technique for model checking fipeagrams with arrays [2—
4]. The technique is based on abstraction refinement in thgesthat the set of variables and
array elements modeled by the analysis may be refined dunialysas: i.e., the technique starts
by modeling only scalar variables. If the property cannotéefied, certain array elements are
brought into consideration. The process is repeated itetgton each step more and more array
elements are tracked by the analysis. The primary differerichis approach from our work is
that it is not capable to derive universal properties forauried arrays.

Jhala and McMillan proposed a technique for deriving arfastractions from the proofs of
infeasibility of spurious counterexamples [67]. The tdge uses Craig Interpolation to derive
rangepredicates, which state that certain property holds f@ayaetements with indices in a certian
symbolic range. These predicates are very similar to therpetric predicates used Berny [111].
Our approach differs in that we model the values of array el@sdirectly, and thus we do not

have to rely on iterative refinement to produce the necegsadicates.
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Chapter 5

Guided Static Analysis

The goal of static analysis is as follows: given a programaagelt of initial states, compute the
set of states that arise during the execution of the progEume. to undecidability of this problem
in general, the sets of program states are typically ovpresgimated by families of sets that both
are decidable and can be effectively manipulated by a coenp8uch families are referred to as
abstractions or abstract domains. As we outlined in Chdhtérthe abstract domain possesses
certain algebraic properties—namely, if the abstractsfi@mers for the domain are monotonic
and distribute over join, and if the domain does not contafmite strictly-increasing chains—
then simple iterative techniques yield the the most preajg@oximation for the set of reachable
states.

However, many useful existing abstract domains, espgdlatise for modeling numeric prop-
erties, do not possess the above algebraic properties. Asudt,rstandard iterative techniques
(augmented with widening, to ensure analysis convergeroe)to lose precision. The precision
is lost both due to overly-conservative invariant guessadarby widening, and due to joining
together the sets of reachable states along multiple pMbseover, the precision losses tend to
“snowball” throughout the duration of analysis; e.g., aemy-conservative loop-invariant guess
can lead the analysis to consider infeasible executiorsghtbugh the body of the loop, which, in
turn, can cause the analysis to generate an even more catigemvariant guess on the next loop
iteration.

In this chapter, we introduaguided static analysjs general framework that improves the pre-
cision of program analysis by guiding its exploration of fltegram’s state space. The framework

controls state-space exploration by applying standardraro-analysis techniques to a sequence
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of program restrictionswhich are modified versions of the analyzed program. Thaltre§each
analysis run is used to derive the next program restrictioiihé sequence, and also serves as an
approximation of a set of initial states for the next anaysin. Note that existing static-analysis
techniques are utilized “as is”, making it easy to integthgeframework into existing tools. The
framework is instantiated by specifying a procedure fondeg program restrictions.

We present two instantiations of the framework, which tatiye precision loss due to the ap-
plication of widening operators. Recall from Chapter 2 #tandard analysis techniques are com-
posed of two phases: tlascending iteratiophase, which relies on widening to over-approximate
the solution; followed by thelescending iteratiopphase, which refines the overly-conservative
solution obtained by the first phase. The rationale behimépproach is that thefinemenphase
will be applied multiple times throughout the analysis:,ia@ce for each program restriction. In-
tuitively, this allows the analysis to refine the intermeaeiapproximations of the solution before
the precision loss has a chance to “snowball”. Thus, thdtisgiof the analysis into multiple
sequential phases—which is the primary contribution ofapproach—allows the ascending and
descending iteration sequences to be interleaved. Thismething that cannot be done in the
context of the standard approach from Chapter 2 becausetiti@étion between uncontrolled
widening and narrowing operators may cause non-conveegelmccontrast, with our approach
convergence is guaranteed ($8€3 and;5.6.2).

The first instantiation improves the precision of wideningaops that have multiple phases.
This instantiation operates by generating a sequence gfaqumorestrictions that gradually intro-
duces individual program phases to the analysis. Individr@yram phases hawmplerbehav-
iors than that of the entire program; thus, existing progearalysis techniques are able to obtain
a more precise solution for each phase.

The second instantiation addresses the precision of wideniloops where the behavior of
each iteration is chosen non-deterministically. Such $oogcur naturally in the realm of syn-
chronous systems [46, 57] and can occur in imperative pnogliisome condition within a loop
is abstracted away. This instantiation derives a sequehpeogram restrictions, each of which

enables a single kind of iteration behavior and disablesfalhe others. In the end, to make the
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analysis sound, a program restriction with all of the betie@senabled is analyzed. This strategy
allows the analysis to characterize each behavior in isolathus obtaining more precise results.

In non-distributive domains, the join operation loses miea. To keep the analysis precise,
many techniques propagate sets of abstract values inst@adivadual values. Various heuristics
are used to keep the cardinalities of propagated sets mallageThe main question that these
heuristics address is which abstract elements should bedand which must be kept separate.
Guided static analysis is comprised of a sequence of phabkese each phase derives and analyzes
a program restriction. The phase boundaries are natunalgfair separating abstract values: that
is, within each phase the analysis may propagate a singteaabsalue; however, the results of
different phases need not be joined together, but may begseget, thus yielding a more precise
overall result. Ir§5.5, we show how to extend the framework to take advantageabf disjunctive
partitioning.

In §5.6, we presernibokahead wideningan implementation technique for the instantiation of
guided static analysis framework that addresses widenmegigion in loops with multiple phases.
Lookahead widening folds the sequence of standard analysss(i.e., one for each program re-
striction) into a single run of a standard analysis. To aahtlis, the abstract domain used by the
analysis is extended to propagate two abstract values. Mtedilue is used to keep the analysis
within the current loop phase (i.e., within the current peog restriction): this value is used to
decide “where to go” at program conditionals and is neverweatl. The second value is used to
compute the solution for the current phase: both widenirtyrearrowing are applied to it. When
the second value stabilizes, it is promoted into the firsue&athereby allowing the analysis to
advance to the next phase.

We refer to the first value as thmeain valug because it contains the overall solution after the
analysis converges, and to the second valubagpilot valug because it “previews” the behavior
of the program along the paths to which the analysis is atsttt The overall technique is called
lookahead wideningoecause, from the point of view of the main value, the pidte determines

a suitable extrapolation for it by sampling the analysisifet

1The wordpilot is used in the sense of, e.g., a sitcom pilot in the televisidostry.
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Historically, we introduced the techniquelobkahead wideningjrst [48]. As it is, lookahead
widening is an integral part of all program-analysis tooks kave implemented. We present a
comprehensive experimental evaluation of lookahead vinggin §5.7.1. Recently, we generalized
the principles behind lookahead widening into theded static analysifamework [49].85.7.2
presents preliminary experimental results for guidedistatalysis, which we obtained with a

prototype implementation.

5.1 Preliminaries

Recall from Chapter 2, that a program is specified lopmatrol flow graph (CFGYXz = (V, E),
whereV is a set of program locations, addC 1V x V' is a set of edges that represent the flow of
control. Aprogram stateassigns a value to every variable in the program. WetLisedenote the
set of all possible program states. The functitm: £ — (¥ — X) assigns to each edge in the
CFG the concrete semantics of the corresponding prograenstat. The semantics of individual
statements is trivially extended to operate on sets ofsta,Ile)(S) = {Illz(e)(s) | s € S},
wheree € £ andS C ..

LetO. : V — p(X) denote a mapping from program locations to sets of states.séts of
program states that areachableat each program location from the state®inare given by the

least ma, : V — p(X) that satisfies the following set of equations (Eqn. (2.1)):
O,(v) 2 0(v), and O,(v) = U e ((u, v))(O(u)), forallv e V
(u,v)EE

The problem of computing exact sets of reachable statas ggneral, undecidable.

5.1.1 Static Analysis

Static analysis sidesteps undecidability by using abstrac sets of program states are ap-
proximated by elements of some abstract donfais= (D, C, T, 1,1, V). Let« and~ spec-
ify the abstraction and the concretization functions fa domainD, respectively. The function

HﬁG : E — (D — D) gives the abstract semantics of individual program statésneTo refer
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to abstract states at multiple program locations, wealstract-state map®* : V' — D. Sim-
ilar to Chapter 2, we define the operatiansy, C, andu for ©F as pointwise extensions of the
corresponding operations for the domain

A static analysis computes an approximation for the setaibstthat are reachable from an
approximation of the set of initial states according to thsteact semantics of the program. In the
rest of the paper, we view static analysis daack box denoted by, with the following interface:
0! = Q(IT%, ©L), where®l, = o(0,) is the initial abstract-state map, afd is an abstract-state

map that satisfies the property from Eqn. (2.2), i.e.,

YoeV: |Oh)u || TFa((uv)(©(w)| Ceiw).

(u,v)EE

Chapter 2 demonstrated how to construct a particular shaiddysis, 2, based on the abstract-

interpretation framework [27, 29].

5.2 Overview of Guided Static Analysis

A guided-static-analysiframework provides control over the exploration of the pergy's
state space. Instead of constructing a new analysis by nidalesigning a new abstract domain
or imposing restrictions on existing analyses (e.g., byw§xan iteration strategy), the framework
uses an existing static analysis “as is”. Instead, stadeespxploration is guided by modifying the
analyzed program to restrict some of its behaviors; m@tgpialysis runs are performed to explore
all of the program’s behaviors.

The framework is parametrized with a procedure for derigngh program restrictions. The
analysis proceeds as follows: the initial abstract-stastp,l@ﬁb, is used to derive the first program
restriction; standard static analysis is applied to thagmm restriction to comput®?, which
approximates a set of program states reachable ﬁ)@mThen,@”1 is used to derive the second
program restriction, which is in turn analyzed by a standaralysis to comput@%. This process
is repeated until théth derived restriction is equivalent to the original pragy; the final answer
is ©F.
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Figure 5.1 Running example: (a) a loop with non-regular kina(b) control-flow graph for the
program in (a); (c) the set of program statesatthe points with integer coordinates that lie on
the dark upside-down “v” form the precise set of concretéestahe gray triangle gives the best
approximation of that set in the polyhedral domain; (d) tingle program state that reaches

We use the program in Fig. 5.1(a) to illustrate the guidedistinalysis framework. The loop
in the program has two explicit phases: during the first fiéyations, both variable and variable
y are incremented; during the next fifty iterations, variables incremented and variablg is
decremented. The loop exits when the valueydalls below (0. This program is a challenge
for standard widening/narrowing-based numeric analyseause the application of the widening
operator over-approximates the behavior of the first phasktlaus initiates the analysis of the
second phase with overly-conservative initial assumggtidfig. 5.2 illustrates the application of
standard numeric analysis, using the polyhedral abstm@ttadch, to the program. Widening is
performed at node; on the second and third iterations. After the third itenatian ascending
iteration sequence of the analysis converges to a postfit-pA descending iteration sequence
converges in one iteration: it recovers the precision lgsthe application of widening on the
third iteration, but is not able to recover the precisior lmgthe application of widening on the
second iteration. As a result, standard numeric analysislades that at the program point the

relationship between the valuesmoéndy is0 < y < z, and at the program point,, y = —1 and
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CFG Ascending iterations Descending iterations
Node 1stiteration | 2nd iteration | 3rd iteration 1st iteration
Ne T T T T
Y Y Y Y
Nne L ng l o1~
T 1 52
Yy ) Yy Yy
m
X X X | X
T
Yy Yy Yy Yy
n 50+ — 50+ — 50+ —
2 T l T | T I/ x
T 50 [s0 50
51 y* 51 y*
ns 1 |
\ x | T
51 51

Y A /
50—
Ny 1l /

" 5051

Y Y Yy Y
1 r | 1 l r | 1 T 1 T
I 51 7
Y Y Y Y
1{e T 1 } T T 1 T
I'1 T 52 T
) Yy
Ny | 1 =2 | X | 51 X
y | *

Figure 5.2 Standard analysis trace. Widening is performedden;. At the join point,n,, the
polyhedra that are joined are shown in dark gray and thetrisssthown in light gray.
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Figure 5.3 Program restrictions for the program in Fig. sh&:unreachable portions of each CFG
are shown in gray; (a) the first restriction correspondseditist loop phase; (b) the second restric-
tion consists of both loop phases, but not the loop-exit pfigehe third restriction incorporates
the entire program.

x > 50. This is imprecise compared to the true sets of states a¢ thi@gyram points (see Figs.
5.1(c) and 5.1(d)).

Guided static analysis, when applied to the program in Eit{&) consecutively derives three
program restrictions, which are shown in Fig. 5.3: (a) cstisdio the first phase of the program; (b)
incorporates both phases, but excludes the edge that lead$ thhe loop; (c) includes the entire
program. Each restriction is formed by substituting alestr@nsformers associated with certain
edges in the control flow graph with more restrictive transfers (in this case, with., which is
equivalent to removing the edge from the graph). We defed#seription of the procedure for
deriving these restrictions §b.4.1.

Fig. 5.4(a) illustrates the operation of guided static gsial @% = @)ﬁD approximates the set of
initial states of the program. The standard numeric anglyghen applied to the first restriction
(Fig. 5.3(a)), yields the abstract-state nt#pi.e.,0! = Q(II}, ©%). Note that the invariant for the
first loop phase({ < = = y < 51) is captured precisely. Similarl@? is computed a§)(IT%, ©%),
and@% is computed aéZ(Hg, @ﬁz). Because the third restriction is equivalent to the progtasif,

the analysis stops, yieldir@g as the overall result. Note th@lﬂ, is more precise than the solution
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Figure 5.4 Guided static analysis results for the prografign5.1(a): the sequence of abstract
states that are computed by analyzing the program restigctshown in Fig. 5.3; abstract-state
map@)g is the overall result of the analysis.
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computed by the standard analysis: it precisely captueesktp invariant at program point and
the upper bound for the value ofat noden,. In fact, @)g corresponds to the least abstract state
map that satisfies Eqn. (2.2) (i.e., the least fix-point) ierprogram in Fig. 5.1(a) in the polyhedral

domain.

5.3 Guided Static Analysis

We now define guided static analysis formally. We start byeeding the partial order of
the abstract domain to abstract transformers and to entigrgms. The order is extended in a

straightforward fashion.

Definition 5.1 (Program Order) Let f, g : D — D be two abstract transformers, gt= (V, F)
be a control-flow graph, and I&t, 11} : E — (D — D) be two programs specified ovét. We

define the following two relations:

e fEg £ VdeD [f(d)Cg(d)

e IECI, 2 VeeFE |II(e)CIL(e)].

A program restriction is a version of a progrdfhin which some abstract transformers under-
approximate ) those ofII*. The aim is to make a standard analysis (applied to the ctet)
explore only a subset of the reachable states of the origmeram. Note, however, that, if
widening is used by the analyzer, there are no guaranteeshih@xplored state space will be

smaller (because widening is not monotonic, in general).

Definition 5.2 (Program Restriction) Let G = (V, E) be a control-flow graph, and* : £ —
(D — D) be a program specified ovér. We say thall’ : E — (D — D) is arestrictionof IT*
if 1% C 11

To formalize guided static analysis, we need a notion pfaggram transformerthat is, a pro-
cedureA that, given a program and an abstract state, derives a pondsg program restriction.
We allow a program transformer to maintain internal statesset of which will be denoteld We

assume that the skts defined as part of.
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Definition 5.3 (Program transformer) Let IT* be a program, le©* : V — D be an arbitrary
abstract-state map, and lete I be an internal state of the program transformer.pragram

transformer A, computes a restriction af* with respect t@®*, and modifies its internal state, i.e.:
A(TT*1,0%) = (118, 1,), whereIl! C1I* and I, € I.

To ensure the soundness and the convergence of the analgsigquire that the program
transformer possess the following property: the sequehpeogram restrictions generated by a
non-decreasing chain of abstract states must convergeetoritjinal program in finitely many

steps.

Definition 5.4 (Chain Property) Let (@?) be a non-decreasing chain, s.t.,
efcelc..celc..

Let (IT%) be a sequence of program restrictions derived (@) as follows:
(I, Ii1) = A(IT%, 1, ©F)

wherel is the initial internal state foh. We say that\ satisfies thehain propertyif there exists

a natural numben such thafl’ = II¢, for all i > n.

The above property is not burdensome: any mechanism forggmgprogram restrictions can
be forced to satisfy the property by introducing a threslaold returning the original program after

the threshold has been exceeded.

Definition 5.5 (Guided Static Analysis) Let IT* be a program, and |@ﬁ> be an initial abstract-
state map. Also, lef, be an initial internal state for the program transformerGuided static

analysisperforms the following sequence of iterations:
Op=0L and O, =Q(l,,,6)), where(ll},, [i;,) = A(IF", I;, ),

until IT%, | = IT*. The analysis resulti®% = ©F,, = (1%, ,, ©F) = Q(IT*, ©F).
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Let us show that if the program transformer satisfies thencheoperty, the above analysis is

sound and converges in a finite number of steps. Both argsraeatrivial:

Soundness. Let IT¥ be an arbitrary program and I€¢, be an arbitrary abstract-state map. Due to
the soundness dt, the following holds:0! C Q(IT¢, ©!). Let (IT) be a sequence of programs,
and Iet(@ﬁ) be a sequence of abstract-state maps computed accordiregtmtedure in Defn. 5.5.
Because eadh’ is computed af(IT?, ©7_, ), clearly, the following relationship hold&}, C ©% C
LCelC..

Because\ satisfies the chain property, there exists a numbsrch thaﬂ? = II* forall i > n.

The result of the analysis is computed as
i = 0}, = Q(II}, 0}_,) = Q(IF, 6}_))

and, sinced’. C ©) C ©° | (i.e., then-th iteration of the analysis computes a set of program
states reachable from an over-approximation of the settidlistates ©% ), it follows that guided

static analysis is sound.

Convergence. Convergence follows trivially from the above discussioecéusdl? = II* for

some finite numben, guided static analysis converges afidterations.

5.4 Framework Instantiations

The framework of guided static analysis is instantiateduppdying a suitable program trans-
former, A. This section presents two instantiations that are aimeelcatvering precision lost due

to the use of widening.

5.4.1 Widening in loops with multiple phases

As was illustrated ir$5.2, multiphase loops pose a challenge for standard asdgainiques.
The problem is that standard techniques are not able to @makrowing after the completion of
each phase to refine the analysis results for that phaseathstarrowing is invoked at the very

end of the analysis when the accumulated precision loseigreat for precision to be recovered.
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In this section, we present an instantiation of the guidatiesanalysis framework that was
illustrated in§5.2. To instantiate the framework, we need to construct grara transformer,
Apnase, that derives program restrictions that isolate individoap phases (as shown in Fig. 5.3).
Intuitively, given an abstract-state map, we would like iolude into the generated restriction
the edges that are immediately exercised by that abstatet sind exclude the edges that require
several loop iterations to become active.

To define the program transformer, we again rely on the agipdic of a standard static analysis
to a modified version of the program. LHt denote the version dfi* from which all backedges
have been removed. Note that the progﬂﬁihis acyclic and thus can be analyzed efficiently and
precisely’ The program transformex,;,...(I1*, ©%) is defined as follows (no internal states are

maintained, so we omit them for brevity):

T ((u,v)) i TE((u, 0)) (T, ©F) (u)) # L

I ((u,0) =<
1 otherwise

In practice, we first analyze the acyclic version of the paogri.e., computé:)jj = Q(ﬁﬁ, o).
Then, for each edgé, v) € E, we check whether that edge should be included in the program
restriction: if the edge is active (that is,Tif ((u, v>)(éﬁ(u)) yields a non-bottom value), then the
edge is included in the restriction; otherwise, it is onuitte

Fig. 5.5 illustrates this process for the program in Fig(zS).lﬁﬁ is constructed by removing
the edge(ng, n;) from the program. The first column in Fig. 5.5 shows the restititnalyzing
I1* with @g used as the initial abstract-state map. The transformexscaded with the edges
(n1,n3), (ng,n4), and(n4, n,) yield L when applied to the analysis results. Hence, these edges
are excluded from the program restrictiﬁl’in (see Fig. 5.3(a)). Similarly, the abstract-state map
shown in the second column of Fig. 5.5 excludes the édge, ) from the restrictioriI. Finally,
all of the edges are active with respect to the abstraact-stap shown in the third column. Thus,
the program restrictioﬁlg is equivalent to the original program.

Note that the program transformey;,..., as defined above, does not satisfy the chain property

from Defn. 5.4: arbitrary non-decreasing chains of abststate maps may not necessarily lead to

2We use the word “precisely” in the sense that the analysid neerely on widening.
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Figure 5.5 The abstract states that are obtained by anglytzénacyclic version of the program in
Fig. 5.1(a), which are used to construct the program reistnis in Fig. 5.3 (se€5.4.1).
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the derivation of program restrictions that are equivaletihe original program (e.g., unreachable
code will not be included in any restriction). However, ntitat the process is bound to converge
to some program restriction after a finite number of stepssekothis, note that each consecutive
program restriction contains all of the edges included engfreviously generated restrictions, and
the overall number of edges in the program’s CFG is finite.sThusatisfy the chain property, we

makeA, ... returnll* after convergence is detected.

5.4.2 Widening in loops with non-deterministically choserbehavior

Another challenge for standard analysis techniques isgoegéoops in which the behavior of
each iteration is chosen non-deterministically. Suchs$auffen arise when modeling and analyzing
synchronous systems [46, 57], but they may also arise inthkysis of imperative programs when
a condition of an if statement in the body of the loop is aleté@ away (e.qg., if variables used in
the condition are not modeled by the analysis). These lompprablematic due to the following

two reasons:

¢ the analysis may be forced to explore multiple iterationawedrs at the same time (e.g.,
simultaneously explore multiple arms of a non-determiasbnditional), making it hard for

widening to predict the overall behavior of the loop acceisgt

e narrowing is not effective in such loops: narrowing opesdtgfiltering an over-approximation
of loop behavior through the conditional statements in thaytof the loop; in these loops,
however, the relevant conditional statements are buriddmithe arms of a non-deterministic
conditional, and the join operation at the point where thlesamerge cancels the effect of

such filtering.

Fig. 5.6(a) shows an example of such loop: the program madsfgeedometer with the as-
sumption that the maximum speeddsneters per second: (> 0 is an arbitrary integer con-
stant) [46]. Variablesn and sec model signals raised by a time sensor and a distance sensor,
respectively. Signadec is raised every time a second elapses: in this case, the anmablet is

incremented and the speed variable reset. Signal is raised every time a distance of one meter
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volatile bool m, sec;

d=t=s=0;

while(true) t=0
{ { (©)
if (sec)
t++; s = 0; s<d<ext+s
} 0<d<c
else if(m) { (d)
if(s < ¢)
d++; s++;{ s<d<cxt+s
0<s<ec
}} (e)
\ (b)

(@)

Figure 5.6 A model of a speedometer with the assumption tlaimmum speed is meters per
second [46] { is a positive constant): (a) a program; (b) control-flow ¢r&r the program in (a);
(c) abstract state at; afterH”1 (edge(nq,ns) disabled) is analyzed; (d) abstract stateatfter

1T} (edge(n,, n,) disabled) is analyzed; (e) abstract state,aafterIT% = II* is analyzed.

is traveled: in this case, both the distance variabbnd the speed variableare incremented.
Fig. 5.6(b) shows the CFG for the program: the environmeat, (ihe signals issued by the sen-
sors) is modeled non-deterministically (nadg. The invariant that we desire to obtain at nede
isd < ¢ xt+ s, i.e., the distance traveled is bound from above by the nuwibalapsed seconds
times the maximum speed, plus the distance traveled durangurrent second.

Standard polyhedral analysis when applied to this examigldg/the following sequence of

abstract states at node during the firstt iterations (we assume that< c):
{0<s<d<(k—1)xt+s, t+d<k}

The application of widening extrapolates the above seqieng) < s < d } (i.e., by lettingk go
to oo). Narrowing refines the result to0 < s < ¢, s < d}. Thus, unless the widening delay is
greater than, the result obtained with standard analysis is imprecise.

To improve the analysis precision, we would like to analyaeheof the loop’s behaviors in
isolation. That is, we would like to derive a sequence of pmogrestrictions, each of which
captures exactly one of the loop’s behaviors and suppreélssesthers. This can be achieved by

making each program restriction enable a single edge aujgodm the node where the control
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is chosen non-deterministically and disable the othergerAdll single-behavior restrictions are
processed, we can ensure that the analysis is sound by enggdygrogram restriction where all of
the outgoing edges are enabled.

For the program in Fig. 5.6(a), we construct three prograstrictions: Hﬁ enables edge
(ny,ns) and disablegn,, ny), IT} enables edgén,, n,) and disablegn,, n,), I} enables both
edges. Figs. 5.6(c), 5.6(d), and 5.6(e) show the abstraiesé’ (n,), ©%(n,), and®%(n,) com-
puted by guided static analysis instantiated with the alseggience of program restrictions. Note
that the overall result of the analysis in Fig. 5.6(e) impliee desired invariant.

We formalize the above strategy as follows. L&y C V be a set of nodes at which loop
behavior is chosen. An internal state of the program transfo keeps track of which outgoing
edge is to be enabled next for each nodé/jn. One particular scheme for achieving this is to
make an internal stattmap each node € V,,, to a non-negative integer: if(v) is less then the
out-degree of, then/(v)-th outgoing edge is to be enabled; otherwise, all outgodyes are to
be enabled. The initial statg maps all nodes if,,, to zero.

If iteration behavior can be chosen at multiple points (¢lge body of the loop contains a chain
of non-deterministic conditionals), the following probiarises: an attempt to isolate all possible
loop behaviors may generate exponentially-many progratricéons. In the prototype imple-
mentation, we resort to the following heuristic: we simao#ausly advance the internal states for
all reachable nodes ;. This strategy ensures that the number of generated pragsinctions
is linear in|V,,4|; however, some loop behaviors will not be isolated.

As we illustrate in§5.7.2, the order in which the behaviors are enabled afféesoverall
precision of the analysis. In our research, we do not addhesguestion of finding an optimal
order. In our experiments, we used the above heuristic,fantével of precision achieved is quite
good (seg5.7.2). Another possibility would be to randomly choosedhder in which behaviors
are enabled. To increase the probability of obtaining aipeeesult, one can perform multiple
runs of the analysis and take the meet of the resulting vdlL@#s: each run produces an over-

approximation; hence, their meet is also an over-appraima
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Let deg,..(v) denote the out-degree of nodgalso, letedge,.;(v, i) denote the-th edge out-
going fromuv, where0 < i < deg,..(v). The program transforme,;(II*, I, ©F) is defined as
follows:

1 i u € Vig, O%(u) # L, I(u) < degou(u)
I ({u, v)) = and(u, v) # edgeou(u, I(u))
IT*((u,v)) otherwise
The internal state of\,,; is updated as follows: for alt € V,,; such thato*(v) # 1, I.(v) =
I(v) + 1; for the remaining nodes, (v) = I(v).

As with the first instantiation, the program transformerwiedi above does not satisfy the chain
property. However, the sequence of program restrictionsigged according to Defn. 5.4 is bound
to stabilize in a finite number of steps. To see this, notedheé node € V,,; becomes reachable,
at mostdeg,,;(v) + 1 program restrictions can be generated before exhaustliing e choices
for nodev. Thus, we can enforce the chain property by making returnII* once the sequence

of program restrictions stabilizes.

5.5 Disjunctive Extension

A single iteration of guided static analysis extends theentrapproximation for the entire set
of reachable program states (represented with a singleaabstomain element) with the states
that are reachable via the new program behaviors introdanetthat iteration. However, if the
abstract domain is not distributive, using a single abstlamain element to represent the entire
set of reachable program states may degrade the precisibe ahalysis. A more precise solution
can potentially be obtained if, instead of joining togettier contributions of individual iterations,
the analysis represents the contribution of each iteratitina separate abstract-domain element.

In this section, we extend guided static analysis to perfsueh disjunctive partitioning. To
isolate a contribution of a single analysis iteration, wel ath extra step to the analysis. That
step takes the current approximation for the set of reaehpldgram states and constructs an
approximation for the set of states that immediately esertlie new program behaviors introduced

on that iteration. The resulting approximation is used am#isg point for the standard analysis
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run performed on that iteration. That is, an iteration of éimalysis now consists of three steps:
the algorithm (i) derives the (next) program restrictidh (ii) constructs an abstract-state map
that forces a fix-point computation to explore only the newawors introduced iflf; and (iii)

performs a fix-point computation to analyé, using©? as the initial abstract-state map.

Definition 5.6 (Analysis History) Analysis historyH,, captures the sequence of abstract-state maps
obtained by the firsk: > 0 iterations ofdisjunctiveguided static analysisH; maps an integer
i € [0, k] to the result of the-th iteration of the analysisH; approximates the set of program

states reached by the fifstanalysis iterations as follows:

k

Y(Hy) = | J(Hi(0)).

=0
The introduction of the analysis history necessitates aghan the definition of a program

transformerA (Defn. 5.3): instead of a single abstract domain elementogram transformer
must accept an analysis history as input. We leave it in tinelhaf the user to supply a suitable
program transformef,. In our implementation, we used a simple, albeit consergatiay to
construct such a program transformer fram

k

A, I, Hy) = A(IF 1, || Hi(0)).

=1

For the program in Fig. 5.1, derives the same program restrictions as the ones derivplhiny

guided static analysis (see Fig. 5.3).

Definition 5.7 (Fronier Edges) Let Hﬁk be the program restriction derived on th¢h iteration of
the analysis, wheré > 1. The set offrontier edgedor the k-th iteration consists of the edges
whose associated transformers are changdd.ifrom IT:_, (for convenience, we defing} to
map all edges td.):

F={ce BT #105_(e)}.

For the program in Fig. 5.1, the sets of frontier edges on #w®rsd and third iterations are
Fy = {(ne,n1), (n1,m2), (N2, na), (N4, ns), (N5, n6), {16, n1) 1, Fo = {(n1,n3), (n3,na) y andFz =

{(na,12) }-
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Definition 5.8 (Local Analysis Frontier) Thelocal analysis frontieffor the k-th iteration of the
analysis is an abstract-state map that approximates tloé¢ stettes that are immediately reachable
via the frontier edges i:

k-1

LFew) =[] | L MG, o) (Hiea () (w)

(up)eF, L i=0
For the program in Fig. 5.1, the local analysis frontier oa second iteration contains a single
program statet F,(n3) = {x = y = 51}, which is obtained by applying the transformer associated
with the edge(n,, n3) to the abstract staté; (1)(n;) = {0 <z =y < 51}.

Some program states in the local analysis frontier may hisgady been explored on previous
iterations of the analysis. Thglobal analysis frontierefines the local frontier by taking the

analysis history into consideration.

Definition 5.9 (Global Analysis Frontier) Global analysis frontiefor the k-th iteration of the
analysis is an abstract state map that approximates thd stdtes in the local analysis frontier
LF} that has not yet been explored by the analysis:

k—1

GFi(v) = a(y(LFx(v)) — | ) v(Hi-1(5)(v))),

=0

where “~" denotes set difference.

However, this definition of global analysis frontier is haodcompute in practice. In our imple-

mentation, we take a simplistic approach and compute:

GR(v) = if LFx(v) € {Hy1(i)(v) [0<i <k —1}
' LF.(v) otherwise

For the program in Fig. 5.1GF, = LF, andGF; = LFs;.

Definition 5.10 (Disjunctive Extension) LetII* be a program, and |@ﬁ> be an abstract state that

approximates the initial configuration of the program. Algb/, be an initial internal state for the
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program transformer\ . The disjunctive extension of guided static analysis caepthe set of

reachable states by performing the following iteration,
Hy = [0 = @L] and Hy., = H,U [(i +1)— QT GFoy)|
where(IT:, |, Iiv1) = Ay (I, I;, H,),
until H?H = II*. The result of the analysis is given Ib%_,.

Fig. 5.7 illustrates the application of the disjunctivesmgion to the program in Fig. 5.1(a). The
analysis precisely captures the behavior of both loop ghaseo, the abstract value computed for

program point, exactly identifies the set of program states reachablg.at

5.6 Lookahead Widening

The guided-static-analysis framework has extra companaticosts associated with it: that is,
guided static analysis must perform certain auxiliary apens, which are external to the actual
computation of the set of reachable states. For instanceaoh iteration of the analysis, the
program transformeA must be executed. In the case of disjunctive extension, timeber of
auxiliary operations performed on each iteration is everatgr: the operations that have to be
executed in addition td include the computation of the local and global analysistieys.

In this section, we propose an implementation for the ing#ton of guided static analysis
in §5.4.1, which targets widening precision in loops with npl#iphases. The implementation
allows to strip away completely the cost of auxiliary openas for the non-disjunctive guided
static analysis: that is, the implementation performs dageful” work from the point of view of
state-space exploration. However, there is certain pogay: namely, some restrictions must be
imposed on the implementation of a standard analysis far et usable in the framework; also,

the disjunctive extension does not fit well with this implertaion scheme.

5.6.1 Approximation of Loop Phases

Instead of deriving syntactic program restrictions expllicas we described if5.3, lookahead

widening approximates this behavior by using a speciallyigteed abstract value to guide the
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Figure 5.7 Disjunctive extension of guided static analy#ie analysis trace for the program in

Fig. 5.1(a); for each analysis phase, the global frontierthe resulting abstract state are shown.
Note that the set of abstract values computed for programt pgidescribes the true set of states
reachable at,, (see Fig. 5.1(d)).
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analysis through the program. That is, the analysis prdpagapair of abstract values: the first
value (referred to athe main valugis used to decide at conditional points which paths are to be
explored; the second value (referred totlas pilot valug is used to compute the solution along
those paths. Widening and narrowing are only ever appli¢degilot value. Intuitively, the main
value restricts the analysis to a particular loop phaselewhe pilot value computes the solution
for it. After the pilot value stabilizes, it is used to upd#te main value, essentially switching the
analysis to the next syntactic restriction in the sequence.

Let D be an arbitrary abstract domaifi: = (D, C, U, T, 1, V., A, {7}), whereD is a set of
domain elementd; is a partial order orD; LI, T, and_L denote least-upper-bound operation, the
greatest element, and the least elemerid o¥ith respect ta_; V andA are the widening operator
and the narrowing operator; agad: D — D} is the set of (monotonic) abstract transformers as-
sociated with the edges of program’s CFG (i.e., the transéos inHﬁG—we user here to simplify

the notation). We construct a new abstract domain:

Dra=(Dra,Cra,Ura, Tra, Lra, Via, {1ea}),

each element of which is a pair of element®ofone for the main value and one for the pilot value.
The pilot value must either equal the main value or over-axprate it. Also, the main value (and
consequently the pilot value) cannot be bottom. We add aapsement to represent bottom for

the new domain:
Dpa = {<dm7dp> | dmvdﬁl) €D, d,E dp7 dm # J—} U {J—LA}-

The top element for the new domain is defined triviallylas, = (T, T).

Abstract transformers are applied to both elements of tlre ptowever, to make the main
value guide the analysis through the program, if an appdicadf the transformer to the main
value yields bottom, we make the entire operation yielddrott

ra((dd)) = Lra if 7(d) =L
(t(d),7(d,)) otherwise

We define the partial order for this domain as lexicographilepon pairs:

(ems ) Cra {dm,dp) = (6 T di) V (€ = di) A (¢ E dp)].-
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This ordering allows us to accommodate a decrease in thie/pilee by a strict increase in the main
value, giving the overall appearance of an increasing sepuddowever, the join operator induced
by C; 4, when applied to pairs with incomparable main values, $etptlot value to be equal to
the main value in the result. This is not suitable for our teghe, because joins at loop heads,
where incomparable values are typically combined, wouse lall the information accumulated by
pilots. Thus, we use an over-approximation of the join ofperhat is defined as a componentwise
join:
(Cmscp) Upa (dm, dp) = (e U dy, ¢y U dy,) .

The definition of the widening operator encompasses thenessgf our technique: the main
value is left intact, while the pilot value first goes througghascending phase, then through a de-
scending phase, andpsomotednto the main value after stabilization. Conceptually,héening

operator is defined as follows:

(cm Udm,c, Vd,) ifthe pilot value is ascending
(Cms ) Via(dm,dy) = {cpy Ud, c, Ad,) ifthe pilot value is descending
(dy, dp) if the pilot value has stabilized

The direct implementation of the above definition requiresanalyzer to be modified to detect
whether the pilot value is in ascending mode, descendingenardvhether it has stabilized. Also,
for short phases, there is a possibility that the main vakits ¢he phase before the pilot value
stabilizes, in which case the pilot must be switched to adiogmode. These are global properties,
and the modifications that are required depend heavily omp&mentation of the analyzer. In

our implementation, we took a somewhat different route ciwlwe describe in the next section.

5.6.2 Practical Implementation

To simplify the integration of our technique into an exigtianalyzer, we impose on both the
analyzer and the underlying abstract domain restrictibasdllow us to check locally the global

properties that are necessary for defining a widening operat
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e R1. Analyzer restriction: the analyzer must follow gecursive iteration strategj18];
that is, the analysis must stay within each WTO componerit thd values within that

component stabilize. (Sé2.3.4 for the definition of recursive iteration strategy.)

e R2. Abstract domain restriction: the abstract domain must possesstable widening

operator[18]; that is,x C y must imply thatyVz = y.

Furthermore, our implementation does not utilize narrgnoperators, and only computes the
equivalent of a single descending iteration for each loggsphWe believe that this simplification
is reasonable because meaningful narrowing operatorsgreefined for a few abstract domains;
also, in the experimental evaluation we did not encountamgtes that would have significantly
benefited from a longer descending-iteration sequences.

We define the widening operator as follows:

(e ) it (dusdy) Cra {Cms )
(Cms &) Via(dm,dp) = (d,, d) if d, C ¢,

(em Udpm, c,Vd,) otherwise
The first case ensures that the widening operator is stabkesdcond case checks whether the pilot
value has stabilized, and promotes it into the main valuee @t the pilot value that is promoted
is notc,, but the valuel,,, which was obtained from, by propagating it through the loop to collect
the effect of loop conditionals (i.e., one possibly-desiteg iteration is performed). The last case
incorporates the pilot's ascending sequence: the mairesave joined, and the pilot values are

widened.

Soundness. It is easy to see that the results obtained with our technégiaesound. Consider
the operations that are applied to the main values: theyigalgcmimic the operations that the
standard approach applies, except that widening is cordplitierently. Therefore, because the
application ofV; 4 never decreases main values and because main values nhilstestfar the

analysis to terminate, the obtained results are guaratdaelsound.

Convergence. We would like to show that a standard analyzer that is cootclin accordance

with the principles outlined in Chapter 2 and that emplBys, as an abstract domain converges.
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The use of the recursive iteration strategy (R1) allows ugna our attention to a single WTO
component: that is, if we show that the analysis convergearf@rbitrary component, then it must
converge for the entire program. Let us focus on the head aflzsitrary component: this is where
both widening is applied and stabilization is checked.

First, we show that either the pilot value is promoted or thi&re component stabilizes after a
finite number of iterations. To do this, we rely on the propeftthe recursive-iteration strategy
that the stabilization of a component can be detected byligation of the value at its head [18,
Theorem 5]. The main value goes through a slow ascendingesequ during which time the
analysis is restricted to a subset of the component’s botg. pilot goes through an accelerated
ascending sequence, which, if the underlying wideningaipeK’ is defined correctly, must con-
verge in a finite number of iteration§/; 4 detects stabilization of the pilot’s ascending sequence
by encountering a first pilot valud,) that is less than or equal to the pilot value on the previbus i
eration ¢,): because the widening operator is stable (R2), applicafovidening will not change
the previous pilot value. Note thagtis a (post-)fix-point for the restricted component, apds the
result of propagating that (post-)fix-point through the saestricted component, and thus, is itself
a (post-)fix-point. Two scenarios must now be considerdtieethe main value has also stabilized
(i.e.,d,, C ¢y), in which cas€(d,,,d,) Cra (cm,c,) and the entire component stabilizes (due to
stability of V1, 4); or the main value has not yet stabilized, in which case plst()fix-pointd,, is
promoted into the main value.

Next, we show that only a finite number of promotions can eeeuo The argument is based
on the number of edges in the CFG. Depending on whether orewtGFG edges within the
component’s body are brought into consideration by the ptan of the pilot value into the main
value, two scenarios are possible. If no new edges are brmtgltonsideration, then the analysis
stabilizes on the next iteration because both main valugaoidvalue are (post-)fix-points for this
component. Alternatively, new CFG edges are taken intoideration. In this case, the process
described in the previous paragraph starts anew, eventeatling to the next promotion. Because

the body of the component is finite, new edges can only be Ibtontp consideration a finite
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number of times. Thus, there can only be a finite number of ptans before the analysis of a

component converges.

5.6.3 Reuvisiting the Running Example

We illustrate the technique of lookahead widening by apmyit to our running example.
Fig. 5.8 shows the trace of abstract operations performethdéyanalysis. The first iteration is
identical to the standard numeric analysis shown in Fig. Rfferences are manifested on the
second iteration: the widening operator propagates theodifirad main value, but applies widen-
ing to the pilot value. At node,, note that the pilot value has been filtered by the conditiona
the edge(nq, ny). In contrast, in Fig. 5.2, the abstract statexaton the second iteration has an
unbounded band running off to the northeast. On the thirdtitan, the pilot value that reaches
noden; is smaller than the pilot value stored there on the seconatib®. Thus, this pilot value
is promoted into the main value. This corresponds to thetisolwf the first loop phase from
Fig. 5.3(a). As the third iteration progresses, the analgsirts exploring new CFG edges that
were brought into consideration by the promotion, in essganalyzing the program restriction
from Fig. 5.3(b).

On the fourth iteration, at,, the widening operator is applied to the pilot value agaihnA
note that the pilot value has been filtered through the cimdit on the edgén,, ns;). On the
fifth iteration, the pilot value is promoted again. From heng the analysis proceeds in the same
fashion as the standard analysis would, and converges areittéteration. The analysis obtains
more precise abstract values at all program points, exoeptfwhere the value is the same. Also,
note that the resulting solution is similar to that obtainith the first instantiation of guided static

analysis (see Fig. 5.4).

5.6.4 Discussion

In this section, we discuss several issues that are of mtevim lookahead widening. These
issues include interfacing with existing analyses toold @thniques, and certain limitations of

lookahead widening.
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Figure 5.8 Lookahead-widening analysis trace. Widenirgpgied at nodex;. Main values are
shown in dark gray. Light gray indicates the extent of thetpialue beyond the main value. Pilot
values are promoted on the 3rd and 5th iterations.
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“Accumulating” analyzers. Some analyzers, rather than computing the abstract val@eG&G
nodev € V as the join of the values coming from predecessors, i.@¢gadsof computing
O ()= || T((u,0)(O}(w)),
(u,v)EE
accumulatethe abstract value at by joining the (single) abstract value contributed by a give

predecessai; to the value stored at
©%,,(v) = ©f(v) U IF({m;, n))) (O (m;)).

In particular, the WPDS++ implementation of weighted pusiid systems [69], on which our
numeric program analysis tool is based, follows this model.

The challenge that such an analyzer design poses to loakahdaning is that the pilot value
cannot be promoted directly into the main value by applywhg, of the previous section. That is,

it is not sound to update's value by
©%,1(v) = ©(v) Vpa I ((my,n))) (6% (m,))

because if the pilot value dfi*((m;,n)))(©%(m;)) is promoted to be the main value at the
contributions of other’s predecessors may be IGsEor instance, in Fig. 5.8, on the third iteration,
an accumulating analyzer would attempt to widen the value ®iith the value ati. (The identity
transformation is associated with ed@ge, n,).) The pilot value at is strictly smaller than the
pilot value atn,, and thus qualifies to be promoted. However, promoting itld/easult in an
unsound main value: the poiftt, 0) would be excluded.

On the other hand, if the analyzer first performs a join and thielens (as is customarily done

in “accumulating” analyzers): i.e.,

O 1 (0) = OH(v) Via [0F(0) Una T((mi, m)))(©(my))] (5.1)

3In contrast, in analyzers that updatwith the join of the values from all predecessors, any proomadf the pilot
in
Of41 (1) = 0%4(0) Via [ | TF((u,0))(0}(w))

(u,v)EE

does account for the contributions from all predecessors.
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then the application of the join operatcaincelsthe effects of filtering the pilot value through the
conditionals in the body of the loop, thereby reducing |dea&d widening into plain widening
with a delay.

To allow lookahead widening to be used in such a setting, wéty} redefine the widening
operator for accumulating analyzers. In particular, befoaking decisions about promotion, we
join the new pilot value with the main value that is storednat mode. This makes the pilot value
account for the values propagated along other incomingsedd@&e new widening operator is

defined as follows:

<Cm7 CP) if <dm7 dp) ELA <Cm7 Cp>
(Cms Cp) VIL (dm, dp) = (dy U cm, dy U ci) if d,Ucn, Cc,

(dy, U em, c,V(dyUcy,)) otherwise

Note that for this widening operator to work, the wideningstioe performed as follows:
07,1 (v) = ©F(v) Vi TF((mi, n)))(©F (my)).

and not according to Eqgn. (5.1).

Runaway pilots. In loops (or loop phases) that consist of a small number ohti@ns, it is
possible for the analysis to exit the loop (or phase) befbeeptilot value has stabilized. For
instance, if the condition of the if-statement in the rumnaxample is changed te < 1, the
pilot value will be widened on the second iteration, but witt be effectively filtered through the
conditionals because of the contribution from the pathuglonodens, which is now enabled by
the main value. As a result, the analysis will propagate @t pihlue that is larger than desired,
which can lead to a loss of precision at future promotions. réfer to this as the problem of
runaway pilots

One possible approach to alleviating this problem is togrerfa promotion indirectly: that is,
instead of replacing the main value with the pilot value,lgpgdening “up to” [57] to the main
values using the symbolic concretization [96] of the pilatue as the set of “up to” constraints.

However, we did not try this approach in practice.
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Memory usage. The abstract states shown in Fig. 5.8 suggest that the mhia aad the pilot

value are often equal to each other: in our running examipie hblds for abstract states that arise
on the first, third, and fifth iterations of the analysis (mthran half of all abstract states that arise).
In our implementation, to improve memory usage, we deteststituation and store a single value

instead of a pair of values when the pilot value is equal tanthé value.

Delayed widening. Another interesting implementation detail is the intei@ctof lookahead
widening with a commonly used technique calléelayed widening The idea behind delayed
widening is to avoid applying the widening operator during firstk iterations of the loop, where
is some predefined constant. This allows the abstract stedesumulate more explicit constraints
that will be used by the widening operator to generalize top Ibehavior. We found it useful
in practice to reset the delayed-widening counter afteh gmomotion of the pilot value. Such

resetting allows the analysis to perfokmvidening-free iterations at the beginning of each phase.

5.7 Experimental Evaluation

In this section, we present the experimental evaluatioh@féchniques that were described in
this chapter. We experimented with a stable and time-testpttmentation of lookahead widen-
ing, and with early prototypes of the two instantiations oidged static analysis.

We compared lookahead widening to standard numeric asalgshniques, which we pre-
sented Chapter 2. We built a small analyzer that incorpdratgh the standard approach and
lookahead widening, and applied it to a collection of benatks that appeared recently in the
literature on widening [14, 26]. Lookahead widening imprd\analysis precision for half of the
benchmarks, with overheads of at magi; extra analysis iterations (i.e., extra chaotic iteratiens
see§2.3.4).

Lookahead widening is also a part of our WPDS-based numesgram-analysis tool. There,
incorporation of lookahead widening carries special gigamnce: the integration of a descending
iteration sequence, which is an integral part of standarderic analysis, would have required

a major redesign of the WPDS++ solver, on which our implemigon is based. In contrast,
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the integration of lookahead widening did not require anydifications to the analysis engifie.
The integration of lookahead widening allowed our numenialgsis tool to establish tighter loop
invariants for 4-40% of the loops in a selected set of benchsyavith overheads ranging from 3%
to 30%.

We implemented prototypes for the instantiations of guisdic analysis within the WPDS-
based analysis tool. The prototypes were compared aghm&iakahead-widening implementa-

tion on a collection of small benchmarks from [14, 26, 46].

5.7.1 Lookahead-Widening Experiments

We experimented with two implementations of lookahead widlg: the first implementation
was builtinto a smallintraprocedural analyzer; the segéomdementation was built into an off-the-
shelf weighted-pushdown-system solver, WPDS++ [69]. llloases, incorporation of lookahead
widening required virtually no changes to the analysis eagoth implementations used polyhe-

dral abstract domains built with the Parma Polyhedral Lripf@].

Intraprocedural implementation. We applied the first implementation to a number of small
benchmarks that appeared in recent papers about widenimg b&@nchmarksest* come from
work on policy iteration [26]. Thesstree*x examples come from [14], where they were used to
motivatethreshold wideninga human-assisted widening technig@&ase is our running exam-
ple, andnerge is a program that merges two sorted arrays.

Because lookahead widening essentially makes use of omel mfudescending iteration for
each WTO component, we controlled for this effect in our expents by comparing lookahead
widening to a slight modification of the standard wideningm@ach: in Standard+, after each
WTO component stabilizes, a single descending iterati@pgied to it® This modified analysis

converged for all of our benchmarks, and yielded solutitvas were at least as precise and often

4Weighted pushdown systems, by default, do not support vigeiCertain changes had to be made to the engine
to make it widening-aware.

°In general, interleaving ascending and descending iteraquences in this way is an unsafe practice and may
prevent the analysis from converging.
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Program|| Vars | Loops | Depth Standard+ Lookahead | Overhead| Improved
steps | LFP || steps| LFP | (% steps)| precision (%)

testl 1 1 1 19| vyes 19| yes - -
test2 2 1 1 24| vyes 24| vyes - -
test3 3 1 1 16 - 19 - 18.8 -
test4 5 5 1 79 - 97 - 22.8 33.3
test5 2 2 2 84| vyes 108 | yes 28.6 -
test6 2 2 2 110 - 146 - 32.7 100.0
test7 3 3 2 93| no 104 | yes 11.8 25.0
test8 3 3 3 45 | yes 45 | yes - -
test9 3 3 3 109 | vyes 142 | yes 30.3 -
test10 4 4 3 227 | no 266 | no 17.2 20.0
astreel 1 1 1 16| no 19| vyes 18.8 50.0
astree? 1 1 1 27 - 33 - 22.2 -
phase 2 1 1 46 | no 58| yes 26.1 100.0
merge 3 1 1 63| no 64 | yes 1.6 100.0

Table 5.1 Lookahead wideining: intraprocedural impleragah results. Columns labeletieps
indicate the number of node visits performdd:P indicates whether the analysis obtains the
least-fix-point solution (- indicates that we were not @lib determine the least fix-point for
the benchmark)improved precisiomeports the percentage whportantprogram points at which
the analysis that used lookahead widening yielded smadlkreg (-’ indicates no increase in
precision). Important program points include loop headseit nodes.

more precise than the ones obtained by the standard analijsésonly exception wasest10,
where the results at some program points were incomparakie tstandard technique.

Tab. 5.1 shows the results we obtained. To determine leapbfnts, we ran the analysis with-
out applying widening. The results indicate that lookahead widening achieveddrighecision
than the strengthened standard approach on half of the tmamkk. Also, the cost of running
lookahead widening was not extremely high, peaking at aB8U extra node visits fotest6.

We will discuss one benchmark in detail.datreel, an inequation is used as the loop condi-

tion; e.g.,

SFor some benchmarks, this approach was not able to prodeit&solutionitest3 andastree2 contain loops
of the form ‘while (1) {...}"and so the analysis failed to terminate with widening tarn#; programsest4 and
test6 terminate, but polyhedral analysis of them (with no widepidoes not. This is due to the fact that the set of
polyhedra over rational numbers (as implemented in Parnhg ks not form a complete lattice: i.e., it may contain
chains of polyhedra that do not have upper bounds; e.g.idemssequence of one-dimensional polyhedra (intervals),
whose lower bound is fixed and whose upper bounds gradugllpaph to an irrational number.
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Name Program Push-down System Time (sec) Overhead| Improved

instr coverage || stack | same | push| pop std look (%) precision

(%) sym level ahead (%)

speex 22364 7.9 517 483 26| 20 1.13| 1.33 174 40.0
gzip 13166 29.0 1815| 2040 76| 20 570 7.32 28.4 38.2
grep 30376 22.0 9029 | 10733| 201 | 39| 18.62| 20.61 10.7 3.3
diff 142959 24.7 9516 | 11147 217 | 67| 28.41| 32.87 15.7 7.5
plot 119910 27.5 || 15536| 15987 | 1050| 159| 44.08| 45.41 3.0 20.3
graph || 129040 26.0 | 16610| 17800| 824 | 155| 53.92| 56.67 5.1 19.8
calc 178378 18.7 || 26829 | 28894 | 1728 | 241 | 85.33| 92.23 9.3 5.2

Table 5.2 Lookahead widening: WPDS implementation resuitstr lists the number of x86 in-
structions in the prograntCoveragendicates what portion of each program was analyZtdck
symbolscorrespond to program points: there are (roughly) two s&chkbols per basic block.
Same-levetules correspond to intraprocedural CFG edges between blasiks;pushrules cor-
respond to procedure callppp rules correspond to procedure returns. Reported timesoare f
the WPDSpoststaroperation. Precision improvement is given as the percermégpop heads at
which the solution was improved by the lookahead-widenaudphique.

i=0;

while(i !'= 100)
i++;

The inequations # 100’, which is hard to express in abstract domains that rely awvexity, is

modeled by replacing the corresponding CFG edge with twegdgne labeled withi ‘< 1007,

the other labeled withi*> 100’. The application of widening extrapolates the upper bofand

to +o0; the descending iterations fail to refine this bound. In rstt lookahead widening is able

to obtain the precise solution: the main value, to which widg is not applied, forces the analysis

to always follow the ¢ < 100’ edge, and thus the pilot value picks up this constraint teebeing

promoted.

WPDS implementation. We used the WPDS++ implementation to determine lineariosiat
over registers in x86 executables. CodeSurfer/x86 was tasegtract a pushdown system from
the executable. The contents of memory were not modeledeaut$ from memory were handled
conservatively, e.g., by assigning the valu® the corresponding register (s¢&1.2). Also, we
chose to ignore unresolved indirect calls and jumps: asab@lt; only a portion of each program

was analyzed. We applied this implementation to a numberMi) GQinux programs that were
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Prog. || Lookahead GSA Disjunctive GSA

steps | phases| steps | prec. | speedup (%)| phases| steps | prec. | speedup (%
testl 58 2 54 - 7.9 2 42 - 22.2
test2 56 2 56 - - 2 42 - 25.0
test3 58 1 44 - 24.1 1 42 - 4.5
test4 210 6 212 - -1.0 6 154 - 27.4
test5 372 3 368 - 11 3 406 1/3 -10.3
test6 402 3 224 | 313 44.3 3 118 2/3 47.3
test7 236 3 224 - 3.4 3 154 | 4/4 31.3
test8 106 4 146 - -37.7 3 114 - 21.9
test9 430 4 444 - -3.3 4 488 | 4/4 -9.9
test10 418 4 420 - -0.5 4 246 5/5 41.4

Table 5.3 Guided static analysis: loops with multiple plsa§B.4.1): GSA is compared against
lookahead widening; disjunctive GSA is compared againgk G&pss the total number of steps
perfomed by each of the analysgdiasess the number of GSA phasegrec reports precision
improvement: “-” indicates no imrovemerit/m indicates that sharper invariants are obtained at
k out of m “interesting” points (interesting points include loop deand exit nodes);

compiled under Cygwin. The lookahead-widening techniqae eompared to standard widening.
No descending-iteration sequence was applied, becausmiitiinave required a major redesign
of the WPDS++ solver. Tab. 5.2 presents the results obtaioe#tahead widening improves the

precision of the analysis on all of the benchmarks, and rutisam overhead of at most 30%.

5.7.2 Guided-Static-Analysis Experiments

We implemented a prototype of the guided-static-analyarméwork with both of the instanti-

ations from§5.4.1 and;5.4.2 within the WPDS based numeric program analyzer. As aioned

in §5.6, there are extra operations that are carried out by dwstaic analysis, such as deriving
program restrictions and computing analysis frontiersthenWPDS setting, there are additional
concerns that have to be addressed. Most notably, some aVBIDS techniques, such as the
support for local variables [75], are implemented as weiwgtappers (i.e., a layer on top of an
existing weight that also exposes a weight interface). &hasppers must be preserved from it-
eration to iteration of guided static analysis. In our catienplementation, we did not attempt to
optimize or even speed up these operations. Instead, guapriconcern was the precision of the

analysis and the efficiency of actual state-space exptoralihus, we measure the performance of
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the analysis in terms @&nalysis stepseach step corresponds to an application of a single abstrac
transformer. Note that, although, guided static analysis seems to sorastoutperform looka-
head widening in terms of analysis steps, in practice, gligtatic-analysis runs take much longer
compared to lookahead-widening analysis runs.

A widening delay of 4 was used in all of the experiments. Sppedoverheads) are reported as
the percentage of extra steps performed by the baselingsiédvaluated analysis), respectively.

We applied the instantiation fro§b.4.1 to a subset of benchmarks that were used to eval-
uate the intraprocedural implementation of lookahead miteg Tab. 5.3 shows the results we
obtained. With the exception akst6, the results from GSA and lookahead widening are com-
parable: the precision is the same, and the difference inimgrtimes can be attributed to im-
plementation choices. This is something we expected, Isec&®SA is a generalization of the
lookahead-widening technique. However, GSA yields mudktebeesults fortest6: in tests6,
the loop behavior changes when the induction variable iglegucertain values. The changes in
behavior constitute short loop phases, which cause prablemookahead widening. Also, GSA
stabilized in a fewer number of steps because simpler pdhgarise in the course of the analysis.

Tab. 5.3 also compares the disjunctive extension to plaid.@8cause the analysis performed
in each phase of the disjunctive extension does not havestiaiglish the invariants obtained on
previous phases, the disjunctive extension requires famalysis steps for most of the bench-
marks. To compare the precision of the two analyses, weddine analysis history obtained by
the disjunctive extension for each program location intongle abstract value: for half of the
benchmarks, the resulting abstract values are still sagmifly more precise than the ones obtained
by plain GSA. Most notably, the two loop invariantstast6 are further sharpened by the dis-
junctive extension, and the number of analysis steps ibéureduced.

The instantiation i5.4.2 is applied to a set of examples from [14, 4&tree is the (second)

example that motivates the use of threshold widening in, [dgd¢edometer is the example used

“Note that, due to the difference between implementatitwesstepsin Tab. 5.1 and in Tab. 5.3 are quite different:
in Tab. 5.1, one step corresponds to applying a correspgiidinsformer te@achpredecessor of the node, computing
the join of the resulting values, and updating the value af ttode; in Tab. 5.3, one step corresponds to applying
a transformer associated withsingle CFG edge and updating the value stored at the destinatidrab&tige. This
explains the difference in values between the two tables.
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Program Vars | Nodes| ND Lookahead GSA Overhead
steps | inv. runs | phases| steps | inv. (%)
astree 1 7 1(2) 104 | no 2 3 107 | yes 2.9
speedometef] 3 8 1(2) 114 | no 2 3 207 | yes 81.6
gas burner 3 8 2(2) 164 | no 4 35| 1825 | 3/4 11.3
gas burnerll| 4 5 1(3) 184 | no 6 4 162 | 4/6 -12.0

Table 5.4 Guided static analysis: loops with non-deterstimbehavior §5.4.2):ND k(m) gives
the amount of non-determinisn: = |V,,4| andm is the out-degree for nodes i},4; runsis the
number of GSA runs, each run isolates iteration behaviowifferent order;stepsis the total
number of analysis steps (for GSA it is the average acrossradl);phasess the average number
of GSA phasesinv. indicates whether the desired invariant is obtained (foAGS/m indicates
that the invariant is obtained dnout of m runs).

in §5.4.2; the two other benchmarks are the models of a leakiadpganer from [46]. The results
are shown in Tab. 5.4: guided static analysis was able tblestiahe desired invariants for all of
the examples.

When defining the instantiation, we did not specify an ordewhich the loop behaviors are
to be enabled. An interesting experimental question is ndrehere is a dependence between the
order in which behaviors are enabled and the precision oétladysis. To answer this question,
we enumerated all possible orders in which iteration beiravdan be enabled for these examples.
Interestingly, the precision of the analysis on the two lpasier benchmarks does depend on
the order in which the behaviors are enabled. However, ifotider is picked randomly, guided
static analysis has more th&6G% chance of succeeding for these benchmarks. An interesting
open question is whether there is a more systematic way @arimg loop behaviors to improve
the precision of the analysis. Another possibility is to osdtiple runs—taking the meet of the

results [105]—as a way to boost the chances of succeeding.

5.8 Related Work

In this section, we discuss some of the techniques that éatedeto guided static analysis
and lookahead widening. We consider three groups of teaksiqtechniques that have some
control over state-space exploration, techniques thateaddvidening precision, and techniques

that address precision loss due to non-distributivity ctedztion.
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5.8.1 Controlled state-space exploration

Bourdoncle discusses the effect of an iteration strategh®@overall efficiency of analysis [18].
Model checking in general, addzy abstractio59] in particular, perform state-space exploration
in a way that avoids performing joins: in lazy abstractidie CFG of a program is unfolded as a
tree, and stabilization is checked by a spec@leringrelation. Thedirected automated random
testing (DART}echnique [45] restricts the analysis to the part of the mogthat is exercised by
a particular test input; the result of the analysis is usegetoerate inputs that exercise program
paths not yet explored. The analysis is carried out dyndipibg an instrumented version of the
program. Grumberg et al. construct and analyze a sequengedef-approximated models by
gradually introducing process interleavings in an efforspeed up the verification of concurrent
processes [54]. We believe that the GSA framework is moregemhan the above approaches.
Furthermore, the GSA instantiations presented in this telnagzldress the precision of widening,

which is not addressed by any of the above techniques.

5.8.2 Widening precision

Improving widening operators [6]. One research direction is the design of more precise widenin
operators—that is, widening operators that are better@tioag the constraints that are present in
their arguments. This approach is orthogonal to our teateitpokahead widening would benefit

from the availability of more precise (base-domain) widgnoperators.

Widening “up to” [57] (a.k.a. limited widening). In this technique, each widening point is
augmented with a fixed set of constraint$, The value that is obtained from the application of
the standard widening operator is further restricted bgétumnstraints from/ that are satisfied by
both arguments of the widening operator. Given a well-ch@st of constraints, this technique is
very powerful. A number of heuristics are available for dieg these constraint sets. In principle,
the propagation of the pilot value by our technique can bev@tkas an automatic way to collect
and propagate such constraints to widening points. Altesglg, whenever such constraint sets are

available (e.g., are derived by some external analysisuniste), lookahead widening can utilize
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them by applying widening “up to” to the pilot values. ThislMde beneficial when lookahead
widening is not able to break a loop into simpler phases (istance, if a loop contains a non-

deterministic conditional).

“New-control-path” heuristic [57]. This heuristic addresses imprecision that is due to new loop
behaviors that appear on later loop iterations: it detetistiher new paths through the loop body
were explored by the analysis on its last iteration—in witgeke the application of widening is
delayed (to let captured relationships evolve before witgims applied). While this heuristic
handles the introduction of new loop behaviors well, it does seem to be able to cope with
complete changes in loop behavior, e.g., it will not imprtwe analysis precision for our running
example. The lookahead-widening technique can be viewesh &tension of the new-control-
path heuristic: not only the application of widening is gedd when the new control paths become
available, but also the solution for the already exploredtiad paths is refined by computing a

descending iteration sequence.

Policy iteration [26, 44]. Policy-iteration techniques derive a series of progranpéfioations
by changing the semantics of the meet operator: each siogtidn is analyzed with a dedi-
cated analysis. We believe that our approach is easier tot fbwause it relies on existing and
well-understood analysis techniques. Furthermore,iegiglicy-iteration techniques support the
interval abstact domain [26], and certain weakly-relaicabstract domains [44], but it is not ob-
vious whether it is possible to extend the technique to sugptly-relational abstract domains
(e.g., polyhedra).

Widening with landmarks [108]. Widening with landmarks collects unsatisfiable inequesditi
(landmarks) and uses them as oracles to guide fix-point eretign: i.e., at widening points, a
special technique that extends the polyhedron to the dltasedmark is used in place of widening.
The technique is similar in spirit to lookahead wideninghattit also collects certain information
about the analysis “future” in the form of landmarks. Howewadening with landmarks requires
specially designed extrapolation operators, which (attithe of writing) are only available for
the polyhedral domain. In contrast, lookahead widening lmamsed with any existing abstract

domain, and is much easier to implement and integrate ingtieg analysis tools.
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Combining widening and loop acceleration [46]. Gonnord et al. combine polyhedral analy-
sis with acceleration techniques: complex loop nests anplgied by “accelerating” some of the
loops. The analysis requires a preprocessing step, whidoifiputes the transformers for indi-
vidual loop behaviors; (ii) accelerates the transformtrat(is, computes the transitive closure of
the transition relation imposed by the transformer — this @aly be done if the transformer falls
into one of the categories supported by the analysis); andgplaces the loops in the program
with the accelerated transformers. After that, a standandanic analysis is executed on the mod-
ified program. The instantiation k§b.4.2 attempts to achieve the same effect, but does notmely o

explicit acceleration techniques, and is much simpler olé@ment in practice.

5.8.3 Powerset extensions

Disjunctive completiof81] improves the precision of an analysis by propagatingseabstract-
domain elements. However, to allow its use in numeric pnogaaalysis, widening operators must
be lifted to operate on sets of elements [5]. Sankaranaasayeanal. [102] circumvent this problem
by propagating single abstract-domain elements througdlaboration of the control-flow graph
(constructed on the flyESP[34], TVLA [78], and thetrace-partitioning framework83] structure
abstract states as functions from a specially-constrduigd set (e.g., set of FSM states [34], set
of valuations of nullary predicates [78], and a set of traery descriptors, respectively) into the
set of abstract-domain elements: at merge points, onlyléments that correspond to the same
member of the set are joined. The disjunctive extensi@bib differs from these techniques in two
aspects: (i) the policy for separating abstract-domaimetlds is imposed implicitly by the pro-
gram transformer; and (ii) the base-level static analysi®mked on each iteration of GSA, always

propagates single abstract-domain elements.
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Chapter 6

Numeric Program Analysis with Weighted Pushdown Systems

The program-analysis techniques that we described in €h2parget programs that consist
of a single procedure. In reality, however, this is rarely tlase: a typical program is composed
of a large number of functions, which may invoke each othes¢fbly recursively). The set of
variables used by a program is no longer uniform: it consif® set ofglobal variables, which
are visible to all of the functions in the program; also, ehgittion has a set dbcal variables,
which are only used by that function. The information transéd between functions is passed
either through global variables or through the functiomwsfal parameters: in this section, we
assume that a function has a setimgfut parameters, whose values are specified at the call site
of the function and are used to pass the information to thekied function, and a set a@utput
parameters, which are used to return the computed infoom&iack to the point in the calling
function just after the call site (for simplicity, we will @ the function’s return value as an output
parameter).

A program is specified as a set of control-flow graphs (CFGs)e-for each function in the
program. A special program-state transition, referredst@aeall transition, is used to invoke a
specified function. Also, a subset of nodes of each CFG aiigried aseturnnodes: that is, the
nodes from which control is transferred back to the callungction.

A straightforward way to apply the techniques from Chapter Rerform interprocedural anal-
ysis is to connect the CFGs of the individual functions intsirgle graph, referred to as the
supergrapH88]. A supergraph is constructed by replacing each catidition edge in each CFG

with a set of edges—an edge from the source of the call-transedge to the entry node of the
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Figure 6.1 A simple program that consists of two functiomstinandfoo (functionfoois called
recursively); (a) textual representation of the program;control-flow graphs fomain andfoo;
the call-transition edges are shown as dotted arrows; dastges illustrate the construction of the
supergraph.

called-function’s CFG, and an edge from each return nodeeotalled-function’s CFG to the des-
tination of the call-transition edge. The entry node of theesgraph corresponds to the entry node
of a specially-designatesain function. The application of the techniques from Chaptes the
supergraph of the program yields a sound solution; howéversolution obtained is, in general,
not precise.

Fig. 6.1(a) shows a simple program that consists of two fanstmainandfoo: functionmain
calls functionfoo, and functiorfoo calls itself recursively. The program has one global vdeiab
Fig. 6.1(b) shows the control-flow graphs for functions madfoo; the supergraph is constructed
by replacing the dotted edges in the CFGs with the dashedetige program behaves as follows:
the first101 invocations ofoofollow the left branch of the conditional (the recursiveegsringing

the value ofr to 101; also, the run-time stack accumulatéd unfinished invocations dbo. On

LFor an in-depth discussion of the comparative precisiomigrprocedural analysis vs. intraprocedural analysis,
see for instance [94]. We omit the formal discussiomfet-over-all-pathsolutions vs.meet-over-all-valid-paths
solutions, because we primarily work with abstract doméias are non-distributive and rely on extrapolation: thus,
we generally have no guarantee of obtaining such solutioegther the intraprocedural case or the interprocedural
case.
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the 102-nd invocation, the right arm of the conditional (the basgeg¢as followed. After that, the
run-time stack is unwound by completing the unfinished iati@ns offoo, which brings the value
of z to 202. Thus, the value of variable at the program point, is 202.

The analysis of the supergraph is inherenibyable to obtain the precise value for the variable
x atno. The primary challenge for the analysis is the loop formechbgesms, m4, andms:
the number of iterations performed by this loop is determhibg the configuration of the run-
time stack, which is not modeled by the analysis. That isathaysis fails to separate the valid
interprocedural paths (i.e., paths with matching functalhs and returns) from other paths. Thus,
the analysis assumes that the control at nagés transferred non-deterministically to eitheg
or nq, and, at best, computes the following over-approximataritie value ofr atn,: = > 101.

A well-known technique for improving the precision of theasysis described above is the
use ofcall-strings[106]: call-strings are finite prefixes of the run-time stdtike run-time stack
itself isunboundejithat allow to separate the abstract program states ttsat iar{a finite number
of) different contexts. However, to synthesize the propért = 202" at n,, the length of the
call-strings used by the analysis must be at léast

To obtain more precise analysis resultfjactionalapproach to interprocedural program anal-
ysis was proposed [30, 94, 106]. In the functional appro#teh,analysis computes an abstract
summary for each function in the program: each function samgmepresents how the abstract
program state accumulated at the call site of the functidraissformed into the abstract program
state at the return site of the function. Note that functipmegram analyses deviate from the ones
described in Chapter 2 in the sense that the “unit” of abstnads no longer a set of concrete
states, but rathertgansformatioron a set of concrete states. A suitable summary for funétion

in the program in Fig. 6.1(a) is:
(20 < 101) = (0 + 2’ = 202),

wherex, denotes the value of variahteat the call site ofoo andz’ denotes the value of at the
return site. The value aof at the call siteq, is zero (i.e.;zo = 0); thus, the value of at the return

siten, must be202.
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RecentlyWeighted Pushdown Systems (WPDfase emerged as a generalization of the func-
tional approaches to interprocedural program analysig MPDSs use pushdown-system mech-
anisms to characterize precisely valid interproceduratrod-flow paths in the program. Weights
are abstractions of the program’s transfer functions, (i@ function summaries in the previous
paragraph are encoded as weights). To be used in a WPDS, erdof weights must satisfy
certain algebraic properties, which we describe in detgbi2. In this chapter, we show how to
construct a weight domain with the use of an existing nunadsatract domain (we use the polyhe-
dral abstract domain to illustrate the process), and dssthesissues that arise in the construction.

The construction is based on thedational program analysi§30].

6.1 Preliminaries

Let us extend the terminology of Chapter 2 to support mutvepdural programs. Lérocs
denote the set of all functions in the program. A program ec#jed by a set of control-flow
graphs{G; | f € Procs}. For eachG; = (V}, E;), Entry(Gf) € V; denotes the unique entry
node ofG;, andRe{G) € p(V;) denotes the set of return nodes(of.

Let GVarsdenote the set of global variables. Also, for each functfoim the program, let
LVars; andPVars; denote the local variables and the parameter§, eéspectively. For function
f, we usein; € PVarsfcf to denote an ordered vector of input parameters,angd c PVars’,;L "to
denote an ordered vector of output parameters. Each paameVars; must appear either iim;

or inouty, or in bothin,; andout;.

6.1.1 Program States

A program state assigns to each variable its correspondihg v Similarly to Chapter 2, we
use functions to map variables to their values. Howeverker@hapter 2, the functions that map
variables to their corresponding values form only part ef phogram state: the other component

of the program state israin-timestack.

Valuations of Program Variables. We useVars, to denote the set of variables that can be

accessed by program functign This set includes the global variables, the local varsloiey,
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and the parameters of

Vars, = GVarsu PVars, U LVars,.

For a program functiop, the valuations of variables are given by functishsVars, — V. Note
that the domains of variable-valuation functions changsfone program function to another. We

define the following operations for manipulating variakduation functions:

e Operationadd: Let S : W — V denote an arbitrary function, and létdenote a set, such
that AN W = (. The operatiofadd,](.5) yields a functionS” : (W U A) — V, such that
forallw € W, S'(w) = S(w), and for alla € A, the value is chosen non-deterministically

from V.

e Operation drop: LetS : W — V denote an arbitrary function, and létdenote a set, such
that A C W. The operatiorfdrop,](.S) yields a functionS’” : (W \ A) — V, such that for
allw e W\ A, S"(w) = S(w).

e Operation mergelLet S; : W; — V andS, : W, — V denote arbitrary functions, such that
Wi N Wy = (. The operatiorfmergd(S;, S2) yields a functionS’ : (W; U W3) — V, such
that for allw € Wy, S’ (w) = S1(w), and for allw € Wy, S’ (w) = Se(w).

Run-Time Stack. The other part of the program state isum-time stackwhich stores local
information about the functions that have been called, buemot yet returned. Each element of
the stack is a tupl&; x (W — V), wherelV = PVars; U LVars; for some functionf € Procs
Intuitively, each stack element stores a node in the coffitval graph of the corresponding function
to which the control should be transferred when the calleems, as well as the values of the local
variables and parameters of the function. There is no boarnldesize of the stack: in the presence

of recursion the stack may grow arbitrarily large.

Program States. A program state is a tuplél’, S), whereT is a run-time stack and is a
function that maps program variables (accessible to thetimmthat is currently being executed)
to their values. Letmainbe the “entry” function of the program. The initial progratate (that is,

the program state at the noBatry(Gmain)) is a tuple consisting of an empty stack and a function
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So : Varsnain — V, which maps variables iMars,,i, to values that are non-deterministically chosen

from V.

6.1.2 Concrete Semantics of the Call Transition

Letg, f € Procsbe two program functions, such thatalls f. Let (u,v) € E, be the control-
flow edge to which the call transitian < f(¢) is associated: in a call transition,c ®*s is a
vector of expressions that specify the values for the inpuameters off, andz € Vars,"’ is a
vector of variables to which the output parameterg afe to be assigned.

We break the definition of the concrete semantics for thetiaikition into two parts. The first
part handles the invocation of a function: that is, given@pam state at the call site (nodg it
constructs the program state at the entry node of the céliesecond part handles the return from
a function: that is, given a program state at the return nd@efonction, it constructs a program

state at the return site (nodg

Function Invocation. Let (T',S) denote the program state at nadeThe program state at the

entry node off (i.e., at the nod&ntry(Gy)) is given by(1”, S"), where

T = pUSf'(T, <U7 [[drOpGVarsH(S»)

and
S = [[drOH_VarsguPVarsg]] ofiny « ] o [addvars; Upvars: ] ) (S)-

That is, at a function invocation, the caller’s local infation (i.e., the values of local variables
and parameters) are stored on the stack along with the rpaimhv. The state at the entry of
the callee is computed by injecting the local variables aardumeters of the callee, initializing the

parameters, and eliminating the local information of thigeca

2In cases, when functiori calls itself recursively, the local variables and paramsetd f that are added and
dropped by the above transformer are two distinct sets oahims: one for the instance gfthat performs a call
(these are dropped), and one for the instancgtbht is being called (these are added). The notation thabeésitoo
weak to distinguish between these two sets of variables.
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Function Return. Let (7', .S) denote the program state at one of fi&return nodes, such that

top(7') = (v, S;) The program state at the return sites given by(7”, S’), where
T/ = pho) and Sl = ([[drOpLVarstPVarsf]] © [[j — O—Utf]] © [[mel’g@(sa Sl)

That is, the program state at the return site is construcyeahdrging together the valuation of
variables at the return node of the callee with the callecsl information obtained from the stack,
assigning the values of output parameters to the corregpptatget variables, and eliminating the

local information of the callee.

6.2 Overview of Weighted Pushdown Systems

In this section, we give a brief overview of weighted pushdaystems and show how to
use them for performing interprocedural program analysis.start by showing how to use plain
(unweighted) pushdown systems to model precisely the abiifdev of multi-procedural program.
Then, we describe the use of weights for representing pnogtate transformations. We briefly
discuss existing techniques for computing the set of rddeR&PDS configurations. In the end,
we describe the extension of WPDSs for handling local véegab

For an in-depth discussion of pushdown systems, weightetddmwn systems, and extended

weighted pushdown systems, we direct the reader to Reps[87hand Lal et al. [75].

6.2.1 Pushdown Systems

Pushdown system (PDSa)e similar to pushdown automata (PDA), but they do not have a

input tape. Rather, they represent transition systemsDér ¢onfigurations.

Definition 6.1 A pushdown system a triple? = (P, I", A) whereP is the set of states or control
locations,I' is the set of stack symbols, addC P x I' x P x I'* is the set of pushdown rules.
A configurationof P is a pair(p,u) wherep € P andu € T'*. Aruler € A is written as
(p,v) — (p',u) wherep,p’ € P,y € I'andu € I'*. The rules inA define atransition relation
= on configurations of? as follows: ifr = (p,v) — (', u), then(p,yu') =p (p’,uu') for all

u’ € T'*. The reflexive transitive closure ef is denoted by=-*. For a set of configurations, we
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usepre*(C) = {c | Je € C : ¢ =* ¢} andpost*(C') = {c' | dc € C : ¢ =* ¢} to denote the
sets of configurations that abackward-reachablandforward-reachablerespectively, from the

configurations irC' under the transition relatios-.

To simplify the presentation, we restrict PDS rules to haveast two stack symbols on the
right-hand side: i.e., for every rule € A of the form(p,v) — (p/,u), the length ofu is at
most two (u| < 2). The restriction does not decrease the expressiveneasbfipwn systems:
it has been shown that an arbitrary pushdown system can berted into one that satisfies this
restriction [104].

The control flow of a program is modeled as follows. The setatEsP contains a single state:
P = {p}. The set of stack locations corresponds to the set of prog@ms: I' = |Jpoes V-
The rules inA represent the program transitions (i.e., the edges of theadlow graphs) as

follows:

e For eachintraproceduraledge(u, v) in the program (i.e., edges associated with either an

assignment or an assume transition), a rule of the fgrm) — (p, v) is added tQ\.

e For each call-transition edde, v), which represents a call to functighe Procs a rule of
the form(p, u) — (p, Entry(G;) v) is added tA.

e For each return node € RetG,), whereg € Procs a rule of the form(p, u) — (p,¢) is
added tA.

With this construction, a PDS configuration can be thougha®fa CFG node with its calling
context, i.e., the stack of return addresses of unfinishisl leading up to the node. The num-
ber of possible PDS configurations is unbounded (becausstdbk can be arbitrarily large). To

effectively encode possibly-unbounded sets of configomatfinite automata are used.

Definition 6.2 Let P = (P, T", A) be a pushdown system. R-automatoris a finite automaton
(Q,T',—, P, F),whereQ 2 P is afinite set of states;> C ) x I" x @ is the transition relation,

P is the set of initial states, anfd is the set of final states. A configuratiom «) is represented by
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a’P-automaton if the automaton acceptga string over stack alphabgj starting from the initial

statep. A set of configurations is callegular if there exists @P-automaton that accepts it.

The result that paved the way for model-checking pushdowtesys states that forragular

set of configuration§’ the setyost*(C') andpre*(C') are alsaegular[16, 39, 41, 104].

6.2.2 Weighted Pushdown Systems

Pushdown systems provide machinery for checking, in a rputicedural setting, whether a
particular program point may be reachable by some execaufitire program. However, from the
point of view of program analysis, we would like to know notyowhether a program point may be
reachable, but also the program properties that may amse.tifo answer this questiongighted
pushdown systems (WPDS®re introduced [17, 97]. WPDSs combine pushdown-system ma
chinery with a domain of weights, which must be a bounded isient semiring. Intuitively,
pushdown systems are used to model interprocedurallg-ealntrol-flow paths, and weights are

used to capture the program properties that arise along fraiss.

Definition 6.3 A bounded idempotent semiriigja quintuple(D, &, ®,0, 1), whereD is a set
and1 are elements oD, and® (the combine operation) ang (the extend operation) are binary

operators orD, such that

1. (D, ®) is a commutative monoid with as its neutral element (i.e., for alle D, a®0 = a),
where® is idempotent (i.e.q € D, a @ a = a). Also, (D, ®) is a monoid with the neutral

elementl (i.e., foralla € D,a ® 1 = a).

2. ® distributes ovem, i.e., for alla, b, c € D we have
a®bdc)=(a®b)®(a®c)and(a®b)@c=(a®c) D (bRc).

3. 0is an annihilator with respect tg, i.e., foralla € D,a ® 0 =0 =0 ® a.
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4. The partial ordeE_, defined ast C b £ o ® b = a, does not have infinite descending
chains®

For the purpose of program analysis, the weight®iare the abstract transformers, the extend
operation® composes abstract transformers (i.e., to construct anegbstansformer for an entire
path), the combine operatian joins abstract transformers transformers (i.e., to mdngdrans-
formations along multiple paths),is the transformer that maps all abstract states tand1 is

the identity transformer.

Definition 6.4 A weighted pushdown systéma tripleVV = (P, S, f), whereP = (P,T',A) is
a pushdown systen§ = (D, ®, ®,0,1) is a bounded idempotent semiring afid A — D is a

map that assigns a weight to each pushdown rule.

Let o € A* be a sequence of rules. Usirfg we can associate a value &g i.e., if o =
[r1,...,7], then we define (o) = f(r1) ® ... ® f(r:). Letc ande denote two configurations of
P. If o is arule sequence that transforat® ¢/, we sayc = ¢’. We denote the set of all such rule

sequences byathgc, ¢), i.e.,
pathgc,d) = {o | c =7 }.

Definition 6.5 Let W = (P, S, f) be a WPDS, wher® = (P,I',A), and letC C P x I'* be a
regular set of configurations. Tigeneralized pushdown predecessor (GPP) probteto find for

eachc € P x I'*:

e i(c) 2 P{v(o)| o epathdc, ), ¢ € C};

e awitness sedf pathsiw(c) C U, pathgc, ¢') such thakp, ., v(o) = d(c).
Thegeneralized pushdown successor (GPS) proletm find for each: € P x I'*:

e 5(c) & P{v(o)| o€ pathgd,c), ¢ € C};

3Traditionally, the literature on weighted pushdown systeises data-flow methodology (as opposed to the abstract
interpretation methodology used in Chapter 2). That is pédxial order on weights has meaning that is opposite to
the meaning of the partial order defined in Chapter 2: thelsmthle weight, the less precise it is.
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e awitness sedf pathsiw(c) € .o pathsc’, ¢) such thakp, ., v(o) = d(c).

There are techniques available for solving the generalieaghability problems [74, 97].
These techniques use finite automata annotated with weighggmbolically represent sets of
weighted-pushdown-system configurations: that is, thertiggies accept an automaton that repre-
sents the initial set of configurations and return an autom#tat represents the set of configura-
tions that are either backward-reachable or forward-raaleifrom the configurations in the initial
set. The weighd(c) for a particular configurationis then extracted from the resulting automaton.
If the domain of weights is not distributive: that is, if catidn 2 in Defn. 6.3 is not satisfied, the

existing techniques can still be used, but they yield a cwasige approximation fod(c).

Definition 6.6 Given a WPDSV = (P, S, f), a¥V-automatonA is a’P-automaton, where each
transition is labeled with a weight. The weight of a path i@ #utomaton is obtained by computing
an extend of the weights on the transitions in the path eithére forward direction (in #rward
W-automata) or in the backward direction (ithackward)/V-automata). The automatohis said

to accept a configuratiofp, v) with weightw if w is the combine of weights @il accepting paths

for u starting from state in the automaton.

The techniques for solving the generalized predecessblgmuse forwardV-automata, whereas

the techniques for solving generalized successor probgmiackwardV-automata.

6.2.3 WPDS in Program Analysis

Let us briefly outline how to use the WPDS machinery descriisolve to analyze program
with the concrete semantics showngé.1. First, a WPDS/V, which represents the program,
is constructed: the rules are constructed in the way destin$6.2.1; each rule is annotated
with a weight that describes the corresponding programe-stansformation (we address weight
construction for numeric program analysis in detai3).

As we stated in Chapter 2, we are interested in computingghefsprogram states that are
reachable by some execution of the program, starting frens¢hof initial states. AV-automaton

is used to encode the set of initial statesg6ril, we made the assumption that, initially, the control
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is at the entry node of theainfunction, the run-time stack is empty, and the values ofaldées
are unconstrained. Thé/-automatonA that represents such configurations is trivial: it has two
stategp anda, wherep is the initial state and is the final state, and a transition frgnto a, which

is labeled by a stack-alphabet symbol corresponding toddeBntry(Gmain), @and annotated with
the weightl.

A procedure for solving the generalized successor probseapplied to/V and.A to yield an
automatons, which represents the set of configurationg/@freachable from the configurations
in A. The automatoi8 is used to compute, for each program point, a weight thaesgmts the
abstract-state transformation from the entry to the progi@that program point. There exists an
efficient procedure, referred to path summaryfor computing these weights fro [97].

The resulting weights approximate the relation betweeptbgram states (variable valuations)
at the entry of the program, and the program states (variadilgations) at the corresponding
program point. Let; denote the set of program states that may arise in fungtion our case,
¥ = Vars; — V). Intuitively, a weight computed for a program point in feion f can be viewed
as a subset of h4in x £ 7. Note that weights do not explicitly model the run-timeestaomponent
of the concrete program states: instead, the stack is nuibdgléhe procedures for solving GPP
and GPS, and by the path-summary computation.

The resulting weights can be used in a variety of ways. A weggim be used directly to
summarize the transformations performed by the progranChiapter 7 we use weights directly
to construct summary transformers of library functions. éght can be projected onto its second
component (e.g3:; above) to obtain the approximation for the set of statesdhatarise at the
corresponding program point. Alternatively, a weight canpbojected onto its first component
(e.g.,Xmain @above) to obtain the approximation for the set of condititias must be satisfied at the
entry of the program for the corresponding program pointaedached. In Chapter 7, we use the

latter approach to generate error preconditions for lipfanctions.
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6.2.4 Solving the Generalized Successor Problem

In this section, we give a brief description of how the setezfahable configurations is deter-
mined. Also, we describe the extension of weighted pushdiywstems that provides a convenient
way for handling local variables. For an in-depth coveraighese topics, see [75, 97].

The technique for solving GPS proposed by Reps et al. [9Tin8as in spirit to the functional
program-analysis approach proposed by Sharir and Pn#j.f1The main idea is to compute,
for each function in the program, the weight that approxesdhe transformation that the func-
tion performs. To compute such a weight, the techniquesstdrthe function’s entry node with
the weightl. The weights for the immediate successors of the entry noeleamputed by ex-
tending the weight with the weights associated with the corresponding CFG sdijegeneral,
the weight for a node is computed by extending the weight at each predecessdry with
the weight associated with the ed@e v), and combining the resulting weights. If a call-site of
some function is reached, the analysis starts the expborafithat function (unless the weight that
approximates the behavior of that function is already atd). The weight at the return site is
obtained by extending the weight at the call site of the fiomcivith the weight computed for the
called function.

Lal et al. proposed a more efficient technique for solving GR8. That technique is also
based on the premise that a weight for each function is aacteti and used to approximate the
behavior of the function at each of its call sites.

As we discussed ifi6.1, the sets of variables that can be accessed by the pratiffanfrom
function to function. As a consequence, the extend operatidfunction call sites have to perform
more work than the extend operations at other program lmesttin particular, an extend operation
at a call site has to merge the information about the callecal variables (which come from
the weight at the call site) with the information about how tlobal variables are modified by
the callee. Lal et al. proposed an extension to weighteddgnysh systems that addresses this

problem [75]. The extension uses so-calteerge functionat function call-sites in place of extend

4The technique in [97] is expressed as a saturation procddutke wpds-automaton, and, in general, captures
more information than the technique in [106]. In particutiie automaton-based representation gives WPDSs the
ability to answer stack-qualified queries.
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operations. An individual merge function is associatechweidch call site in the program: thus,
merge functions can be specialized to their correspondihligites. Generally, the extension allows
to keep the definition of the extend operation simple andiefficand also gives an opportunity

for an analyzer to have a cleaner design.

6.3 Numeric Program Analysis

In the previous section, we showed how weighted pushdowtemsgscould be used to carry
out interprocedural program analysis. The only thing thathave not yet described is how to
construct the weights that approximate numeric progratedtansitions. In particular, we need
to construct weights for assignment transitions, for agstnansitions, and for introducing and
eliminating local variables and parameters of functionssoAwe need to show how to construct
merge functions.

To construct these weights we use ideas frelational program analysi§30]: that is, weights
capture the relationships between the values of programablas before and after the transforma-
tion. More formally, letiVi,, denote the set of variables that are active before the emstion and
let W,y denote the set of variables that are active after the tramsfiion (we will use subscripts
“in” and “out” to distinguish between the variables from the two sets;tthnsformation is rep-
resented by a set of functions with signatgirié, U W,,;) — V, such that each function maps the
variables inl¥j, to the values that the corresponding variables had befer&@nsformation, and
maps the variables i/, to the values that the corresponding variables have agdrainsforma-
tion is applied. For example, consider the assignmentitransz < x + 5" there is one input
and one output variable (both correspond to the programabiari), and the transformation is rep-
resented by the set of functiofBei, — a, xou — a + 5] | @ € V}. In many cases, especially for
the transformations associated with WPDS rules, the sahoégariables is active before and after
the transformation. However, for the transformations glpaths that cross function boundaries,
the sets of input and output variables may be, and in mossaaifldbe, different.

In the following, we express the transformations that armtafrest to us as sets of functions.

The actual weights are constructed by approximating thetseo functions by elements of some
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abstract domain. In principle, any numeric abstract dornambe used to approximate the sets of
functions described above. However, weakly-relationatralct domains that restrict the number
of variables that can appear in a relationship seem to beadidntage in this setting: for instance,
to represent the transformation ¢ x + y”, the abstract domain needs to capture the relationship
Tout = Tin + Yin, Which cannot be represented by the abstract domains theakow two variables

per constraint (e.g., octagons [85] or TVPLI [109]). In tleeainder of this section, we will use

the domain of polyhedra to illustrate the constructed wisigh

Weights 0 and 1. The weight0 represents the transformation that is given by the emptpfset
functions. The weight represents the identity transformation. [LEtdenote the set of variables
that are active before and after the identity transfornmaii@., Wi, = {vin | v € W} andWyy =

{vout | v € W}; the identity transformation is given by the set of functon
Id = {f : (M/ln U Wout) —V ‘ Yoe W [f(vin) = f(Uout)]}

Technically, the weighté and1 can be constructed in any existing relational numeric abstr
domain:0 can be represented by theelement, and only requires constraints of the forog, =
vout, Which all relational and weakly-relational abstract damsare able to represent. However, in
general, we would like weight® and1 to be uniform for all functions in the program: this poses
a challenge because the sets of active variables changefidrmtion to function. Thus, in our
implementation, we inject special objects to represenghitsDd and1 into the domain of weights,
and make the combine and extend operations recognize thgsetsoand behave according to
Defn. 6.3.

Extend operation: ®. The extend operation composes two transformations. Thsti@ont im-
posed by the extend operation on the two transformationkatthe set of variables that are
active after the first transformation must be equivalenth®det of variables that are active be-
fore the second transformation. Let the first transfornmelie represented by the set of functions
S1: (Win U We) — V, and let the second transformation be represented by thef $enc-

tions Sy : (Wex U Wouwr) — V. The resulting transformation is given by the set of funuio
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S (Win U Wou) — V, which is constructed as follows

5 = [dropy, ] ([addy,,J(S1) N [addy, 1(S2).

Theaddanddrop operations in the definition above are the pointwise exterssof the correspond-

ing operations if§6.1.1: i.e., LetS : W — V denote an arbitrary function:
[addi](S) = {f':(WUA) =V | IfeSVYweW [f(w)=f(w)}
and
[drop,](S) £ {f:(W\A) =V | 3feSVweW\A[f(w)=f(w)]}

The extend operation can be trivially approximated by a mumadstract domain: set intersec-
tion is approximated by the meet operation),(the approximations faxddanddrop operations are
also easy to construct—we discussed those operations gotiiext of summarizing abstractions
(seeg3.3).

Combine operation: . The combine operation yields the disjunction of the two $farma-
tions: the effect of the resulting transformation is thathei of the two input transformations have
been applied. In terms of sets of functions, the combineatjmar yields the union of the sets of
functions that represent the input transformations. Thmelsoe operation makes sense only if the
signatures of the functions in the two input transformatiomatch. At the level of the abstract
domain, the combine operation is approximated by the joaraton ().

Assume transition: assume(y)). Suppose that the assume transitassumé)) appears in pro-
gram functionf € Procs Lety € ¥ be ak-ary conditional expression, where each variable
w; € Varsy for i = 1..k. For the assume transition, the sets of variables in thet iapd output
program states are the same: il&, = {vin | v € Varss} and Wy = {vout | v € Varsy}. The

program-state transformation is represented by the fatigwet of functions:

{f:(WinUWouw) =V | true € [oulnp(f) A Vv € Varsy [f(vin) = f(vow)] } ,

wherei, is obtained from) by renaming every variable in i) to wey. The first conjunct makes
sure that the program states constructed by the transfommedtisfy the condition); the second

conjunct makes sure that the assume transition does nofymodividual program states.
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At the level of the abstract domain, the weight that appr@tas the assume transition is con-

structed as follows:
1. construct the top element of 2 x |Vars;|)-dimensional abstract domain;

2. for each variable € Vars; establish the constrainf, = vy this can be done by applying
either a sequence of assume transitions of the flassumév;, = vou)]* or a sequence of
assignment transitions of the forfm, < vou]* to the abstract-domain element constructed

in step 1;

3. establish the constrainton the output program states: this is done by appljasgumeéyou)]*

to the abstract-domain element constructed in step 2.

We denote the resulting weight lfgssumey))).

Example 6.7 We use the polyhedral abstract domain to illustrate thetcoctson of weights. The
assume transitioassumeér < 100) associated with the edde:., m1) in Fig. 6.1 is approximated

by the polyhedron that has the following system of constsain

{xin = Tout, Tout < 100}-

Assignment transition: z «— ¢. Suppose that the assignment transition- ¢ appears in the
program functiory € Procs Letr denote the length of vectogsand¢. The variables that appear
in # and¢ come from the se¥ars;. Similarly to the assume transition, the sets of variabiebé
input and output program states for the assignment transitie the saméi, = {vi, | v € Vars;}

andWoyt = {vout | v € Vars;}. The transformation is represented by the following setintfions:

f(vow) € [onlillp(f) if v=z[i] for somei € [1,7]

f(vour) = f(vin) otherwise

f : (VVm UVVout) -V

whereg;, is obtained fromp by renaming every variable in ¢ to win.
At the level of the abstract domain, the weight that appr@tes the assignment transition may

be constructed as follows (there are several different waysich the weight can be constructed):
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1. construct the top element of 2 x |Vars;|)-dimensional abstract domain;

2. for each variabler € Vars; that does not appear in, establish the relationshipg, =
vout: this can be done by applying either a sequence of assumsitibas of the form
[assumévi, = vou)]* Or a sequence of assignment transitions of the frm « vou* to

the abstract-domain element constructed in step 1;

3. for each variable € Vars; that does appear in, establish the relationship betweey; and
the variables in the sét/,: this can be done by applying the abstract transforfngr —
bin]*, wherez, is constructed front by renaming each variablen 7 to v, to the abstract-

domain element constructed in step 2.

We denote the resulting weight i < ¢)).

Example 6.8 The weight for the assignment transition — = + 1 associated with the edge

(m1, my) in Fig. 6.1 is given by the polyhedron formed by a single caist: {zoy = xin + 1}

Adding and Removing Variables. To support local variables and parameter passing, we need
to define weights for modifying the set of variables modelgdHg analysis. For instance, at the
entry to the function, the local variables for that functionst be created; and at the return from
the function, the local variables must be removed. lletienote the set of variables in the input
state (i.e.Win = {vin | v € W}), and letA denote the set of variables that have to be added (i.e.,

Wout = {vout | v € W Vv € A}); the transformation for adding variables is expresse@ksAs:
{f:(WinUWou) =V | VoeW [f(vouw) = f(vin)]}-

For the transformation that removes variables Jléddenote the set of variables in the input
state (i.e.,Wi, = {vin | v € W}), and letA denote the set of variables to be removed (i.e.,

Wout = {vout | v € W'\ A}); the transformation is expressed as follows:

{f: WinUWow) =V | Yo e W\ A [f(vou) = f(vin)]} -
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At the level of the abstract domain, the above transformataan be approximated trivially by
elements of the abstract domains wigh(|1W|+ | A|) and @ x |IW|—|A|) dimensions, respectively.

The weight for adding variables (removing variables) isated as follows:

1. construct the top element of2ax ||+ | A|)-dimensional abstract domain @& |1V |— | A|)-

dimensional abstract domain);

2. for each variable € W (for each variables € W \ A), establish the relationshig, =
vout. this can be done by applying either a sequence of assumsitivais of the form
[assuméui, = vou)]* Or a sequence of assignment transitions of the ffum « vou]* to

the abstract-domain element constructed in step 1;

We denote the corresponding weights(layld,|) and(drop,|).

Local Variables. In our implementation, local variables are created on eotoalled function and
are removed before returning. Also, if the function corgaiall transitions, the local variables are
removed before the exploration of the callee is started. eMormally, letf € Procsdenote an
arbitrary program function. The weights constructed fa WPDS rules that model the control-
flow edges whose source nodeeistry(G ) arepre-extendedavith the weight(add vars, )): €.9., the
following weight is created for the edde:., m,) in Fig. 6.1: (add vars,,) ® (assumér < 100)).
The weights that are constructed for the WPDS pop rules ast pules, which model the
return from the functiory and the function calls performed by respectively, are extended with

the weight that removegs local variablesi|drop,y,s, |)-

Parameter Passing.Let g, f € Procsbe two program functions, such thatalls f. Also, let
(u,v) € E, be the control-flow edge that is associated with the callsitam z «— f(¢), where

the variables in the vectar and the variables in the expressionsiinome from the setars,. To

deal with the input parameters gf we generate special weights for the WPDS rules that model
the control-flow edges whose destination node. iket w denote the weight that approximates the
program-state transition associated with such an edgecdrnesponding WPDS rule is annotated

with the weight that is constructed as follows:

w & (IaddDVarsgD & (lmg — QED
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The above weight first introduces the parameters for thetimmg, and then initializes them to
their respective values.

To deal with the output parameters of functipnwe generate special weights for the WPDS
rules that model control-flow edges whose source nodeligt w denote the weight that approx-
imates the program-state transition associated with sdgh.eThe corresponding WPDS rule is

annotated with the following weight:
(7 — out)) ® (droppyars ) © w. (6.1)

This weight first copies the values of the output parametetld corresponding target variables,

and then removes the parameterg éifom consideration.

Merge functions. Let g, f € Procsbe two program functions, such thatcalls f. Also, let
(u,v) € E, be the control-flow edge that is associated with the cormedipg call transition. The
goal of the merge function is to take the weight computedterdall site of functiory (i.e., node
u) and the weight that approximates the transformation pexd byg, and construct the weight
for the return site of (i.e., nodev). We denote these weights hy,, w,, andw,, respectively.

The weight computed for the nodehas the following set of output variables:
W = GVarsu PVarsy U LVars; U PVars,.
The weight that approximates functignhas the following set of input variables:
W2 = GVarsu PVars,

We extend both the set of input variablé§, and the set of output variablég? of the weight
w, With the variables irPVars; U LVars;. For each such variable € PVars; U LVars;, we add
an identity constrainti, = vou: to w,. We denote the resulting weight lay,’. The weight for the
nodev is constructed as follows:

/
Wy = Wy @ Wy .

The weightw,” transforms the global variables and the parametegstofreflect the behavior of

the function. At the same timey,” preserves the values ¢fs local variables and parameters.
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Thus, the operation defined aboveergesthe transformation of the local variables of the caller
(which comes from the weight, ) with the the transformation of the global variables andgat)
parameters of the callee (which is constructed from botlyktsiv, andw,). The parameters of
are later removed by the weights associated with the edgdsgfromg’s return site, as shown
in Egn. (6.1).

6.4 Widening

In the previous section, we showed how to construct a donfaiemhts from a numeric ab-
stract domain. However, the weight domains constructed freost existing numeric abstract do-
mains fail to satisfy two of the conditions in the definitioefD. 6.3: namely, condition 23 must
distribute overd) and condition 4 (the weight domain must have no infinite deding chains).
The non-distributivity condition is somewhat less impattaas we mentioned earlier, existing
WPDS techniques produce conservative (sound), althougreitise, results for non-distributive
weight domains. Thus, we omit the detailed discussion ofdistributivity.®

The presence of infinite descending chains poses a much mgmiécant problem: existing
techniques for solving generalized pushdown reachalplibblems may not converge for such
weight domains. To make these techniques work in practieey have to be augmented with
widening, much like the iterative techniques in Chapter le WPDS library, which we used
in our implementation, implements the techniques desdribg97]: the widening approach we
describe below is specific to these techniques, and may it fiwoother techniques for solving
generalized pushdown reachability problems (e.g., [74]).

We construct two versions of the combine operatiomegular combine, denoted bg,., and
awideningcombine, denoted bg,,. The regular combine is implemented as the join of the two
input abstract-domain elements; ®, w, = w; L w,. The widening combine is slightly more

complicated: it is defined as follows:

W, Dy wy = w1 V(wy L wy).

5The issue of non-distributivity is discussed to some degr&hapter 7.
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Note that, in contrast to the regular combine, the widenioigplzine isnot commutative. Thus,
special care should be taken by the solver to feed the con@rguements in the proper order:
generally,w; should be the “older” weight computed for a particular pesgrpoint, whereas,
should be the “newer” weight, e.g., the weight computed liat program point after analyzing a
loop iteration.

We identify the set of program poini$’, where the sequence of weights may form infinite
descending chains. For that, we rely on the techniques peapby Bourdoncle [18]: the s&
contains the set of heads for all intraprocedural loopsermptiogram. Also, for each interprocedural
loop—i.e., for each loop in the call-graph of the program—gentify a single call-transition that
breaks that loop and add/o program points to the sét’: the entry point of the callee, and the
return site. To see why two program points need to be addedsige6.1: there are two loops—
one formed by the nodes., m, andm., the other formed by the nodes;, ms, andm,—that
must be broken by widening points. For this example, the sedeandm; are added to the set
W.

Each iteration of the procedure for solving the GPS problemputes a new approximation
for the weight at some program point by combining the weigigraximation that has already
been computed for that program point with the contributicade by one of the predecessors of
that point: e.g., for a simple intraprocedural case({det) denote a control-flow edge, let, and
w, denote the weights at nodesandv, and letw, ,, denote the weight associated with the edge

(u, v); the new weight for the nodeis computed as follows:
w," = Wy & (Wy @ Wiye).

To incorporate widening, we modify the procedure as folloifs) € W, we use the widening-
combine operato®,, in place of®; otherwise, we use the regular-combine operator At the
implementation level, rather than change the analysisnengve extend the weight domain to
incorporate certain annotations: the combine operatidhetxtended weight uses these annota-
tions to choose whether to apply the regular combine or tlideming combine to the underlying

weights.
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The need for widening also arises in thath-summargomputation, which extracts the anal-
ysis results from théV-automaton constructed by the procedure for solving GPSl@no. The
path-summary computation is similar in spirit to the intb@gedural analysis described in Chap-
ter 2, where the control-flow graph of the program is given iy graph representation of the

W-automaton. Thus, the widening techniques from Chapten2eaused directly.
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Chapter 7

Low-Level Library Analysis and Summarization

Static program analysis works best when it operates on @&e@nbgram. In practice, however,
this is rarely possible. For the sake of maintainability guodtker development times, software
is kept modular with large parts of the program hidden indites. Often, commercial off-the-
shelf (COTS) modules are used. The source code for COTS amnpmand libraries (such as the
Windows dynamically linked libraries) is not usually awdile. Typically, to help program analysis
deal with the absence of source code, library calls are neddehnually: either, by hard-coding the
abstract transformers for selected library calls direictty the analyzer, or by providing function
stubs that emulate certain aspects of the library callsenldhguage that the analyzer is able to
understand. Manual modeling of library calls is time conswgnand it leaves open the question
of whether the actual library implementation conforms @ tfodels provided to the analyzer.

In this chapter, we take the first steps towards automatiegtbcess of modeling the effects
of library functions. We present a technique that consgracttomaticallysummariedor library
functions by analyzing their low-level implementatiore(j. the library’s binary). The “client”
program analysis for which the summaries are constructateisory-safety analysis [1, 37, 38,
107, 114]: the analysis that checks statically whether eaamory accesses in the progransade
We assume that the memory-safety analysis generates twe ofgerror reports: buffer overruns
and buffer underruns.

A library function’s summary consists of a setefror triggersand asummary transformer
Error triggers are assertions over the program state frefisfied at the call site of the function,
indicate a possibility of an error during the invocationtod function (e.g., a possibility of a buffer

overrun or a buffer underrun, for the memory-safety ana)ysh summary transformer specifies
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how the program state is affected by a function call; theyeay@essed asansfer relationsi.e.,
relations that hold among the values of global variablesfandtion parameterseforeandafter
the call.

To use the function summaries, a client analysis must ajppaie the set of program states that
reach the call site of a library function. The analysis sHaebport a possible error if the approx-
imation contains states that satisfy an assertion thaeéspands to some error trigger. Summary
transformers are applied as follows: the “before” valueglobal variables and function parame-
ters are restricted to those that reach the call site; thaatesl transfer relation is projected onto
the “after” values to yield an approximation for the set obgmam states at the function’s return
point.

The application/library division provides a natural maatity border that should be useful to
exploit for program-analysis purposes: typically, manplagations link against the same library;
summarizing the functions in that library obviates the netkanalyze the library code for each
application, which could improve analysis efficiency. (§é for a discussion of other work that
has had the same motivation.)

Additionally, during development, application code is iegad more frequently than library
code. Because an application can be analyzed repeatedhgtifje same set of library summaries,
itis possible to recoup the cost of applying more sophigtéand thus, more expensive) analyses,
such as polyhedral analysis [32] and shape analysis [78, f@0ibrary summarization.

Constructing summaries directly from the library implenaion (as opposed to constructing
them from the library specification) allows the client arsédyto model precisely the deviations
that that particular library implementation may have frasigeneral specification (i.e., “bugs”
and “features” in the library code). For instance, while @xmenting with memory-management
functions, we discovered that the standard C library imgletation that came with Microsoft De-
veloper Studio 6 assumes that the direction flag, the x86 liaigspecifies the direction for string-
manipulation instructions, is set falseon entry to the library. Thus, if a memory-management
function (e.g.,memsetis invoked in a program state in which the direction flag is #ee func-

tion does not behave in accordance with the specificatiofaih such an invocation causes the
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program to crash). If the summaries of memory-managemastifins constructed from this im-
plementation of the library capture the relationship betwthe value of the direction flag and the
behavior of the function, then the client analysis is ablalést the user about a potential problem

when it detects that the direction flag is setriee at a call site oinemset

7.1 Overview of the Analysis

We use the functiomemsets the running example for this chapter. The function isated

as follows:
void * memset ( void * ptr, int value, size_t num );

Its invocation sets the firstumbytes of the block of memory pointed to Ipyr to the specified
value (interpreted as amsigned char). The value oftr is returned.

As we suggested before, we address two types of memoryysafers: buffer overruns and
buffer underruns. Typically, analyses that target thepegyof errors propagate allocation bounds
for each pointer. There are many ways in which this can be .d@veuse the following model.
Two auxiliary integer variables are associated with eaghtpovariable:alloc; is the number of
bytes that can be safely accessed beyond the address sttiieghointer variable (i.e., provides in-
formation about allowed positive offsetg)/oc, is the number of bytes that can be safely accessed
before the address stored in the pointer variable (i.eviges information about allowed negative
offsets). We believe that this scheme can be easily intedfadgth other choices for representing
allocation bounds. We use dot notation to refer to an allondtound of a pointer variable, e.g.,

ptr.allocy.

7.1.1 Analysis Goals

A function summary specifies how to transform the progranestathe call site of the function
to the program state at its return site. Also, it specifiesddmns that, if satisfied at the call
site, indicate that a run-time error is possible during tnection call. Intuitively, we expect the

summary-transformer component of the function summaryrfemseto look like this (for the
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moment, we defer dealing with memory locations overwritigmmemset-see§7.3.6):
ret = ptr A ret.allocy = ptr.allocy N ret.alloc, = ptr.allocy, (7.1)

whereret denotes the value that is returned by the function. We expatt sufficient condition

for the buffer overflow would look like this:
num > 1 A ptr.allocy < num — 1. (7.2)

That is, the value ofum must be strictly greater than 0, otherwise memory is notsszutat all.
Also, to cause the buffer overrun, the forward allocationrmbptr.alloc; must be strictly smaller
than the number of bytes that are to be overwritten (i.e.yéhee ofnum). Similarly, a sufficient

condition for the underflow should look like this:
num > 1 A ptr.alloc, < —1. (7.3)

The goal of our analysis is to construct such function sunesautomatically.

7.1.2 Analysis Architecture

Fig. 7.1 shows the disassemblynefnset from the C library that is bundled with Visual C++.
Observe that there are no explicit variables in the codé&aus offsets from the stack registes)
are used to access parameter values. Also, there is no tiggmation, and thus it is not obvious
which registers hold memory addresses and which do not.chbgistructions and shifts, which
are hard to model numerically, are used extensively. Raltzer addressing all these challenges at

once, the analysis constructs the summary of a functiorveraéphases.

Intermediate Representation (IR) Recovery.First, value-set analysis (VSA3, 9] is performed
on the disassembled code to discover low-level informati@riables that are accessed by each
instruction, parameter-passing details, and, for eachrpr point, an overapproximation of the
values held in the registers, flags, and memory locationbaitgoint. Also, VSA resolves the

targets of indirect control transfers (indirect jumps amdiriect calls).

Iwe used Microsoft Visual Studio 6.0, Professional EditiRe|easéuild.



00401070 mov
00401074 mov
00401078 test
0040107A jz
0040107C xor
0040107E mov
00401082 push
00401083 mov
00401085 cmp
00401088 jb
0040108A neg
0040108C and
0040108F jz
00401091 sub
00401093 mov
00401095 inc
00401096 dec
00401097 jnz
00401099 mov
0040109B shl
0040109E add
004010A0 mov
004010A2 shl
004010A5 add
004010A7 mov
004010A9 and
004010AC shr
004010AF jz
004010B1 rep
004010B3 test
004010B5 jz
004010B7 mov
004010B9 inc
004010BA dec
004010BB jnz
004010BD mov
004010C1 pop
004010C2 retn
004010C3 mov
004010C7 retn

Figure 7.1 The disassembly ofemset The rightmost column shows the semantics of each in-

edx, dword ptr [esp + 12]
ecx, dword ptr [esp + 4]
edx, edx

004010C3

eax, eax

al, byte ptr [esp + 8]
edi

edi, ecx

edx, 4

004010B7

ecx

ecx, 3

00401099

edx, ecx

byte ptr [edi], al
edi

ecx

00401093

ecx, eax

eax, 8

eax, ecx

ecx, eax

10h

eax, ecx

ecx, edx

edx, 3

ecx, 2

004010B7

stosd

eax,

edx, edx

004010BD

byte ptr [edi], al

edi

edx

004010B7

eax, dword ptr [esp + 8]
edi

eax, dword ptr [esp + 4]

struction using a C-like notation.
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edx «— count
ecx «— ptr

if (edz = 0) goto 004010C3
eax +— 0
al — (char)value

edi +— ecx

if (edz < 4) goto004010B7
ecr «— —ecx
ecr — ecx & 3
if (ecx = 0) goto 00401099
edr «— edx — ecx
xedi — al
edi — edi + 1
ecx «— ecx — 1
if (ecx # 0) goto 00401093
ecr «— eax
eax «— ear << 8
eaxr < eaxr + ecx
ecr «— eax
eax «— ear << 16
ear <+ eax + ecx
ecr «— edx
edr «— edx & 3
ecx «— ecx >> 2
if (ecx = 0) goto 004010B7
while (ecx # 0) {
xedi — eax; edi++; ecx--; }

if (edz = 0) goto 004010BD
xedi +— al

edi — edi + 1

edr «+— edx — 1

if (edz # 0) goto 004010B7
eax < ptr

return
eaxr «— ptr
return
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In x86 executables, parameters are typically passed vistéiok. The registersp points to the
top of the stack and is implicitly updated Ipyish andpop instructions. VSA identifies numeric
properties of the values storeddap, and maps offsets frorsp to the corresponding parameters.
To see that this process is not trivial, observe that diffecéfsets map to the same parameter at
addresseB8x4010BDand0x4010C3 at 0x4010BDan extra 4 bytes are used to account for the push
of edi at0x401082

Numeric-Program Generation. VSA results are used to generate a numeric program that cap-
tures the behavior of the library function. The primary tdrade that is addressed in this phase is
to translate non-numeric instructions, such as bitwiseaimns and shifts, into a program that a
numeric analyzer is able to analyze. Bitwise operationsiaegl extensively in practice to perform
certain computations because they are typically more effich terms of CPU cycles than corre-
sponding numeric instructions. A ubiquitous example isube of thexor instruction to initialize
aregister to zero. In Fig. 7.1, ther at0x40107ds used in this way. Theest instruction updates
the x86 flags to reflect the applicationlmfwise andto its operands (the operands themselves are
not changed). Compilers often usest to check whether the value of a register is equal (see
the instructions at addressest01078and0x4010B3n Fig. 7.1).

A more complicated case is when several instructions, eethwhich can be modeled pre-
cisely with the numeric abstraction we use, cooperate @bésh a numeric property that is rele-
vant to the analysis. In Fig. 7.1, the two consecutive irtstons at0Ox4010A9 a bitwise andand a

right shift, cooperate to establish the property
edrg =4 X ecx + edx,

whereedzx, denotes the value stored in registék before the instructions are executed. Note that
the property itself can be expressed with the numeric atisirawe use (the polyhedral abstract
domain), but it is impossible to capture it by consideringreimstruction in isolation. We describe
how we handle this situation §v.3.5.

The numeric-program-generation phase also introducesttkiéary variables that store allo-

cation bounds for pointer variables. A simple type infeeeiscperformed to identify variables and
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registers that may hold memory addresses. For each instubat performs address arithmetic,
additional statements that update corresponding allmtdtounds are generated. Also, for each
instruction that dereferences an address, a set of nunss#rteons are generated to ensure that
memory safety is not violated by the operation. The assestevert program control to a set of
specially-introduceeérror program pointstwo sink’ nodes are introduced into the program’s CFG
for each memory access that is checked—one node for the lowteflow, the other for the buffer
underflow.

Fig. 7.2 shows the numeric program that is generatedhEmset

Numeric Analysis and Summary Construction. The generated numeric program is fed into
our WPDS-based numeric program analyzer. The analyzer at@spfor each program point, a
function that maps an approximation for the set of initiates at the entry of the program to an
approximation for the set of states that arise at that progr@int. The numeric-analysis results are
used to generate a set of error triggers and a set of sumnaaisférmers for the library function.
The transfer functions computed for program points thatespond to return instructions form a
set of summary transformers for the function. Error triggre constructed by projecting transfer
functions computed for the set of error program points onéartdomains.

One challenge posed by the numeric analysis is that the pdtghabstract domain, which
is employed by our analyzer, does not scale well as the nuofogrogram variables that need
to be modeled increases. We address this issue by using stingxiechnique for improving
scalability of numeric analysisariable packind87]. The idea behind this technique is to identify
groups of related variables (referred topaekg and to track numeric relationships in each group
individually. That is, instead of a single polyhedron wittaege number of dimensions, a larger
number of lesser-dimensional polyhedra are propagatetdognalysis. The groups of variables
need not be disjoint, and some program variables may not aeyirgroup at all. We identify the
groups of related variables by tracking variable depeneerstich as data and control dependences.

The detailed description of our use of variable packing espnted ir§7.4.1.

2A sinknode is a node that has no outgoing edges.
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memsditr, value, num)

00401070 edxr «— count;

00401074 ecx « ptr;ecx.allocy « ptr.allocy; ecx.allocy, — ptr.allocy;
00401078-7A if (edz = 0) goto L5;

0040107C-82 "

00401083 edi «— ecx;edi.allocy <+ ecx.allocy; edi.allocy «— ecx.allocy;
00401088 if (edz < 4) goto L3;

0040108A ecr «— —ecr;

0040108C ecx —7; assumg0 < ecz < 3);

0040108F if (ecx = 0) goto L2;

00401091 edr — edxr — ecr;

00401093 L1: asser(edi.allocy >=1); asser(edi.alloc, >=0);
00401095 edi — edi + 1; edi.allocy «— edi.allocy — 1; edi.allocy, «— edi.allocy + 1;
00401096 ecr «— ecx — 1;

00401097 if (ecx # 0) goto L1;

00401099-A5 L2: ..

004010A7 edr.remy =7; edzx.quoty =7,

assumé0 < edx.remy < 3); assuméedxr = 4 x edx.quoty + edz.remy);
ecx «— edx; ecx.quoty < edr.quoty; ecx.remy = edx.remy;

004010A9 edr — edx.remy;

004010AC ecT «—— ecr.quoty;

004010AF if (ecx = 0) goto L3;

004010B1 asser(edi.allocy >= 4 x ecz); assertedi.alloc, >=0);

edi — edi + 4 X ecx;
edi.allocy « edi.allocy — 4 x ecx; edi.allocy «— edi.allocy + 4 X ecx;

ecx «— 0;
004010B3-B5 if (edx = 0) goto L4;
004010B7 L3: asser(edi.allocy >= 1); asser(edi.alloc, >= 0);
004010B9 edi — edi + 1; edi.allocy «— edi.allocy — 1; edi.alloc, «— edi.allocy + 1;
004010BA edr — edr — 1
004010BB if (edz # 0) goto L3;
004010BD L4:  eax < ptr; eax.allocy = ptr.allocy; eax.allocy < ptr.allocy;
004010C2 return eax, eax.allocy, eazx.allocy;
004010C3 L5:  eax < ptr; eaz.allocy = ptr.allocy; eax.allocy, «— ptr.allocy;
004010C7 return eaz, eax.allocy, eax.allocy;

Figure 7.2 The numeric program generated for the code in7#ig.parts of the program that are
not relevant for the summary construction are omitted frbanlisting shown above.

7.1.3 The summary obtained formemset

The implementation ofnemsetises two loops and aép stosd” instruction, which invokes
a hardware-supported loop. Theep stosd” instruction at0x4010B1lis the workhorse; it per-
forms the bulk of the work by copying the value éax (which is initialized in lines0x40107¢
0x40107Eand 0x4010990x4010A5t0 contain four copies of the low byte oiemsés value pa-
rameter) into successive 4-byte-aligned memory locatidine loops abx4010930x401097and
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0x4010B#0x4010BBhandle any non-4-byte-aligned prefix and suffix. If the totanber of bytes
to be initialized is less than 4, control is transfered diyeto the loop at0x4010B7

The application of our technique to the code in Fig. 7.1 yselgactly the summary transformer
we conjectured in Eqn. (7.1). The situation with error taggis slightly more complicated. First,
observe that there are three places in the code where thex Biffccessed: at addresSg401093

0x4010B1and0x4010B7 Each access produces a separate error trigger:

Buffer overrun Buffer underrun

0x401093 num >4 A ptr.allocy <2 num >4 A ptr.alloc, < —1

0x4010B1| num >4 A ptr.allocy < num —1 | num >4 A ptr.alloc, < —1

0x4010B7| num > 1 A ptr.allocy < num —1 | num > 1 A ptr.alloc, < —1

A ptr.alloc, < 2 —num

Note that the first buffer-overrun trigger is stronger thia@ one conjectured in Eqn. (7.2): it
gives a constant bound gnr.allocy; furthermore, the bound is less thanwhich is the smallest
bound implied by the conjectured trigger foum > 4 (see Eqn. (7.2)). The issue is that the
instruction at0x401093s executed only if the number of bytes to be overwrittem() is greater
than4, and accesses at most three first bytes of the buffer poiategjitr (the actual number of
bytes that are accessed depends on the alignment of the mmaduaress iptr). Thus, a buffer
overrun atox401093can only happen if the forward allocation bound fer is less thar. In
cases whereum > 4 andptr.alloc; is equal to3, memsewill generate a buffer overrun not at
0x401093 but at one of the other two memory accesses instead.

The other two buffer-overrun triggers are similar to thgder conjectured in Eqn. (7.2) and
differ only in the value ofnum. The buffer-underrun triggers are similar to the triggeattivas
conjectured in Eqn. (7.3), except for the trigger generdbedhe memory access ak4010B7
That trigger contains an extra constraitit.alloc, < 2 — num, which indicates that, by the time
the control gets t@x4010B7 the memory address that was originally specifieghtin has been
advanced by at leastum — 3 bytes.

Note that, although the triggers shown above provide ewoditions that are sufficiently pre-

cise for the client analysis to avoid generating spuriousreeports (false positives), these triggers
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are somewhat imprecise. For instance, if the value of viriadom is 5 and the forward allocation
boundptr.allocy is 1, then the above triggers indicate that the buffer overrumhagppen at any of
the three memory accesses. For the purpose of providingy ladignostic information, however, it
may be advantageous to link the buffer overrun to the pdaticnemory access that could generate
it. In the situation above, the memory access at which thiebaferrun occurs is determined by
the alignment of the pointettr: if ptr is either 4-byte aligned or 3 bytes off (i.ety = 3 mod 4),

the buffer overrun occurs ak4010B1if ptr is eitherl or 2 bytes off, the buffer overrun occurs at
0x401093 the buffer overrun never occurs @t4010B7 This imprecision in the triggers is due to
the conservative translation of the instructions that klexinter alignment into the corresponding
numeric statements. §v.3.5, we present a technique that allows pointer alignnoeloé modeled

more precisely, resulting in better error triggers.

The next several sections present the phases of the anaiyfiieed above in greater detail.
Particular attention is paid to the numeric-program-gati@n phase, which is the primary contri-

bution of our work.

7.2 Intermediate-Representation Recovery

The IR-recovery phase recovers intermediate represengatiiom the library’s binary that are
similar to those that would be available had one started goorce code. For this phase, we use
the CodeSurfer/x86 analyzer that was developed jointly igc@hsin and GrammaTech, Inc. This

tool recovers IRs that represent the following information

e control-flow graphs (CFGs), with indirect jumps resolved;

a call graph, with indirect calls resolved;

information about the program’s variables;

possible values of pointer variables;

sets of used, killed, and possibly-killed variables forte&&G node; and
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e data dependences.

The techniques employed by CodeSurfer/x86 do not rely ongthg information being present,
but can use available debugging information (e.g., Windgab files) if directed to do so.

The analyses used in CodeSurfer/x86 (see [8, 9]) are a geahihtbre ambitious than even
relatively sophisticated disassemblers, such as IDAPtD f& the technical level, they address the
following problem:Given a (possibly stripped) executalflg(i.e., with all debugging information

removed), identify the procedures, data objects, types)ibraries that it uses, and,

e for each instructiory in £ and its libraries,
e for each interprocedural calling context éf and

e for each machine register and variablé

statically compute an accurate over-approximation to teieod values that” may contain wher

executes.

7.2.1 Variable and Type Discovery.

One of the major stumbling blocks in analyzing executabdethe difficulty of recovering
information about variables and types, especially for eggtes (i.e., structures and arrays).

When debugging information is absent, an executable’sag&ts are not easily identifiable.
Consider, for instance, a data dependence from stateamenstatemenbd that is transmitted by
write/read accesses on some variabl®/hen performing source-code analysis, the programmer-
defined variables provide us with convenient compartmentrécking such data manipulations.
A dependence analyzer must show thakefinesx, b usesx, and there is ar-def-free path from
a to b. However, in executables, memory is accessed either irebly specifying an abso-
lute address—or indirectly—through an address expressidhe form “[base + indexx scale
+ offsef”, where baseandindexare registers anscaleandoffsetare integer constants. It is not
clear from such expressions what the natural compartmeatshat should be used for analysis.
Because, executables do not hantinsic entities that can be used for analysis (analogous to

source-level variables), a crucial step in IR recovery iglemtify variable-like entities.
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The variable and type-discovery phase of CodeSurfer/xB@&d8overs information about vari-
ables that are allocated globally, locally (i.e., on the-tinme stack), and dynamically (i.e., from
the heap). An iterative strategy is used; with each rounth@fanalysis—consisting of aggregate
structure identification (ASI) [9, 93] and value-set an&y%/SA) [8, 9]—the notion of the pro-
gram’s variables and types is refined. The net result is thdeSurfer/x86 recovers a set of proxies
for variables, calle@-locs(for “abstract locations”). The a-locs are the basic vdealised in the

method described below.

7.3 Numeric-Program Generation

The generation of a numeric program is the central coniohutf our technique. The target
language for the numeric program corresponds to the largwaglescribed in Chapter 2 with the
exception that programs with multiple procedures can begged. The language supports as-
signments, assumes, asserts, if-statements, procedigreaca gotos. The expression “?” selects
a value non-deterministically. The condition “*” trans$ezontrol non-deterministically.

The generation process abstracts away some aspects ohtrg bode that cannot be mod-
eled precisely in the polyhedral abstract domain; thus,giserated program is usually non-
deterministic and cannot be directly executed. Note thatr#presents a slight deviation from the
discussion in Chapter 2, where we relied on the abstract sthoimaonservatively handle arbitrary
numeric and conditional expressions. For this applicatiom chose to deal with the expressions
that cannot be modeled precisely by the polyhedral domadinealievel of numeric-program gen-
eration. This gave us more flexibility in designing techmgthat improve the overall precision of
the analysis.

We strive as much as possible to generate a sound represemtithe binary code. However,
the current implementation of the analysis assumes thaerionalues are unbounded. In the

future, we hope to add support for bounded arithmetic.
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7.3.1 Numeric-Program Variables

Theinitial set of numeric-program variables is constructed from tkalte obtained by value-
set analysis (VSA): a numeric variable is created for eablgté-a-loc identified by VSA. We only
consider 4-byte a-locs because only those a-locs can sPebit Bnemory addresses, which we
need to model for the memory-safety analysis. The eight g§&ters:eax, ebx, ecx, edx, esi,
edi, ebp, andesp, are modeled by global variables. A number of additionaialdes—to keep
track of allocation bounds, to model memory locations thmatreot resolved by the VSA, and to
handle integer division and remainder computations—adreduniced as described in the rest of this
section.

An operand of x86 instruction can be either an immediateejaduregister, or a memory lo-
cation specified via one of the x86 memory-addressing modesmap the x86 operands to the

numeric-program operands as follows:

e Immediate values. The generated numeric statement uses the immediate valtiésth

specified by the instruction.

e Reqgisters. If the register is one of the eight registers that we model gbnerated numeric
statement uses the global variable that corresponds teethiater; otherwise, if itis a register
that we do not model, there are two cases: (i) if it istdmgetoperand (that is, the operand
that is updated by the instruction), the instruction is $tated into the numeric program’s
equivalent of a no-op, (ii) if it is a source operand, the m@terministic value?” is used in

the generated numeric statement.

e Memory operands. The VSA results are queried to get a set of a-locs that the memo
operand may refer to. There are two possible answers: dhtétte memory operand is
resolved in which case a set of a-locs is returned, or (ii) the memgerand isunresolved

in which case the valu€ is returned.

— Resolved operands. The set of a-locs constructed by VSA may conthih a-locs

(that is, the memory operand refers to the entire a-loc), @artial a-locs (that is,
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the memory operand refers only to a part of the a-loc). If therand is updated by
the instruction, numeric-update statements are genef@téiae numeric variables that
corresponds to each full 4-byte a-loc in the set, famgetstatementsare generated for

the numeric variables that correspond to each 4-byte partac.

If the operand is used, but not updated, then there are twailplitses: either (i) the
operand is determined exactly (i.e., the set contains desfallj4-byte a-loc), in which
case the numeric variable that corresponds to that a-leeid i the generated numeric
statement; or (ii) the set contains more than one a-loc, inlwtase a non-deterministic

value? is used in the generated numeric statement.

— Unresolved operands. The unresolved memory operands are modelegygbolic
memory constanighat is, a global variable is created for each unresolvethong
operand to model symbolically the value at the accessed mydioation. That global
variable is used in the generated numeric statement. Weilblesymbolic memory

constants in more detail §v.3.6

We will use a functionvarye to map the operands of x86 instructions to the corresponding

numeric variables.

7.3.2 Basic Translation of x86 Instructions

In the previous section, we explained how instruction opéssare mapped to the correspond-
ing numeric variables. In this section, we briefly outline thasic translation of x86 instructions
into the corresponding numeric statements. The goal ofds&lbranslation is to capture the “nat-
ural” semantics of each instruction. We address the effitieoinstructions on auxiliary variables
(e.g., allocation bounds) i§v.3.4 and;7.3.5.

For most instructions, the translation is straightforwa@imple instructions, such asv,

add, sub, lea, etc., are directly translated into the corresponding mioretatements: e.g., the

3Recall from Chapter 2 that tHergetstatement: — ? assigns a non-deterministically chosen value to the target
variablez.
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instruction ‘sub edx,ecx” at 0x401091in Fig. 7.1 is translated into numeric statemeuit <
edr — ecz.

Bitwise operations and shifts typically cannot be conwkipeecisely into a single numeric
statement, and thus pose a greater challenge. Several inwstegements, including ifs and as-
sumes, may be required to translate each of these instngc# first, we were tempted to design
universal translations that would work equally well for pdissible contexts in which the instruc-
tion occurs. In the end, however, we noticed that theseuaostms, when employed in numeric
computations, are only used in a few very specific ways. Fiairce, bitwise-and is often used to
compute the remainder from dividing a variable by a poweaf.tThe instruction &nd ecx,3”
at 0x40108Cin Fig. 7.1 is used to computex mod 4. The translation treats these special cases
with precision; other cases are treated imprecisely, hudiy.

Below we show how thend andor instructions are translated into numeric program state-
ments. The translation of an instruction of the foraad op;, op,” recognizes the special case of

opo being an immediate value that is greater than zero:

Varye(op1) <+ 7; . . .
if ops > 0is an imm. value
and opy, op2 = assume0 < Varyp(op1) < Varye(op2));
Varne(opy) < 7; otherwise
The translation of an instruction of the formz* op;, op,” recognizes two special cases: (i) the
case ofop, being an immediate value&OxFFFFFFFF(—1 in 2's complement arithmetic), and (ii)

the case in which both operands are the same:

Varne(opy) < (—1); if opy = OXFFFFFFFF
or opi, Ops = nop; if op1 = ops
Varyp(opy) < 7; otherwise
Hardware-supported loops. An interesting class of instructions is the x86 hardwanepsuted
loops, such as the instructionép stosd” at addres®x4010B1n Fig. 7.1. The $tosd” instruc-
tion writes the value stored in registesx into a memory location specified by the address stored
in registeredi, and advances the addreszii either forwards (i.e.¢di < edi + 4) if the direc-

tion flag DF is cleared (i.e.PF = false@, or backwards (i.egdi <+ edi — 4) if the direction flag
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is set (i.e.DF = true). The prefix rep” repeats the §tosd” instruction until the values stored in
registerecx becomes zerascx is decremented on each iteratibn.

The current implementation translates the instructiosp“ stosd” as follows: the intermedi-
ate representation is queried for the value of the diredtamn if the flag isfalse the instruction is
translated into the following set of numeric statementgl “— edi + 4 x ecx; ecx « 0;”; if the
flag istrue, the instruction is translated intedi < edi — 4 x ecx; ecx < 0;”; if the intermediate
representation cannot determine the state of the flag ddfirite., if the flag can be eithérue or

falsg, the instruction is translated as follows:

if (%) edi < edi + 4 x ecx; elseedi < edi — 4 x ecx; (7.4)

ecx — (0;

Other instructions that execute hardware-supported laopgranslated similarly. The only
complication is caused by the instruction®p cmpsd” and “rep scasd”: these instructions may
exit the loop before the value stored in regisiex reaches zero: on each iteration, the value of
the x86 zero flagF is checked—if the instruction prefix ix&pe”, the instruction checks whether
the flag istrue; if the prefix is “repne”, the instruction checks whether the flagadse—and if the
flag is set accordingly, the loop is terminated. To trandlase instructions, we introduce an extra
numeric variable for which the value is selected non-deitastically from the rangel, ecz]: this
variable models the number of iterations performed by tbe.d-or instance, if the direction flag
is false the instruction tep cmpsd” is translated into the following sequence of numeric-peog

statements:
temp =7; assumél < temp < ecr);

edi < edi + 4 X temp; esi < esi + 4 X temp;
ecx «— ecx — temp;
Let us briefly discuss the direction-flag issue mentionechaittroduction to this chapter.
The particular implementations of memory functions thatewperimented with, such agmset,
assume that the direction flagfedseon the entry to the function; i.e., these implementations do

not clear the flag explicitly. As a result, the IR-recoveryapl presumes that the value of the

4When “stosd” appears without prefixrep”, registerecx is not decremented.
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direction flag is unknown at the program point where a paick86 hardware-loop instruction
is executed. Consequently, that instruction is translatmbrding to Eqn. (7.4). Note that this
translation is overly conservative in the sense that thetian summary synthesized from this
translation is independent from the value of the directiag #t the call-site of the function; i.e.,
the client analysis may generate spurious error reportase the direction flag is indedalseat
the call site. In our experiments, we dealt with this issuenigking the same assumption that
the implementation of the functions makes: that is, thatdinection flag isfalseon entry to the
function. However, this assumption is unsound. A better wfdyandling this issue is to produce
two function summaries: one for the case where the dirediignistrue at the call site, the other
for the case where it imlseat the call site. Then, the client analysis may use its owmnagmation

for the value of the direction flag to select the function suaryrio be applied.

Recovering conditions from the branch instructions. An important part of numeric-program
generation is the recovery of conditional expressionshénx86 architecture, several instructions
must be executed in sequence to perform a conditional danémusfer. The execution of most
x86 instructions affects the set of flags maintained by tleegssor. The flags include tzero
flag, which is set if the result of the currently executing instran is zero, thesign flag which
is set if the result is negative, and many others. Also, ti@a@hitecture provides a number of
control-transfer instructions, each of which performsmapuf the flags are set in a specific way.
Technically, the flag-setting instruction and the corresiog jump instructions do not have to be
adjacent and can, in fact, be separated by a set of instngdiiat do not affect the flags (such as
themov instruction.

We symbolically propagate the expressions that affect flagke jump instructions that use

them. Consider the following sequences of instructionsthait translation:

cmp eax,ebx
mov ecx,edx ecx «— edx;

jz label if (eax — ebx = 0) gotolabel;

We derive a flag-setting expressian: — ebx from thecmp instruction; thenov instruction does not

affect any flags; thgz instruction transfers control tebel if the zero flag is set, which can only
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happen if the expressiatur — ebx is equal to zero. Note, however, that if the intervening move
affects one of the operands in the flag-setting expresdian eixpression is no longer available at

the jump instruction. This can be circumvented with the (ssetemporary variable:

cmp eax,ebx
mov eax,edx temp «— eax — ebx; eaxr — edx;

jz label if (temp = 0) goto label;

7.3.3 Value Dependence Graph

To aid in the generation of numeric programs, we construcwdliary data structure, which
we call thevalue dependence graph (VD)tuitively, the graph captures the dependences among
values stored in registers and a-locs identified by the tewery phase (we will refer to these

collectively asx86 variable$. The dependence information is used for the following psgs:

¢ To identify variables that are used to store and propagateoneaddresses. These variables
must have auxiliary variables that represent allocationnbis associated with them (see
§7.3.4).

¢ To identify variables that are used to store and propagdtesao which an integer division
and a remainder computation are applied. These varialdesso associated with a certain
set of auxiliary variables, which allow the precision of yieédral analysis to be improved
(see§7.3.5).

e To identify variable packs (that is groups of related vdeapfor polyhedral analysis. Recall
from §7.1.2 that the polyhedral analysis scales poorly as the puwibvariables that have
to be tracked increases. Variable packing is a techniquiedfproving the scalability of the

analysis (se§7.4.1).

The nodes of the graph correspond to the x86 variables, agesedpresent dependences among
them. The graph is constructed by taking a single path thrdbg program and introducing

corresponding nodes and edges for each instruction. Moneaity:



177

VDG nodes. Ideally, we would like to have a separate node for eatdof an x86 variable (e.g.,
for each class of values that the variable stores). Whileca-that correspond to the “natural”
global and local variables of the analyzed program areyikelplay the same role throughout
their lifetime, registers and a-locs that correspond tokskacations accesses by tbesh andpop
instructions generally play many different roles. That is, the same tegigay be used to store
both numeric values and memory addresses, and the samiettoeathe stack can be used to pass
parameters of different types to different functions.

We create a single graph node for each a-loc that correspgorad®cal or global variable and
for each symbolic memory constant. To distinguish amongrib#iple roles played by registers
and stack locations, we create a graph node for each defiritid a graph node for each use of
a register or a stack location. That is, a separate node aectdor each instruction that uses
or defines a register, and two nodes are created for the atising that both use and define a
register. For example, instructioadd eax, ebx” generates three graph nodes: two for the uses
of registerseax andebx, and one for the definition ofdax. For stack locations, the definition
nodes are created Ipush instructions, and the use nodes are created by functios aatlpop
instructions®

For each instruction, there is a unique mapping of its opan the corresponding graph

nodes. We define two functions to represent this mapping:
Node, : Instr x Operand— Node and Node; : Instr x Operand— Node

That is, for the instructiod, Node, (7, op;) gives the node corresponding to the new definition of
the first operand create ly andNode; (7, op,) gives the node corresponding to the use of the sec-
ond operand. We also define a function that maps the nodes & back to the corresponding

a-locs, registers, and symbolic memory constavis,gs.

5These stack locations are used for two main purposes: (ipte segister values during function calls, and (i) to
pass function parameters.

6Some programs manipulate the stack directly, that is withsing push and pop instructions. Our current
implementation does not handle such programs yet, but cénivizdly extended to do so.
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VDG edges. Edges are added to reflect the dependences between valuesdray x86 instruc-
tions. We distinguish among several types of edges (thesedgeexplicitly labeled with their

corresponding types):

o Affine-dependence edgesn affine-dependence edge is added to the graph if the value of
the x86 variable at the destination of the edge is computea affine transformation of the
value of the x86 variable at the source of the edge. That tkeikffect of the instructior
on its operands is:

Op; <— 0p; + ¢1 X opy + Co,

where ¢; and ¢, are constants, then an affine-dependence edge Modw,(/,op;) to
Nodes (1, 0p;) is added to the graph. Affine-dependence edges are inducedvbhydd,

sub, inc, dec, lea, push, pop, etc. Also, affine-dependence edges are used to connect the
nodes representing stack locations that store the valuastoél parameters at a function
call site to the nodes that represent the formal parameténg dunction, and to connect the
nodes that represent the registex at a function return statement to the node that represents

the registerax at the call site’s return point.

¢ Non-affine-dependence edgest non-affine-dependence edge is added to the graph if the
value of the variable at the source of the edge contributéseaomputation of the value
of the variable at the destination of the edge, but the degresel cannot be qualified as
affine. For the instruction in the previous bullet point, a non-affine-dependence edge f
Node; (1, opx) to Node (1, op;) is added to the graph. Non-affine-dependence edges are
induced by most of the same instructions as the affine flowsqgdes the instructionsnd,

shl, shr, sar, etc.

e Conditional-dependence edgesonditional-dependence edges represent the dependences
that are induced by the instructions that evaluate contitid hese edges are generated by
the cmp andtest instructions. For instance, the instruction“cmp op;, op,”, generates

two edges, in opposite directions, between the ndbes; (1, op;) andNode; (1, ops).
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e Loop-dependence edge®op-dependence edges capture dependences betweendaop in
tion variables and variables that appear in loop-exit choras. These edges are not gener-
ated by a particular x86 instruction, rather several irtdtoms cooperate to create a single
loop-dependence edge. To generate these edges, a setatesthat are incremented in
the body of the loop and a set of variables that appear in &dtipeonditions are collected
for each loop. A loop-dependence edge is added to the graphdach node that represents

an incremented variable to each node that represents abipendition variable.

The affine-dependence edges are used for identifying Jasdbat (i) store memory addresses,
or (ii) variables that participate in integer computatiossch as integer division and remainder

computations. All dependence edges are used in the algofiathvariable-pack identification.

Implicit dependencies. Due to the choice to introduce a unique VDG node for each diefimand
each use of registers and stack locations, certain depeesleannot be recovered by interpreting
individual instructions. In particular, the edges thakld@efinitions of registers and stack locations
to their subsequent uses need to be added to the graph. Towihg sequence of instructions
provides an example:

mov eax, b

mov ebx, eax
Neither of the two instructions generates an edge from tlae tioat corresponds to the definition
of eax created by the first instruction to the node that correspomdie use okax created by
the second instruction. The missing dependence edges ogenieeated by performing a simple
intraprocedural reaching-definitions analysis for regsstand stack locations, and adding affine-

dependence edges from each definition node to each use ramthedeby that definition.

7.3.4 Memory-Safety Checks and Allocation Bounds

As we mentioned before, each numeric-program variablethat may contain a memory ad-
dress is associated with two auxiliary variables that $pediocation bounds for that address. The
auxiliary variablevar.alloc; specifies the number of bytes following the address that easafely

accessed; the auxiliary variabter.alloc, specifies the number of bytes preceding the address
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that can be safely accessed. These auxiliary variableseateat to our technique: the purpose
of numeric analysis is to infer constraints on the auxiliaayiables that are associated with the
function’s parameters, global variables, and return valtleese constraints form the bulk of the

function summaries.

Memory-Safety Checks. The auxiliary variables are used to generate memory-safetgks:
checks for buffer overflows and checks for buffer underflows.generate memory-safety checks
for each memory access that is not resolved by the IR-regguease to a particular global or
local variable: these memory accesses correspond to ascesglobal and local buffers, and to
dereferences of pointers that are either passed as pararnoetstored in global variables. As
mentioned k7.2, general indirect memory accesses in x86 instructians the form “pase +
indexx scale + offself’, where baseandindexare registers ansicaleandoffsetare constants. Let

sizedenote the number of bytes to be read or written. The follgwimecks are generated:
o Buffer-overflow checkasser{base.alloc; > index x scale + offset+ size
e Buffer-underflow checkasser{base.alloc, + index x scale + offset> 0)

The instructions that execute hardware-supported loapsine slightly more care: the value
of the x86 direction flag and the number of iterations mustdken into consideration. For in-
stance, for the the instructiomrép stosd”, which we described i§7.3.2, the following checks

are generated:

Buffer overrun Buffer underrun
DF = false asser{edi.allocy > 4 x ecx) asser{edi.alloc, > 0)
DF = true assertedi.allocy > 0) asser{edi.alloc, > 4 X ecx)
DF = unknown | assertedi.alloc; > 4 x ecx) | asser{edi.alloc, > 4 x ecx)

Some instructions, namelyép movsd” and “rep cmpsd”, require that memory-safety checks
are generated for both of its implicit operands: register and registeesi. Also, note that the
discussion regarding the modeling of the direction flag atehd of57.3.2 applies to the case of

generating memory-safety checks, too.
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Allocation bounds. Maintaining allocation bounds for all variables is unneezedy expensive.
For this reason, we only associate allocation bounds witlabtes that can hold memory ad-
dresses. To identify this set of variables, we use the vdependence graph, which was described
in §7.3.3. We perform a backward traversal of the graph, staftiom the set of nodes that are
guaranteed to represent pointer variables (i.e., they emefetenced by some x86 instructions).
The nodes that are visited by the traversal are collectedima resulting set, which we denote by
Addr.

More formally, the initial approximation for the sétldrcontains the VDG nodes that represent
variables that are treated as pointers in the memory-selfietyks we introduced. For instance, for

the instruction
I: mov eax, [esi + 4 X ecx + 4]

we addNode, (7, esi) to the initial approximation foAddr. The setAddr is iteratively grown by
adding the nodes that reach the nodes in the set via affirendepce edges. The process stops
when no more nodes can be added.

The updates for the auxiliary variables are generated imaggstforward way. That is, the
translation of thenov instruction contains assignments for the correspondilogation bounds.
The translations ofdd, sub, inc, dec, andlea, as well as the x86 string-manipulation instruc-
tions, contain affine transformations of the corresponditmration bounds (see Figs. 7.1 and 7.2

for some examples).

7.3.5 Integer Division and Remainder Computations

Memory functions, such asemset, rely heavily on integer division and remainder computa-
tions to improve the efficiency of memory operations. In liewel code, the quotient and remain-
der from dividing by a power of two are typically computed hwva shift-right g€hr) instruction
and a bitwise-andafnd) instruction, respectively. In Fig. 7.1, the two consegaiinstructions at
0x4010A%stablish the propertydxry = 4 x ecx + edx, whereedz, denotes the value contained

in edx before the instructions are executed. This property isrisddor inferring precise error
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triggers for the memory accesse9a#010B1and0x4010B7 However, polyhedral analysis is not
able to handle integer division with sufficient precision.

We overcome this problem by introducing additional aurylisariables: each variablear
that may hold a value for which both a quotient and remaindenfdivision byk are computed
is associated with two auxiliary variablesgr.quot, andvar.rem;, which denote the quotient
and the remainder, respectively. These variables reprédsemesult of the corresponding integer
computation symbolically. Furthermore, the following lgé&b constraint links the value of the

variable to the values of the two auxiliary variables:
var = k X var.quoty + var.rem;, N\ 0 < wvar.remy <k — 1. (7.5)

We define a functionntOp : Node — ¢(N) that maps each node in the VDG to the corre-
sponding set of divisors. To identify variables that maydhible values for which quotients and
remainders are computed, we again use the value-dependmap®e Much like we did for al-
location bounds, we compute the initial approximation toe IntOp function by including the
mappings for the nodes that immediately participate in tireesponding integer operations. The
IntOp function is then iteratively grown by adding mappings fodas that are reachable or them-
selves reach the nodes for which the mappings have already dsrled to the function. There
are multiple potential strategies for building tmtOp function, each with a corresponding preci-

sion/cost trade-off. Below we describe the two stratediaswe experimented with:

Minimal construction [50]. The minimal-construction method looks for the VDG nodes #ra
reachable by backward traversals from both the divisionranthinder computation for the same
divisor k (only affine-dependence edges are traversed). The ayxtkaiables are associated with
all of the nodes that are visited by the traversals, up to teedhared node: that is, for every such
nodeu, the divisork is added to the seéntOp(u).

For the above example, the starting point for the “quotidrdVersal is the use afcx at
0x4010AC and the starting point for the “remainder” traversal is tise ofedx at 0x4010A9 at
these points, we generate assignments that directly usmthesponding auxiliary variables. The

first shared node is the useafx at 0x4010A7 at that point, we generate numeric instructions that
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impose semantic constraints on the values of the auxiliarghles (see Fig. 7.2). This construc-
tion introduces a relatively small number of auxiliary \edniies, and allows polyhedral analysis to
compute precise error triggers for the memory accessesta10B1and0x4010B7
Maximal construction. The alternative is to aggressively introduce auxiliaryialales: that is,
to associate the auxiliary variables with all the varialtes are reachable by either backward or
forward traversal of the VDG from the initial set of nodes. iddormally, for each edge — v in
the VDG, the functionntOp is updated as follows: the divisors intOp(u) are added to the set
IntOp(v), and vice versa. The process is repeated until the funttit@p stabilizes.

This approach introduces a large number of auxiliary véeglbut also allows the analysis to
handle pointer alignment. For instance, the overflow tnighgat we obtain with this technique for

the memory accesses@401093see Fig. 7.1) looks as follows:
len >4 N 1 <ptrrems <3 A ptr.allocy < 4 — ptr.oremy.

Note that this trigger is much more precise then the ones sho®7.1.3: in particular, the con-
straintl < ptr.rem, < 3 indicates thaptr must not be 4-byte aligned for the buffer overrun to
occur; the constrainttr.allocy < 4 — ptr.remy is the strongest condition for the buffer overrun at

0x401093

Instruction translation.  The numeric translations of x86 instructions must updagecibrre-
sponding auxiliary variables in such a way that the globakt@int shown in Egn. (7.5) is satisfied
for every annotated variable. This is not very hard in pcactiThe only complication is that the
remainder auxiliary variables may wrap around as the re$alt increment or a decrement. Thus,

necessary checks must be insertedy718.7, we show an example translation.

7.3.6 Symbolic Memory Constants

The goal of our technique is to synthesize the summary ofrarljifunction by looking at its
code in isolation. However, library functions operate im@éer context: they may access memory
of the client program that was specified via their parametgrhey may access global structures

that are internal to the library. The IR-recovery phase rm&mowledge of either the contents
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or the structure of that memory: they are specific to the thgplication. As an example, from
the IR-recovery perspectiveemset parameteptr may contain any memory address. Thus, from
the point of view of numeric-program generation, a writ@igptr may potentially overwrite any
memory location: local and global variables, a return askslon the stack, or even the code of the
function. As the result, the generated numeric program,edkas the function summary derived
from it, will be overly conservative (causing the client bysis to lose precision).

We attempt to generate more meaningful function summasiesimgsymbolic memory con-
stantsto model memory that cannot be confined to a specific a-loc byiRarecovery phase.
A unique symbolic memory constant is created for each uhredanemory access. From the
numeric-analysis perspective, a symbolic constant is lsimmlobal variable that has a special
auxiliary variablenddr associated with it. This auxiliary variable representsatiéress of a mem-
ory location that the symbolic constant models. If the mgniocation may hold an address, then
the corresponding symbolic memory constant has allochibamds associated with it.

We illustrate the use of symbolic memory constants with aangxe that comes from function
_1seek: The function_lseek moves a file pointer to a specified position within the file. sit i

declared as follows:
off t _lseek(int fd, off t offset, int origin);

fd is a file descriptorpffsetspecifies the new position of the pointer relative to eitleicurrent
position, the beginning of the file, or the end of the file, labseorigin.

A recurring memory-access pattern_irseek is to read a pointer from a global table and then
dereference it. Fig. 7.3 shows a portion_d&eek that contains a pair of such memory accesses:
the firstmov instruction reads the table entry, the second dereferencése registergcx andedx
hold the valuedd/32 andfd mod 32, respectively. The global variableNumbergives the upper
bound for the possible valuesfof Symbolic constants.c; andmc; model the memory locations
accessed by the first and secated instructions, respectively.

Our technique synthesizes the following buffer-overrugger for the secondov instruction:

0x424DEO< mc;.addr < 0x424DEO+ (uNumber—1)/8 A mec;.allocy <= 251
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mov  eax, dword ptr [4Xxecx + 0424DEOh]
assumeémec; .addr = 0x424DE0+ 4 * ecx);
eax < mcy; eax.allocy = mcy.allocy; eax.alloc, = mey.allocy;
movsx ecx, byte ptr [eax + 8xedx + 4]
asser(eax.allocy < 8 x edr + 5); asser(eaz.allocy + 8 * edz +4 > 0);
assumémcs.addr = eax.allocy + 8 x edx + 4 > 0); ecx — mca;

Figure 7.3 Symbolic memory modeling: the symbolic constant; andmc, model the memory
location accessed by tlmev andmovsx instructions, repsectively.

The above trigger can be interpreted as followfsany of the addresses stored in the table at
0x424DEQpoint to a buffer of length that is less than 252 bytes, ther@ possibility of a buffer-
overrun error. The error trigger is sufficient for a client analysis to igplent sound error report-
ing: if the client analysis does not know the allocation baaifor pointers in the table ak424DEQ

it should emit an error report for this trigger at the calediv _1seek. However, we hope that the
summary generated by our technique for the library-ing&lon code will capture the proper al-
location bounds for the pointers in the tableda#24DEO If that is the case, the analysis will not
emit spurious error reports.

Note that am@ssumestatement is used to restrict the value of variable .addr, rather than
the assignment statement. The reason for that is that if we tweoverwrite the address variable,
we would not obtain the constraints on its value in the emiggers because the assignment kills
the relationships between the valuemt;.addr at the call site of the function and the value of
mcy.addr at the error point. Thus, we adopt the philosophy that befbeememory access is
reached by the analysis, the corresponding symbolic memamgtant represents any memory
location. The memory access “selects” a particular memacgtion that the symbolic memory
constant must represent.

An interesting question is to see what soundness guaracaedse provided for the symbolic
memory constants. An obvious concern is aliasing, i.e. twhao symbolic memory constants
refer to the same location? Unfortunately, such aliasimgaaase the translation to be unsound.
Consider the following scenario: a write to a memory logati® followed by a read from the
same memory location, and the symbolic constant generateétié memory read is used in one

of the error-trigger constraints. Suppose that the valaedtat that memory location at the call
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site of the function does not satisfy the constraint; thios dient analysis does not report an error.
However, the write statement may have overridden the valatgd stored in that memory location
with the value that does violate the constraint, and ther ésractually possible.

Currently, we do not have a good solution to this problem. @ossibility is to perform a
post-processing step: compare numericallydtiér variables associated with symbolic memory
constants. Overlap between the values of two address \esiaidicates that the two symbolic
memory constants may represent the same memory locatios,ctrtain precautions must be
taken before using the produced summary. For the same rethgoaddress variables associated
with symbolic memory constants must be checked againstdtieeases of global variables that
were resolved by the IR-recovery phase. Also, the clienfyaisamust check that none of the sym-
bolic constants represent memory locations in the actimatecord of the function to be invoked.

Ultimately, we hope to add better memory modeling in thereitu

7.3.7 Numeric-Program Generation

The actual numeric program generation is done by performviagpasses over the x86 code:
on the first pass, the value-dependence graph is construaedthe set of variables that hold
memory addresseé@dr) and the function that maps each node in the VDG to the casrelipg
set of divisors IntOp) are built; on the second pass, the actual numeric progrgenisrated.

Below, we illustrate the translation process by transtatime instruction/: inc op;. The
overall translation is the concatenation of three piecesiditranslation, updates to the alloca-
tion bounds, and updates to the symbolic quotients and refees. In the following, we use
the functiono to map the VDG nodes to the corresponding numeric-progranablas, i.e.,

o = Varye o Var,gs.

Basic Translation. Basic translation is trivial: the increment instructiontianslated into a
numeric assignment statement that adds one to the numeiabhathat represents the use of the
operandp; and assigns the result to the numeric variable that repietendefinition obp,. The

following numeric statement is produced:

o(Node,(1,0p;)) < o(Nodeg;(I,0p;)) + 1;
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Node, (1, 0p;) | Node; (1, op;) Generated Statements
¢ Addr — nop;,
o(Node, (I, opy)).allocy «+— o(Node; (I, opy)).alloc; — 1;
C Addr c Addr ( (£, 0p1))-allocy — of (£, 0p1)).allocy
o(Nodey (1, 0py)).alloc, <+ o(Node; (I, op,)).allocy, + 1;
o(Node, (1, 0py)).allocy «— 7,
e Addr ¢ Addr ( U, 0p1)).allocy

o(Nodey(1,0py)).alloc, «— 7;

Table 7.1 The generation of updates for the allocation bsund

Note that the same numeric variable will be used on both fivdnéeand-side and right-hand-side of

the assignment statement.

Allocation-Bound Updates. The generation of nhumeric statements for maintaining atioa
bounds makes use of the getdr, which contains VDG nodes that are used to propagate memory
addresses. If the node that corresponds to the definitiop;a$ not in the set, no statements need
to be generated. Otherwise, the use of the opevands checked: if the node that corresponds
to the use of the operand is also found in theAsddr, the allocation bounds for the definition of
the operand are constructed from the allocation bounds@ésd with the use of the operand; on
the other hand, if the node is not found, the allocation bedndthe definition obp; are handled

conservatively. The details are shown in Tab. 7.1.

Quotient and Remainder Updates. The generation of numeric statements that maintain the sym-
bolic quotients and remainders relies on the functi®p. First, the setntOp(Nodes (1, op;))

is checked: if the set is empty, no code needs to be generadderwise, for each divisor

k € IntOp(Node, (7, 0p,)), consistent updates for the auxiliary variablest, andrem, need

to be generated. K € IntOp(Node; (7, op;)), then the quotient and the remainder associated with
the use of the operand are used to compute the new valueefquttient and remainder associ-
ated with the definition of the operand (note that the numarde must account for the possibility
of wrap-around in the remainder value). Otherwise, coraam assumptions are made for the

values of the quotient and remainder. The generation psasekustrated in Tab. 7.2.
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forall k£ ¢
IntOp(Nodey(1, op,))

Generated Statements

o(Nodey (1, 0py)).quoty, — o(Node; (I, 0p,)).quoty;
o(Nodey (1, 0py)).remy < o(Node;(1,op1)).remy + 1;
ke if (c(Nodey (1, 0py)).remy, == k){
IntOp(Node; (1, op1)) o(Nodey (1, 0py)).remy, < 0;
o(Nodey (1, 0py)).quoty, «— o(Node; (I, op1)).quoty, + 1;
}

o(Nodey (1, 0py)).quoty, <7,

kg o(Nodey (I, opy)).remy «7;

assumé0 < o(Nodey (1, 0p,)).rem;, < k —1);
IntOp(Node; (1, op1)) ¢ ( (4 op1)) ‘ )

assuméo(Nodey (1, 0py)) ==
(k—1) x o(Nodey (I, opy)).quoty, +o(Nodey (I, opy)).remy);

Table 7.2 The generation of updates for the quotient andireteaauxiliary variables.
7.4 Numeric Analysis and Summary Generation

Our numeric analyzer is based on the Parma Polyhedral ifRPL) and the WPDS++ li-
brary for weighted pushdown systems (WPDSs), and suppartggms with multiple procedures,
recursion, global and local variables, and parameter pgs3ihe analysis of a WPDS yields, for
each program point,&eight or abstract state transformer, that describes how thegmogtate is
transformed on all the paths from the entry of the progranm&b program point. Linear-relation
analysis [32] is encoded using weights that maintain twe eévariables: thelomaindescribes
the program state at the entry point; ta@gedescribes the program state at the destination point.
The relationships between the variables are captured inghi inequalities. Given a weight com-

puted for some program point, its projection onto the rarageables approximates the set of states



189

that are reachable at that program point. Similarly, itggmtoon onto the set of domain variables

approximates the precondition for reaching that progratest

7.4.1 Variable Packing

Function summaries are generated from the numeric-asalgsults. In principle, summary
transformers are constructed from the weights computethéoprogram points corresponding to
procedure returns. Error triggers are constructed by lpacjecting weights computed for the set
of error program points. However, the poor scalability ofjpedral analysis is a major challenge:
in practice, for most reasonable library functions, it widit be possible to analyze the generated
numeric program in its entirety. We address this issue bgiking a large analysis problem into a
set of smaller ones: we perform multiple analysis runs, eaotstill analyzes the entire program,
but models only small subset of program variables. Thisrtegle is calledvariable packing
(or, sometimesyariable clustering[14, 87]. There is one difference in the way we use variable
packing: the standard approach is to propagate all variagdbis simultaneously, whereas we
perform a separate analysis run for each pack. Note thathe@mne hand, simultaneous pack
propagation yields better analysis precision; but on therdtand, it puts much larger pressure on
memory and is not parallelizable.

The main question that needs to be answered is how to idesatiftbles that should go into the
same pack. If we include too many variables, the analysisnwil be efficient; if we include too
few, the analysis will be imprecise. We generate packs Withuse of the value-dependence graph:
for each pack we identify a set génerators—that is, a set of variables (or rather, VDG nodes) that
are of primary concern to us—and include into the pack allnbees that are reachable from the
generators by a backward traversal through V(b ¢lasses of dependence edges are used). One
particular challenge that we face is that VDG graph contamig a single node per global or local
variable. This approach worked well for identifying vatied that must have auxiliary variables
associated with them. However, in pack generation, thiscgmh causes extra variables, which
are of no use for the analysis, to be added to a pack. Intlyitires happens because the treatment

of variables in the VDG is control-flow insensitive: thusprsmdependence chains in the VDG are
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not realizable in the actual program. We try to curb the pgapian through the VDG with the use

of heuristics: e.g., the backward traversal does not folomditional edges out of the nodes that

correspond to global variables. However, the heuristieshat yet mature enough to be reported.
In the next two sections, we describe pack generation far ériggers and summary trans-

formers in more detail.

7.4.2 Error Triggers

A single pack is constructed for each safety-checked memorgss; that is, the analysis run
performed with this pack generates both the buffer-overftayger and the buffer-underflow trig-
ger for the memory access. The set of generators for a meawwgss pack contains the VDG
nodes that are used directly in the memory-address conputafor the memory accesses per-
formed by x86 instructions that execute hardware-supdddeps, the node that indicates the
number of loop iterations (i.e., the node that represemtsitie of registescx at the corresponding
instruction) is added to the set of generators.

For example, for the instructioft mov eax, [esi + 4 X ecx + 4], the set of generators
containsNode; (1, esi) andNode; (1, ecz). For the instruction/: rep movsd, the following set is
used:

{ Node,(J, esi), Node;(J, edi), Nodeg,(J, ecx) }

Splitting error-trigger formulas. The error triggers produced by our technique are repregente

by polyhedra. It may be of practical interest to decomposeethor trigger into two parts:

e Path component:a polyhedron that corresponds to the precondition for riegae mem-

Oory access.

e Error component: a polyhedron that encompasses the general condition tisatohbe

violated to cause an error.

The meet (or, in logical terms, conjunction) of the path comgnt and the error component is

equivalent to the original trigger.



191

For example, consider a buffer-overflow trigger fr§m3.5:
len >4 N 1 <ptrremy <3 A ptr.allocy < 4 — ptr.oremy.

This trigger can be decomposed into a path comporlent> 4 A 1 < ptr.oremy < 3, which
indicates that for the memory access to be reachable, tlaengéerlen must have a value that is
greater than, and the paramete#r must not be aligned on a 4-byte word boundary; and an error
componenptr.alloc; < 4 — ptr.remy, which indicates that for the buffer overflow to happen at
that memory location, the forward allocation bound mustdss than the distance frophr to the
next 4-byte-aligned word.

We have a technique for automatically splitting error tagginto a path component and an
error component. The technique operates as follows: the gahponent is trivially obtained
by computing the precondition for the memory-access pddtiserve that, because error points
(to which control is diverted in the case of a memory errog anique, each error trigger (i.e.,
a precondition for reaching an error point) is a subset ofcttreesponding path component. To
obtain the error component, we need to find the most genehgh@dron that, when intersected
with the path component, yields the error trigger.

To compute error components, we defined a general operatiqggolyhedra: the operation
takes two polyhedr#®; and P, such that?, C P, and produces the most general polyhediyn
such thatP, N P = P;. The operation can be implemented by selecting only thosstaints of
the smaller polyhedro#; that are not satisfied by the larger polyhedfén Interestingly enough,
this operation is very close in spirit to the widening operain principle, the result of widening is
constructed by selecting those constraints of the smadlghpdron that are satisfied by the larger

polyhedrori.

"In practice, the implementation of widening is much tricki€ee Chapter 2 for details. This may indicate that
the implementation of the operation that we sketched alsmetiideal, and can be improved by using ideas from the
design of widening operators.
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7.4.3 Summary Transformers

Generating summary transformers is somewhat harder thaerafeng error triggers. First,
as we said before, it is infeasible to generate a summargframer with a single analysis run.
Thus, we generate the summary transformer for ¢éacjet variableof the library function. Target
variables include the registeax at each return point, and the set of global variables that are
updated within the function. For a particular target vaeakhe pack generator is a singleton set
that contains that variable.

The summary transformer for a particular target variablgeserated as follows: the weight
computed for the return program point is transformed todotge values of all “after” variables,
except for the target variable. Also, information aboutalocariables (if present) is dropped.
Intuitively, the resulting polyhedron expresses the ‘@éfialue of the target variable solely in
terms of “before” values of function parameters and glolaaiables. To form the overall summary
transformer, the transformers for the individual targetalales are conjoined.

Note that this approach loses some precision: namely, thlysia does not capture numeric
relationships among multiple target variables. That isisoder a function that on exit establishes
the relationshipc + y = 5, for some global variables andy. Our technique will not be able to
generate a summary transformer that captures this behawviless either: or y is preserved by
the function (i.e., either’ = z ory’ = y).

Disjunctive Partitioning. Another challenge posed by generating summary transferimetue

to non-distributivity of the polyhedral abstract domainbiary functions (as well as many non-
library functions) typically have two kinds of paths: sharterror” paths, which skip directly to
the return statement if the corresponding error check at@duto true, and longer “work” paths,
which actually perform the function’s job. The majority dbhal-variable updates happen on the
“work” paths, but not on the “error” paths. At the return pithe weights for the two kinds
of paths are combined, which often causes precision to beiloselational polyhedral analysis,
combining an identity transformation with any other tramsfation tends to lose precision. For
instance, consider combining (i.e., joining) a polyhedfoh= x} with the polyhedrodz’ = 5}.

The resulting polyhedron includes the entizex’)-plane, i.e., all constraints anandz’ are lost.
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To retain some precision, we resort to disjunctive panitig: that is, we prevent certain
weights from being combined. More precisely, we prevenatiadysis from combining the weights
from the paths on which the target variable is modified witlweight from the paths on which
the target variable is preserved. (Recall, that due to paclkhere is only one target variable per
analysis run.) As a result, a pair of weights is computed &mheprogram point, and thus a pair
of summary transformers is generated for each target \tarittke first transformer is typically an
identity—the only interesting case is when this transfarmmean annihilator (zero), which indi-
cates that the target variable is updated on all paths thrthefunction; the second transformer
approximates all updates to the target variable that thetiiom performs.

The above partitioning scheme is similar to the disjungbasitioning performed by ESP [34]:
that technique propagates functions that map states of &h(®&ich is referred to aproperty
automaton to the elements of some abstract domain. At join pointsy timt elements that cor-
respond to the same FSM state are joined together. Our tpehnises a very simple “property”
automaton that only has two states—the state “target Varfabserved” and the state “target vari-
able updated”—and a single transition that goes from “presE to “updated”. The automaton
starts in “preserved”, and makes a transition to “updated&mever a numeric assignment state-

ment that updates the corresponding target variable isuenteed by the analysis.

7.5 Experimental Evaluation

To experimentally evaluate the techniques presented snctimpter, we generated summaries
for a number of functions in the standard C library. The pattr library that we used in our
experiments is the version of standard C library that is beohdith Microsoft Visual Studio 6:0
we used the version of the library for tReleaséuild configuration (that is, the library code was
optimized by the compiler).

We conducted two case studies. In the first study, we gemkfatetion summaries for the

memory-manipulation library functionsnemsetmemcmpandmemch® The implementations

8Currently, we cannot handle the calemcpybecause we cannot recover an accurate intermediate rafatee
for it.
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Library x86 NP Memory Times (s) Error Triggers

Call Instr. | Variables| Accesses| IR recovery| NP Generatior]| Analysis || Overrun| Underrun
memset 48 24 3 103 0.05 1.7 3/3 3/3
memchr 84 23 4 109 0.08 2.6 4/4 4/4
memcmp 86 36 12 100 0.16 13.4 8/12 12/12

Table 7.3 Analysis results for memory-manipulation ligramctions: the number of x86 instruc-

tions, the number of variables in the generated numericprogand the number of safety-checked
memory accesses are shown; times are given for IR recovwangnc-program generation, and nu-
meric analysis; the precision is reported as the numbeligidrs that are sufficiently precise to

prevent the client analysis from generating spurious egports.

of these library functions are relatively small: each cetssof a single procedure; the number of
x86 instructions ranges betweéf and 100. On the other hand, these library calls have fairly
complex numeric behaviors: pointer arithmetic is usedresiteely, including checking for pointer
alignment; the x86 instructions that execute hardwargsupd loops and bitwise logical instruc-
tions are employed routinely. The goal of this study was &ckhwhether our techniques provide
sufficient precision to generate meaningful summariestHese library functions. We report the
results of this study i§7.5.1.

The second study focused on stream library functions, sad¢tl@se fopen fflush etc. The
implementations of these library calls are larger thani@@émentations of memory-manipulation
calls: each implementation consists of several hundreclictsons and multiple procedures. Also,
internal library data structures (e.g., tables that stgérfformation) are accessed and manipulated
extensively. However, in contrast to the memory-manipoitefunctions, the numeric behavior of
stream functions is quite simple. The goal of this study weasheck the overall applicability and
scalability of our techniques. The results of this studyreported ing7.5.2.

The experiments were conducted on two machines: the IR#eg@and numeric-program
generation was done on a 1.83GHz Intel Core Duo T2400 witGl.6f memory. The numeric

analysis was done on a 2.4GHz Intel Pentium 4 with 4Gb of mgmor
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| Run | Initial-state constraints | Analysis time (s)|
1 num < 3 8.8
2 num >4, ptr%4 =0 8.6
3 num >4, ptr %4 #0, ptr %4 +num %4 <3 12.1
4 | num >4, ptr%4#0, ptr%4d+num%4=4 10.8
5 | num >4, ptr%4#0, ptr%4+num%4>5 10.5

Table 7.4 Pointer-alignment study faremsetfive analysis runs were performed to generate error
triggers that capture pointer alignment precisely; theahstate constraints and the analysis time
are shown for each run.

7.5.1 Case Study: Memory Functions

Tab. 7.3 shows the result of the application of our techntqube set of memory-manipulation
library functions. For this set of experiments we usedtir@mal constructiormethod for dealing
with pointer-alignment checks (s§&.3.5). For each library function, intermediate-repréaston
recovery took roughly a minute and a half, numeric-programegation was almost instantaneous,
and numeric analysis took several seconds. We inspecteprdigeiced error triggers by hand:
except for the four buffer-overrun triggers fimemcmpall the of the generated error triggers were
sufficiently precise: they corresponded to the error tniggae would derive from the specification
for those library calls. Implementation details, such af#ct that different paths are taken through
the code depending on the alignment of the pointer argumerte abstracted from the triggers.

The four triggers that were not captured precisely are dtietéollowing loop inmemcmgwe
show a numeric-program excerpt, rather than the origin@lo@le):

if(odd(eax)) eax «— eax—1;

while(eazx # 0){

ear «— ear — 2;
¥
The if statement above makes sure that the value stored isteegax is even. The while loop
decrements the value e&x by two on each iteration and uses a non-equality constraiexit the

loop: that is, this loop only terminates if the valuedsix before the loop is even. The polyhedral
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abstract domain cannot represent the parity of a varialtiesTthe analysis presumes that there is
no lower bound on the value efx, which causes the error-triggers to be imprecise.

However, the technique that we introduced 3.5 is able to deal with parity: if we introduce
the auxiliary variables that symbolically represent# % 2" and “eax / 2", and add the corre-
sponding update statements for these variables to the mupregram, the analysis will obtain a
precise bound for the value in registerx (to do that, the analysis must also track the parity of
the parameter that specifies the length of the two buffertsntigencmpompares). We manually
instrumented the numeric program and checked that theetisggenerated from that program are
indeed precise. However, we have not yet implemented ameitoway for detecting these cases
and adding necessary instrumentation to the program.

To experimentally evaluate threaximal constructiomethod from57.3.5, we applied it to the
memsetibrary call. The generated numeric program had an incceasenber of variables com-
pared to the minimal construction method (31 instead of 2430, numeric analysis applied di-
rectly to the problem took several hours and yielded imgeeesults. We traced the problem to the
non-distributivity of the polyhedral abstract domain: tieéationships between symbolic remain-
ders and quotients are generally non-convex—approximatiose relationships caused complex
polyhedra (i.e., polyhedra with large numbers of verticed eonstraints) to arise in the course
of the analysis. Complex polyhedra, in turn, caused theyaigato be slow and imprecise. To
prevent the joins of “incompatible” polyhedra, we manuglgrtitioned the paths that the analysis
explores. The paths were partitioned by imposing a set o$tcaimts on the program states at
the entry of the library call and performing multiple anag¢ysins to cover the entire set of initial
states. Tab. 7.4 shows the results we obtained: 5 analysswvere required, each run took on the
order of 10 seconds, and the triggers that were generatedtgavmost precise error conditions
that can be inferred for this implementationmmémsetHowever, the question of automating such

paths partitioning remains to be addressed in the future.
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Library || x86 | Proc. Numeric Program Variables Memory || IR Recovery| NP Generation
Call Instr. | Count || global | local (max) | local (avg) || Accesses| Time (s) Time (s)
fclose 843 12 336 37 14 115 52.9 2.8
fflush 443 8 156 30 11 38 43.4 1.2
fgets 469 7 216 30 14 75 45.0 1.2
fopen 1419 18 258 35 15 107 69.5 4.0
fputs 784 13 266 40 15 98 59.5 2.7
fread 524 7 230 30 15 81 49.2 1.6
fseek 514 7 192 30 15 59 46.6 1.3
ftell 249 4 138 27 13 30 40.7 0.6
fwrite 600 9 238 40 16 75 57.2 2.1

Table 7.5 Numeric-program generation for stream libranctions; the number of x86 instruc-
tions and the number of procedures in the implementatiorach déibrary function is shown; for
the numeric program, the number of global variables, anartaeimum and the average number
of local variables are shown. Last two columns give the tismeEnt on recovering intermediate
representations and on generating numeric programs farldmary function.

7.5.2 Case Study: Stream Functions

Tab. 7.5 shows the stream library functions for which we gateel summary functions. Of
particular interest is the number of variables in the numprogram that our technique generates.
The maximum number of variables that the numeric analyzesttnack at any point throughout
the analysis is given by the sum of the global variables aadthximum number of local variables
among all of the procedures in the generated prodrémthe end, the overall number of variables
that the analysis needs to track measures in the hundretiexaaeds the number that polyhedral
analysis is able to handle in practice. In fact, if we feed ahyhese numeric programs to the
numeric analyzer, the analyzer runs out of memory while tansng the pushdown system—that
is, even before the iterative computation begins. To amalljgse numeric programs, we rely on
the variable-packing technique, which we describe¢irid. 1.

Tab. 7.5 also reports the time spent for recovering interatedepresentations and for genera-
tion of numeric programs. The IR-recovery phase took apprately one minute for each library
function. We believe that this can be improved by better megring of the tool—something that

we have not yet addressed. For instance, we can use a sing&SQder run to recover IRs for

9n fact, in addition to these, a few extra variables may baireq to support parameter passing.
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Library || Pack Variables/Pack Analysis Precision Analysis Time

Call Count || Maximum | Average| Both [ One | None || Total (min) | Average/Pack (s
fclose 115 63 23 64 7 44 79.0 41.2
fflush 38 35 21 22 2 14 10.0 15.8
fgets 75 31 12 67 7 1 55 4.4
fopen 107 37 17 68 2 37 46.5 26.1
fputs 98 69 13 78 3 17 24.5 15.0
fread 81 46 14 70 0 11 13.8 10.2
fseek 59 30 15 56 1 2 7.8 7.9
ftell 30 29 18 30 0 0 2.3 4.5
fwrite 75 69 16 69 0 6 20.0 16.0

Table 7.6 Error-trigger generation for stream library flimes; thepack countndicates the number
of analysis runs performed: each analysis run generateBea-owverflow trigger and a buffer-un-
derflow trigger;Variable count:the number of variables that the analysis needs to modeltsimu
neously (i.e., globals + locals), tmeaximumrmumber across all packs and #neragenumber per
pack is shownAnalysis Precisionmeasured as the number of packs for wtiolh, ong or none
of the generated triggers are meaningful.

all library functions, as opposed to performing a single CodieBuun foreachlibrary function
as is done now. Numeric-program generation takes only a éearsls per library function; thus,
its performance is not of immediate concern. However, weebelthat the efficiency of numeric-

program generation can also be improved.

Error Triggers.  To generate error triggers, we used variable-packing agbrresented in
67.4.2: that is, a separate variable pack was generated ¢brreamory access that is checked
for safety, and a separate analysis run was performed fdr pack. Tab. 7.6 shows the results
obtained. Note that the number of variables in each pack shrmore manageable compared to
the entire program, and on average, is rather small (undea@ables). On average, an analysis
run (for a single variable-pack) takes under a minute. Thexadlanalysis takes on the order of
few dozen minutes per library function.

An interesting question is how to judge the quality of theoetriggers obtained. If we had
an implementation of memory-safety analysis that couldtieg@roduced triggers, we could have
measured the effectiveness of our technique by reduaticr@ase in the number of false positives

reported by the analysis. However, currently, there is rmthnalysis that can use the summaries
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Figure 7.4 Error triggers for stream library calls: the petages of memory accesses for which
both generated triggers are meaningful, one of the genktatgers is meaningful, and none of
the generated triggers are meaningful, are shown.

that we produce. Also, the number of error triggers gendrayeour technique is sufficiently large
to prevent us from inspecting each trigger manually.

We used the following automatic technique to assess thétyjoathe produced triggers: each
trigger is split into two parts—the path component and threrecomponent—as described in
§7.4.2. By construction, error components may only contaimstraints that are relevant to the
error. Therefore, our automatic trigger-assessment tqahrns based on inspecting the error com-
ponents of the generated triggers.

We declare an error trigger to lb@eaningfulf its error component isot T (or true, in logical
terms). The error trigger indicates that the corresponding error may happen dursmtiocation
of the library call regardless of the program state in whiehd¢all was invoked. Generally, we do
not expect library functions to behave in this way; thuisiost likely indicates that the analysis

has lost precision.
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We eliminated the path component of the trigger from consitlen because the path compo-
nent may contain some constraints that are not relevanetertior (e.g., some program invariant),
thus making the overall trigger non:

Fig. 7.4 shows the results of our error-trigger-qualityesssnent. For each library function,
we report the percentages of memory accesses for which leottrated triggers (i.e., the buffer-
overrun trigger and buffer-underrun trigger) are meanihgbnly one of the generated triggers
(i.e., either the buffer-overrun trigger or buffer-underitrigger) is meaningful; and neither of the
two generated triggers is meaningful. As the rightmostrwiundicates, our technique is able to
generate meaningful error triggers for about 80% of memocgsses.

The callfcloseseems to provide the biggest challenge for our techniquentimeric analysis
takes the longest diclose(79 minutes) and yields the poorest precision (for only 56¥hemory
accesses are both generated error triggers meaningfuljodiea detailed look at the 15 longest
analysis runs fofclose(out of 115): the cumulative time for those analysis runsoaoted for
more than 50% of the overall analysis time (40 out of 79 misjtalso, meaningful triggers were
generated by only 3 of those analysis runs (out of 15). Smsitaiations occur for other library
calls too: a small number of analysis runs takes an incrghsiong time and produces poor
results, whereas the remaining analysis runs are fast ahdl good precision. Our experience
indicates that the likely cause for this behavior is thauf&lof our current techniques for variable-
pack identification to produce reasonable variable packthf®ocorresponding memory accesses.
One future direction for this work is to improve the packst&cation techniques: we believe that
better variable-pack identification will significantly imgve both the precision and the efficiency

of the analysis.

Summary Transformers. Initially, we focused on the generation of error triggersdugse they
are somewhat easier to generate and their quality is easassess. Recently, we switched our
attention to the generation of summary transformers. Qtiaiapproach was to apply directly the
techniques that we designed for error-trigger generatf@pnly exception was the technique for

variable-pack identification—we use the technique deedrif7.4.3 to identify variable packs for
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Library || Pack Variables/Pack Transformer Precisioﬁu Analysis Time

Call Count || Maximum | Average|| Full | Partial| Bad | Total (min) | Average/Pack (s
fclose 43 67 26 8 1 34 1155 161.2
fflush 28 30 14 6 0 22 16.1 34.5
fgets 21 35 11 10 8 3 20.9 59.6
fopen 22 40 25 6 0 15 64.5 176.0
fputs 36 73 10 14 8 14 57.3 95.5
fread 23 50 14 2 1 20 414.9 1082.3
fseek 11 22 9 5 4 2 0.8 4.1
ftell 4 46 16 1 1 2 1.3 18.8
fwrite 25 73 13 12 11 2 49.1 117.9

Table 7.7 Summary-transformer generation for streamrdianctions; thepack counindicates
the number of analysis runs performed: each analysis ruergess a transformer for a single target
variable;Variable count:the number of variables that the analysis needs to modeltsinaously
(i.e., globals + locals)—thenaximumumber across all packs and taeeragenumber per pack
are shownAnalysis Precisionthe numbers of target variables for whithl transformerspartial
transformers, anbdadtransformers are obtained (for definitions, §&6.2).

generating summary transformers. The initial results werg poor: the technique was not able
to produce any meaningful summary transformers.

The primary reason for the failure of the analysis, as weusised ir§7.4.3, was the precision
loss due to non-distributivity of the polyhedral abstractréin: the combination of the weights
computed for the paths on which the target variable was epdaith the weights for the paths on
which the target variable was preserved cannot be repexsentcisely with a single polyhedron.
To overcome this problem, we modified the analysis to compubeweights: one represents the
program-state transformation for the paths that modifyttrget variable, the other represents
the program-state transformation for the paths that pvese target variable. This modification
allowed the analysis to produce much more meaningful sumiransformers.

Tab. 7.7 shows the results that we obtained. First, notethieatariable packs are somewhat
larger than the ones identified for error-trigger genematidlso, the analysis takes significantly
longer to complete. To estimate the precision of the geadmummary transformers, we manually
classified the resulting transformers into three categofiibe target variables are the variables that
are updated by the library call: they include the return galfithe call, the global variables that

are explicitly assigned to, and symbolic memory constdrasmodel unresolved memory writes.
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The latter account for the majority of target variables. Tpasticular things that are of interest
in a summary transformer for a particular target variabke @ what value is assigned to the
target variable, and (ii) whether we can precisely identifhat memory location the target variable
represents. Item (ii) above is only of relevance for the syicbmemory constants. We recognize

the following categories of summary transformers:

e Full Transformers: These transformers capture both the resulting value anddtieess
(or, possibly, the range of addresses) for the correspgndiget variable. The addresses
of target variables are of more concern to us because we baugktsymbolic memory
constants to the corresponding memory locations. Ournrexatt of the resulting values is
less strict: that is, we declare the value to be “capturedhif constraints on the value were

inferred.

e Partial Transformers: These transformers capture the address (or the range aissed)
for the target variable, but lose the information about geulting value; that is, these trans-
formers represent definite or conditional kills of the cepending target variable. Only the
transformers for symbolic memory constants are classifsepaatial—partial transformers
for global variables are not very interesting; that is, ¢hare much less expensive ways
of obtaining information about potential modifications dblgal variables, such as GMOD

analysis [25].

e Bad Transformers: These transformers do not capture either the value or theesslof
the target variable. If the target variable is a return valua global variable, a bad trans-
former corresponds to a kill (definite or conditional) of ttvariable; if the target variable
is a symbolic memory constant, a bad transformer indicatsany memory location could

have potentially been updated—this is the worst possitdeao for the client analysis.

The chart in Fig. 7.5 shows the percentages of target vasdbl which full, partial, and bad
transformers were inferred. On average, full transforraegsnferred for about 30% of target vari-
ables; partial transformers are inferred for another 18#vihg more than half of target variables

with bad transformers. These results, however, are pnedirngj and are included in this thesis
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Figure 7.5 Summary transformers for stream library calis: jercentages of target variables for
which full transformerspartial transformers, antiad transformers are obtained (for definitions,
see§7.5.2).

primarily for the sake of completeness. In the generatioaradr triggers, the main cause of the
analysis imprecision was poor variable-pack identificatidhe above results may indicate that
the variable-pack-identification techniques that workatisgactorily for error-trigger generation,
do not work that well for the generation of summary transfersn Thus, in the future, better

identification techniques that are tuned to summary-tansér generation need to be designed.

7.6 Related Work

Summary functions have a long history, which goes back tsé&minal work by Cousot and
Halbwachs on linear-relation analysis [32] and the paparsterprocedural analysis of Cousot
and Cousot [30] and Sharir and Pnueli [106]. Other work oryaes based on summary functions
includes [11, 71, 94], as well as methods for pushdown sys{ég) 17, 41, 97], where summary

functions arise as one by-product of an analysis.
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A substantial amount of work has been done to create summangtibns for alias analysis
or points-to analysis [22, 58, 77, 98, 115], or for other demgmalyses, such as lock state [116].
Those algorithms are specialized for particular problemsie comprehensive approaches include
the work on analysis of program fragments [99], componéséibased analysis [42], and use of
SAT procedures [116].

The relevant-context-inference algorithm of Chatterjeale[22] determines points-to infor-
mation for a subset of C++. It works bottom-up over the cadpdr, analyzing each method using
unknown initial values for parameters and globals. The goab obtain a summary function
together with conditions on the unknown initial values.

The work on points-to and side-effect analyses for prograuil with precompiled libraries
[98] concerned flow-insensitive and context-insensitivalgses. Such analyses ignore the order
among program points in procedures and merge the informabtained for different calling con-
texts.

Some of the work cited above explicitly mentions separatelypiled libraries as one of the
motivations for the work. Although the techniques desdibethe afore-mentioned papers are
language-independent, all of the implementations desdréve for source-code analysis.

Guo et al. [55] developed a system for performing pointetyaig®on a low-level intermediate
representation. The algorithm is only partially flow-séimst it tracks registers in a flow-sensitive
manner, but treats memory locations in a flow-insensitivemea The algorithm uses partial trans-
fer functions [115] to achieve context-sensitivity, whéne transfer functions are parameterized
by “unknown initial values”.

Kruegel et al. [72] developed a system for automating miynattacks. (i.e., attacks that evade
detection by intrusion detection systems that monitor eaeqges of system calls). Their tool uses
symbolic-execution techniques on x86 binaries to discattxcks that can give up and regain
execution control by modifying the contents of the data ph@a stack so that the application is
forced to return control to injected attack code at somet@diar a system call has been performed.
Cova et al. [33] used this platform to apply static analysishie problem of detecting security

vulnerabilities in x86 executables. In both of these systatias information is not available.



205

In our work, we make use of a-locs (variable proxies), aliderimation, and other IRs that
have been recovered by the algorithms used in CodeSuré&ef@<®]. The recovered IRs are used
as a platform on which we implemented a relational analyss $ynthesizes summary functions

for procedures.
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Chapter 8

Conclusions and Future Work

In this thesis, we presented a collection of techniques ritiaacing the precision and appli-
cability of numeric program analysis. The proposed teanescgare orthogonal to each other and
can be (and, in fact, should be) combined and used togettieeirmplementations of numeric-
program-analysis tools. The techniques are not specifioygoarticular numeric abstraction or
any particular iterative-computation-based analysisrengrather, certain minimal requirements
are placed (in the form of an interface) on these compondfas.the numeric abstractions, the
techniques adhere to the interface imposed by the abstitacpretation framework: i.e., abstrac-
tions are viewed as domains (partially-ordered sets) tluaiqhe certain operations; e.g., meet, join,
widening, etc. As a result, our techniques can be instaatiatth any existing numeric abstraction
or with any numeric abstractions to be introduced in therjtas long as those abstraction adhere
to the required interface.

For program analyzers, the guided-static-analysis tegtenfrom Chapter 5 imposes a gen-
eral interface that is inspired by model checking and byditaom systems: the only assumption
that is placed on the analyzer is that it soundly approximateet of program states that can be
reached by some execution of a program from a specified seitiad states. This interface is suf-
ficiently generic to allow guided static analysis to be gasilegrated into a wide range of existing
analyzers. We integrated guided static analysis into tligtieg library for weighted pushdown
systems, WPDS++ [69] with minimal effort: no changes weguieed to the implementation of
the fix-point-computation engine of the library.

In the following, we briefly summarize each of the proposetharic-program-analysis tech-

niques, and indicate directions for future work.
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Summarizing Abstractions. Chapter 3 addressed the question of how to represent numeric
states of the systems where the number of numeric objedtshanalysis must keep track of
varies from state to state and is, in general, unbounded chigter shows how to systematically
construct summarizing abstract domains, which are capzthiepresenting universal properties
of unbounded collections objects, from existing abstrachdins. Summarizing abstract domains
can be used in conjunction with some form of a summarizingraton to represent numeric
states for systems that manipulate unbounded numbersedtsi{e.g., for programs that perform
dynamic-memory allocation). The requirements that arequeon the summarizing abstraction
are minimal: summarization can be as simple as collapsigetb@r all memory locations created
at the same allocation site, or as complex as canonicalhwhibstraction used in state-of-the-art
shape-analysis tools [78, 100].

The key difference between summarizing abstraction andrd#chniques that are used to
represent universal properties for unbounded numbersjethis that summarizing abstractions
model all objects in the system as first-class citizens:ithélhe properties of summarized objects
are synthesized and represented in the same way as thet@smé#rnon-summarized objects.
Other techniques, typically, rely on special represeotatifor the universal properties, such as
parametrizedpredicates [110] andange predicates [67]; such approaches require the design of
special techniques and heuristics to reflect the effect ofifam statements on such predicates.
In contrast, Chapter 3 showed how to create sound transferareformly for all summarizing

abstractions.

Future Directions. There are a number of interesting future directions forwosk:

e Predicate abstraction.Predicate abstraction is a very popular technique in so&warifi-
cation: it is a main ingredient iparsimoniousabstractions, which are viewed as one of the
keys to future scalability of software verification. Preateabstraction is, in fact, an abstract
domain that can (i) capture correlations between numexdcBaolean values, and (ii) cap-
ture disjunctions (and, consequently, implications) afeuic properties. Item (ii) above is
of particular interest for summarizing abstractions beseatiwould significantly extend the

class of properties that can be automatically captureds3&2.
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The summarizing extension for predicate abstraction carivbally constructed based on the
material in Chapter 3. An interesting feature of such anresiten is that the predicates that
are used to instantiate it are implicitly universally quaed. However, note that the tech-
niques ing3.4 allow to transform the values of such predicates withugeof decision pro-
cedures that do not support quantification. On the other haxisting iterative-refinement
techniques cannot be used directly to derive such unisgrgahntified predicates. An inter-
esting research direction is to investigate the use of suimimg abstractions in the context

of predicate abstraction.

e Aggregation functions.The first two steps of summarizing abstraction (referrecsueatial
abstraction in Chapter 3ggregatethe values associated with the objects that are summa-
rized together. The particular aggregation that we explasecollecting the values into a
set. However, one can imagine other aggregation functiwatscbuld have been used: e.g.,
selecting a minimal or a maximal value, computing the sunheiaverage of the values, etc.
An interesting research question is whether the technimquébkapter 3 can be generalized to
be applicable to arbitrary aggregation functions. Alsoylside interesting to see if there are

any applications in the area of program analysis that mayireguch aggregation functions.

Analysis of Array Operations. Chapter 4 presented a framework for analyzing code thatpnani
ulates arrays, e.g., sorting routines, initializationdspetc. In particular, the target of the analysis
was to infer universal properties of array elements. Thenéaork combines two techniques:
canonical abstraction from the realm of shape analysistl@dummarizing numeric abstractions
presented in Chapter 3. Canonical abstraction was usedrimatize together contiguous seg-
ments of array elements, at the same time leaving the elsrtieattare indexed by loop-induction
variables as non-summary elements (to facilitate strormatgs in the body of the loop). Summa-
rizing abstractions were used to keep track of values andesaf the array elements. We used a
prototype implementation of the analysis to successfuiglyze a number of array-manipulation

routines, including partial array initialization and anglementation of an insertion-sort routine.
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Future Directions. In its current state, the array-analysis technique is Blat®r analyzing small,
single-procedure programs that encompass the essengaybaerations. Many issues must still
be addressed before the technique can be applied to “re&d*vpoograms. In particular, the array-
partitioning has to be confined to small regions of the prnogvehere it is absolutely necessary,
otherwise the analysis will not scale. Techniques thatraatmally identify those regions would
have to be developed. Also, for the cases where summaribistgaations fall short, automatic

techniques for inferring necessary auxiliary predicatestbe designed.

Guided Static Analysis. Chapter 5 presented the framework of guided static analgsisch-
nique for controlling the exploration performed by an as@\of the space of program states. The
exploration of the state space is guided by deriving a semuehprogram restrictions: each re-
striction is a modified version of the original program thatyocontains a subset of behaviors of
the original program; standard analysis techniques are tesanalyze the individual restrictions
in the sequence.

The instantiations of guided-static-analysis framewogtewsed to improve the precision of
widening. Widening precision is essential to the overadigmion of numeric analysis. A number
of ad-hoc techniques for improving widening precision hasrbproposed since the introduction
of widening in the 1970s. We believe that the techniquesgseg int5.4 and35.6 are among the
most systematic techniques for improving widening preciso date.

Of particular interest is thimokahead-wideningechnique §5.6). Lookahead widening can be
easily integrated into existing analysis tools: all it take a simple extension to the abstraction
that is currently used by an analyzer; no changes to the sisaggine are required. We integrated
lookahead widening into two numeric analyzers: (i) a smmta-procedural analyzer constructed
according to the principles of Chapter 2, and (ii) an analyzesed on an of-the-shelf WPDS
library. In both cases, the integration required minimé&mf and the precision of both analyzers

was substantially improved (s€B.7).

Future directionsin this thesis, we investigated the use of guided staticygmsabnly in the context

of improving widening precision. Also, the constructionpsbgram restrictions by the proposed
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instantiations of the framework was done by completely nanmgpcertain edges from the control-
flow graph of the program. Note, however, that the framewddwe for more fine-grained ways
to restrict program behaviors: in particular, it allows teeagthen the transformers associated
with the edges of a CFG. An interesting research directionlvbe to find other applications for
guided static analysis that may exercise the capabilifiéiseoframework to a greater degree. As
an example, consider a program that performs a weak updatestriction for that program can be
derived by replacing the weak update either by the corredipgrstrong update, or by an identity

transformation. However, it is not clear whether this apptowill result in any precision gain.

Numeric Analysis and Weighted Pushdown SystemsChapter 6 investigated the use weighted-
pushdown-system machinery as an engine for numeric asal@sir main numeric-analysis tool,
which we used to conduct the experiments described in Cisaptand 7, is built on top of an
off-the-shelf weighted-pushdown-system library, WPD3$69]. In essence, the tool implements
a version of relational polyhedral analysis [30, 32, 66]he framework of weighted pushdown
systems. The key advantage of a pushdown-system-baseenraplation of the analysis is the
ability to answer stack-qualified queries: that is, theighib determine the properties that arise at

a program point in a specified set of calling contexts.

Future Directions.The precision of relational polyhedral analysis is seweaffected by the non-

distributivity of the polyhedral abstract domain. As wemed out in§7.5, in some cases, com-
bining “incompatible” weights significantly slows down thealysis, and, simultaneously, leads
to a loss of precision. Currently, most research in the afegeghted pushdown systems relies
on the assumption that the weights are distributive. In titeré, the issue of improving precision
for non-distributive weight domains will have to be addeskgossibly by leveraging some of the

existing techniques for disjunctive partitioning [5, 348, 802].

Library Analysis and Summarization. Chapter 7 addressed the question of automatic generation
of summaries for library functions from the low-level impientation of the library (i.e., from the
library’s binary). Currently, library functions (for whitsource code is rarely available), pose

a major stumbling block for source-level program-analyews. Typically, models for library

'Weak updates were discussed in Chapters 3 and 4.
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functions are manually constructed by either hardcodiegntinto the analyzer, or by providing

a collection of hand-written function stubs that emulatdaie aspects of the library. Automatic

construction of function summaries eliminates the lengthg error-prone manual construction
of models for library-functions. Additionally, becausensmaries are generated directly from the
library implementation, the resulting summaries autooadiy account for the deviations of that

particular implementation of the library from the librasyjeneral specification.

In Chapter 7, we took the first steps towards automatic coctédn of summaries for library
functions. We selected one particular client analysisemory safety analysig/hich was known
to be reducible to numeric program analysis [37, 38]—andlume expertise, as well as some
of the numeric-program-analysis techniques describetigthesis, to build a tool for the auto-
matic construction of function summaries suitable for mgrsafety analysis. The results§i.5
indicate that the approach we have taken—that is, trangla®6 code into a numeric program
and analyzing the resulting numeric program with relatigguyhedral analysis—is feasible in

practice. However, in its current state, our tool is stitlffam being useful in practice.

Future Directions.Aside from immediate needs that have to be addressed, subk design of
better variable-pack-identification techniques, andiggt better grip on disjunctive partitioning,

there are two issues that pose interesting research gugstio

e Better memory modelind\s we suggested i§7.3.6, the use of symbolic memory constants
may compromise the soundness of the analysis. Howevernthlgsés captures (numeri-
cally) the addresses of the memory locations that the syimbmwmory constants represent:
a post-processing step may inspect the possible valuegdofvariables to detect possible
aliasing among symbolic memory constants, and discardtitmsummaries that are af-
fected by such aliasing. A interesting research questibouwsto design a better scheme for
modeling unresolved memory. Ideally, such a scheme woukédjrate well into the WPDS
paradigm. One possibility is to incrementally refine the mgmmodel, i.e., use the val-
ues ofaddr variables, and possibly the values of some new auxiliarialabes, to refine the
memory model (e.g., replace all symbolic memory constdrgsrefer to the same location

by a single global variable), and then rerun the analysis.
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e Consolidation of error triggers.The current implementation of the tool generates an error
trigger for each memory access. Furthermore, due to varadidking, correlations between
individual triggers are typically lost. As a result, thearconditions that the tool produces
are largely redundant, whereas in principle they could daced to a small number of fairly
general error conditions. Techniques that are able to parfuch consolidation would be

desirable.
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APPENDIX
Proofs of Several Lemmas and Theorems

Lemma 3.6 LetS® € p(U* — V) be a partial abstract state. And letc ® be an arbitrary
expression. Then,
Vf e S [Values ,(f) = [Valuess ,]°(f)] -

Proof.

Pick an arbitrary functiorf € S°.

(Soundness). First, let's show thavalues; ,(f) C [Values, ,]’(f). Let's pick a valuex €
Values: ,(f). From Eqn. (3.3), it follows that there is a concrete stte (v; 07,)(S”), such that
f e (agom)(S)anda = [¢]np(S(os(ur)),. .., S(os(wy))). Recall our assumption that firkt

of w; are mapped tsummaryobjects. Let’'s construct a functiofi : Uj) — V as follows:

u? i i
f’(uﬁ){f( z) Iflg Sm )
S(og(Wi—m)) Fm+1<i<m+k

Two things are of interest aboyit. First, trivially, vu* € U* [f'(uf) = f(u*)]. Second,
[¢lwp(f'(oh(wr)), ..., ['(oh(wy))) = a
To see this, recall the definition of;
o fori e [1,k], o (w) =, thusf'(o% (w;)) = f/(ub,.,) = S(os(w,));

o fori € [k+1,k], of(w;) = of(w;) € {uﬁ,uﬁn} however, abstract objeef (w;) is

non-summary; thus the following relationship holds:

J'(of(w:)) = f'(o*(w:)) = f(o*(wi)) = f(ms(os(w))) = S(os(w;).
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This holds, because the first abstraction step maps macisummaryabstract object? to
the singletonset{S(u)} (wherers(u) = u*), and the second abstraction step creates a set

of functions, each of which maps to S(u).

Thus,[w]]ND(f/(Ui(wl))a e f,<0'5>(wk>>> = [¢lnp(S(os(wr)), ..., S(os(we))) = a.

In the next step of the proof, we will show thAt € [[expang]](Sb). We will show this by in-
duction on the free-variable subscrigthat is, we will consider the sequence of expanded function
sets constructed by each consecutive application afthandoperation in the definitioexpand,
and, on each stejp we will show that there is a functiofj in the resulting set that agrees with
on objectss to u? . ).

Base case:i = 1. Letu' = of(w;). The objectu’ is summary. Also, let: = og(w,) be

the concrete object to which variablg is bound in the concrete state(clearly, 7g(u) = u¥).
Consider the sefrs 0 a1)(.5). Clearly, f € (as 0 a1)(S). The second abstraction step generates
all possible mappings of abstract objects to the values of therete objects they represent. Thus,

trivially, there must be a function € (o o a)(S”), such that

g(th) = { S(u) if t# = uf

f(t") otherwise

That is, in functiong, all abstract objects are mapped to the values of the sanweaterobjects
as in functionf with the exception of:f, which is mapped to the value of the concrete object
(technically,g could equalf). Since(a; o a;)(S) C S°, it follows thatg € S,

Let S} = [[expangﬁ(wl)vun [(S*). It follows directly from the definition oxpand that there

m+1
is a functionf; € S? (constructed from functiong andg), such that

Filth) = g(uf) = S(u) = S(os(wy)) and Vit € U* [fi(#) = f(t")]

Thus, the functiory; € [expand;, , +1]](Sb) agrees with the functiofi’ on abstract objects’

throughu! , ,.
Inductive case. Assume that there is a functiofy € [expand](S°), where the operation

expang ; denotes the composition of the firsexpandoperations in the definition afxpand.
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Also, assume thaf; agrees withf’ on the abstract objectﬁ throughu? . .. We need to show that

mi*
there is a functiory;,, € [expand .,](S") that agrees witlf’ on the abstract objectd through
u&miﬂ-

The reasoning in this case is very similar to the reasonirigérbase case. Lat = o*(w;,1).
The objectu! is summary. Also, letw = og(w;;1) be the concrete object that is assigned to
variablew; in the concrete staté. By the same reasoning as in the base case, there must be a

functiong € (a, o ap)(S), such that
S(u) if = uf
g(t') = |
f(t*) otherwise

Furthermore, due to the symmetries of the expand operatidritee abstraction, there must be a

functiong; € [expand ] (S"), such that for alt* € {u},...,u’,,,}, the following holds:
S(u) if t# = b
gi(t") = _
f:(#*) otherwise

Intuitively, this function is the result of’s participation in the same “function pairings” (in the
definition ofexpand that constructed the functigfa from the functionf. The combination of the

functionsf; andg; by theexpandoperation yields the functiofi, ;, such that

firt(Uhin) = g(uf) = S(u) = S(os(wy)) and V' € {uf, ..., ul 5} [fin(#) = [i(9)].

Note thatf;,, agrees with the functiorf’ on abstract objects! throughu’, ... Thus, afterk

induction steps, the functiof), € [[expan(;;]](S") is constructed, such thgt = f;.

We have shown that there exigtse [expand](S”), such that

[SInp(f(@h(wr)). .., f(oh(wr) =a and Vuf € UF [f(u) = f(uF)].

From the definition offValues; ,]’, it follows thata € [Values; ,]’. Thus, we conclude that

Values ,(f) C [Values; 4]°(f) forany f € S°.

(Completeness)Next, we need to show th@¥alues; ,]’(f) C Values; 4(f). Lets pick a value

b € [Values; 4]°(f). According to the definition ofValues ,]’(f), there exists a functiofi’ €
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[expand](S), such that

[SIno(f'(a(wn)), -, f(oh(wy)) = b and Vuf € UP [f'(uf) = f(u)].

We will use f/ to manufacture a concrete statec (v, o v,)(S”), such that

[6]np(S(os(wr)), ..., S(os(wg))) =b and [ € (azo0a)(S). (A.1)

Let the concrete universe of stafdbe Us = {uy, ..., u,, ; }. We will define the staté' as follows:

aw{ﬂ@ it i € [1,m]

| F i) Wi et Lm R

Let 75 be defined as follows:

() u if i € [1,m]
TTs\U;) = ~
o (wi_y) i€ [m+1,m+k

Finally, letos be defined as follows

() Upmei  1F i€ [1k]
0s (W) = A
of(w;) ifielk+ 1,k

Note that the two conditions in Eqn. (A.1) hold by constranti Showing thats € (v, o 7,)(S?)
is more complicated. We will show this, by showing thas o a1)(S) C S°.

Pick a functiong € (a; o a;)(S). Note that functiong and f agree on objects’ € U*, such
thatu! # of(w;) for all i € [1, k]. This follows from the abstraction: all such objeatsare non-
summary with respect t§ andrg, and the corresponding objeats= Uy that they represent are
mapped tof (u*) (by the construction of S). For object$ € U*, such that:* = o*(w;) for some
i € [1, k], g(u) is equal to eitherf (uf) or some value in the sétf’(u?,, ;) | o*(w;) = u}). Note,
also, that all such! are summary objects with respect$o (because of the assumption that the
first k of variablesw; are mapped to summary objects). Thus, the functjpaadg may disagree
on at most; objects inU*.

We proceed as follows: for each number of disagreemebistween the functiong andg,

starting with zero, we show that there must be a funatioa S°, such thayy = g,. Below, we will
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detail the first three cases, other cases up=ok use the same reasoning. After the case k is
considered, we will have covered all possibilities for ftiog ¢, and thusg must be inS”°.

Caser = 0. This case is trivial: the functiongand f agree on all objects iti*. Thus,g = f, and
consequently € S°.

Caser = 1. The functionsf andg disagree on the mapping of one object. We will denote that
objectu?. Without loss of generality, let us assume thahaps the object to the value of the
concrete object.,,,; € Us, such thatrg(u,,,;) = u*. Thatis,g(u*) = S(um.s). The following

facts follow from the construction of the state
() S(umss) = f'(oh(w:) = f/(u,,;) and o (w;) = b,

The first equality follows directly from the definition 6fand from the definition of* ; the second
equality follows from the definition ofg.

Next, for f’(uﬁnﬂ.) to equalS(u,,+;), it must have been put there by the application ofittte
expandoperation in the definition ofexpand]. That is, there must be two functiorfs 1, g; 1
in the setS? ; = [expand,_,](S), such thatf;_; agrees withf’ on all objects in the set
{uf,. .. ,uEnJri_l}, and the functiory;_, agrees with the functiorf;_; on all objects, except for
the objectr*(w;) = u*. Moreover,g;_1(u*) equalsS (u,,;). But the functiony;_; could have only
been produced (by thexpandsequence) from the functian € S°, such thay, andg;_, agree on

all objects inU*®. Thus, it follows that, for alt* € U?,

4 91(uf) = S(umsi) = g(u) if 8 = uf
Q') = .
1t = gia(th) = fia(t) = f'(t") = f(¢*) = g(¢*) otherwise
Thus,g = ¢, € S,
Caser = 2. The functionsf andg disagree on the mapping of two object$,andv*. Without

loss of generality, let us assume tlgahaps the objects! andv? to the values of concrete objects

Um+; @andu,,1; in Ug, respectively; furthermore, lét< ;. Similarly to the previous case we have:

() S(umsi) = f'(oh(w)) = f(ul, ;) and of(w;) = uf;
(i) S(umsj) = f(05(w)) = f'(uh,,;) and of(w;) = 0"
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For f’(u,ﬁnﬂ) to equalS(u,,;), it must have been put there by the application of fké
expandoperation in the definition ofexpand]. That is, there must be two functiorfs 1, g; 1
in the setS? ;| = [expand;_ ,](S"), such thatf;_; agrees withf’ on all objects in the set
{u},...,ul,;_1}, and the functiory;_, agrees with the functiorf;_, on all objects, except for
the objectr’ (w;) = v*. Moreover,g;_;(v*) equalsS (u,, ;).

Next, recall our assumption that< j. Thus, f; 1 (u% ;) = g;-1(uf, ) = S(tmys). For
gj_l(ufnﬂ.) to be equal taS(u,,;), it must have been put there by the application of #tk
expandoperation in the definition oﬁexpan@]]. That is, there must be two functions_q, h;_1
in the setS;_; = [expand, ,](S"), such thatg;_; agrees withg;_; on all objects in the set
{uf,. .. ,u§n+i_1} (most importantly, both functions map objeétto S(u,,;)), and the function
h;_, agrees with the function_; on all objects, except for the objegt(w;) = uf: thatis,h;_; (uf)
equalsS (i), andh;_;(v¥) equalsS ().

But the functions;_; could have only been produced (by #sgandsequence) from the func-

tion hy € S°, such that, andh,;_; agree on all objects ierf. Thus, it follows that, for alt! € U*,

ho(u?) = S(Umyi) = g(u?) if # = uf
(v%) if ¢t = uf

Thus,g = hy € S°.
Cases = 3..k. The remaining cases follow the same reasoning at the fies¢ ttases, Note that
the number of functions that must be considered to show timatibng is in the setS” increases
with every step. After the case = k is considered, all the possibilities for the functigrare
covered. Thus, all functionge (a; o a;)(S) are also inS?, and thereforeS € (y; o 72)(S?).

We have shown tha$ € (v; o 7,)(S”). The two conditions in Eqgn. (A.1) hold by construc-
tion. Thus, by the definition o¥alues; ,, we can conclude thdt € Values 4(f). Therefore,

[Values; ,]°(f) € Values; 4(f).
]
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Theorem 3.7 The abstract transformér < ¢]° is sound That is, for an arbitrary partial abstract

stateS?,

(r10792) ([ = ¢I’(8") 2 [ = ¢l((711 ©72)(S))-

Proof. Let S” be a partial abstract state, and$etbe the result of applying the abstract transformer
for the assignment transition 9, that isS? = [z « ¢]’(S°). Let S denote an arbitrary concrete
state represented Iy, that is,S € (71 o 72)(S”). LetS; denote the concrete state obtained by
applying the assignment transition to the stété.e., S; = [z «— ¢[(S). We need to show that
S1 € (mom)(S)).

Let [¢]np(S(os(wr)), ..., S(os(w))) = a, wherea is some value ifV. The stateS; has the
same universe &S, that isUs, = Us. Furthermore, for all: € Ug, S;(u) is equal toS(u), except
for the objectv = o5 () (i.e., the object that is updated by the assignmeht)y) = a.

Recall that each function in the partial abstraction of accete states' is obtained by mapping
each abstract objeef to the value of a non-deterministically chosen concreteathip g ' (uf).

Let us consider functiongsandf; in the abstractions of andS;, respectively, that are constructed
by choosing the same mapping.$hand S; for each abstract object iti*. Obviously, f and f;
map all objects ir/* to the same values, except for the objegtv) = o*(x), which is mapped to
S(v) by f, and toa by f.

Clearly, f € S’ becauses € (71 0 72)(S"). Also, a € Values; ,(f) by Eqn. (3.3). Thus, by
the definition offz « ¢]” in Eqn. (3.5), there must be a functighe S?, such thatf’(¢%(z)) = a
and for all other objectsf € U*, f'(u*) = f(u*). But f' = f;. Thusf, € S;. Therefore,
(g 0 a)(S;) C 83, and consequenth; € (v; o 72)(S}), which concludes the proof.

|

Lemma 3.8 Let S’ € p(U* — V) be a partial abstract state. And ketc ¥ be an arbitrary

expression. Then,
Vf e S [Values ,(f) = [Values, ,]’(f)] -

Proof.

The proof follows exactly the same argument as the proof 8anL3.6, with the only exception
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that the values andb selected fronvalues. ,(f) and[Values; ,]’(f), respectively, are Boolean
values, rather than values frovh

Theorem 3.9 The abstract transformgassuméy))]’ is sound That is, for an arbitrary partial

abstract stats”,

(710 72)([assuméy)[’(S”)) 2 [assumé)]((11 ©72)(S")).

Proof. Let S’ be a partial abstract state, and$etbe the result of applying the abstract transformer
for the assume transition 1§, that is,S; = [assumé))]’(S). Let S denote an arbitrary concrete
state represented by’ (that is, S € (7, o 12)(S%)), such thatS satisfies the condition, i.e.,
[assumé&p)](S) = true. We need to show that € (7, 0 72)(S3).

Consider an arbitrary functiofi in the abstraction of: that is, f € (ay 0 ay)(S). Because
S satisfies the conditiott (i.e., [assumé&p)](S) = true), the following holds by the definition in
Eqn. (3.6):true € Values; ,,(f). Thus, by the definition of the abstract transformer in EGriz
f € S°. Therefore, we can conclude that, o a;)(S) C S3, and consequently, that € (v, o

72)(S%). This concludes the proof of soundness.



