

Computer
Sciences
Department

Numeric Program Analysis Techniques with Applications
to Array Analysis and Library Summarization
(Thesis)

Denis Gopan

Technical Report #1602

August 2007

NUMERIC PROGRAM ANALYSIS TECHNIQUES WITH APPLICATIONS TO A RRAY

ANALYSIS AND LIBRARY SUMMARIZATION

by

Denis Gopan

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2007

c© Copyright by Denis Gopan 2007

All Rights Reserved

i

To my daughter, Yunna.

ii

ACKNOWLEDGMENTS

First of all, I would like to thank my adviser Thomas Reps. Under his guidance, I learned a

great deal about program analysis and software verification, as well as about other related areas

of computer science. More importantly, Tom has taught me howto address problems and how to

express my thoughts in writing in a way comprehensible to others. I only hope that at least a small

fraction of Tom’s dedication to research had rubbed off on me.

I would like to thank Ras Bodik, who was my academic adviser early in my graduate-student

career, and Mooly Sagiv, with whom I had a pleasure of collaborating on several projects. Both

Ras and Mooly played important roles in my development as a scientist. Also, I am thankful to

Bertrand Jeannet, who taught me to appreciate the more formal (and the more arcane) aspects of

abstract interpretation; to Ethan Munson, who encouraged me to apply to graduate school; and to

Michael Gontar, who was both my companion and my guide when I took the first steps into the

area of Computer Science.

I would like to thank the members of my Ph.D. committee, Somesh Jha, Ben Liblit, Marvin

Solomon, and Amos Ron, for their comments on my thesis and forthe insightful questions they

raised during my defense.

During my graduate studies, I was fortunate to have a number of amazing officemates who had

a profound influence on me both inside and outside of my research. I am thankful to each and every

one of them: Shai Rubin, Glen Ammons, Darryl Roy, Michael Brim, Nick Kidd, Alexey Loginov,

and Evan Driscoll. Also, I would like to thank the members of programming languages research

group and security research group at Wisconsin: Susan Horwitz, Charles Fischer, Somesh Jha, Ben

Liblit, Glen Ammons, Gogul Balakrishnan, Mihai Christodorescu, Vinod Ganapathy, Nick Kidd,

Raghvan Komondoor, Akash Lal, Junghee Lim, Alexey Loginov,David Melski, Anne Mulhern,

iii

Manoj Plakal, Shai Rubin, Cindy Rubio, Hao Wang, Suanhsi Yong, and others. I am thankful

to Mooly’s students Tal Lev-Ami, Greta Yorsh, and others in Tel Aviv for very interesting (but,

unfortunately, very rare) discussions.

I would like to thank my daughter Yunna and my wife Julia for their unconditional love and

moral support. They provided the inspiration for me to complete this dissertation.

I am indebted to my parents Tatyana and Alex for their constant support and their belief in my

abilities. If it was not for them, I would have never made it this far. I am especially grateful to my

grandfather Anatoly whose dream was to see me become a researcher. I wish he had lived long

enough to see the day. I also would like to thank my sisters Olga and Ellen, my aunt Svetlana, my

grandma Lisa, my cousin Vitaliy, my uncle and aunt Lev and Nataliya, and other members of my

family: they all played an important role in shaping my personality.

Last, but not least, I would like to thank my friends, Shura and Nata, Rost, Sasho, Taras and

Tamara, Alex and Maya, Vadim and Anya, Lev and Erica, Dmitri and Ira, Sergei and Julia, Alexey

and Wendy, Liya, Igor Solunsky, Zurab and Julia, Alexey Samsonov, Rita and Seich, and many,

many others, for their support, encouragement, and for providing welcome distractions from my

research work.

I am sure that I am forgetting to mention some people who have contributed in some way to

the completion of my dissertation. To those people, please know that I am grateful.

Funding. My dissertation research was supported by a number of sources, including the Of-

fice of Naval Research, under grant N00014-01-1-0796, the UWGraduate School, under a Cisco

Systems Distinguished Graduate Fellowship, and the National Science Foundation, under grant

CCF-0540955. I am grateful for their support.

DISCARD THIS PAGE

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xi

1 Introduction . 1

1.1 Program Analysis Basics 1
1.2 A Few Words on Terminology .. . 3
1.3 Numeric Program Analysis 4
1.4 Thesis Contributions 6

1.4.1 Contributions at a Glance 6
1.4.2 Implementation .7
1.4.3 Summarizing Abstractions 8
1.4.4 Array Analysis . 9
1.4.5 Guided Static Analysis .. . 11
1.4.6 Interprocedural Analysis 12
1.4.7 Library Summarization .. . 13

1.5 Thesis Organization 16

2 Numeric Program Analysis . 17

2.1 Numeric Programs .. 17
2.1.1 Numerical Expressions and Conditionals 18
2.1.2 Support for Nondeterminism 18
2.1.3 Evaluation of Expressions and Conditionals 19
2.1.4 Concrete Semantics of a Program 19
2.1.5 Collecting Semantics of a Program 20
2.1.6 Textual Representation of a Program 20

2.2 Program Analysis .. . 21
2.2.1 Abstract Semantics of a Program 22

v

Page

2.2.2 Abstract Collecting Semantics 22
2.3 Iterative Computation 22

2.3.1 Kleene Iteration .. 23
2.3.2 Widening . 23
2.3.3 Narrowing . 24
2.3.4 Chaotic Iteration .. 25

2.4 Abstract Domain Interface 27
2.5 Numeric Abstractions 28

2.5.1 The Polyhedral Abstract Domain 30

3 Summarizing abstractions . 33

3.1 Preliminaries .. . 34
3.1.1 Extended Concrete Semantics 34
3.1.2 Summarization . 35
3.1.3 Standard Abstract Domains Revisited 36

3.2 Summarizing abstraction 38
3.3 New operations .. 42

3.3.1 Theaddoperation. 43
3.3.2 Thedropoperation. 43
3.3.3 Thefold operation . 43
3.3.4 Theexpandoperation . 44

3.4 Abstract Semantics 45
3.4.1 Assignment transitions:x← φ(w1, . . . , wk) 47
3.4.2 Assume transitions:assume(ψ(w1, . . . , wk)) 51
3.4.3 Example . 55

3.5 Symbolic Concretization 56
3.6 Support for Multiple Values 57
3.7 Numeric extension of TVLA 59
3.8 Related Work .61

4 Analysis of Array Operations . 64

4.1 Overview of Array Analysis 66
4.2 Concrete semantics 70

4.2.1 Concrete Program States .. . 70
4.2.2 Array Transitions .. 71

4.3 Array Abstraction 72
4.3.1 Array Partitioning .. 73
4.3.2 Numeric Abstraction .. 76

vi

Appendix
Page

4.3.3 Beyond summarizing domains .. . 77
4.4 Array Copy Revisited 80
4.5 Implementation of an Array-Analysis Tool 85

4.5.1 Overview of TVLA . 85
4.5.2 Modeling arrays . 87

4.6 Experimental Evaluation 88
4.6.1 Array initialization 89
4.6.2 Partial array initialization 89
4.6.3 Insertion sort .91
4.6.4 Analysis Measurements .. 92

4.7 Related work .93

5 Guided Static Analysis . 96

5.1 Preliminaries .. . 99
5.1.1 Static Analysis .99

5.2 Overview of Guided Static Analysis 100
5.3 Guided Static Analysis 105
5.4 Framework Instantiations 107

5.4.1 Widening in loops with multiple phases 107
5.4.2 Widening in loops with non-deterministically chosenbehavior 110

5.5 Disjunctive Extension 113
5.6 Lookahead Widening .. . 116

5.6.1 Approximation of Loop Phases .. . 116
5.6.2 Practical Implementation 119
5.6.3 Revisiting the Running Example 122
5.6.4 Discussion . 122

5.7 Experimental Evaluation 126
5.7.1 Lookahead-Widening Experiments 127
5.7.2 Guided-Static-Analysis Experiments 130

5.8 Related Work .132
5.8.1 Controlled state-space exploration 133
5.8.2 Widening precision .. 133
5.8.3 Powerset extensions .. 135

6 Numeric Program Analysis with Weighted Pushdown Systems. 136

6.1 Preliminaries .. . 139
6.1.1 Program States . 139
6.1.2 Concrete Semantics of the Call Transition 141

vii

Appendix
Page

6.2 Overview of Weighted Pushdown Systems 142
6.2.1 Pushdown Systems . 142
6.2.2 Weighted Pushdown Systems .. 144
6.2.3 WPDS in Program Analysis .146
6.2.4 Solving the Generalized Successor Problem 148

6.3 Numeric Program Analysis 149
6.4 Widening . 156

7 Low-Level Library Analysis and Summarization . 159

7.1 Overview of the Analysis 161
7.1.1 Analysis Goals . 161
7.1.2 Analysis Architecture 162
7.1.3 The summary obtained formemset. 166

7.2 Intermediate-Representation Recovery 168
7.2.1 Variable and Type Discovery. 169

7.3 Numeric-Program Generation 170
7.3.1 Numeric-Program Variables 171
7.3.2 Basic Translation of x86 Instructions 172
7.3.3 Value Dependence Graph .. 176
7.3.4 Memory-Safety Checks and Allocation Bounds 179
7.3.5 Integer Division and Remainder Computations 181
7.3.6 Symbolic Memory Constants .. . 183
7.3.7 Numeric-Program Generation 186

7.4 Numeric Analysis and Summary Generation 188
7.4.1 Variable Packing .189
7.4.2 Error Triggers .190
7.4.3 Summary Transformers .. 192

7.5 Experimental Evaluation 193
7.5.1 Case Study: Memory Functions .. . 195
7.5.2 Case Study: Stream Functions 197

7.6 Related Work .203

8 Conclusions and Future Work . 206

APPENDIX Proofs of Several Lemmas and Theorems. 224

DISCARD THIS PAGE

viii

LIST OF TABLES

Table Page

2.1 Preliminaries: Existing Numeric Abstractions 29

5.1 Lookahead wideining: intraprocedural implementationresults 128

5.2 Lookahead widening: WPDS implementation results 129

5.3 Guided static analysis: loops with multiple phases 130

5.4 Guided static analysis: loops with non-deterministic behavior 132

7.1 Library Analysis: updating allocation bounds 187

7.2 Library Analysis: updating symbolic quotients and remainders 188

7.3 Library Analysis: analysis of memory-manipulation library functions 194

7.4 Library Analysis: pointer alignment study formemset 195

7.5 Library Analysis: Numeric-program generation for stream library functions 197

7.6 Library analysis: error-trigger generation 198

7.7 Library analysis: summary-transformer generation 201

DISCARD THIS PAGE

ix

LIST OF FIGURES

Figure Page

3.1 Summarizing abstractions: abstract transformer application 54

4.1 Array analysis: simple array-copy function 66

4.2 Array analysis: partitioning of array elements 68

4.3 Array analysis: numeric abstraction 78

4.4 Array analysis: abstract state on the 1-st iteration 81

4.5 Array analysis: abstract states on the 2-nd and 3-rd iterations 83

4.6 Array analysis: abstract states at the exit of the array-copy function 84

4.7 Array analysis: array manipulation code 90

4.8 Array analysis: experimental evaluation 92

5.1 Guided static analysis: loop with multiple phases 101

5.2 Guided static analysis: application of standard analysis techniques to the program in
Fig. 5.1 . 102

5.3 Guided static analysis: program restrictions for the program in Fig. 5.1 103

5.4 Guided static analysis: analysis trace for the program in Fig. 5.1 104

5.5 Guided static analysis: generating the program restrictions shown in Fig. 5.3 109

5.6 Guided static analysis: a loop with non-deterministic behavior 111

5.7 Guided static analysis: disjunctive extension 117

5.8 Guided static analysis: lookahead-widening analysis trace 123

x

Figure Page

6.1 Interprocedural analysis: simple multi-procedural program with recursion 137

7.1 Library analysis: the disassembly ofmemset . 163

7.2 Library analysis: numeric program generated formemset. 166

7.3 Library analysis: symbolic memory modeling 185

7.4 Library analysis: error triggers for stream library functions 199

7.5 Library analysis: summary transformers for stream library functions 203

xi

ABSTRACT

Numeric program analysis is of great importance for the areas of software engineering, soft-

ware verification, and security: to identify many program errors, such as out-of-bounds array

accesses and integer overflows, which constitute the lion’sshare of security vulnerabilities re-

ported by CERT, an analyzer needs to establish numeric properties of program variables. Many

important program analyses, such as low-level code analysis, memory-cleanness analysis, and

shape analysis, rely in some ways on numeric-program-analysis techniques. However, existing nu-

meric abstractions are complex (numeric abstract domains are typically non-distributive, and form

infinite-height lattices); thus, obtaining precise numeric-analysis results is by no means a trivial

undertaking.

In this thesis, we develop a suite of techniques with the common goal of improving the pre-

cision and applicability of numeric program analysis. The techniques address various aspects of

numeric analysis, such as handling dynamically-allocatedmemory, dealing with programs that

manipulate arrays, improving the precision of extrapolation (widening), and performing interpro-

cedural analysis. The techniques use existing numeric abstractions as building blocks. The com-

munication with existing abstractions is done strictly through a generic abstract-domain interface.

The abstractions constructed by our techniques also exposethat same interface, and thus, are com-

patible with existing analysis engines. As a result, our techniques are independent from specific ab-

stractions and specific analysis engines, can be easily incorporated into existing program-analysis

tools, and should be readily compatible with new abstractions to be introduced in the future.

xii

A practical application of numeric analysis that we consider in this thesis is the automatic

generation of summaries for library functions from their low-level implementation (that is, from

a library’s binary). The source code for library functions is typically not available. This poses a

stumbling block for many source-level program analyses. Automatic generation of summary func-

tions will both speed up and improve the accuracy of library-modeling, a process that is currently

carried out by hand. This thesis addresses the automatic generation of summaries for memory-

safety analysis.

1

Chapter 1

Introduction

The second half of the twentieth century saw the birth and theproliferation of computers from

one per nation to several per household. Today, computers have become an inseparable part of our

lives: we routinely entrust them with handling sensitive information, such as credit card numbers

and social-security numbers; we rely on them in situations when human life is at stake, such as in

airplanes’ flight-control systems and in cars’ anti-lock brake systems. Accordingly, ensuring that

computers, and the software they execute, behave properly has become a very important problem.

Simple programming errors may have grave consequences: an out-of-bounds array access may

lead to someone’s identity being stolen, a floating-point conversion error may lead to a spacecraft

explosion (Ariane 5 crash, 1996 [40]), a division by zero mayincapacitate an entire Navy ship

(USS Yorktown, 1997 [36]). The problem does not stop there: even if such errors were identified

and eliminated from the program code, there is a possibilitythat new errors will be introduced

during compilation (the WYSINWYX phenomenon [10]), or due to program interaction with a

library implementation that does not entirely conform to its specification. The techniques presented

in this thesis are aimed at improving the applicability and precision of automatic program analysis,

which is dedicated to reasoning about and understanding program behavior to detect and eliminate

such errors.

1.1 Program Analysis Basics

There are many different approaches to discovering and eliminating software errors. They

range from testing, in which the program’s functionality isexercised by an extensive test suite,

2

to program analysis, in which the program in never executed explicitly – instead, the code of the

program is analyzed. Program analysis, itself, encompasses a wide range of techniques: from

bug-hunting– lightweight techniques that choose to ignore some programbehaviors (and, conse-

quently, to miss some program errors) in order to achieve scalability and to generate more precise

error reports; tosoftware verification– heavyweight techniques that are able to guarantee the ab-

sence of errors in the program, but are much more computationally intensive. The material in this

thesis is presented in the setting of software verification;however, we believe that our techniques

can also benefit other branches of program analysis.

To verify that a program has no error, an analysis must systematically explore all possible pro-

gram executions (we will use the termprogram stateto refer to a snapshot of program execution).

If the set of program states that can arise over all possible program executions (referred to as the

set ofreachable states) does not contain states that constitute errors (referred to as error states),

the analysis may conclude that the program is correct. However, computing the set of reachable

program states is by no means trivial: numeric variables maytake infinitely many values1, dynamic

memory allocation precludes the analysis from knowinga priori the set of memory locations that

must be tracked, and recursion allows program functions to be invoked in an unbounded number

of contexts. In fact, the problem of computing the set of reachable program states is undecidable,

in general.

Program analysis sidesteps undecidability by approximating sets of reachable states by larger

sets (i.e.,supersets) that are decidable and that can be effectively representedand manipulated by

a computer. These approximations are calledabstractions. Since abstractions over-approximate

the sets of states that they represent, the analysis is able to compute an over-approximation for the

set of reachable program states — and consequently, any program behavior that leads to an error

state will be identified. However, these over-approximations may contain states that do not arise on

any program execution. If these extra states happen to satisfy error conditions, program analysis

generates spurious error reports (also known asfalse positives). The central problem of program

analysis is searching for abstractions that are both computationally efficient and precise (that is,

1Or at least a large number of values

3

produce a low number of false positives). Generally, no single abstraction is able to work well in

all possible situations. Thus, a large number of abstractions, each of which is tailored to a specific

sets of programs and/or properties, has been designed.

Conceptually, a program analyzer consists of two components: (i) an abstract domain, ap-

proximates sets of reachable states and manipulates these approximations (referred to asabstract

states) to reflect the effects of program statements; and (ii) ananalysis engine, propagates abstract

states through the program. The two components are connected through a generic interface. This

modular design provides for program-analysis implementations that are parametrized by an ab-

stract domain: as more sophisticated abstractions are designed, they can be plugged into existing

program-analysis tools, as long as these new abstractions adhere to the interface. Similarly, more

sophisticated analysis engines can reuse existing abstractions. Many of the techniques presented in

this dissertation are positioned on this border between an abstract domain and an analysis engine,

and make heavy use of the interface between the two.

Algebraically, abstract domains are best thought of as partial orders, where order is given by

set containment: the smaller the set represented by an abstract state, the more precise that abstract

state is. Two properties of abstract domains are of particular interest: (i) an abstract domain is

said to bedistributiveif no information is lost when the abstract states computed along different

program paths are combined; (ii) an abstract domain satisfies theascending-chain conditionif

it is impossible to construct an infinite sequence of abstract states that have strictly decreasing

precision. If an abstract domain possess both properties, than even the simplest analysis engine is

able to compute the optimal results with respect to that abstraction: intuitively, the distributivity

allows the analysis to merge paths with no penalty in precision, and the ascending-chain condition

allows to handle loops effectively and precisely.

1.2 A Few Words on Terminology

The field of software verification comprises a number diverseresearch groups, each with its

own background and its own interpretation of the common terminology. To avoid confusion, we

would like to briefly explain our use of some cornerstone program-verification terms. In particular,

4

we use the terms “sound” and “complete” in the sense of abstract-interpretation community: the

sense of the terms is with respect to the set of program states; an over-approximation of the set is

sound, but incomplete. In contrast, in model-checking community, these terms areoften used with

respect to errors reported; in this sense, static-analysisanswers are complete (all true errors are

reported), but error reports are unsound (reports can include false positives).

Throughout this thesis, we often use the word “precise” to characterize the quality of program-

analysis results. In most cases, our use of “precise” is synonymous to “good” or “reasonable” on

intuitive level. In case, there is a certain precision guarantee (e.g., a particular technique computes

a meet-over-all-valid-path (MOVP)solution), we will state so explicitly. Also, we never use the

word “imprecise” to meanunsound: that is, animprecisesolution is always an over-approximation

of the optimal solution.

1.3 Numeric Program Analysis

The material presented in this dissertation is centered onnumeric program analyses: analyses

that discover numeric properties of a program. A simple example of numeric analysis is one that

discovers a range of values that a variable may have at a particular program location. A more

involved example is an analysis that discovers numeric relationships that hold among values of

program variables, e.g., establishing that the relationship a = 4 ∗ b + c always holds among the

values of variablesa, b, andc at a certain program point. Such numeric properties can be used

directly to identify program errors, such as out-of-boundsarray accesses, integer overflow, and

division by zero. While seemingly simple, such errors account for the majority of known security

vulnerabilities according to CERT [19, 60, 114].

The origins of numeric program analysis date back to the early 1970s. Over the years, a rich

set of numeric abstractions has been developed. These abstractions range from simple ones like

intervals, which only keep track of upper and lower bounds for each variable; to relational ones,

like polyhedra, which are able to establish linear relationships among variables; to automata-based

numeric decision diagrams, which are able to represent arbitrary Presburger formulas. These ab-

stractions exhibit varying precision/cost trade-offs andhave been successfully used in practice.

5

However, the majority of numeric abstractions are notdistributiveand do not satisfy theascending-

chain condition. Thus, obtaining precise analysis results — or even reasonably precise results —

remains somewhat of a black art.

Many program analyses, even those that are not directly concerned with numeric behavior of a

program, often rely on numeric program-analysis techniques. To list a few examples:

• Low-level code analysis, such as analysis of x86 binaries, is essential for the fieldsof se-

curity and reverse engineering. In low-level code, typically, there are no explicit variables;

rather, variables correspond to offsets from the beginningof an activation record or the be-

ginning of the data section. Numeric operations are used to manipulate these offsets. Thus,

a sophisticated numeric analysis is required just to determine which memory locations are

accessed by each instruction [8].

• Shape analysis, an analysis that establishes properties of heap-allocated linked data struc-

tures, may use numeric quantities to represent some aspectsof a shape abstraction, such as

the length of a linked-list segment, or the depth of a tree [35, 117].

• Memory-cleanness analysis, an analysis that checks for memory-safety violations, uses nu-

meric quantities to track the amount of memory allocated foreach buffer, the offsets of point-

ers within the corresponding buffers, and the lengths of C-style zero-terminated strings [1,

37, 38, 107, 114].

• Model checking, a technique for verifying program properties, uses numeric program analy-

sis techniques either directly (to represent numeric portions of the states of an infinite-state

system [13, 20]) or indirectly (to aid predicate abstraction by strengthening the transition

relation of a program [62]).

Numeric program-analysis techniques are also used in many other areas, such as the analysis of

synchronous systems[57], real-time systems,timed automata[92], hybrid systems, constraint logic

programs (CLP), for establishing termination of Prolog programs, etc.

6

1.4 Thesis Contributions

In this thesis, we develop a suite of techniques with the common goal of improving the pre-

cision of numeric program analysis. The techniques addressvarious aspects of numeric analysis,

such as handling dynamically-allocated memory, dealing with programs that manipulate arrays,

improving the precision of extrapolation (widening), and performing interprocedural analysis. The

techniques use existing numeric abstractions as building blocks. The communication with exist-

ing abstractions is done strictly through the generic abstract-domain interface. The abstractions

constructed by our techniques also expose that same interface, and thus, are compatible with ex-

isting analysis engines. The only exception to this rule is the framework ofguided static anal-

ysis (Chapter 5), which imposes an interface on the entire program-analysis run and adheres to

that interface. As the result, our techniques are independent from specific abstractions and specific

analysis engines, can be easily incorporated into existingprogram-analysis tools, and should be

readily compatible with new abstractions to be introduced in the future.

There is nothing specific about our techniques that limits their applicability only to numeric

abstractions. In fact, the techniques can be applied to any abstraction, as long as that abstraction

supports the required interface. However, the problems addressed by our techniques are common

to numeric abstractions, and so far, we only evaluated our techniques in the setting of numeric

program analysis.

1.4.1 Contributions at a Glance

This thesis makes the following contributions:

• Summarizing abstractions [47]. We design a systematic approach for extending “stan-

dard” abstractions (that is, the abstractions that are onlyable to model and capture rela-

tionships among a fixed, finite set of individual program variables) with the ability to model

and capture universal properties of potentially-unbounded groups of variables. Summarizing

abstractions are of benefit to analyses that verify properties of systems with an unbounded

7

number of numeric objects, such as shape analysis, or systems in which the number of nu-

meric objects is bounded, but large.

• Array analysis [51]. We construct an analysis that is capable of synthesizing universal

properties of array elements, such as establishing thatall array elements have been initialized

(an array kill) and discovering constraints on the values of initialized elements. The analysis

utilizes summarizing abstractions to capture and represent properties of array elements.

• Guided static analysis [48, 49]: We propose a framework for guiding state-space explo-

ration performed by the analysis, and present two instantiations of the framework, which

improve the precision of widening in loops with complex behavior. Widening is gener-

ally viewed as the “weakest link” of numeric analysis: ad-hoc techniques and heuristics are

typically used to retain the precision of the analysis. The techniques we propose are both

systematic and self-contained, and can be easily integrated into existing analysis tools.

• Interprocedural analysis. We investigate the use ofweighted pushdown systems (WPDSs)

as an engine for interprocedural numeric analysis. Our mainnumeric-program-analysis tool

is implemented on top of an off-the-shelf library for WPDSs.

• Low-level library analysis and summarization [50]: We propose a method for construct-

ing summary information for a library function by analyzingits low-level implementation

(i.e., a library’s binary). Such summary information is essential for the existing source-level

program analyses to be able to analyze library calls, when the source code for the library

is not available. At the heart of the method, the disassembled library code is converted

into a numeric program, and the resulting program is analyzed with the use of the numeric-

program-analysis techniques described above.

1.4.2 Implementation

Theoretically, all of the techniques that we propose are built around the same interface: the

generic interface of an abstract domain, and it should be easy combine them within a single

8

program-analysis tool. While this is indeed the case, due totime constraints and certain practi-

cal considerations, we chose to build two implementations,each of which implements a subset of

the techniques:

• WPDS-based analyzer: This analyzer implements an interprocedural numeric program

analysis that supports recursion, global and local variables, andby-valueparameter passing.

The implementation is based on the Parma Polyhedral Library(PPL) [7] and the WPDS++

library [69] for weighted pushdown systems. Local variables are handled withmerge func-

tions [75]. Guided-static-analysis techniques are used to improve widening precision. This

analysis tool is used for low-level library analysis and summarization.

• TVLA-based analyzer: This analyzer implements an intraprocedural array analysis. The

implementation is based on TVLA [78], a state-of-the-art shape-analysis tool, extended (via

the use of summarizing abstractions) with the capability tomodel numeric properties. This

implementation also uses the Parma Polyhedral Library (PPL) [7] to manipulate abstract

numeric states and guided-static-analysis techniques to improve widening precision.

1.4.3 Summarizing Abstractions

Existing numeric abstractions are only able to keep track ofa fixed, finite set of numeric vari-

ables. However, if a program manages memory dynamically, the set of variables that the analysis

must keep track of may change as the program executes, and maynot be statically bounded. For

instance, keeping track of values that are stored in a linkedlist poses a problem to existing numeric

program analyses because it is impossible to model each individual list element. A typical ap-

proach that pointer analyses use to deal with dynamically allocated memory is to partition memory

locations into a fixed, finite set of groups and reason about locations in each group collectively.

Partitioning can be as simple as grouping together all memory locations created at a particular

allocation site, as is done by many pointer-analysis algorithms; or as complex as maintaining a

fluid partitioning that changes during the course of the analysis, as is done by state-of-the-art shape

9

analyses [100]. However, existing numeric abstractions cannot be used in this setting because they

are incapable of such collective reasoning.

In Chapter 3, we present a framework for automatically lifting standardnumeric abstractions

to support reasoning about potentially unbounded groups ofnumeric variables: instead of estab-

lishing numeric properties of individual variables, lifted abstractions captureuniversalproperties

of groups of variables. For instance, a lifted polyhedral abstraction can capture the property that

the value of each element in an array is equal to its index times two. Lifting is done by assigning

a non-standard meaning to the existing abstraction. Sound and precise transformers for the lifted

abstraction are automatically constructed from the transformers for the original abstraction. We

used summarizing abstractions to add numeric support to TVLA, a state-of-the-art shape-analysis

framework.

We collaborated with Bertrand Jeannet (IRISA, France) on distilling the ideas behind summa-

rizing abstractions into a novel relational abstraction for functions [64, 65]; however, that work is

beyond the scope of this dissertation.

1.4.4 Array Analysis

An array is a simple and efficient data structure that is heavily used. In many cases, to verify

the correctness of programs that use arrays an analysis needs to be able to discover relationships

among values of array elements, as well as their relationships to scalar variables. For example, in

scientific programing, sparse matrices are typically represented with several arrays, and indirect

indexing is used to access matrix elements. In this case, to verify that all array accesses are in

bounds, an analysis has to discover upper and lower bounds onthe elements stored in the index

arrays. Mutual-exclusion protocols, such as the Bakery andPeterson algorithms [76, 90], use

certain relationships among the values stored in a shared integer array to decide which processes

may enter their critical section. To verify the correctnessof these protocols, an analysis must be

capable of capturing these relationships.

Static reasoning about array elements is problematic due tothe unbounded nature of arrays. Ar-

ray operations tend to be implemented without having a particular fixed array size in mind. Rather,

10

the code is parametrized by scalar variables that have certain numeric relationships to the actual

size of the array. The proper verification of such code requires establishing the desired property

for all possible values of those parameters. These symbolicconstraints on the size of the array pre-

clude the analysis from modeling each array element as an independent scalar variable and using

standard numeric-analysis techniques to verify the property. Alternatively, an entire array may be

modeled as a singlesummarynumeric variable. In this case, numeric properties established for

this summary variable must be universally shared by all array elements. This approach, known as

array smashing[14], resolves the unboundedness issue. However, the problem with this approach,

as with any approach that uses such aggregation, is the inability to performstrong updateswhen

assigning to individual array elements;2 this can lead to significant precision loss.

In Chapter 4, we develop an analysis framework that combinescanonical abstraction[78, 100],

an abstraction that dynamically partitions memory locations into groups based on their properties,

andsummarizing abstractions[47]. The analysis uses canonical abstraction to partitionan un-

bounded set of array elements into a bounded number of groups. Partitioning is done based on

certain properties of array elements, in particular, on numeric relationships between their indices

and values of scalar variables: the elements with similar properties are grouped together. Each

group is represented by a single abstract array element. Summarizing numeric abstractions are

used to keep track of the values and indices of array elements.

Canonical abstraction allows us to partition the set of array elements into groups, which dy-

namically change during the course of the analysis. For instance, if we partition array elements

with respect to a loop induction variablei (i.e., yielding three groups of array elements: (i) the

elements with indices less than the value ofi, (ii) the elementa[i] by itself, and (iii) the elements

with indices greater than the value ofi), then the groups of array elements, which are summarized

together, change on each iteration of the loop. In particular, the indexed array elementa[i] is

always a single element in its group, which allows the analysis to perform strong updates. Also,

the elements that have already been processed by the program(e.g., the ones with indices less than

2A strong update corresponds to a kill of a scalar variable; itrepresents a definite change in value to all concrete
objects that the abstract object represents. Strong updates cannot generally be performed on summary objects because
a (concrete) update only affects oneof the summarized concrete objects.

11

the value ofi) are kept separate from the elements that have not yet been processed (e.g., the ones

with indices greater than the value ofi), which allows the analysis to capture and maintain sharper

properties for the processed array elements.

We implemented this approach to array analysis within the TVLA framework [78] and used it

to analyze a number of small, but non-trivial array-manipulating programs.

1.4.5 Guided Static Analysis

Many existing numeric abstractions must rely onextrapolation(also referred to aswidening)

to be usable in practice. Widening attempts to guess loop invariants by observing how the program

properties inferred by the analysis change during early loop iterations. Widening works well for

programs with simple and easily-predictable behavior; however, as the complexity of a program

increases, widening starts to lose precision. This loss of precision makes the use of widening very

tricky in practice: the well-known adage goes: “If you widenwithout principles, you converge

with no precision!” [56]. A number ofad hoctechniques for reclaiming lost precision have been

proposed over the years. These techniques mostly rely on invariant guesses supplied by either a

programmer or by a separate analysis.

In Chapter 5, we design a general framework forguiding the state-space exploration per-

formed by program analysis and use instantiations of this framework to improve the precision of

widening [48, 49]. The framework controls state-space exploration by applying standard program-

analysis techniques to a sequence ofprogram restrictions, which are modified versions of the

analyzed program. The result of each standard-analysis runis used to derive the next program

restriction in the sequence, and also serves as an approximation for the set of initial states used

in the next analysis run. The existing program-analysis techniques are utilized “as is”, making it

easy to integrate the framework into existing tools. The framework is instantiated by specifying a

procedure for deriving program restrictions.

To improve the precision of widening, we instantiate the framework with procedures that de-

compose a program with complex behavior into a sequence of simpler programs, whose complexity

12

gradually increases. In the end, the sequence converges to the original program. Standard widen-

ing techniques are able to obtain precise results on the program restrictions that appear early in the

sequence. These precise results, in turn, help obtain more precise results for later, more complex

programs in the sequence, much in the same way as how successful guesses of (good) invariants

help existing techniques. The two instantiations we propose in this thesis address two scenarios

that are problematic to existing widening techniques:

• Loops that have multiple phases: that is, loops in which the iteration behavior changes after

a certain number of iterations;

• Loops in which the behavior on each iteration is chosen non-deterministically; such loops

commonly arise in the analysis of synchronous systems [46, 57] due to non-deterministic

modeling of the environment (e.g., sensor signals, etc.).

As anecdotal evidence of the success of our approach, the above instantiations were able to auto-

matically infer precise loop invariants for the two examples used by the Astrée team to motivate

the use ofthreshold widening, a semi-automatic technique that relies on user-supplied thresholds

(invariant guesses) [14].

1.4.6 Interprocedural Analysis

Recently, Weighted Pushdown Systems (WPDSs) emerged as an attractive engine for perform-

ing interprocedural program analysis [97]: on the one hand,WPDSs are expressive enough to

capture precisely fairly complex control structure present in modern programming languages, such

as Java exceptions [89]; on the other hand, WPDSs serve as a basis for higher-level analysis tech-

niques, such as the analysis of concurrent programs [17, 21,91]. Adopting WPDSs as an engine

for numeric program analysis allows for easy integration with these analysis techniques. An ad-

ditional advantage of WPDSs is the ability to answerstack-qualifiedqueries, that is, the ability to

determine properties that arise at a program point in a specified set of calling contexts.

13

In WPDSs,weightsabstract the effect of program statements on program states. This contrasts

to most existing numeric or quasi-numeric3 analyses, in which “units of abstraction” aresets of

program statesas opposed to thetransformations of program states(however, there are techniques

for using numeric abstractions to represent program-statetransformations [30, 66]). Generally,

representing program-state transformations precisely isharder than representing sets of program

states. However, there are definite advantages to abstracting transformations: recursive functions

can be handled precisely, the same weights can be used for performing both backward and forward

analyses, a single analysis run can be used to compute both a precondition for reaching a program

point and the set of program states that may arise at that point (by projecting the weight computed

for that program point to its domain and its range, respectively).

WPDS-based program-analysis techniques guarantee precise results for weights that are dis-

tributive and that satisfy the ascending-chain condition.Numeric abstractions, however, rarely

poses either of these properties. Chapter 6, we investigatepractical implications of building

WPDS-based numeric program analysis: our program-analysis tool is built on top of an off-the-

shelf library for WPDSs [69]. It usespolyhedralnumeric abstraction [32, 57] implemented via the

Parma Polyherdral Library [7]. The weights are constructedin a way similar to relational analy-

sis [30, 66]: that is, a polyhedron is used to capture the relationships among the values of program

variables before and after a transformation.

1.4.7 Library Summarization

Static program analysis works best when it operates on an entire program. In practice, however,

this is rarely possible. For the sake of maintainability andquicker development times, software is

kept modular with large parts of the program hidden in libraries. Often, commercial off-the-shelf

(COTS) modules are used. The source code for COTS componentsand libraries (such as Windows

dynamically linked libraries) is not usually available. Inpractice, source-level analysis tools resort

to either of the following two techniques:

3That is, program analyses in which only part of the abstraction is numeric.

14

• abstract transformers for a set ofimportant library calls (such asmemcpyandstrlen) are

hardcoded into the analysis; the remaining calls are treated either conservatively (e.g., by

assuming that any part of memory can be affected) or unsoundly (e.g., by assuming that the

function call does not affect the state of the program);

• a collection of hand-written source-code stubs that emulate some aspects of library code is

used by the analysis as a model of the effects of calls on library entry points.

Both approaches are less than ideal. The former approach is not extensible: modeling of new

library functions necessitates changes to the analysis. The latter approach provides the means for

modeling new libraries without changing the analysis; however, library-function stubs have to be

created manually — a process that is both error-prone and tedious.

An attractive goal for program analysis is to derive automatically the summariesfor library

calls by analyzing the low-level implementation of the library (e.g., the library’s binary). Such

summaries should consist of a set of assertions (error triggers) that must be checked at the call-

site of a library function to ensure that no run-time errors may occur during the invocation of

the function, and a program-state transformer that specifies how to map the program state at the

function call-site into the program state at the corresponding return-site.

We believe that there are certain benefits to constructing the models of library calls from the

low-level implementation of the library, as opposed to doing it from the high-level specifications.

In particular,

• formal library specifications are hard to get hold of, while low-level implementations are

readily available;

• even if a formal specification is available, there is no easy way to verify that a particular

library implementation conforms to the specification;

• the analysis of an actual library implementation may uncover bugs and undesirable features

in the library itself.

15

In this thesis, we take the first steps towards automaticallyconstructing summaries for library

functions. We design a tool that constructs library-function summaries for memory-safety analysis.

The tool works directly on the library implementations (x86code, at the moment):

• First, CodeSurfer/x86, an off-the-shelf tool for binary-code analysis, is used to perform ini-

tial analysis of the binary and to construct anintermediate representation (IR)of the function;

• The IR is used to generate a numeric program that captures thememory-related behavior

of the function: auxiliary numeric variables are associated with each pointer variable to

keep track of its allocation bounds in the spirit of other memory-safety analyses [37, 38].

At memory dereferences, the allocation bounds of the the dereferenced pointer variable are

checked explicitly, and in case of an error, the control is transferred to specially-inserted

error points.

• The numeric program, generated in the previous step, is analyzed with an off-the-shelf nu-

meric program-analysis tool. We used our WPDS-based analyzer, which was described in

the previous section.

• The numeric-analysis results are used to generate error assertions and program-state trans-

formers. At this step, we get extra millage from the WPDS-based analysis tool: weights

computed by the analysis for the set of return statements areused directly as the program-

state transformers; error triggers are obtained by computing preconditions for reaching the

error points.

In this work, we concentrated primarily on the issues that are of immediate relevance to nu-

meric program analysis: i.e., the generation and the analysis of a numeric program. A number

of problems that must be addressed to make our method usable in practice still remain open. For

instance, our tool produces an error trigger for each memoryaccess in the function (which may

number in the hundreds). Many of these error triggers are redundant; others could be consolidated

into a single, simpler error condition; hoverer, techniques for performing such consolidation still

need to be developed.

16

1.5 Thesis Organization

The remainder of the thesis is organized as follows. Chapter2 introducesnumeric program

analysis: it describes commonly used numeric abstractions, and shows how to instantiate these

analyses in the framework of abstract interpretation. Chapter 3 presents the framework for extend-

ing standardnumeric abstractions with the capability to express universal properties for groups of

numeric quantities. Chapter 4 uses the framework of Chapter3 to define a numeric analysis that is

able to synthesize universal properties of array elements.Chapter 5 presents a general framework

for guiding the analysis through the state-space of the analyzed program: two instantiations of

the framework, which improve the precision of extrapolation, are presented. Chapter 6 addresses

the use of WPDSs as an engine for numeric program analysis. Chapter 7 discusses a particular

application of numeric program analysis: analyzing low-level library implementations to create

summaries for library functions.

17

Chapter 2

Numeric Program Analysis

This chapter presents the foundations of numeric program analysis. Of particular importance

is the notion of anabstract domain: the techniques in Chapters 3, 4, and 5 use generic abstract

domains as basic building blocks. We describe how to instantiate a simple intraprocedural numeric

program analysis within the framework of abstract interpretation [27, 29]. For further reading

we suggest an excellent in-depth coverage of numeric program analysis by Mine [87, Chapter 2].

Additional background material and definitions that are specific to particular techniques will be

given in the corresponding chapters.

2.1 Numeric Programs

A program is specified by acontrol flow graph (CFG)— i.e., a directed graphG = (V,E),

whereV is a set of program locations, andE ⊆ V × V is a set of edges that represent the flow of

control. A nodene ∈ V denotes a unique entry point into the program. Nodene is not allowed to

have predecessors.

The state of a program is often modeled using a fixed, finite setof variables,Vars, whose values

range over a setV. We assume that the setV is application specific, e.g.,V can be the set of integers

(Z), the set of rationals (Q), or the set of reals (R). We will useB to denote the set of Boolean

values, i.e.,B = {true, false} .
A program stateS is a function that maps each program variable to a corresponding value, i.e.,

S : Vars→ V. We will useΣ = Vars→ V to denote the set of all possible program states.

18

2.1.1 Numerical Expressions and Conditionals

We do not impose any constraints on the numeric expressions and conditionals that can be

used in the program: that isx + y, 3
√
y, x mod 5 = 0, andsin2(x) + cos2(x) = 1 all represent

valid numeric expressions and conditionals. The semanticsof the expressions and conditionals is

defined by a family of functions[[·]], which map the values assigned to the free variables in the

expression (conditional) to the result of the expression (conditional). That is,[[x + y]](3, 5) yields

8 and [[x mod 5 = 0]](25) yields true. More formally, letΦ denote the set of all valid numeric

expressions, and letφ(v1, . . . , vk) ∈ Φ be ak-ary expression. Then, the semantics ofφ is given by

a function

[[φ(v1, . . . , vk)]] : Vk → V.

Similarly, let Ψ denote the set of all valid numeric conditionals, and letψ(v1, . . . , vk) ∈ Ψ be a

k-ary conditional. Then the semantics ofψ is given by a function

[[ψ(v1, . . . , vk)]] : Vk → B.

2.1.2 Support for Nondeterminism

Sometimes it is convenient to be able to specify a certain degree of non-determinism in the

program. For instance, nondeterminism can be used to model the effects of the environment, e.g.,

to model user input. We support nondeterminism by allowing aspecial constant ‘?’ to be used

within an expression: ‘?’ chooses a value fromV nondeterministically. To accommodate ‘?’, we

lift the semantics of expressions and conditionals to return sets of values: e.g.,[[x+?]]ND yieldsV

for any value ofx, and[[? mod 3]]ND yields the set{0, 1, 2}.
Without loss of generality, let expressionφ(v1, . . . , vk) haver occurrences of ‘?’ in it. Let

φ̃(v1, . . . , vk, w1, . . . , wr) denote an expression obtained by substituting each occurrence of ‘?’ in

φ with a fresh variablewi 6∈ Vars. Then, the semantics forφ is defined as follows (let̄α ∈ Vk):

[[φ(v1, . . . , vk)]]ND(ᾱ) =
{

[[φ̃(v1, . . . , vk, w1, . . . , wr)]](ᾱ, β̄) | β̄ ∈ Vr
}

The nondeterministic semantics for conditionals is definedsimilarly.

19

2.1.3 Evaluation of Expressions and Conditionals

We define the semantics for evaluating expressions and conditionals in a program state in a

straightforward way. LetS ∈ Σ denote an arbitrary program state, and letφ(v1, . . . , vk) ∈ Φ,

wherevi ∈ Vars, be an expression. The function[[φ(v1, . . . , vk)]] : Σ → ℘(V) is defined as

follows:

[[φ(v1, . . . , vk)]](S) = [[φ(v1, . . . , vk)]]ND(S(v1), . . . , S(vk)).

Similarly, letψ(v1, . . . , vk) ∈ Ψ, wherevi ∈ Vars, be a conditional. The function[[ψ(v1, . . . , vk)]] :

Σ→ ℘(B) is defined as follows:

[[ψ(v1, . . . , vk)]](S) = [[ψ(v1, . . . , vk)]]ND(S(v1), . . . , S(vk)).

From now on, we will omit the lists of free variables when referring to expressions and condition-

als, unless those lists are important to the discussion.

2.1.4 Concrete Semantics of a Program

The functionΠG : E → (Σ → Σ) assigns to each edge in the CFG the concrete semantics of

the corresponding program-state transition. Two types of transitions are allowed:

• Assignment transition, x̄ ← φ̄: An assignment transition allows multiple variables to be

updated in parallel; i.e.,̄x ∈ Varsm, where1 ≤ m ≤ |Vars|, with an additional constraint that

each variable may appear at most once inx̄. Also, φ̄ ∈ Ψm. As an example, the assignment

transition〈x, y〉 ← 〈y, x+ 1〉 assigns the value of variabley to variablex, and the value of

x+ 1 to variabley. The semantics of an assignment transition is defined as follows (we use

x[i] to denote thei-th component of vector̄x):

[[x̄← φ̄]](S) =







S ′ ∈ Σ | ∀v ∈ Vars





S ′(v) ∈ [[φ[i]]]ND(S) if v = x[i] , i ∈ [1, m]

S ′(v) = S(v) otherwise











Typically, only a single variable is updated by an assignment transition. In that case, we will

omit the vector notation, e.g.,x ← x + 1. The assignment transitionx ← ? “forgets” the

value of variablex.

20

• Assume transition, assume(ψ): An assume transition filters out program states in which

the conditionψ ∈ Ψ does not hold. For uniformity, we define the semantics of the transition

to map a program state to a singleton set containing that program state, if the conditionψ

holds in that state; otherwise, a program state is mapped to the empty set

[[assume(ψ)]](S) =







{S} if true∈ [[ψ]]ND(S)

∅ otherwise

The semantics of program-state transitions is extended trivially to operate on sets of program states

ΠG(e)(SS) =
⋃

S∈SS

ΠG(e)(S),

wheree ∈ E andSS⊆ Σ.

2.1.5 Collecting Semantics of a Program

We will use mapsΘ : V → ℘(Σ) from program locations to program states to collect the sets

of reachable states. LetΘ⊲ denote a map that represents the initial state of the program. Typically,

we assume that the program execution starts at the entry point ne, and that program variables are

not initialized:

Θ⊲(v) =







Σ if v = ne

∅ otherwise
, for all v ∈ V

Thecollecting semanticsof a program (that is, a function that maps each program location to the

set of program states that arise at that location), is given by the least mapΘ⋆ that satisfies the

following conditions:

Θ⋆(v) ⊇ Θ⊲(v), and Θ⋆(v) =
⋃

〈u,v〉∈E

ΠG(〈u, v〉)(Θ⋆(u)), for all v ∈ V (2.1)

The goal of program analysis is, givenΘ⊲, computeΘ⋆. However, this problem is generally

undecidable.

2.1.6 Textual Representation of a Program

Our primary view of the program is that of a control flow graph in which nodes correspond

to program locations and edges are annotated with program-state transitions. In fact, the input

21

languages for the program-analysis tools that we have implemented also maintain this view of

programs. However, for the sake of readability, we present the programs that appear in various

part of this thesis in a C-like language. The language supports simple control structures, such as

if statements,while statements, andgoto statements. These control structures are converted into

a CFG in straightforward way. The statementassert(ψ) corresponds to anif(ψ) statement in

which theelse-clause transfers the control to anerror node: a unique error node is created for

eachassert statement. Error nodes are sink nodes, i.e., they have no successors. The statement

“if(*)” chooses control non-deterministically, i.e., the transition assume(true) is used to transfer

control to both thethen-clause andelse-clause. Whenever possible, we show the program’s CFG

alongside the textual representation of the program.

2.2 Program Analysis

Program analysis sidesteps undecidability by using abstraction: sets of program states are over-

approximated by elements of an abstract domainD = 〈D,⊑,⊤,⊥,⊔,⊓〉, where⊑ is a binary

relation that is reflexive, transitive, and anti-symmetric: it imposes a partial order onD; ⊤ and⊥
denote, respectively, the greatest and the least elements of D with respect to⊑; ⊔ and⊓ denote the

least upper bound (join) operator and the greatest lower bound (meet) operator, respectively.

The elements ofD are linked to sets of concrete program states by a pair of functions〈α, γ〉,
whereα : ℘(Σ) → D is anabstraction function, which constructs an approximation for a set of

states, andγ : D → ℘(Σ) is aconcretization function, which gives meaning to domain elements;

The functionsα andγ are chosen to form a Galois connection, that is

∀S ∈ ℘(Σ) ∀d ∈ D [α(S) ⊑ d ⇔ S ⊆ γ(d)]

It follows immediately thatd1 ⊑ d2 ⇒ γ(d1) ⊆ γ(d2); thus, the smaller the abstract-domain

element with respect to⊑, the smaller is the set of program states it represents. The least element,

⊥, typically represents the empty set, i.e.,γ(⊥) = ∅. The greatest element,⊤, represents the

entire set of program states, i.e.,γ(⊤) = Σ. The join operator and the meet operator soundly

approximate set union and set intersection, respectively.

22

2.2.1 Abstract Semantics of a Program

To perform program analysis, the program-state transitions that are associated with the edges

of a control flow graph also need to be abstracted. We will use the mapΠ♯
G : E → (D → D) to

specify corresponding abstract transformers for each edgein the CFG. We say thatΠ♯
G is asound

approximationof ΠG if the following condition holds:

∀e ∈ E ∀d ∈ D
[

ΠG(e)(γ(d)) ⊆ γ(Π♯
G(e)(d))

]

.

Also, for a program-state transitionτ , we say that its abstractionτ ♯ is thebestabstract transformer,

if τ ♯ = α ◦ τ ◦ γ; and we say thatτ ♯ is theexactabstract transformer, ifγ ◦ τ ♯ = τ ◦ γ.

2.2.2 Abstract Collecting Semantics

To refer to abstract states at multiple program locations, we defineabstract-state mapsΘ♯ :

V → D. We also define the operationsα, γ, ⊑, and⊔ for Θ♯ as point-wise extensions of the

corresponding operations for the abstract domainD.

Program analysis computes a sound approximation for the setof program states that are reach-

able fromΘ⊲. Typically, the result of program analysis is an abstract-state mapΘ♯
⋆ that satisfies

the following property

∀v ∈ V :



Θ♯
⊲(v) ⊔

⊔

〈u,v〉∈E

Π♯
G(〈u, v〉)(Θ♯

⋆(u))



 ⊑ Θ♯
⋆(v), (2.2)

whereΘ♯
⊲ = α(Θ⊲) is the approximation for the set of initial states of the program. It follows

trivially from the definition that the resulting approximation is sound, that isΘ⋆(v) ⊆ γ(Θ♯
⋆(v))

for all v ∈ V .

2.3 Iterative Computation

This section explains one methodology for computingΘ♯
⋆, the abstract collecting semantics of

a program, by means of an iterative process of successive approximation.

23

2.3.1 Kleene Iteration

If the abstract domainD and the set of abstract transformers inΠ♯
G possess certain algebraic

properties, thenΘ♯
⋆ can be obtained by computing the following sequence of abstract-state maps

until it stabilizes:

Θ♯
0 = Θ♯

⊲ and Θ♯
i+1(v) =

⊔

〈u,v〉∈E

Π♯
G(〈u, v〉)(Θ♯

i(u)) (2.3)

In particular, the abstract transformers inΠ♯
G must bemonotone, i.e.,

∀e ∈ E ∀d1, d2 ∈ D
[

d1 ⊑ d2 ⇒ Π♯
G(e)(d1) ⊑ Π♯

G(e)(d2)
]

.

To ensure termination, the abstract domainD must satisfy theascending-chain condition; i.e.,

every sequence of elements(dk) ∈ D such thatd1 ⊑ d2 ⊑ d3 ⊑ ... must eventually become

stationary.

Additionally, if the transformers inΠ♯
G distributeover the join operator ofD, i.e., if

∀e ∈ E ∀d1, d2 ∈ D
[

Π♯
G(e)(d1 ⊔ d2) = Π♯

G(e)(d1) ⊔ Π♯
G(e)(d2)

]

,

then the solution obtained forΘ♯
⋆ is the most precise (i.e., least) solution that satisfies Eqn. (2.2).

2.3.2 Widening

If the domain does not satisfy the ascending-chain condition, then the sequence defined in

Eqn. (2.3) may not necessarily converge. To make use of such domains in practice, an extrapola-

tion operator, calledwidening, is defined. A widening operator(∇k) must possess the following

properties:

• For alld1, d2 ∈ D, for all i ≥ 0, d1, d2 ⊑ d1∇i d2.

• For any ascending chain(dk) ∈ D, the chain defined byd′0 = d0 andd′i+1 = d′i∇i di+1 is

not strictly increasing.

To make an iterative computation converge, a setW ⊆ V of widening points is identified:W must

be chosen in such a way that every loop inΠ is cut by a node inW . Typically,W is chosen to

24

contain the heads of all of the loops in the program. The iteration proceeds as follows:

Θ♯
0 = Θ♯

⊲ and Θ♯
i+1(v) = Θ♯

i(v) ⊲⊳
⊔

〈u,v〉∈E

Π♯
G(〈u, v〉)(Θ♯

i(u)) (2.4)

where⊲⊳ is∇i if v ∈W and⊔, otherwise.

Intuitively, widening attempts to guess loop invariants byobserving program states that arise

on the first few iterations of the loop. Typically, delaying the application of widening for a few

iterations tends to increase the precision of the analysis.To delay the application of widening for

k iterations, the widening operator can be redefined as follows:

∇[k]
i =







⊔ if i < k

∇i−k otherwise

Often the definition of the widening operator is independentfrom the iteration number on which

the operator is invoked. In that case, we denote the wideningoperator by∇, with no subscripts.

2.3.3 Narrowing

The limit of the sequence in Eqn. (2.4), which we will denote by Θ♯
⊳, is sound, but generally

overly conservative. It can be refined to a more precise solution by computing adescending-

iteration sequence:

Θ♯
0 = Θ♯

⊳ and Θ♯
i+1(v) =

⊔

〈u,v〉∈E

Π♯
G(〈u, v〉)(Θ♯

i(u)) (2.5)

However, for this sequence to converge, the abstract domainmust satisfy thedescending-chain

condition, that is, the domain must contain no infinite strictly-decreasing chains. If the abstract

domain does not satisfy this property, convergence may be enforced with the use of anarrowing

operator. A narrowing operator,(∆k) must possess the following properties:

• For alld1, d2 ∈ D, for all i ≥ 0, d2 ⊑ d1 ⇒ [d2 ⊑ d1 ∆i d2 ∧ d1 ∆i d2 ⊑ d1].

• For any descending chain(dk) ∈ D, the chain defined byd′0 = d0 andd′i+1 = d′i ∆i di+1 is

not strictly decreasing.

25

The computation of the descending sequence proceeds as follows:

Θ♯
0 = Θ♯

⊳ and Θ♯
i+1(v) = Θ♯

i(v) ⊲⊳
⊔

〈u,v〉∈E

Π♯
G(〈u, v〉)(Θ♯

i(u)) (2.6)

where⊲⊳ is ∆i if v ∈W and⊓, otherwise.

The overall result of the analysis,Θ♯
⋆, is the limit of the sequence computed in accordance

with Eqn. (2.6). Typically,Θ♯
⋆ is not the most precise abstraction of the program’s collecting

semantics with respect to the property in Eqn. (2.2). An important thing to note is that with standard

abstract-interpretation methods the computation of theascending sequence(Eqn. (2.4)) for the

entire program must precede the computation of thedescending sequence(Eqn. (2.6)) for the

analysis to converge. The techniques that we developed — andpresent in Chapter 5 — allow

the ascending and descending computations to be interleaved, while still guaranteeing that the

analysis converges. Moreover, the techniques from Chapter5 generally give more precise results

than standard techniques (see§5.7).

Meaningful narrowing operators are much harder to define than widening operators; thus, many

abstract domains do not provide them. For those domains, thedescending-iteration sequence from

Eqn. (2.5) is, typically, truncated after some fixed number of iterations. One way to truncate the

iteration sequence is to define a simple domain-independentnarrowing operator that “cuts off”

the decreasing sequence after some number of iteration; i.e., to truncate afterk iterations, the

narrowing operator can be defined as follows:

d1 ∆
[k]
i d2 =







d2 if i < k

d1 otherwise

2.3.4 Chaotic Iteration

Computing the sequence of abstract-state maps according toEqns. (2.4) and (2.6) is not effi-

cient in practice: on each step, the mappings forall program points are recomputed even though

only a small number of them actually change value.Chaotic iterationallows one to speed up the

computation by only updating a value at single program pointon each iteration of the analysis:

given afair sequence of program pointsσ ∈ V∞ (that is, a sequence in which each program point

26

appears infinitely often), the ascending-iteration sequence can be computed as follows:

Θ♯
i+1(v) =



















Θ♯
i(v) ∇i

⊔

〈u,v〉∈E Π♯
G(〈u, v〉)(Θ♯

i(u)) if v = σ[i] andv ∈W
Θ♯
i(v) ⊔

⊔

〈u,v〉∈E Π♯
G(〈u, v〉)(Θ♯

i(u)) if v = σ[i] andv 6∈W
Θ♯
i(v) otherwise(v 6= σ[i])

(2.7)

The descending iteration sequence is computed in a similar way, with∇ replaced with∆, and⊔
replaced with⊓.

The use of chaotic iteration raises the question of an effective iteration strategy— that is, an

order in which program points are visited that minimizes theamount of work that the analysis

performs. This problem was addressed by Bourdoncle [18]. Heproposed a number of successful

iteration strategies based on the idea of using aweak topological order (WTO)of the nodes in

the program’s control-flow graph. A WTO is a hierarchical structure that decomposesstrongly-

connected components (SCCs)in the graph into a set of nested WTO components. (In structured

programs, WTO components correspond to the loops in the program.) Of particular interest is the

recursiveiteration strategy.

Definition 2.1 (Recursive Iteration Strategy [18]) The recursive iteration strategy recursively sta-

bilizes the sub-components of a WTO component before stabilizing that WTO component.

Intuitively, the recursive iteration strategy forces the analysis to stay within a loop until the stable

solution for that loop is obtained. Only then the analysis isallowed to return to the outer loop. The

recursive iteration strategy has the property that one onlyneeds to check for stabilization at the

head of the corresponding WTO component (intuitively, onlyat the head of the loop).

Theorem 2.2 (Recursive iteration stabilization [18, Theorem 5]) For the recursive iteration strat-

egy, the stabilization of a WTO component can be detected by the stabilization of its head.

In Chapter 5, we make use of this property to guarantee the convergence of thelookahead-widening

technique.

27

2.4 Abstract Domain Interface

The interface of an abstract domain consists of the domain operations (such as⊑ and⊔) and

the abstract transformers inΠ♯
G. Typically, it is not the case that the transformer for each state

transition must be manually constructed. Rather, the abstract domain provides a general scheme for

constructing classes of abstract transformers, i.e., a scheme for constructing abstract transformers

for arbitrary assignment transitions and arbitrary assumetransitions. In this thesis, we assume that

abstract domains are equipped with abstract transformers for any possible assignment transitions

and assume transitions.1

The functionsα andγ are mostly theoretical devices; thus, we do not view them as part of the

interface. In particular, it is rarely computationally feasible to useγ directly. However, sometimes

we rely on thesymbolic-concretizationfunctionγ̂ [96], which represents the meaning of an abstract

domain element as a formula in some suitable logic. Theα function typically would be used

exactly once, to compute the abstract domain element for theinitial state; in practice, it is rare to

implementα as an explicit function in an analyzer (the TVLA system [78] is one exception).

Formally, to be compatible with our techniques, an abstractdomain must provide the following

set of operations:

• the comparison operator (⊑);

• the join operator (⊔), and the meet operator (⊓);

• the widening operator (∇), and (optionally) the narrowing operator (∆);

• the constructors for the greatest element (⊤), and the smallest element (⊥);

• the abstract transformers for arbitrary assignment transitions ([[x̄ ← φ̄]]♯) and for arbitrary

assume transitions ([[assume(ψ)]]♯);

• (Optionally) the symbolic-concretization function (γ̂);

1In case an expression or conditional are beyond the capabilities of the abstract domain, the abstract transformers
err on the safe (sound) side by returning⊤.

28

2.5 Numeric Abstractions

The focus of this thesis is numeric program analysis. Below,we briefly overview existing

numeric abstractions (that is, particular instantiationsof the abstract-domain interface), and take a

detailed look at thepolyhedralabstraction, which we use in the implementations of our tools and

to illustrate the techniques presented in this thesis.

Numeric analyses have been a research topic for several decades, and a number of numeric

domains that allow to approximate the numeric state of a program have been designed over the

years. These domains exhibit varying precision/cost trade-offs, and target different types of nu-

meric properties. However, all numeric domains share the same view of “the world”: each program

stateS : Vars→ V is viewed as a point in a multi-dimensional spaceVn, wheren = |Vars|. Intu-

itively, each variable is associated with a dimension of a multi-dimensional space; the coordinate

of the point along that dimension represents the value of thevariable in the corresponding program

state. Sets of program states correspond to subsets of the spaceVn. Numeric abstract domains

represent and manipulate these subsets with varying degrees of precision.

Tab. 2.1 lists a number of existing abstract domains, along with the numeric properties those

domains are able to represent. In terms of precision, numeric abstract domains can be categorized

into three groups:

• Non-relational domains: These domains are only able to represent properties of individual

variables, e.g., the range of values that a variable may hold. They cannot represent rela-

tionships among variables. However, these domains are veryefficient in practice and allow

scalable analyses to be constructed.

• Relational domains: These domains are able to represent arbitrary relationships (of a

certain class) among variables: e.g., polyhedra are capable of representing arbitrarylinear

relationships. However, these domains have poor computational complexity and do not scale

well in practice.

• Weakly-relational domains: These domains attempt to strike a compromise between re-

lational and non-relational abstract domains by limiting in some way the kind of numeric

29

Name Constraints Bibliography

N
o

n
-R

el
at

io
n

al Constant Propagation vi = αi Kildall [70]

Signs ±vi ≥ 0 Cousot et al. [28]

Intervals αi ≤ vi ≤ βi Cousot et al. [28]

Simple Congruences vi ≡ αi mod βi Granger [52, 53]

Interval Congruences vi ∈ [αi, βi] mod γi Masdupuy [82]

W
ea

kl
y-

R
el

at
io

n
al

Zones vi − vj ≤ αij Miné [84]

Octagons ±vi ± vj ≤ αij Miné [85]

Zone Congruences vi − vj ≡ αij mod βij Miné [86]

TVPLI αij · vi + βij · vj ≤ γij Simon et al. [109]

Octahedra

∑

i αij · vi ≤ βj

αij ∈ {−1, 0, 1}, vi > 0
Clarisó et al. [23, 24]

TCM

∑

i αij · vi ≤ βj

αij fixed throughout the

analysis

Sankaranarayanan et al. [103]

R
el

at
io

n
al

Liner Equalities
∑

i αij · vi = βj Karr [68]

Linear Congruences
∑

i αij · vi ≡ βj mod γj Granger [52]

Polyhedra
∑

i αij · vi ≤ βj Cousot et al. [32]

Trapezoidal Congruences
∑

i αij · vi ∈ [βj , γj] mod δj Masdupuy [80]

Arithmetic automata Arbitrary Presburger FormulasBartzis et al. [12, 13]

Table 2.1 A list of existing numeric domains.

relationships they can represent. Some domains, like TVPLI2 [109], restrict the number of

variables that can participate in a relationship. Others, like octahedra [23, 24], restrict the

values of coefficients that can occur in the relationships. Some, like octagons [85], restrict

both.

2Two variables per linear inequality

30

Numeric abstract domains also vary in terms of implementation. Some domains, like TCM [103]

and TVPLI [109], rely on linear-programming techniques. Others, like zones [84], octagons [85],

and zone congruences [86], are graph-based (in fact, they operate on a matrix representation of

a graph). One domain, arithmetic automata [12, 13], uses a finite-state automaton to recognize

binary representations of integer values. Below, we take a detailed look at the implementation of

the polyhedral domain [32, 57].

2.5.1 The Polyhedral Abstract Domain

The polyhedral abstract domain was introduced almost 30 years ago by Cousot and Halb-

wachs [32]. Since then, a number of implementations of the domain have been developed, e.g., the

New Polka library [63] and the Parma Polyhedral Library [7].

Representation. The implementation of the domain is based on a dual representation of polyhe-

dra. A polyhedronP ⊆ Rn for some positive integern can be represented in two distinct ways:

• Constraint representation.A polyhedron is represented as the intersection of a finite set of

linear constraintsC, where each constraint〈c̄, b〉 ∈ C, wherec̄ ∈ Rn andb ∈ R, defines a

half space ofRn as follows{x̄ ∈ Rn | c̄ · x̄ ≤ b}. The following polyhedron is represented

by the constraint systemC:

P = con(C) = {p̄ ∈ Rn | ∀ 〈c̄, b〉 ∈ C [c̄ · p̄ ≤ b]} .

• Frame representation.A polyhedron is represented by a system ofgenerators: a finite set of

pointsQ ⊂ Rn and a finite set ofraysR ⊂ Rn. Let |Q| = q and let|R| = r. The following

polyhedron is represented by a system of generators〈Q,R〉:

P = gen(〈Q,R〉) =

{

Rρ +Qπ ∈ Rn | ρ ∈ Rr
+, π ∈ R

q
+, and

q
∑

i=1

π[i] = 1

}

,

whereR+ denotes the set of non-negative reals.

Some operations can be performed more efficiently on the constraint representation; others can be

performed more efficiently on the generator representation. In practice, implementations maintain

31

both representations: the representations are synchronized by converting the information in the

up-to-date representation to the out-of-date representation. These conversions are computationally

expensive and constitute a major scalability problem for the domain.

Abstract Transformers. In the following, letP1 andP2 denote two elements of the polyhedral

abstract domain.

• Comparison operator: The comparison operator uses both representations. To decide

whetherP1 ⊑ P2 holds, the elements of the frame ofP1 are checked against the constraints

of P2: if every element of the frame is subsumed, the relationshipholds.

• The join and meet operators:The join operator utilizes the generator representation: to

computeP1 ⊔ P2, the union of their generator representations is taken. Themeet operator

relies on the constraint representation:P1 ⊓ P2 is computed as the union of the constraint

representations ofP1 andP2. Both of these operations may cause redundancy in the re-

spective representation. The redundancy is typically eliminated by a conversion to the other

representation and back.

• Widening operator. The widening operator uses both representations. Intuitively, to com-

puteP1∇P2 one needs to remove fromP1 the constraints that are not satisfied byP2. The

implementation, however, is much more tricky: the result ofwideningP1 with P2 is a poly-

hedron that includes all of the constraints ofP2 that are saturated by the same set of frame

elements ofP1 as some constraint ofP1 [6]. The necessary condition for this to work is that

P1 ⊑ P2.

• The⊤ and⊥ elements. The⊤ element is a polyhedron with an empty constraint system.

The⊥ element is a polyhedron whose constraint system contains aninfeasible constraint,

e.g.,1 ≤ 0.

• Abstract transformers.Abstract transformers for polyhedra are only able to handlelinear ex-

pressions and linear conditionals. The[[x̄← φ̄]]♯(P1) transformer is computed by translating

each generator ofP1 according to the assignment transitionx̄ ← φ̄. The [[assume(ψ)]]♯(P1)

32

transformer is computed by adding the linear constraintψ to the constraint representation

of P1. Non-linear expressions are approximated by returning⊤; non-linear conditionals are

approximated by returning the original polyhedron.

• Symbolic concretization.The symbolic concretization of a polyhedron,γ̂(P1), is the con-

junction of constraints in the constraint representation of P1.

Recently, a new approach to implementing the polyhedral abstract domain was proposed [101].

This approach is based on linear programming; it attempts toimprove the scalability of the analysis

by eliminating conversions between the two representations. However, the abstract transformers

are weakened as the result.

33

Chapter 3

Summarizing abstractions

Often, in program analysis, the situations arise in which universal properties of an unbounded

collection of objects need to be established. The word “unbounded” means that the number of

objects that must be taken into consideration by the analysis, may not be determined statically.

That is, the number of objects may change from program run to program run depending on the user

input or the run-time environment. For instance, if the program uses dynamic memory allocation,

then the analysis may have to model an unbounded number of linked-list elements. If the program

creates threads dynamically, then the analysis may need to track an unbounded number of instances

of thread-local variables. Recursive-function invocations may create an unbounded number of

instances of local variables on the run-time stack.

As we showed in Chapter 2, traditional numeric abstractionsare only able to keep track of a

fixed, finite set of objects. Thus, they cannot be used directly in the above situations. Maintaining

a separate abstract-domain element for each possible number of objects (i.e., one-dimensional

domain element to represent program states with one object,a two-dimensional domain element

to represent states with two objects, etc.) is also infeasible because the object count is unbounded.

For example, consider representing a linked-list of arbitrary length, each element of which stores

the value1. While the property is trivial numerically, it is impossible to represent it with the

use of standard numeric abstractions: the analysis will need separate abstract-domain elements to

represent lists of length1, 2, 3, ..., etc.

The typical approach to reasoning about an unbounded numberof objects (or simply a very

large number of objects) is by employing abstraction. The set of objects is divided into a fixed

34

number of groups based on certain criteria. Each group is then represented (we will say “summa-

rized”) by a single abstract object. The groups themselves need not be of bounded size. As an

example, TVLA, a framework for shape analysis, usescanonical abstractionto create bounded-

size representations of memory states [78, 100].

In this chapter, we present the techniques for using traditional abstract domains in this “summa-

rizing” setting. The set of abstract objects will serve as the set of variables for the abstract domain,

and the standard semantics of the domain will be lifted to account forsummaryabstract objects,

i.e., those abstract objects that represent (summarize) more than one concrete object. To lift the

semantics, we propose a non-standard concretization for the abstract-domain elements. Then, we

show how to construct sound abstract transformers for the new concretization from existing ab-

stract transformers.

3.1 Preliminaries

We need to extend some of the definitions of Chapter 2 and definesome new notation to be

able to talk about program states with a varying number of variables. In this section, we slightly

extend the concrete semantics of the program and define the notion of summarization.

3.1.1 Extended Concrete Semantics

In contrast to Chapter 2, this chapter does not define a unifiedset of variables that is shared by

all program states. Instead, each program stateS is associated with a corresponding set of objects1

US that exist in that state. The setUS is referred to as theuniverseof S. A concrete program state

maps each object in its universe to the corresponding value,i.e.,S : US → V.

Because there is no fixed universe, we introduce a level of indirection to specify arbitrary ex-

pressions and conditionals in a state-independent manner:rather than referencing concrete objects

directly, expressions and conditionals use free variablesthat are mapped to the concrete objects in

1In this section, we use the term “object” instead of the term “variable” to refer to the entities that the program
manipulates. The “objects” in this chapter are more generalthan the “variables” in Chapter 2: they may refer to array
elements, linked-list elements, etc. In§3.6, we will extend the abstraction to handle multiple numeric values attached
to the same object.

35

a particular state by a state-specific functionσS : Fv→ US, whereFv is a set of free variables. An

arbitrary expressionφ(w1, . . . , wk), wherewi ∈ Fv, is evaluated in the stateS as follows (note that

we use the non-deterministic expression semantics defined in §2.1.2):

[[φ(w1, . . . , wk)]](S) = [[φ(w1, . . . , wk)]]ND(S(σS(w1)), . . . , S(σS(wk)))

Similarly, an arbitrary boolean conditionψ(w1, . . . , wk), wherewi ∈ Fv, is evaluated as follows:

[[ψ(w1, . . . , wk)]](S) = [[ψ(w1, . . . , wk)]]ND(S(σS(w1)), . . . , S(σS(wk)))

The semantics for the assign and assume transitions, as wellas the collecting semantics of the

program, are defined similarly to their counterparts in Chapter 2, with the exception that the above

semantics for evaluating expressions and conditionals is used in place of the one in§2.1.3.

Let us stress one more time the primary difference between the concrete semantics defined

in Chapter 2 and the concrete semantics defined above. In Chapter 2, all program states share

the same universe and the mapping of variables in expressions and conditionals to the objects in

the universe is program-state independent. This allows theconcrete semantics of Chapter 2 to

be effectively abstracted with the use of standard numeric abstract domains. In contrast, in this

chapter, the universe varies from program state to program state; program states with different

universes may arise at the same program location. Thus, existing numeric abstractions cannot be

used directly.

3.1.2 Summarization

We assume that some abstraction is used to partition the universe of each concrete stateS into

m groups and that each group is represented by an object from a setU ♯ = {u♯1, ..., u♯m}. We refer

to U ♯ as theabstract universe. Let πS : US → U ♯ denote a function that maps concrete objects in

stateS to the corresponding abstract objects inU ♯. For convenience, we also define the inverse of

this functions,π−1
S : U ♯ → ℘(US). Note that this scheme is general enough to specify a wide range

of possible abstractions: the abstraction can be as simple as grouping together the objects created

at the same allocation site, or it can be as complex as canonical abstraction, in which the grouping

36

of concrete objects change from state to state. We refer to the abstract objects that represent more

than a single concrete object assummaryobjects.

In this chapter, to simplify the presentation, we assume that there is only a single abstract

universeU ♯. In practice, however, a number of separate abstract universes may be maintained

by the analysis. For instance, in TVLA, each class of isomorphic shape graphs forms a separate

abstract universe. The techniques in this chapter can stillbe applied to each individual abstract

universe. However, the numeric abstractions that are associated with separate abstract universes

must be collected and propagated separately.

Another simplification that we make is that, in each expression or conditional in the program,

free variables are mapped to the same abstract objects uniformly across all of the program states

that arise at that point. That is, we assume that there is auniform assignment function2 σ♯ that

agrees withπS ◦ σS in each concrete program stateS that arises at a given program point. This is

often the case in practice because concrete objects are typically summarized based on thememory-

access patternsthat occur in the program’s expressions, e.g., a C expression “p->v” may refer to

different memory locations in different program states; however, all of these memory locations are

likely to be represented by the same abstract object, e.g., the same node in the shape graph. If this

is not the case, the situation can be handled by case splitting: becauseU ♯ is finite, there are only

finitely many possible assignment functions that may arise.

3.1.3 Standard Abstract Domains Revisited

In Chapter 2, we showed that standard abstract domains provideabstract transformers[[x̄ ←
φ̄]]♯ and[[assume(ψ)]]♯ that approximate the state transitions for sets of program states with a fixed

universe (these were defined in§2.1.4). In this chapter, we will use these state transitionsto

transform sets of functions with fixed domain.3 We slightly extend the notation, and refer to these

state transitions as

[[x̄← φ̄]]W,σ and [[assume(ψ)]]W,σ,

2In this context, “uniform” should be understood as uniform acrossall concrete states that arise at the program
point where the corresponding expression or conditional isevaluated, butnotas uniform forall program points.

3In Chapter 2, sets of program states are defined as sets of functions with a fixed domainVars.

37

whereW denotes the fixed domain for the functions, andσ maps free variables in the vector of

expressions̄φ and the conditionalψ to the corresponding members ofW .

Recall from§2.1.4, that these transformers operate on each function in the set independently.

That is, letS : W → V:

• The transformer[[x̄ ← φ̄]]W,σ(S), for each functionf ∈ S, evaluates the set of expressions

φ̄ by substituting a valueS(σ(wi)) for each free variablewi in φ̄, updates the mappings

for objectsσ(x̄[·]), and places the resulting function (or a collection of functions, if φ̄ is

nondeterministic) into the output set. We define the function Valuesφ,σ : (W → V)→ ℘(V),

for an arbitraryk-aryφ ∈ Φ, as follows (letf : W → V be an arbitrary function):

Valuesφ,σ(f) , [[φ[i]]]ND(f(σ(w1)), . . . , f(σ(wk))).

Note that this function simply evaluates the expressionφ in functionf using the free-variable

assignment functionσ. Let x̄ ∈ Fvr, φ̄ ∈ Φr, and leti ∈ [1, r]:

[[x̄← φ̄]]W,σ(S) =







f ′ | ∃f ∈ S ∀v ∈W





f ′(v) ∈ Valuesφ[i],σ(f) if v = σ(x[i])

f ′(v) = f(v) otherwise











• The transformer[[assume(ψ)]]W,σ(S), for each functionf ∈ S, evaluates the conditionψ

by substituting valueS(σ(wi)) for each free variablewi in ψ. If the resulting value (set

of values, ifψ is nondeterministic) equalstrue (containstrue), the functionf is added to

the output set. Similarly to the assignment transformer, wedefine the functionValuesψ,σ :

(W → V)→ ℘(V), for an arbitraryk-aryψ ∈ Ψ, as follows (letf : W → V be an arbitrary

function):

Valuesψ,σ(f) , [[ψ]]ND(f(σ(w1)), . . . , f(σ(wk))).

The actual transformer is defined as follows:

[[assume(ψ)]]W,σ(S) = {f ∈ S | true∈ Valuesψ,σ(f)}

In the later sections of this chapter, we will use these transformers to manipulate sets of functions

with a fixed domainU ♯, while using the uniform assignment functionσ♯ for binding free vari-

ables in expressions and conditionals to the objects inU ♯. According to the notation we use, the

38

corresponding version of the transformers defined above will be denoted by

[[x̄← φ̄]]U
♯,σ♯ and [[assume(ψ)]]U

♯,σ♯ .

3.2 Summarizing abstraction

LetQ ∈ ℘(Σ) denote a set of concrete program states. LetU ♯ be the set{u♯1, ..., u♯m}, and let

the family of functionsπS, for S ∈ Q, specify how the universe of each state inQ is summarized.

In this section, we show how to approximate the set of concrete program statesQ by an element of

anm-dimensional standard abstract domain.

Example 3.1 We will use the following example throughout this section toillustrate the abstrac-

tion. Let the set of concrete states be

Q =







[u1 7→ 1, u2 7→ 2, u3 7→ 3, u4 7→ 4] ,

[u5 7→ 2, u6 7→ 3, u7 7→ 4, u8 7→ 5]







.

Let the abstract universe beU ♯ = {u♯1, u♯2}, and let the concrete objects in both states be summa-

rized as follows:

π1 =
[

u1 7→ u♯1, u2 7→ u♯2, u3 7→ u♯2, u4 7→ u♯2

]

,

π2 =
[

u5 7→ u♯1, u6 7→ u♯2, u7 7→ u♯2, u8 7→ u♯2

]

.

The abstraction proceeds in three conceptual steps (expressed as Galois insertions:〈α1, γ1〉,
〈α2, γ2〉, and〈α3, γ3〉):

1. Abstracting function domains.In the first step, we abstract each functionS : US → V in

Q by a functionS1 : U ♯ → ℘(V): each abstract objectu♯ ∈ U ♯ is mapped to the set that

containsS-images of objects represented byu♯:

Q1 = α1(Q) =







S1 : U ♯ → ℘(V)

∣

∣

∣

∣

∣

∣

∀u♯ ∈ U ♯
[

S1(u
♯) =

{

S(u) | u ∈ π−1
S (u♯)

}]

for someS ∈ Q







39

The respective concretization function is defined as follows:

Q′ = γ1(Q1) =







S : US → V

∣

∣

∣

∣

∣

∣

∀u♯ ∈ U ♯ ∀a ∈ S1(u
♯) ∃u ∈ π−1

S (u♯) [S(u) = a]

for someS1 ∈ Q1







Example 3.2 The application of this abstraction step to the set of statesin the Ex. 3.1 yields

the following set:

Q1 = α1(Q) =
{[

u♯1 7→ {1}, u♯2 7→ {2, 3, 4}
]

,
[

u♯1 7→ {2}, u♯2 7→ {3, 4, 5}
]}

Note that this abstraction step loses relationships among values associated with concrete

objects that are summarized together. For instance, the program state

S = [u1 7→ 1, u2 7→ 4, u3 7→ 3, u4 7→ 2]

is also inγ1(Q1).

2. Flattening function images.In the second step, each functionS1 : U ♯ → ℘(V) in the setQ1

is represented by a set of functions with signatureU ♯ → V by exhaustively enumerating for

eachu♯ ∈ U ♯ all possible mappings from the setS1(u
♯):

Q2 = α2(Q1) =







S2 : U ♯ → V

∣

∣

∣

∣

∣

∣

∀u♯ ∈ U ♯
[

S2(u
♯) ∈ S1(u

♯)
]

for someS1 ∈ Q1







The respective concretization function is defined as follows:

Q′1 = γ2(Q2) =
{

S1 : U ♯ → ℘(V) | α2(S1) ⊆ Q2

}

Example 3.3 Applying this abstraction step to the set of functionsQ1 from Ex. 3.2 yields:

Q2 = α2(Q1) =







{

u♯1 7→ 1, u♯2 7→ 2
}

,
{

u♯1 7→ 1, u♯2 7→ 3
}

,
{

u♯1 7→ 1, u♯2 7→ 4
}

,
{

u♯1 7→ 2, u♯2 7→ 3
}

,
{

u♯1 7→ 2, u♯2 7→ 4
}

,
{

u♯1 7→ 2, u♯2 7→ 5
}







This abstraction steps loses some of the relationships among the values of concrete objects

that arenotsummarized together. For instance, the program state

S = [u1 7→ 1, u2 7→ 2, u3 7→ 2, u4 7→ 2]

40

is in the concretization(γ1 ◦ γ2)(Q2), but not in the concretizationγ1(Q1). However, some

relationships are still preserved: for instance, one property that is preserved is that, if the

value of the concrete object summarized byu♯1 is 1, then the values of the concrete objects

summarized byu♯2 must be in the set{2, 3, 4}.

3. Standard numeric abstraction.In the last step, we use standard abstraction techniques from

§2.5 to represent the set of functionsQ2 ∈ ℘(U ♯ → V) with an element of an abstract

numeric domain.

Example 3.4 In polyhedral domain, the setQ2 from Ex. 3.3 is represented by the following

polyhedron:

Q3 =
{

1 ≤ u♯1 ≤ 2, u♯1 + 1 ≤ u♯2 ≤ u♯1 + 3
}

.

The first two steps form the crux of the abstraction. Throughout the rest of this chapter we

primarily focus on the partial abstractionα2 ◦ α1, rather than on the full abstraction all the way

to the abstract domain. We will use a special notation, a superscript ♭, to distinguish sets and set

operations at this level from their counterparts at the concrete level, e.g., letΣ♭ = ℘(U ♯ → V)

denote the set of allpartial abstract states.

Trivially, ⊥♭ = ∅♭ exactly represents the empty set of concrete states. Similarly, ⊤♭ = Σ♭ rep-

resents all possible concrete states. To see this, observe thatγ2(⊤♭) = ℘(U ♯ → ℘(V)), from which

γ1 can construct any concrete state inΣ. Next, observe that∪♭ and∩♭ are sound abstractions of∪
and∩, respectively. This follows trivially from the construction of the abstraction. Furthermore,

note that∩♭ is exact; that is,

(γ1 ◦ γ2)(S
♭
1 ∩♭ S♭2) = (γ1 ◦ γ2)(S

♭
1) ∩ (γ1 ◦ γ2)(S

♭
2) for all S♭1, S

♭
2 ∈ Σ♭,

while∪♭ overapproximates∪:

(γ1 ◦ γ2)(S
♭
1 ∪♭ S♭2) ⊇ (γ1 ◦ γ2)(S

♭
1) ∪ (γ1 ◦ γ2)(S

♭
2) for all S♭1, S

♭
2 ∈ Σ♭,

Thus, at the level of the abstract domain, the operations⊔ and⊓, as well as⊤ and⊥, are sound

with respect to the concrete semantics, because they soundly approximate∪♭, ∩♭, ⊤♭, and⊥♭ (see

Chapter 2). Also,∇ and∆ form valid widening and narrowing operators for the overallabstraction.

41

In the next few sections, we will concentrate on defining sound abstract transformers for the

assignment transition and the assume transition. The first two abstraction steps approximate a

set of functions with arbitrary domains by a set of functionswith a fixed domainU ♯. Thus, it is

tempting to use transformers from§3.1.3, e.g.,

[[x̄← φ̄]]♭ = [[x̄← φ̄]]U
♯,σ♯ and [[assume(ψ)]]♭ = [[assume(ψ)]]U

♯,σ♯ (3.1)

whereσ♯ is the uniform assignment function (see§3.1.2). The transformers[[·]]♭ could then triv-

ially be approximated by the corresponding transformers[[·]]♯ of the underlying abstract domain.

However, as the following example demonstrates, doing so isnot sound.

In Ex. 3.5, we show that the abstract transformers defined in Eqn. (3.1) are unsound by picking a

concrete state from the concretization of a partial abstract stateS♭1, transforming that concrete state

according to the concrete semantics, and showing that the resulting state is not in the concretization

of S♭2, a partial abstract state obtained by applying the transformer from Eqn. (3.1) toS♭1.

Example 3.5 LetU ♯ = {u♯1, u♯2}, whereu♯2 is summary; letS♭1 be the partial abstract state:

S♭1 =
{{

u♯1 7→ 1, u♯2 7→ 2
}

,
{

u♯1 7→ 1, u♯2 7→ 3
}

,
{

u♯1 7→ 1, u♯2 7→ 4
}}

.

Let S♭2 denote the result of transforming the abstract stateS♭1 with respect to the assignmentv1 ←
v2, where variablev1 is bound tou♯1, and variablev2 is bound tou♯2, i.e.,

S♭2 = [[v1 ← v2]]
♭(S♭1) = [[v1 ← v2]]

U♯,[v1 7→u♯1,v2 7→u
♯
2](S♭1).

The transformer[[x̄← φ̄]]U
♯,σ♯ updates each function inS♭1 independently and yields:

S♭2 =
{{

u♯1 7→ 2, u♯2 7→ 2
}

,
{

u♯1 7→ 3, u♯2 7→ 3
}

,
{

u♯1 7→ 4, u♯2 7→ 4
}}

.

Now, consider the concrete stateS1 = [u1 7→ 1, u2 7→ 2, u3 7→ 3, u4 7→ 4], in which the concrete

objects are summarized as follows:

πS1
=

[

u1 7→ u♯1, u2 7→ u♯2, u3 7→ u♯2, u4 7→ u♯2

]

Note thatS1 is clearly represented byS♭1, i.e.,S1 ∈ (γ1 ◦ γ2)(S
♭
1). Now, letS2 denote the result of

transforming concrete stateS1 with respect to the assignmentv1 ← v2. Let us assume that the free

42

variables are assigned as follows:σS1
= [v1 7→ u1, v2 7→ u2], so thatv1 is bound to the (single)

concrete object represented byu♯1, andv2 is bound to one of the concrete objects represented by

u♯2. As a result,S2 = [u1 7→ 2, u2 7→ 2, u3 7→ 3, u4 7→ 4].

Now, if the abstract transformer[[v1 ← v2]]
♭ is sound, thenS2 must be represented byS♭2, i.e.,

S2 ∈ (γ1 ◦ γ2)(S
♭
2). However, this is not the case. To see this, observe that the abstraction ofS2,

(α2 ◦ α1)(S2) =
{{

u♯1 7→ 2, u♯2 7→ 2
}

,
{

u♯1 7→ 2, u♯2 7→ 3
}

,
{

u♯1 7→ 2, u♯2 7→ 4
}}

is not contained inS♭2, i.e.,(α2◦α1)(S2) 6⊆♭ S♭2. Thus, the abstract transformers defined in Eqn. (3.1)

are indeed not sound.

Intuitively, the abstract transformers in Eqn. (3.1) fail because they transform each function in

a partial abstract stateS♭ independently. However, there are certain dependences between the func-

tions inS♭ that must be respected. In particular, each concrete state in (γ1 ◦ γ2)(S
♭) is represented

by multiple functions inS♭. Also, each function inS can be used to (partially) represent multiple

concrete states in(γ1 ◦ γ2)(S
♭). In the next section, we define several operations that will be useful

in the construction of sound version of transformers for[[x̄← φ̄]]♭ and[[assume(ψ)]]♭.

3.3 New operations

In this section, we define four operations on sets of functions with fixed domains: two primary

operations,add and drop, and two derived operations,expandand fold. To be able to lift an

existing abstract domain for use in a summarizing abstraction, the existing domain will have to

provide sound approximations for these operations. The derived operations can be expressed in

terms of the primary operationsadd anddrop, plus existing operations for transforming sets of

functions (i.e.,[[x̄ ← φ̄]]W,σ and [[assume(ψ)]]W,σ). However, having explicit definitions for the

derived operations greatly simplifies the presentation. Also, from a practical standpoint, for many

domains it is possible to implement the derived operations much more efficiently, compared to

direct use of the general definitions we supply in this section. We will use the following notation

throughout the section:U will denote a fixed set of objects,S will denote a set of functions with

domainU : S ∈ ℘(U → V).

43

3.3.1 Theadd operation.

Intuitively, theaddu(S) operation injects a new objectu into the universeU (we assume that

initially u 6∈ U). No restrictions are imposed on the value associated withu. In the concrete

semantics, theaddu(S) operation models the allocation of a new objectu.

[[addu]](S) = {f ′ : U ∪ {u} → V | f ′(u) ∈ V and ∃f ∈ S s.t. ∀t ∈ U [f ′(t) = f(t)]} .

In a standard abstract domainD, the operationaddu corresponds to adding a new dimension to

the multidimensional space and embedding the original subset into that space. Many existing

implementations of abstract domains already support this operation. We think it is reasonable to

expect that the abstract transformer[[addu]]♯ can be implementedexactlyin any abstract domain.

3.3.2 Thedrop operation.

Thedropu(S) removes objectu from the universeU (we assume that initiallyu ∈ U). Each

function inS is transformed to “forget” the mapping foru. In the concrete semantics,dropu models

the deallocation of objectu:

[[dropu]](S) = {f ′ : U \ {u} → V | ∃f ∈ S s.t. ∀t ∈ U \ {u} [f ′(t) = f(t)]}

In a standard abstract domainD, the operationdropu corresponds to existentially projecting out the

dimension associated with the objectu. The majority of standard abstract domain implementations

already provide this operation. In the polyhedral abstractdomain, thedropu operation can be

computed precisely. We expect that this holds for the majority of existing abstract domains.

3.3.3 Thefold operation

The foldu,v operation formalizes the concept ofsummarizingobjects together: the objectsu

andv are summarized together;u denotes the resulting summary object; andv is dropped from the

universe. In particular,foldu,v transforms each functionf ∈ S into two functionsf ′ andf ′′ over

44

domainU \ {v}, such thatf ′(u) = f(u) andf ′′(u) = f(v):4

foldu,v(S) =







f ′, f ′′ : U \ {v} → V

∣

∣

∣

∣

∣

∣

∃f ∈ S





∀t ∈ U \ {u, v} [f ′(t) = f ′′(t) = f(t)]

∧ f ′(u) = f(u) ∧ f ′′(u) = f(v)











The foldu,v operation can be expressed in terms of the standard transformers for sets of functions

and thedropoperation as follows:

[[foldu,v]](S) = [[dropv]](S ∪ [[w1 ← w2]]
U,σ(S)),

whereσ = [w1 7→ u, w2 7→ v].

In a standard abstract domainD, the abstract transformer[[foldu,v]]
♯ can be trivially implemented

by directly using the approximations of the operations in the above definition:

[[foldu,v]]
♯(S♯) = [[dropv]]

♯(S♯ ⊔ [[u← v]]♯(S♯)), (3.2)

However, in some domains (notably, in weakly-relational and non-relational domains), internal

representation details can be used to implement this operation much more efficiently, than a direct

implementation of Eqn. (3.2), which involves duplicating the abstract domain elementS♯.

Note that implementations offoldu,v operation are likely to lose some precision. This is due to

the⊔ operator in the definition of[[foldu,v]]
♯: in numeric abstractions, join operators tend to incur

precision loss.

3.3.4 Theexpand operation

In contrast to thefold operation, theexpandoperation formalizes a partial concretization pro-

cess. Semantically,expandu,v materializesan objectv from the group represented by summary

objectu. Because the summarizing abstraction loses distinctions among objects that are sum-

marized together, the most that we can infer about the value of v is that it must have the same

relationship to the values of other objects as the value ofu, but there should be no relationships

4Note that this corresponds to the first two steps of the summarizing abstraction: the first abstraction step transforms
each functionf ∈ S, into functionf1, such thatf1(u) = {f(u), f(v)}; the second abstraction step breaks the function
f1 into the functionsf ′ andf ′′.

45

between the values ofv andu. We assume thatv 6∈ U .

expandu,v(S) =







f : U ∪ {v} → V

∣

∣

∣

∣

∣

∣

∃f1, f2 ∈ S





∀t ∈ U \ {u} [f(t) = f1(t) = f2(t)]

∧ f(u) = f1(u) ∧ f(v) = f2(u)











Theexpandu,v operation can be expressed in terms of the standard transformers for sets of functions

and theaddoperation as follows:

[[expandu,v]](S) = [[addv]](S) ∩ [[〈w1, w2〉 ← 〈w2, w1〉]]U∪{v},σ([[addv]](S)),

whereσ = [w1 7→ u, w2 7→ v]. Note that we add an unconstrained objectv to the domain ofS,

make a copy of the resulting set,swapobjectsv andu in one of the sets, and take the intersection

of the two sets. Intuitively, one of the two sets creates a proper mapping forf(u), the other set (in

whichu andv are swapped) creates a proper mapping forf(v). The intersection makes sure that

the functions in the resulting set have proper mappings for bothf(u) andf(v).

Similarly to thefold operation, theexpandoperation can be trivially implemented in an abstract

domainD as follows:

[[expandu,v]]
♯(S♯) = [[addv]]

♯(S♯) ⊓ [[〈u, v〉 ← 〈v, u〉]]♯ ◦ [[addv]]
♯(S♯)

However, given knowledge of the internal representation used by the domain, a more efficient

implementation can usually be constructed. For instance, in the domain of polyhedra, the operation

[[expandu,v]]
♯ can be implemented by rewriting the constraint system: for each constraint in which

objectu participates, a similar constraint withu substituted byv is added to the constraint system.

Finally, in most numeric domains, both the meet operation and [[addv]]♯ are exact. Thus, if the

domain is able to perform the assignment that swapsu andv exactly, then the above implementa-

tion for the[[expandu,v]]
♯ is also exact.

3.4 Abstract Semantics

In this section, with the help of the new operations from§3.3, we define sound transformers for

[[x← φ]]♭ and[[assume(ψ)]]♭. In the case of[[x← φ]]♭, to simplify the presentation, we only consider

46

assignment transitions that update a single variable. The extension toparallel assignments, which

update multiple variables simultaneously, is trivial (see§3.4.1).

Let S♭ ∈ ℘(U ♯ → V) be a partial abstract state. Ideally, we would like to define abstract trans-

formers that operate on each functionf ∈ S♭ independently. However, as we pointed out before,

the functions inS♭ are not independent. In particular, an arbitrary functionf ∈ S♭ may belong to

the representations of multiple concrete states in the concretization ofS♭. The transformation of

each concrete state may affect the functionf in a different way. We will deal with this issue by

expandingcertain objects inU ♯ based on the particular expression (or condition) that appears in the

state transition. Intuitively, we willcompilecertain knowledge about the expression (or condition)

into the functions inS♭ to make the resulting functions independent with respect tothat expression

(or condition). Then, we will use the standard transformer for sets of functions (which relies on

the independence of the functions in the set) to perform the actual transformation. Finally, we will

eliminate the extra objects, which we introduced intoU ♯.

In contrast to the unsound semantics defined in Eqn. (3.1), which attempted to use the trans-

formers for sets of functions with fixed domain directly, namely,

[[x̄← φ̄]]♭ = [[x̄← φ̄]]U
♯,σ♯ and [[assume(ψ)]]♭ = [[assume(ψ)]]U

♯,σ♯

the sound transformers have the following form:

[[x← φ]]♭ = [[dropφ]] ◦ [[x← φ]]U
♯
φ,σ

♯
φ∪[x 7→σ♯(x)] ◦ [[expandφ]],

and

[[assume(ψ)]]♭ = [[dropψ]] ◦ [[assume(ψ)]]U
♯
ψ ,σ

♯
ψ ◦ [[expandψ]],

whereexpandφ, dropφ, expandψ, anddropψ are the extensions of operationsexpandanddrop, and

U ♯
φ, σ

♯
φ, U ♯

ψ, andσ♯ψ are the extensions of the abstract universeU ♯ and the uniform assignment

functionσ♯. These extensions are specific to the expressionφ and the conditionψ. In the rest of

this section, we detail the construction of these transformers and justify their soundness.

47

3.4.1 Assignment transitions:x← φ(w1, . . . , wk)

Let x← φ(w1, . . . , wk) be an arbitrary assignment transition, and letσ♯ be the uniform assign-

ment function that mapswi to the objects inU ♯. To transform a functionf ∈ S♭, we need to be

able to compute the set of values to which the expressionφ evaluates in each of the concrete states

in the concretization ofS♭ that havef in its representation. We define the function

ValuesS♭,φ : (U ♯ → V)→ ℘(V),

which maps eachf ∈ S♭ to the corresponding set of values. The function is defined asfollows:

ValuesS♭,φ(f) =
{

[[φ(w1, . . . , wk)]](S) | S ∈ (γ1 ◦ γ2)(S
♭) ∧ f ∈ (α2 ◦ α1)(S)

}

. (3.3)

Note that if the functions inS♭ were independent (that is, if there was a one-to-one correspondence

between the concrete states in(γ1 ◦ γ2)(S
♭) and functions inS♭), the above set could be evaluated

as follows:

ValuesS♭,φ(f) = [[φ(w1, . . . , wk)]]ND(f(σ♯(w1)), . . . , f(σ♯(wk))).

However, we do not have this luxury.

A variablewi in the expressionφ is either mapped to a summary abstract object or to a non-

summary abstract object. Ifσ♯(wi) is a non-summary object, the situation is simple: eachf ∈ S♭

maps each non-summary abstract object directly to the valueof the corresponding concrete object.5

So, when evaluating the expression, we can substitute the valuef(σ♯(wi)) for the variablewi.

However, ifwi is mapped to a summary object, the situation is more complicated: due to the

second abstraction step, the values of the concrete objectsrepresented byσ♯(wi) may have been

spread over multiple functions inS♭. Thus, substitutingf(σ♯(wi)) for the variablewi only accounts

for a single possible value and is, consequently, unsound. We handle this case byexpandingthe

abstract objectσ♯(wi) (i.e., by applying theexpandσ♯(wi),v♯ operation), and substituting the value

f(v♯) for the variablewi when evaluating the expression.

Intuitively, if some variablewi is mapped to a summary abstract objectu♯ by the assignment

function σ♯, we materializean objectv♯ from the collection of objects represented byu♯, and

5This follows from the construction of the abstraction: the first abstraction step causes non-summary abstract
objects to be mapped to singleton sets of values.

48

change the assignment function to mapwi to v♯. At a lower level, theexpandu♯,v♯ operation trans-

forms each functionf ∈ S♭ into a set of functions{f ′}, such that each of thef ′ agree withf on

all u♯i ∈ U ♯, but map the new objectv♯ to each value that the concrete objects represented byu♯

may have in concrete states whose abstractions contain function f .

Evaluation of Numeric Expressions.Let φ(w1, . . . , wk) ∈ Φ be an arbitraryk-ary expression.

We assume, without loss of generality, thatσ♯ maps the first̂k variables ofφ to summary objects,

i.e.,1 ≤ k̂ ≤ k. We define several pieces of notation to simplify the definition of the transformers.

First, we define aφ-specificexpandoperation, which expands all of the summary abstract objects

to which the variableswi are mapped byσ♯:

[[expandφ]] = [[expandσ♯(w
k̂
),u♯

m+k̂

]] ◦ ... ◦ [[expandσ♯(w1),u♯m+1

]].

We denote the expanded abstract universe byU ♯
φ = U ♯ ∪

{

u♯m+1, ..., u
♯

m+k̂

}

. Additionally, we

define aφ-specific mapping of free variables to objects inU ♯
φ as follows:

σ♯φ(wi) =







u♯m+i if σ♯(wi) is summary, i.e., ifi ≤ k̂

σ♯(wi) otherwise

Finally, we define a clean-up operation that eliminates all of the extra objects created byexpandφ:

[[dropφ]] = [[drop
u♯m+1

]] ◦ ... ◦ [[drop
u♯
m+k̂

]]

Armed with these primitives, we define an approximation for the functionValuesS♭,φ as follows:

[[ValuesS♭,φ]]
♭(f) =







[[φ]]ND(f ′(σ♯φ(w1)), . . . , f
′(σ♯φ(wk)))

∣

∣

∣

∣

∣

∣

f ′ ∈ [[expandφ]](S
♭) ∧

∀u ∈ U ♯ [f(u) = f ′(u)]







(3.4)

Note that, compared to the definition of the functionValuesS♭,φ in Eqn. (3.3), which involves enu-

merating the concrete states represented byS♭, the definition of[[ValuesS♭,φ]]
♭ is much more oper-

ational: the operation[[expandφ]] (which can be trivially approximated by the underlying abstract

domain) is applied to the original set of functions; the expression can then be evaluatedindepen-

dently for each function in the expanded set. The following lemma states that the definition in

Eqn. (3.4) expresses the setValuesS♭,φ(f), for anyf ∈ S♭, exactly.

49

Lemma 3.6 Let S♭ ∈ ℘(U ♯ → V) be a partial abstract state. And letφ ∈ Φ be an arbitrary

expression. Then,

∀f ∈ S♭
[

ValuesS♭,φ(f) = [[ValuesS♭,φ]]
♭(f)

]

Proof. See the Appendix. �

Let us now define the abstract transformer for the assignmenttransition. Two cases must be con-

sidered: (i) the case when variablex is mapped to anon-summaryobject, and (ii) the case when

variablex is mapped to asummaryobject. We start with the simpler case ofσ♯(x) being anon-

summaryobjectu♯.

Non-summary assignment. The non-summary abstract objectu♯ = σ♯(x) represents a single

concrete object, the one that is being assigned to. Thus, thetransformer may directly update the

mapping foru♯ in each functionf ∈ S♭ to reflect the effect of the assignment. The values to which

the objectu♯ must be mapped by the functionf ∈ S♭ come from the setValuesS♭,φ(f) (recall, that

the setValuesS♭,φ(f) contains values to which the expressionφ evaluates ineveryconcrete stateS

represented byS♭, such thatS also contains the functionf in its abstraction; thus, as each such

concrete stateS changes as the result of the assignment, the functionf must change accordingly).

That is:

[[x← φ]]♭(S♭) =







f ′ : U ♯ → V

∣

∣

∣

∣

∣

∣

∃f ∈ S♭




u♯ = σ♯(x) ∧ f ′(u♯) ∈ ValuesS♭,φ(f)

∧ ∀t ∈ U ♯ \ {u♯} [f ′(t) = f(t)]











(3.5)

Note however, that this definition is not operational: that is, it is not clear how to apply it to an

element of an abstract domain.

We would like to express the definition in Eqn. (3.5) in terms of a standard assignment trans-

former for sets of functions with a fixed domain and the operations for the evaluation of numeric

expressions, which we have defined above. These operations can be approximated trivially by

the corresponding operations of the abstract domain. We rely on the idea from the definition of

[[ValuesS♭,φ]]
♭. First, we apply the operation[[expandφ]] to the partial abstract stateS♭: as a result,

for each functionf ∈ S♭ and each valuea ∈ ValuesS♭,φ, the expanded set contains a functionf ′,

such that (i)f ′ agrees withf on all objects inU ♯; and (ii) the expressionφ, when evaluated onf ′

50

with variable-assignment functionσ♯φ, yields the valuea. We apply the standard assignment trans-

former from§3.1.3 to the expanded set of functions to update the mapping for the objectσ♯(x) in

eachf ′ to a corresponding value from the setValuesS♭,φ(f). Finally, we get rid of the extra objects

introduced by the[[expandφ]] operation by applying the operation[[dropφ]]. The abstract transformer

for the assignment transition is expressed as follows:

[[x← φ]]♭(S♭) = [[dropφ]] ◦ [[x← φ]]U
♯
φ,σ

♯
φ∪[x 7→σ♯(x)] ◦ [[expandφ]](S

♭)

Note that the assignment functionσ♯φ is extended with the mapping for the left-hand-side variable

x. Also, note that because, according to Lem. 3.6,[[ValuesS♭,φ]]
♭ = ValuesS♭,φ, this definition is

equivalent to the definition in Eqn. (3.5).

Theorem 3.7 The abstract transformer[[x← φ]]♭ is sound. That is, for an arbitrary partial abstract

stateS♭,

(γ1 ◦ γ2)([[x← φ]]♭(S♭)) ⊇ [[x← φ]]((γ1 ◦ γ2)(S
♭))

Proof. See the Appendix. �

At the level of the abstract domain, the transformer is implemented by using the approximations

for the above operations:

[[x← φ]]♯⋆(S
♯) = [[dropφ]]

♯ ◦ [[σ(x)♯ ← φ♯]]♯ ◦ [[expandφ]]
♯(S♯),

whereφ♯ is obtained by substituting each variablewi in φ with σ♯φ(wi). Note that because the

abstract domain operations only approximate the operations in the definition of the abstract trans-

former, the precision of the transformer implementation depends heavily on how precise these

approximations are.

Summary assignment.In caseσ♯(x) is a summary object, the situation is more complicated: the

objectσ♯(x) represents not only the concrete object that is updated by the assignment, but also

other concrete objects whose values do not change. As a result, the transformer must perform a

weak update. One obvious way of implementing a weak update isto duplicate the abstract state,

update one of the copies of the state, and join both copies together. However, the availability of the

51

fold operation allows us to to perform such weak updatesin-place, i.e., we use a new objectu♯ to

collect the values that are assigned toσ♯(x) (the objectσ♯(x) is left unmodified), and then fold the

objectu♯ into σ♯(x):

[[x← φ]]♭weak(S
♭) = [[dropφ]] ◦ [[foldσ♯(x),u♯]] ◦ [[x← φ]]U

♯
φ∪{u

♯},σ♯φ∪[x 7→u♯] ◦ [[addu♯]] ◦ [[expandφ]](S
♭)

It can be easily seen that the above transformer is sound: it relies on the non-summary transformer,

which we have shown to be sound (see Thm. 3.7). Then, it weakens the result of the sound trans-

former further by joining it with the values that the target object had before the transformation.

At the level of the abstract domain, the transformer is implemented by using the approximations

for the above operations:

[[x← φ]]♯⋆⋆(S
♯) = [[dropφ]]

♯ ◦ [[foldσ♯(x),u♯]]
♯ ◦ [[u♯ ← φ♯]]♯ ◦ [[addu♯]]

♯ ◦ [[expandφ]]
♯(S♯),

whereφ♯ is obtained by substituting each variablewi in φ with σ♯φ(wi).

Parallel assignments.The task of extending the above transformers to handle parallel assignment

x̄ ← φ̄ is trivial, but tedious. Thus, we will omit the derivation ofthe transformer, and just point

out a few things that should be taken into consideration. Letus assume the assignment updatesr

variables in parallel, i.e.,̄x ∈ Fvr andφ̄ ∈ Φr:

• The operationexpand̄φ anddropφ̄ must be defined to operate on the entire vectorφ̄.

• The setValuesS♭,φ̄(f) for somef ∈ S♭ must be defined to collectr-tuples of values inV,

i.e.,ValuesS♭,φ̄(f) ⊆ Vr.

• Finally, some variables in̄x may map to summary objects, while some others may map to

non-summary objects. The correspondingadd and fold operations must be added for the

components of̄x that are mapped to summary abstract objects byσ♯.

3.4.2 Assume transitions:assume(ψ(w1, . . . , wk))

This section recreates the constructions of§3.4.1, but for the purpose of evaluating conditional

expressions. Because the material is very similar to§3.4.1, we keep the discussion to a minimum.

52

Let assume(ψ) denote an arbitrary assume transition, whereψ ∈ Ψ. Also, letσ♯ denote the

function that binds free variables inψ to the corresponding abstract objects inU ♯. Let S♭ be a

partial abstract state. Consider a functionf ∈ S♭: this function may belong to the representation

of multiple concrete states in the concretization ofS♭. If at least one of these concrete states

satisfies the conditional expressionψ, the functionf must be added to the resulting partial abstract

state (becausef is a part of the abstraction of that concrete state).

Much like in the case of the assignment transition, we define the functionValuesS♭,ψ, which

maps each functionf ∈ S♭ to the set of values to whichψ evaluates in each concrete stateS

represented byS♭, such thatf belongs to the representation ofS:

ValuesS♭,ψ(f) =
{

[[ψ(w1, . . . , wk)]](S) | S ∈ (γ1 ◦ γ2)(S
♭) ∧ f ∈ (α2 ◦ α1)(S)

}

. (3.6)

The only difference with the assignment transition is that the setValuesS♭,ψ(f) may contain at most

two values:trueandfalse.

The abstract assume transformer for the partial abstraction is defined with the use of function

ValuesS♭,ψ as follows:

[[assume(ψ)]]♭(S♭) =
{

f ∈ S♭ | true∈ ValuesS♭,ψ(f)
}

. (3.7)

However, this definition is not directly computable, because it relies on the enumerating a possibly

infinite set of concrete states. To construct an operationaldefinition, we need to have a better way

to construct the setValuesS♭,ψ for the functions inS♭.

Evaluation of Conditional Expressions. Let ψ(w1, . . . , wk) ∈ Ψ be an arbitraryk-ary condi-

tional expression. We assume, without loss of generality, thatσ♯ maps the first̂k variables ofφ to

summary objects, i.e.,1 ≤ k̂ ≤ k. We define new notation, which is similar in spirit to the notation

defined for the numeric expressions.

First, we define aψ-specificexpandoperation, which expands all of the summary abstract

objects to which the variableswi are mapped byσ♯:

[[expandψ]] = [[expand
σ♯(w

k̂
),u♯

m+k̂

]] ◦ ... ◦ [[expand
σ♯(w1),u

♯
m+1

]].

53

We denote the expanded abstract universe byU ♯
ψ = U ♯ ∪

{

u♯m+1, ..., u
♯

m+k̂

}

. Additionally, we

define aψ-specific mapping of free variables to objects inU ♯
ψ as follows:

σ♯ψ(wi) =







u♯m+i if σ♯(wi) is summary, i.e., ifi ≤ k̂

σ♯(wi) otherwise

Finally, we define a clean-up operation that eliminates all of the extra objects created byexpandψ:

[[dropψ]] = [[drop
u
♯
m+1

]] ◦ ... ◦ [[drop
u
♯

m+k̂

]]

Similarly to§3.4.1, we define an approximation for the functionValuesS♭,ψ as follows:

[[ValuesS♭,ψ]]♭(f) =







[[φ]]ND(f ′(σ♯ψ(w1)), . . . , f
′(σ♯ψ(wk)))

∣

∣

∣

∣

∣

∣

f ′ ∈ [[expandψ]](S♭) ∧
∀u ∈ U ♯ [f(u) = f ′(u)]







Lemma 3.8 Let S♭ ∈ ℘(U ♯ → V) be a partial abstract state. And letψ ∈ Ψ be an arbitrary

expression. Then,

∀f ∈ S♭
[

ValuesS♭,ψ(f) = [[ValuesS♭,ψ]]
♭(f)

]

Proof. See the Appendix. �

Assume transformer. Lem. 3.8 gives us an effective way to compute the setsValuesS♭,ψ(f) for

the functionsf ∈ S♭. We apply the operation[[expandψ]](S
♭) to the setS♭. Note that if for some

functionf ∈ S♭ the setValuesS♭,ψ(f) contains true, then there must be at least one functionf ′ in

[[expandψ]](S♭), such that (i)f ′ is constructed fromf (i.e., f ′ agrees withf on all objects inU ♯),

and (ii) the conditional expressionψ evaluates totrueonf ′ under the variable-assignment function

σ♯ψ. We collect all suchf ′ by filtering the expanded set with the standard assume transformer

(using variable-assignment functionσ♯ψ). In the last step, we eliminate the extra objects introduced

by the[[expandψ]] operation: thus, all thef ′ that remain in the set after filtering are reduced to the

corresponding functionsf from S♭ (this follows from (i) above). The abstract transformer forthe

assume transition is expressed as follows:

[[assume(ψ)]]♭(S♭) = [[dropψ]] ◦ [[assume(ψ)]]U
♯
ψ ,σ

♯
ψ ◦ [[expandψ]](S♭).

54

u♯1 u♯2

1 2

1 3

1 4

(a)S♭1

u♯1 u♯2 u♯3

1 2 2

1 2 3

1 2 4

1 3 2

1 3 3

1 3 4

1 4 2

1 4 3

1 4 4

(b) S♭exp

u♯1 u♯2 u♯3

2 2 2

3 2 3

4 2 4

2 3 2

3 3 3

4 3 4

2 4 2

3 4 3

4 4 4

(c) S♭asgn

u♯1 u♯2

2 2

3 2

4 2

2 3

3 3

4 3

2 4

3 4

4 4

(d) S♭2

Figure 3.1 The application of a partial summarizing abstract transformer: (a)S♭1 is the initial partial
abstract state; (b)S♭exp is obtained fromS♭1 by expanding summary objectu♯2; (c) S♭asgn is obtained

from S♭exp by preforming an assignmentu♯1 ← u♯3; (d) the resulting stateS♭2 is obtained fromS♭asgn
by dropping the objectu♯3.

Theorem 3.9 The abstract transformer[[assume(ψ)]]♭ is sound. That is, for an arbitrary partial

abstract stateS♭,

(γ1 ◦ γ2)([[assume(ψ)]]♭(S♭)) ⊇ [[assume(ψ)]]((γ1 ◦ γ2)(S
♭))

Proof. See the Appendix. �

At the level of the abstract domain, the transformer is implemented by using the approximations

for the above operations:

[[assume(ψ)]]♯⋆(S
♯) = [[dropψ]]♯ ◦ [[assume(ψ♯)]]♯ ◦ [[expandψ]]♯(S♯),

whereψ♯ is obtained by substituting each variablewi in ψ by σ♯ψ(wi).

55

3.4.3 Example

Let us illustrate the abstract transformers defined above byrevisiting Ex. 3.5. Recall the exam-

ple setting:U ♯ = {u♯1, u♯2}, whereu♯2 is summary, andS♭1 is the partial abstract state:

S♭1 =
{{

u♯1 7→ 1, u♯2 7→ 2
}

,
{

u♯1 7→ 1, u♯2 7→ 3
}

,
{

u♯1 7→ 1, u♯2 7→ 4
}}

.

We would like to transformS♭1 with respect to the assignmentv1 ← v2, where the free variablesv1

andv2 are mapped to the objects inU ♯ as follows:σ♯ =
[

v1 7→ u♯1, v2 7→ u♯2

]

.

Fig. 3.1 shows the intermediate sets of functions that are computed by the summarizing (partial)

abstract state transformer[[v1 ← v2]]
♭. We represent sets of functions with some fixed domainU

graphically, as tables: each row corresponds to an object inU , and each column represents a single

function in the set. Fig. 3.1(a) shows this representation for the setS♭1.

The variablev2 is mapped byσ♯ to a summary objectu♯2; thus, first, the transformerexpands

the objectu♯2, yielding the setS♭exp (see Fig. 3.1(b)):

S♭exp = [[expand
u♯
2
,u♯

3

]](S♭1)

Note that, as the result of theexpand, each function inS♭1 is transformed into three functions in

S♭exp, one for each possible value that a concrete object represented byu♯2 may hold: the objectu♯3

is mapped to the corresponding value by each function.

Next, the standard assignment transformer for functions with fixed domainU ♯∪{u♯3} is applied

to the setS♭exp (note that the variablev2 is mapped to the objectu♯3, which was created by theexpand

operation):

S♭asgn = [[v1 ← v2]]
U♯∪{u♯

3
},[v1 7→u♯1,v2 7→u

♯
3](S♭exp)

The resulting set of functionsS♭asgn is shown in Fig. 3.1(c). The effect of the transformation is

readily seen in the table form: in each row of the table, the assignment moves the value from the

third column (u♯3) to the first column (u♯1).

Finally, the resulting partial abstract stateS♭2 is obtained by dropping the objectu♯3 from S♭asgn,

which corresponds to eliminating the column correspondingto u♯3 from the table:

S♭2 = [[drop
u
♯
3

]](S♭asgn).

56

The final result is shown in Fig. 3.1(d). Note thatS♭2 represents exactly the set of concrete states

that arises as a result of applying the corresponding assignment transition to the set of concrete

states represented byS♭1.

3.5 Symbolic Concretization

A symbolic-concretization function̂γ for a given abstract domain expresses the meaning of

an abstract element of that domain as a formula in some logic.6 Symbolic concretization is a

useful device for formalizing the set of properties that canbe represented with a given abstraction.

Also, symbolic concretization can be used in conjunction with theorem provers to automatically

constructbestabstract transformers for certain domains [96, 118]. For most existing numeric

domains, with the exception of arithmetic automata [12, 13], a symbolic-concretization function

γ̂ can be constructed trivially. For instance, an element of a polyhedral abstract domain can be

expressed as a conjunction of the constraints that form the polyhedron.

In this section, we discuss the symbolic-concretization functionγ̂⋆ for the summarizing abstrac-

tion. Because the summarizing abstraction utilizes a standard abstract domain in its last abstraction

step, we will expresŝγ⋆ in terms ofγ̂ for that abstract domain.

First, lets formally define the symbolic concretization forstandard numeric domains. Let

Vars = {u1, . . . , un} be a set of variables. Thus, each program state is a function with signa-

tureVars→ V. Let Dn denote an abstract domain that is able to represent sets of such program

states. LetS♯ denote an element ofDn. Then,γ̂(S♯) yields a logical formulaψ(v1, . . . , vn), such

that for all program statesS : Vars→ V the following holds:

ψ(S(u1), . . . , S(un)) =







true if S ∈ γ(S♯)
false if S 6∈ γ(S♯)

Example 3.10 Recall the polyhedronQ3 from Ex. 3.4.

γ̂(Q3) , (1 ≤ v1 ≤ 2) ∧ (v1 + 1 ≤ v2 ≤ v1 + 3)

6For instance, for standalone numeric domains, Presburger arithmetic provides a sufficient language for expressing
the meaning of domain elements. However, if numeric abstraction is a part of a more complex abstraction, a more
expressive logic may be required. For instance, the meaningof a TVLA structure with associated numeric state can
only be expressed in first-order logic.

57

In the summarizing abstraction setting, the universe differs from program state to program state.

However, for each program stateS we have a mappingπS : US → U ♯, whereU ♯ = {u♯1, . . . , u♯k}.
In the course of the abstraction, sets of program states are represented by sets of functions with

the signatureU ♯ → V, which are in turn abstracted by elements of some abstract domainDk. Let

S♯ denote an element ofDk, and letγ⋆ = γ1 ◦ γ2 ◦ γ3 denote the concretization function for the

summarizing abstraction. The set of concrete program states represented byS♯ can be logically

characterized as follows:

∀u1 ∈ π−1
S (u♯1) . . .∀uk ∈ π−1

S (u♯k)
[

γ̂(S♯)(S(u1), . . . , S(uk))
]

=







true if S ∈ γ⋆(S♯)
false if S 6∈ γ⋆(S♯)

Note that we cannot expressγ̂⋆ fully in the sense that we cannot express the limited quantification

∀ui ∈ π−1
S (u♯i) without knowing how the universe of each program state is partitioned. Rather,

these parts of formula will have to be filled in by the “client”abstraction, such as TVLA.

Example 3.11 Recall the polyhedronQ3 from Ex. 3.4.

γ̂⋆(Q3) , ∀u1 ∈ π−1
S (u♯1) ∀u2 ∈ π−1

S (u♯2) [1 ≤ u1 ≤ 2 ∧ u1 + 1 ≤ u2 ≤ u1 + 3]

From this construction we learn that the summarizing abstraction is able to represent certain

universal properties of the concrete objects that are summarized together. The class of properties

that can be represented is limited by the capabilities of thestandard abstract domain that is used by

the last abstraction step.

3.6 Support for Multiple Values

In some circumstances, it may be desirable to associate multiple quantities with an individual

concrete object. For instance, concrete objects may represent objects of a C++ class that defines

multiple numeric fields; they may represents threads that have multiple thread-local variables; or

they may represent activation records that have multiple local variables associated with them. In

Chapter 4, we will need to summarize sets of array elements, which will have two quantities asso-

ciated with them: the value and the index. In this section, weshow how to extend the abstraction

with the ability to handle multiple values.

58

In the following, we assume that each concrete object hasq fields associated with it. We will

denote the set of fields byF = {f1, . . . , fq}, and we will use the dot notationu.f to refer to

a field f associated with objectu. Also, we assume that the free variables in the expressions

and conditionals are bound to objects rather than fields, i.e., the expressions will look as follows:

v1.f1 + v2.f4.

The straightforward way of handling this situation is toexplodethe universe of concrete objects

by including a separate object for each field of each originalconcrete object. The abstract universe

must be exploded similarly, andπS must be updated to summarize the fields properly, i.e.,

ÛS =







ui.fj

∣

∣

∣

∣

∣

∣

ui ∈ US ,
1 ≤ j ≤ q







Û ♯ =







u♯i.fj

∣

∣

∣

∣

∣

∣

u♯i ∈ U ♯,

1 ≤ j ≤ q







π̂S(ui.fj) = πS(ui).fj

Then, the summarizing abstraction can be applied exactly asdescribed in§3.2. The disadvan-

tage of this approach is that the fields of the concrete objects, which are summarized together, are

represented by separate summary abstract objects. Thus, certain relationships among fields that

are associated with the same concrete object may not be represented. For instance, consider ar-

ray elements that have two fields,valueandindex, associated with them. The following property

cannot be represented with this approach:

∀u ∈ π−1(A♯) [u.value= 2× u.index+ 3] ,

whereA♯ represents all of the concrete array elements. The reason for this becomes apparent

when we recall the symbolic concretization functionγ̂⋆ from §3.5: with this approach, the only

quantification choices that we have are∀u.value∈ π−1(A♯.value) and∀u.index∈ π−1(A♯.index),

but not∀u ∈ π−1(A♯).

An alternative approach is to allow concrete objects to be associated with tuples of values. That

is, each program stateS now becomes a functionS : US → Vq, i.e., each concrete objectu is now

mapped to a vector that contains values of its fields, e.g., the value ofu.fi is given byS(u)[i].

The summarizing abstraction can be applied to sets of such states only partially: the application of

the first two abstraction steps yields a set of functions withsignatureU ♯ → Vq, which, however,

cannot be directly represented by an element of a standard abstract domain.

59

To handle this issue we add an extra abstraction step, which represents sets of functions

with signatureU ♯ → Vq by sets of functions with signaturêU ♯ → V, where Û ♯ is the ab-

stract universe that is exploded in the same way as in the straightforward approach, i.e.,̂U ♯ =
{

u♯i.fj | u♯i ∈ U ♯, j = 1..q
}

. The resulting set of functions can be trivially approximated with an

element of a(k × q)-dimensional numeric abstract domain.

For the abstract transformers from§3.4 to work on this representation, we must provide the

operationsaddu♯, dropu♯ , expandu♯,v♯ , andfoldu♯,v♯ that can operate on sets of functions in℘(Û ♯ →
V). In particular, these operations must now operatesimultaneouslyon groups of objects in̂U ♯.

The semantics for the operationsaddu♯ anddropu♯ can be defined as compositions ofaddanddrop

operations for the objects in̂U ♯ that represent individual fields ofu♯, that is

[[addu♯]] = [[addu♯.f1]] ◦ . . . ◦ [[addu♯.fq]] and [[dropu♯]] = [[dropu♯.f1]] ◦ . . . ◦ [[dropu♯.fq]].

Theexpandu♯,v♯ andfoldu♯,v♯ cannot be defined as the composition ofexpandandfold operations

for the objects that represent individual fields. These operations must truly operate in parallel on

all of the fields ofu♯ andv♯. We define them as follows (letS ∈ ℘(Û ♯ → V)):

[[foldu♯,v♯]](S) = [[dropv♯]](S ∪ [[x̄← ȳ]]Û
♯,σ(S)),

whereσ =
[

x1 7→ u♯.f1, . . . , xq 7→ u♯.fq, y1 7→ v♯.f1, . . . , yq 7→ v♯.fq
]

. And

[[expandu♯,v♯]](S) = [[addv♯]](S) ∩ [[〈x̄, ȳ〉 ← 〈ȳ, x̄〉]]Û♯∪{v♯.f1,...,v♯.fq},σ ◦ [[addv♯]](S),

whereσ =
[

x1 7→ u♯.f1, . . . , xq 7→ u♯.fq, y1 7→ v♯.f1, . . . , yq 7→ v♯.fq
]

.

3.7 Numeric extension of TVLA

In this section, we sketch how the techniques of this chapterwere integrated into TVLA, a

three-valued-logic-based framework for shape analysis [78, 100]. We extended the TVLA spec-

ification language with primitives for specifying numeric conditional expressions in logic formu-

lae, and for specifying numeric updates in TVLA actions (i.e., specifications for program-state

transitions). The TVLA implementation was extended to maintain and query the numeric state

60

associated with each abstract memory configuration. We usedthe resulting numeric extension of

TVLA to implement the prototype for the array analysis tool,which we describe in more detail in

Chapter 4.

TVLA models concrete states by first-order logical structures: the universe of a logical struc-

ture represents the set of concrete objects; the propertiesof concrete objects are encoded with the

help of a finite set of predicates. Historically, the objectsin the universe of a structure are called

nodes.7

Abstract states are represented bythree-valued logical structures, which (conceptually) are

constructed by applying canonical abstraction to the sets of concrete states. The abstraction is

defined by a vector of unary predicates, and summarizes together the concrete objects whose pred-

icates evaluate to the same vector of values. When nodes are summarized together, the interpreta-

tions of predicates for those nodes are joined using the information-order semi-lattice of 3-valued

logic.8

TVLA distinguishes between two types of predicates:core predicates andinstrumentation

predicates. Core predicates are the predicates that are necessary to model the concrete states.

Instrumentation predicates are defined in terms of core predicates, and are introduced to capture

properties that are lost by the abstraction.

TVLA provides two operations to dynamically regroup summarized nodes:

• A focusoperation replaces a three-valued structure by a set of moreprecise three-valued

structures that represent the same set of concrete states asthe original structure. Usually,

focus is used to “materialize” a non-summary node from a summary node. (The structures

resulting from a focus are not necessarily images of canonical abstraction, in the sense that

they may have multiple nodes for which the abstraction predicates evaluate to the same

values.)

• A coerceoperation is a cleanup operation that “sharpens” updated three-valued structures by

making them comply with a set of globally defined integrity constraints.

7In shape analysis, these objects correspond to the nodes of the shape graph.
8In the information order,0 ⊑ 1/2, 1 ⊑ 1/2, and0 and1 are incomparable.

61

The numeric extension of TVLA allows to associate a number ofnumeric fields with each

concrete object in the universe. When abstraction is applied, the values of numeric fields are

approximated by an element of a summarizing abstract domainthat is attached to each 3-valued

structure.

To specify numeric properties, TVLA’s specification language was extended to allow numeric

comparisons to be used in logical formulas, e.g.,x(v) ∧ data(v) ≥ 0, wherex is a unary predicate

anddata is a numeric field. Numeric updates are specified via two kindsof formulas: (i) a numeric

update formula, e.g.,data(v1) = 2×data(v2)+3, and (ii) a logical formula that binds free variables

in the numeric formula to the nodes in the structure, e.g.,x(v1)∧ n(v1, v2). Both comparisons and

updates are evaluated by determining the assignment of abstract objects to the free variables in the

formula, and then executing a corresponding method of the summarizing abstract domain.

The focus and coerce operations are slightly harder to implement: to impose the numeric prop-

erties from focus formulas and from global integrity constraints onto the element of a summarizing

domain, we use the assume operation provided by the domain. Node duplication, which is inherent

to focus, is handled by theexpandoperation. Similarly, to reflect the merge of two nodes, thefold

operation is used.

3.8 Related Work

Standard abstract domains. In Chapter 2, we discussed at length existing numeric abstract

domains. These domains includednon-relational domains: intervals [28], congruences [52], and

interval congruences [82];weakly relational domains: zones [84], octagons [85], zone congru-

ences [86], TVPLI [109], and octahedra [23, 24]; as well asrelational domains: linear equali-

ties [68], linear congruences [52], polyhedra [32, 57], trapezoidal congruences [81], and arithmetic

automata [12, 13]. All these domains make the assumption that there is a fixed, finite number of

numeric objects that need to be tracked. In contrast, our work provides techniques for performing

static analysis in the presence of an unbounded number of concrete numeric objects (which are

then summarized by some fixed, finite number ofsummaryobjects).

62

TVLA. The closest approach to the summarizing abstraction is the framework for shape analysis

based on 3-valued logic [78, 100]. In fact, this framework provided the primary motivation for our

work. In contrast to summarizing abstraction, in 3-valued-logic abstraction only Boolean values

(in the form of unary predicates) are associated with the concrete elements. Also, the abstraction

for sets of Boolean values is hardcoded into the framework (asimple non-relational abstraction

is used), whereas the summarizing abstraction allows any existing numeric domain to be used to

represent the final abstract states.

Pointer and shape analysis.Many shape-analysis techniques use certain numeric information to

enhance the expressibility of the shape abstraction. Typically, the numeric information represents

things like the length of list segments, or the number of recursive “p = p->next” dereferences

that need to be made to get to a corresponding memory location. Below, we give a brief survey of

such techniques. In all of them, the number of numeric quantities that are tracked by the analysis

is actually fixed and finite. Thus, standard numeric domains are employed to abstract that numeric

information.

Yavuz-Kahveci and Bultan present an algorithm for shape analysis in which numeric informa-

tion is attached to summary nodes [117]; the numeric quantity associated with the summary node

u♯ in a shape-graphS indicates the number of concrete nodes that are representedby u♯. An el-

ement of some standard numeric abstract domain is attached to the shape graph to keep track of

these quantities. This approach differs from our work in thefollowing way: in [117], each sum-

marized object contributes1 to the quantity associated with the summary object; in contrast, in

the summarizing abstraction, when objects are summarized together, the effect is to collect their

values into a set.

Alain Deutsch proposed an alias analysis [35] that is based on representing access paths to

particular objects as a regular expression annotated with numeric quantities, e.g., access pathp→
nexti → prevj specifies an object that is reachable from pointerp by i consecutive dereferences

of the fieldnext, followed byj consecutive dereferences of the fieldprev. To check whether two

access paths specify the same object, certain numeric relationships between the numeric quantities

63

that appear in both access paths are checked. An element of some standard numeric domain is used

to track the above numeric quantities for each pair of accesspaths.

Arnaud Venet proposed anon-uniformpointer analysis [112, 113] (that is, the analysis is able to

distinguish among elements of collections). The analysis is based on associating each dynamically-

allocated object with a numeric timestamp, i.e., distinct objects have distinct timestamps. In the

course of the analysis, the numeric relationships among theobject’s timestamp and its position in

the collection (e.g., its array index) are captured. In the end, alias queries are reduced to checking

certain numeric properties.

64

Chapter 4

Analysis of Array Operations

An array is a simple and efficient data structure that is heavily used in practice. In many cases,

to verify the correctness of programs that use arrays, a program analyzer must be able to discover

relationships among values of array elements, as well as their relationships to scalar variables in the

program. However, the implementations of array operationsare typically parameterized by scalar

variables that bear certain numeric relationships to the actual size of the array. Thus, verification of

a property in the presence of such operations usually requires establishing that the desired property

holds for any possible values of the parameters with which the operation may be invoked. In other

words, the analysis may have to reason about arrays of varying, possibly unbounded size.

Reasoning about unbounded collections of objects poses a challenge for existing numeric anal-

ysis techniques. However, the summarizing abstractions, which we introduced in Chapter 3,

specifically target this situation. Thus, one possible approach to this problem is tosummarize

the potentially-unbounded set of array elements with a fixednumber of abstract array elements (in

the extreme—with a single summary element1), and use summarizing numeric abstractions to rep-

resent and manipulate the numeric state of the program. The potential problem with this approach

is the precision loss due toweak updates: that is, updates that modify a single concrete object

in a summarized collection must be modeled by accumulating into—rather than overwriting—the

value kept for the summarized collection; because the summarizing abstraction can only maintain

the universal properties of the entire summarized collection, the update to a single element may

not be captured precisely (see the discussion of summary assignments in§3.4.1).

1This technique is calledarray smashing[14]

65

In this chapter, we develop a static-analysis framework foranalyzing array operations. The

framework is based oncanonical abstraction[78, 100], a family of abstractions that employs a

client-defined set of properties to partition, and summarize, a potentially-unbounded set of concrete

objects, i.e., the objects that share similar properties are summarized together. In our framework,

array elements are partitioned with respect to the numeric relationships between the indices of the

array elements and the values of scalar variables that are used to index into the array. Note that

the resulting abstraction isstoreless; that is, there is no fixed connection between a concrete array

elementc and an abstract array elementa that represents it: after the properties of concrete element

c change (e.g., if the scalar variable that is used to partition the array is incremented),c may be

represented by an abstract element other thana.

The analysis uses summarizing numeric abstractions from Chapter 3 to keep track of the values

and indices of array elements. In our framework, indices of array elements are modeled explicitly;

that is, two numeric quantities are associated with each array element: (i) the actual value of the

element and (ii) its index.

Given an array and a set of scalar variables, we partition theelements of the array as follows.

The array elements that are indexed by scalar variables are placed by themselves into individual

groups, which are represented by non-summary abstract elements. Array segments in-between

the indexed elements are also placed into individual groups, but these groups are represented by

summary abstract elements. In practice, thepartitioning setfor an array will contain the scalar

variables that are usedsyntacticallyto index into the array (i.e., variablei is added to the parti-

tioning set of arraya, if a[i] appears in the code of the program). Note that in this partitioning

scheme, indexed array elements are always represented by non-summary abstract elements; thus,

a strong updatecan always be applied when there is a write to such an element.Furthermore,

for the array operations that scan the array linearly, this partitioning scheme separates the array

elements that have already been processed (e.g., initialized or sorted), from the ones that have not;

this allows the summarizing abstraction to capture stronger universal properties for the processed

array elements.

66

void copy array(int a[], int b[], int n) {
i ← 0; (⋆)

while(i < n) {
b[i] ← a[i];

i ← i + 1;

} (⋆⋆)

}

Figure 4.1 Simple array-copy function.

One limitation of the summarizing abstraction is that it cannot capture the relations among

individual array elements that are summarized together. For instance, the property that the elements

of an array are in a certain order (e.g., the array is sorted) cannot be represented with a summarizing

abstraction. To address this issue, in§4.3.3, we introduce auxiliary predicates that are attachedto

each abstract array element and capture numeric propertiesthat are beyond the capabilities of a

summarizing numeric domain on its own. At present, the auxiliary predicates, as well as their

abstract transformers, are supplied manually. We expect this step to be automated in the future.

We implemented a prototype of the array analysis with the useof the numeric extension of the

TVLA tool [78], which we described in§3.7. With this prototype implementation, we were able to

analyze successfully several small, but challenging examples, including verifying the correctness

of an insertion-sort implementation.

4.1 Overview of Array Analysis

In this section, we illustrate the analysis using a simple example. The procedure in Fig. 4.1

copies the contents of arraya into arrayb. Both arrays are of sizen, which is specified as a

parameter to the procedure. Suppose that the analysis has already determined some facts about

values stored in arraya. For instance, suppose that the values of elements ina range from−5 to 5.

At the exit of the procedure, we would like to establish that the values stored in arrayb also range

from−5 to 5. Furthermore, we would like to establish this property for any reasonable array size,

i.e., for all values of variablen greater than or equal to1.

67

Our technique operates by partitioning the unbounded number of concrete array elements into

a bounded number of groups. Each group is represented by an abstract array element. The parti-

tioning is done based on numeric relationships between the indices of array elements and the value

of loop induction variablei. In particular, for the example in Fig. 4.1, our technique will represent

the elements of the two arrays with indices less thani by two summaryabstract objects (which

we will denote bya<i andb<i, respectively). Array elements with indices greater thani are repre-

sented by two othersummaryabstract objects (a>i andb>i). Array elementsa[i] andb[i] are not

grouped with any other array elements, and are represented by two non-summaryabstract objects

(ai andbi). Such partitioning allows the analysis to perform a strongupdate when it interprets the

assignment statement in the body of the loop.

Fig. 4.2(a) shows how the elements of both arrays are partitioned during the first iteration of the

loop. The non-summary objectsai andbi represent array elementsa[0] andb[0], respectively.

The value of an element represented byai ranges from−5 to 5 due to our initial assumption; thus,

after interpreting the assignmentb[i] ← a[i] in the body of the loop, the analysis establishes

that the value of the element represented bybi also ranges from−5 to 5.

At the end of the iteration, as the induction variablei gets incremented, the grouping of con-

crete array elements changes. The elementsa[0] andb[0] move into the groups of concrete array

elements that are represented bya<i andb<i, respectively; thus, objectsa<i andb<i inherit the

numeric properties that have been synthesized for the objectsai andbi, respectively. The new ab-

stract elementsai andbi, which now represent the array elementsa[1] andb[1], are constructed

by materializing(with the use of theexpandoperation—see§3.3.4) two objects from the corre-

sponding groups of concrete array elements represented bya>i andb>i, respectively. Fig. 4.2(b)

shows how the arraysa andb are partitioned during the second iteration. The net result, at the end

of the first iteration, is that the analysis has established that the value of the concrete array element

represented byb<i ranges from−5 to 5.

On the second iteration, the situation repeats with one exception: at the end of the iteration,

when the array elements are again repartitioned, the new numeric properties for the abstract objects

a<i andb<i are constructed bymerging(with the use of thefold operation—see§3.3.3) the current

68

a[0]

b[0]

a[1]

b[1]

a[2]

b[2]

a[n-1]

b[n-1]

ai

bi

a>i

b>i

...

...

a[0]

b[0]

a[1]

b[1]

a[2]

b[2]

a[n-1]

b[n-1]

a<i

b<i

ai

bi

a>i

b>i

...

...

(a) (b)

a[0]

b[0]

a[k-1]

b[k-1]

a[k]

b[k]

a[k+1]

b[k+1]

a[n-1]

b[n-1]

a<i

b<i

ai

bi

a>i

b>i

...

...

...

...

a[0]

b[0]

a[k-1]

b[k-1]

a[k]

b[k]

a<i

b<i

ai

bi

...

...

a[0]

b[0]

a[k-1]

b[k-1]

a<i

b<i

...

...

(c) (d) (e)

Figure 4.2 Partitionings of array elements at different points in the execution of the array-copy
function: (a) on the 1-st loop iteration; (b) on the 2-nd iteration; (c) on thek-th iteration; (d) on the
last iteration; (e) after exiting the loop.

numeric properties fora<i andb<i with the numeric properties that have been synthesized for the

objectsai andbi, respectively. Note that because the values of the array elements that were repre-

sented byb<i range from−5 to 5 (the analysis established that at the end of the first iteration), and

the value of the element that is represented bybi also ranges form−5 to 5 (due to the assignment

b[i] ← a[i]), the analysis concludes that the values of the array elements represented byb<i

after the second iteration also range from−5 to 5.

As the value of variablei increases with each iteration, more and more of the concretearray

elements of both arrays move from the two groups representedby objectsa>i andb>i, to the two

groups represented by objectsai andbi, and finally, to the two groups represented by objectsa<i

andb<i. Fig. 4.2(c) shows how the arrays are partitioned on thek + 1-st iteration. The concrete

array elements that are represented byb<i are the elements that have been initialized.

One can view this process of state-space exploration as performing an inductive argument. On

each iteration, the numeric properties of the abstract element b<i are merged (folded) with the

numeric properties of the abstract elementbi, which has been initialized on that iteration. As the

result, the invariant that the values of array elements represented byb<i range from−5 to 5 is

69

maintained throughout the analysis. In this regard, the analysis implements a form ofinductive

reasoning.

An important thing to observe is that, even though the array partitions shown in Fig. 4.2 (b) and

(c) describe different groupings of concrete array elements, both partitions have the same sets of

abstract array elements. Therefore, from the point of view of the analysis these partitions are the

same. To establish which concrete array elements are represented by a particular abstract element,

the analysis directly models the indices of array elements in the numeric state associated with each

partition.

Fig. 4.2(e) shows how the array elements are partitioned after exiting from the loop: all ele-

ments of both arrays are represented bya<i andb<i, respectively. As we have just shown above,

the analysis is able to establish that the values of the concrete array elements represented byb<i at

the end of each iteration ranged from−5 to 5. Thus, after exiting the loop, the analysis concludes

that (i) all elements of arrayb were initialized, and (ii) the values stored in arrayb range from−5

to 5.

In practice, for the program in Fig. 4.1, a more general property may be of interest, such as

“the value of each element of arrayb is equal to the value of the element of arraya with the

same index”. However, this property is beyond the capabilities of the summarizing abstraction.2

To capture such properties, we augment each abstract objectin the representation of arrayb with

an extra value that indicates whether the property holds for(i) all, (ii) some, or (iii) none of the

concrete array elements represented by that abstract object. Formally, we do it by introducing an

auxiliary three-valued unary predicateδ, which evaluates to the values1, 1/2, and0 on the abstract

elements of arrayb to represent cases (i), (ii), and (iii), respectively.

2It may be argued that this property is, in fact,universal. Let A andB denote sets of elements of arraysa andb,
respectively. The property can be expressed as follows:

∀a ∈ A ∀b ∈ B [a.index= b.index ⇒ a.value= b.value] ,

and thus, a summarizing abstraction should be able to capture it. However, note that to capture this property, a
summarizing abstraction must use a numeric abstract domainthat is able to represent implication (see§3.5); however,
it is extremely rare for a numeric domains to be capable of representing implication.

70

The analysis proceeds as follows: the abstract objects thatrepresent the elements of arrayb start

with δ having the value1/2, which indicates that the analysis has no knowledge about the values

stored in arrayb. On each iteration, the property is established for the array element represented

by bi; i.e., δ(bi) is set to1. At the end of each iteration, the new value forδ(b<i) is obtained by

joining the current value forδ(b<i) with δ(bi): on the first iteration, the objectb<i does not exist,

soδ(b<i) is set to be equal toδ(bi), which is equal to1; on the following iterations, the new value

for δ(b<i) is determined by joining its current value, which is1, with the valueδ(bi), which also

equals to1. Thus, the analysis establishes thatδ(b<i) is 1 after each iteration, which indicates that

the property holds for all initialized array elements.

4.2 Concrete semantics

In this section, we extend the concrete program semantics from §2.1 to support a fixed, finite

number of arrays. Understandably, the structure of the program state will become more compli-

cated: in addition to the function that maps program variables to the corresponding values, we

add a corresponding function for each array. These functions will map each array element of the

corresponding array to a pair of numeric quantities: the value of the element and its index. Also,

we add two new program-state transitions: one for reading anarray element and one for writing an

array element.

4.2.1 Concrete Program States

We denote the set of scalar variables and the set of arrays used in the program by

S = {v1, ..., vn} and A = {A1, ..., Ak} ,

respectively. These sets will be the same across all concrete program states that may arise as a

result of program execution. Note that the setS directly corresponds to the set of variablesVars,

which we defined in Chapter 2. The set of elements of each arraymay differ from state to state.

We will use the notationAS to denote the set of elements of arrayA ∈ A in program stateS. To

71

ensure proper sequencing of array elements, we assume that aconcrete state explicitly assigns to

each array element its proper index position in the corresponding array.

Each concrete program stateS is encoded with the following set of functions:

• ValueS : S → V maps each scalar variable to its corresponding value. Thesefunctions are

similar to the functions that we used to define the program states in Chapter 2. In fact, all of

the program constructs that are not related to arrays (i.e.,numeric expressions, conditional

expressions, assignment transitions, and assume transitions), operate on these functions in

the exact same way as was defined in Chapter 2.

• ElementAS : AS → V2 is a family of functions (one for each array inA) that maps the

elements of a given arrayA ∈ A to a pair of quantities: the value of the element and its

index.

Example 4.1 Suppose that a program operates on two scalar variables,i andj, and an arrayB of

size 10. Suppose that at some point in the execution of the program, the values of variablesi andj

are4 and7, respectively, and the values that are stored in arrayB are{1, 3, 8, 12, 5, 7, 4,−2, 15, 6}.
We encode the concrete stateS of the program as follows:

S = {i, j}, A = {B}, BS = {b0, . . . , b9}

ValueS = [i 7→ 4, j 7→ 7]

ElementBS = [b0 7→ 〈1, 0〉, b1 7→ 〈3, 1〉, b2 7→ 〈8, 2〉, . . . , b9 7→ 〈6, 9〉]

To simplify the presentation, we define functionsValueAS andIndexAS with the signatureAS →
V to retrieve the value and the index of a given element of arrayA, respectively:

ValueAS (a) = ElementAS (a)[1] and IndexAS (a) = ElementAS (a)[2]

4.2.2 Array Transitions

We extend the set of program-state transitions with transitions for reading and writing array

elements. The transitionv1 ← A [v2], wherev1, v2 ∈ S andA ∈ A, reads the value of the element

72

of arrayAwhose index is specified by the value of variablev2, and assigns that value to variablev1.

TheA [v2]← v1 assigns the value of variablev1 to the element of arrayA whose index is specified

by the value of variablev2. LetS denote an arbitrary program state. The concrete semantics for an

array-read transition is specified as follows:

[[v1 ← A [v2]]](S) = S ′ s.t.

















∃u ∈ AS
[

IndexAS (u) = ValueS(v2)
]

ValueS′(v) =







ValueAS (u) if v = v1

ValueS(v) otherwise

∀B ∈ A ∀b ∈ B
[

ElementBS′(b) = ElementBS (b)
]

















The concrete semantics for an array-write transition is given by:

[[A [v2]← v1]](S) = S ′ s.t.























∃u ∈ AS
[

IndexAS (u) = ValueS(v2)
]

∀v ∈ S [ValueS′(v) = ValueS(v)]

∀B ∈ A \ {A} ∀b ∈ B
[

ElementBS′(b) = ElementBS (b)
]

ElementAS′(a) =







〈ValueS(v1),ValueS(v2)〉 if a = u

ElementAS (a) otherwise























The semantics for the transformers is defined in a straightforward way (the definitions primarily

ensure that the part of the state that is not modified is preserved). Note, however, that the above

transformers arepartial: that is, if the condition

∃u ∈ AS
[

IndexAS (u) = ValueS(v2)
]

is not satisfied, the result of either transformer is undefined. It can be easily seen that this condition

implements anout-of-boundscheck for the array access. That is, we assume that if an out-of-

bounds array access occurs during program execution, the program terminates.

4.3 Array Abstraction

In this section, we show how the sets of concrete program states are abstracted. Each abstract

program stateS♯ is a functionS♯ : P → N ×X , whereP denotes the space of possible array par-

titions,N denotes the space of possible numeric states, andX denotes space of possible valuations

73

of auxiliary predicates. In the next few sections, we define what each of these spaces look like. We

will refer to a triple
〈

P ♯,Ω♯,∆♯
〉

, whereP ♯ ∈ P, Ω♯ ∈ N , ∆♯ ∈ X , andS♯(P ♯) =
〈

Ω♯,∆♯
〉

, as an

abstract memory configuration.

The standard operations for the abstract state are defined point-wise, that is, for allP ♯ ∈ P

(S♯1 ⊔ S♯2)(P ♯) = S♯1(P
♯) ⊔ S♯2(P ♯), where

〈

Ω♯
1,∆

♯
1

〉

⊔
〈

Ω♯
2,∆

♯
2

〉

=
〈

Ω♯
1 ⊔ Ω♯

2,∆
♯
1 ⊔∆♯

2

〉

and

(S♯1 ⊓ S♯2)(P ♯) = S♯1(P
♯) ⊓ S♯2(P ♯), where

〈

Ω♯
1,∆

♯
1

〉

⊓
〈

Ω♯
2,∆

♯
2

〉

=
〈

Ω♯
1 ⊓ Ω♯

2,∆
♯
1 ⊓∆♯

2

〉

.

The partial order is defined as

S♯1 ⊑ S♯2 , ∀P ♯ ∈ P
[

S♯1(P
♯) ⊑ S♯2(P

♯)
]

,

where
〈

Ω♯
1,∆

♯
1

〉

⊑
〈

Ω♯
2,∆

♯
2

〉

, Ω♯
1 ⊑ Ω♯

2 ∧ ∆♯
1 ⊑ ∆♯

2.

Note that some array partitions may not arise (and, in fact, will not arise) in the analysis of the

program. We assume that the abstract state maps the partitions that did not arise to the tuple

〈⊥N ,⊥X 〉.
In the next three sections, we will show how, given asingleconcrete state, to construct the

abstract state that represents it. The abstraction for a setof concrete states is constructed by joining

the abstractions of the individual concrete states in the set.

4.3.1 Array Partitioning

The goals of array partitioning are two-fold. First, we would like to isolate in separate groups

the array elements that are assigned to. This allows the analysis to perform strong updates when

assigning to these elements. Second, we would like to group elements with similar properties

together to minimize the precision loss due to summarization.

In this thesis, we propose an array-partitioning scheme based on numeric relationships among

indices of array elements and values of scalar variables. Inparticular, given a set of scalar variables,

74

we partition an array so that each element whose index is equal to the value of any of the variables

in the set is placed in a group by itself. Such groups are represented bynon-summaryabstract array

elements. The consecutive array segments in-between the indexed elements are grouped together.

Such groups are represented bysummaryabstract array elements. We will refer to this partitioning

scheme aslinear array partitioning.

We define array partitions by using a fixed set ofpartitioning functions, denoted byΠ. Each

functionρ ∈ Π is parametrized by an array and a single scalar variable. LetA ∈ A andv ∈ S. In

a concrete stateS, a functionρA,v is interpreted as:

ρA,v : AS → {−1, 0, 1},

and is evaluated as follows:

ρA,v(u) =



















−1 if IndexAS (u) < ValueS(v)

0 if IndexAS (u) = ValueS(v)

1 if IndexAS (u) > ValueS(v)

The choice of values is completely arbitrary as long as the function evaluates to a different value

for each of the three cases. We denote the set of partitioningfunctions parameterized by arrayA

by ΠA.

In a given concrete state, we partition each arrayA ∈ A by grouping together elements ofA for

which all partitioning functions inΠA evaluate to the same values. Each group is represented by

an abstract array element: anon-summaryelement, if at least one partitioning function evaluates

to 0 for the array elements in the group; asummaryelement, otherwise. If the setΠA is empty, all

of the elements of arrayA are grouped together into a single summary element.

The values to which partitioning functions evaluate on the array elements in a group uniquely

determine the abstract element that is used to represent that group. We will continue to use the

intuitive abstract-element naming introduced in§4.1, e.g., the summary abstract array element

b>i,<j represents the group of array elements whose indices are greater than the value of variable

i, but less than the value of variablej.

75

Formally, array partitionP ♯ maps each array inA to a corresponding set of abstract array

elements. We say that two array partitions are equal if they map all arrays inA to the same sets:

P ♯
1 = P ♯

2 , ∀A ∈ A
[

P ♯
1(A) = P ♯

2(A)
]

The following example illustrates array partitioning.

Example 4.2 Assume the same situation as in Ex. 4.1. Let the set of partitioning functionsΠ be

{ρB,i, ρB,j}. The elements of arrayB are partitioned into five groups, each of which is represented

by an abstract array element:

Concrete Elements Abstract Element Summary

(i) {b0, b1, b2, b3} b<i,<j ⋆

(ii) {b4} bi,<j

(iii) {b5, b6} b>i,<j ⋆

(iv) {b7} b>i,j

(v) {b8, b9} b>i,>j ⋆

The ⋆ in the last column marks summary abstract array elements. Thus,

P ♯ = [B 7→ {b<i,<j , bi,<j , b>i,<j, b>i,j, b>i,>j}]

Note, that each abstract element of arrayA corresponds to a valuation of partitioning functions

in ΠA: there are3|ΠA| possible valuations. However, not all valuations of partitioning functions

are consistent with the respect to the array structure. In fact, due to linear nature of partitioning,

there can be at most2 × |ΠA| + 1 abstract array elements. Still, the number of possible array

partitions (i.e., the number of sets of abstract array elements that represent the corresponding array

in a consistent manner) is combinatorially large. However,our observations show that only a small

fraction of these partitions actually occur in practice.

The approach that is presented in this section illustrates only one of the possibilities for par-

titioning an array. We found this partitioning to be useful when consecutive array elements share

similar properties, e.g., when analyzing simple array-initialization loops and simple array-sorting

76

algorithms, which constitute a large portion of actual usesof arrays. However, in more compli-

cated examples, e.g., when using double indexing to initialize an array and using an array to store

a complex data structure (such as a tree), the above array partitioning is not likely to succeed. This

issue remains to be addressed in the future.

4.3.2 Numeric Abstraction

We represent the numeric state associated with an array partition with an element of a summa-

rizing abstract domain, which we described in Chapter 3. In this section, we show how to construct

the corresponding domain element for a given concrete state.

Conceptually, we apply thepartial summarizing abstraction to each array individually (we use

the extension that handles multiple values from§3.6). For an arrayA ∈ A, the concrete universe

UA corresponds toAS, and the abstract universeU ♯
A corresponds toP ♯(A). The concrete state is

given by the functionElementAS : AS → V2. The set of fields isF = {value, index}. The function

πS : AS → P ♯(A) is defined naturally by the array-partitioning functions inΠA.

The partial summarizing abstraction represents the function ElementAS : AS → V2 by a set

of functions with signatureP ♯(A) → V2 in the manner described in§3.2. This representation is

further flattenedto a set of functions with signatureŝU ♯ → V in the manner described in§3.6,

whereÛ ♯ denotes theexplodedabstract universe:

ˆ
U ♯
A =

{

u♯.value, u♯.index | u♯ ∈ P ♯(A)
}

.

We denote the resulting set of functions byElement♯A ∈ ℘(
ˆ
U ♯
A → V).

In the next abstraction step, we merge together the sets of functionsElement♯A for each array

A ∈ A, and the functionValueS : S → V, which maps scalar variables to corresponding values, to

form a set of functionsΩ with the domain:

Û ♯ = S ∪
⋃

A∈A

ˆ
U ♯
A.

This set of functions is then represented with a
∣

∣

∣
Û ♯

∣

∣

∣
-dimensional element of some existing numeric

abstract domain. The choice of the domain depends on the particular properties the analysis needs

to establish. In the rest of the chapter, we assume that the polyhedral abstract domain is used.

77

The numeric state is manipulated by the operations and abstract transformers that we defined

in Chapter 3. To apply a particular transformer, the scalar variables and array elements are duly

remapped to the corresponding dimensions in the abstract domain.

Example 4.3 Assume the same situation as in Ex. 4.2. Fig. 4.3 illustratesindividual steps in the

abstraction of the numeric state. The concrete state is shown at the top. The tables represent sets of

functions (functions correspond to the rows in the table). We abbreviate the names of fieldsvalue

and indexby v andi, respectively. The set of functionsElement♯A is not shown, but it is similar

to the setΩ with the first two columns (fori andj) taken out. The resulting set of functionsΩ is

abstracted by a12-dimensional polyhedron, specified by the following set of linear constraints:

i = 4, j = 7,

b<i,<j.i+ 1 ≤ b<i,<j.v, 3× b<i,<j .v ≤ 11× b<i,<j.i+ 3, 2× b<i,<j.v ≥ 9× b<i,<j.i+ 3,

bi,<j .i = 4, bi,<j .v = 5,

5 ≤ b>i,<j .v ≤ 6, b>i,<j .v = 22− 3× b>i,<j.i,

b>i,j .i = 7, b>i,j.v = −2,

6 ≤ b>i,>j .v ≤ 15, b>i,>j .v = 87− 9× b>i,>j.i

We show the constraints for each abstract array element on a separate line. Note that, for non-

summary elementbi,<j andb>i,j, the values and the indices correspond to those of the concrete

elements that they represent. Also note that, for summary elements, some relationships between

the indices and values of the concrete elements are retained.

4.3.3 Beyond summarizing domains

Summarizing numeric domains can be used to reason about universal numeric properties of

summarized array elements. However, the relationships among values of objects that are sum-

marized together are lost. This precludes a summarizing numeric abstraction from being able to

express certain properties of interest, e.g., it is impossible to express the fact that a set of array

78

ValueS :
i j
4 7

ElementAS :
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

〈1, 0〉 〈3, 1〉 〈8, 2〉 〈12, 3〉 〈5, 4〉 〈7, 5〉 〈4, 6〉 〈−2, 7〉 〈15, 8〉 〈6, 9〉

(α2 ◦ α1)(ElementAS) :

b<i,<j bi,<j b>i,<j b>i,j b>i,>j

〈1, 0〉 〈5, 4〉 〈7, 5〉 〈−2, 7〉 〈15, 8〉
〈1, 0〉 〈5, 4〉 〈7, 5〉 〈−2, 7〉 〈6, 9〉
〈1, 0〉 〈5, 4〉 〈4, 6〉 〈−2, 7〉 〈15, 8〉
〈1, 0〉 〈5, 4〉 〈4, 6〉 〈−2, 7〉 〈6, 9〉
〈3, 1〉 〈5, 4〉 〈7, 5〉 〈−2, 7〉 〈15, 8〉
〈3, 1〉 〈5, 4〉 〈7, 5〉 〈−2, 7〉 〈6, 9〉
〈3, 1〉 〈5, 4〉 〈4, 6〉 〈−2, 7〉 〈15, 8〉
〈3, 1〉 〈5, 4〉 〈4, 6〉 〈−2, 7〉 〈6, 9〉
〈8, 2〉 〈5, 4〉 〈7, 5〉 〈−2, 7〉 〈15, 8〉
〈8, 2〉 〈5, 4〉 〈7, 5〉 〈−2, 7〉 〈6, 9〉
〈8, 2〉 〈5, 4〉 〈4, 6〉 〈−2, 7〉 〈15, 8〉
〈8, 2〉 〈5, 4〉 〈4, 6〉 〈−2, 7〉 〈6, 9〉
〈12, 3〉 〈5, 4〉 〈7, 5〉 〈−2, 7〉 〈15, 8〉
〈12, 3〉 〈5, 4〉 〈7, 5〉 〈−2, 7〉 〈6, 9〉
〈12, 3〉 〈5, 4〉 〈4, 6〉 〈−2, 7〉 〈15, 8〉
〈12, 3〉 〈5, 4〉 〈4, 6〉 〈−2, 7〉 〈6, 9〉

Ω :

b<i,<j bi,<j b>i,<j b>i,j b>i,>j

i j v i v i v i v i v i

4 7 1 0 5 4 7 5 −2 7 15 8
4 7 1 0 5 4 7 5 −2 7 6 9
4 7 1 0 5 4 4 6 −2 7 15 8
4 7 1 0 5 4 4 6 −2 7 6 9
4 7 3 1 5 4 7 5 −2 7 15 8
4 7 3 1 5 4 7 5 −2 7 6 9
4 7 3 1 5 4 4 6 −2 7 15 8
4 7 3 1 5 4 4 6 −2 7 6 9
4 7 8 2 5 4 7 5 −2 7 15 8
4 7 8 2 5 4 7 5 −2 7 6 9
4 7 8 2 5 4 4 6 −2 7 15 8
4 7 8 2 5 4 4 6 −2 7 6 9
4 7 12 3 5 4 7 5 −2 7 15 8
4 7 12 3 5 4 7 5 −2 7 6 9
4 7 12 3 5 4 4 6 −2 7 15 8
4 7 12 3 5 4 4 6 −2 7 6 9

Figure 4.3 Numeric abstraction for the program state in Ex. 4.1.

79

elements that are summarized together are in sorted order. In Ex. 4.3, the resulting numeric state

is only able to capture the property that the values of the concrete array elements represented by

b(<i,<j) range from1 to 12, but not that those elements are sorted in ascending order.

To capture properties that are beyond the capabilities of summarizing numeric domains, we

introduce a set of auxiliary predicates, denoted by∆. In a concrete stateS, a predicate inδA ∈ ∆

maps each element of arrayA to a boolean value: to1 if the property of interest holds for that

element, and to0 otherwise:

δA : AS → {0, 1} .

The semantics of an auxiliary predicate is specified via a formula that is evaluated in the concrete

state.

When the elements of arrayA are summarized, wejoin the corresponding values ofδA in a

3-valued logic lattice[100]. In 3-valued logic, an extra value, denoted by1/2, is added to the set

of Boolean values{0, 1}. The order is defined as follows:

l1 ⊑ l2 iff l1 = l2 or l2 = 1/2

Thus,

1/2 ⊔ 0 = 1/2 ⊔ 1 = 0 ⊔ 1 = 1/2.

The resulting value is attached to the corresponding abstract array element.

In an abstract memory configuration, we use an abstract counterpart of the predicate, denoted

by δ♯A, to map abstract array elements to corresponding values:

δ♯A : P ♯(A)→ {0, 1, 1/2}

Let u ∈ P ♯(A) be an arbitrary abstract array element. The value ofδ♯A(u) is interpreted as follows:

the value1 indicates that the property holds for all of the array elements represented byu; the value

0 indicates that the property does not hold for any of the arrayelements represented byu; and the

value1/2 indicates that property may hold for some of the array elements represented byu, but

may not hold for the rest of the elements.

80

Example 4.4 Assume the same situation as in Ex. 4.3. We introduce a predicateδB that evaluates

to 1 for array elements that are in ascending order, and to0 for the elements that are not:

δB(u) , ∀t ∈ B
[

IndexBS (t) < IndexBS (u) ⇒ ValueBS (t) ≤ ValueBS (u)
]

,

where variableu is a free variable that binds to an array element when the predicate is evaluated.

In the concrete state shown in Ex. 4.1,δB evaluates to1 for the elementsb0, b1, b2, b3, andb8;

and to0 for the remaining elements. The values associated with the abstract array elements are

constructed as follows:

δ♯B(b<i,<j) = δB(b0) ⊔ δB(b1) ⊔ δB(b2) ⊔ δB(b3) = 1 ⊔ 1 ⊔ 1 ⊔ 1 = 1

δ♯B(bi,<j) = δB(b4) = 0

δ♯B(b>i,<j) = δB(b5) ⊔ δB(b6) = 0 ⊔ 0 = 0

δ♯B(b>i,j) = δB(b7) = 0

δ♯B(b>i,>j) = δB(b8) ⊔ δB(b9) = 1 ⊔ 0 = 1/2

The part of an abstract memory configuration that stores the interpretation of auxiliary predi-

cates is denoted by∆♯ ∈ X and is defined as:

∆♯(δA, u) = δ♯A(u)

We define a partial-order relation for interpretations of auxiliary predicates as follows:

∆♯
1 ⊑ ∆♯

2 , ∀A ∈ A ∀δA ∈ ∆ ∀u ∈ P ♯(A)
[

∆♯
1(δA, u) ⊑ ∆♯

2(δA, u)
]

.

The join operation for interpretations of auxiliary predicates is defined as follows: we say that

∆♯
1 ⊔∆♯

2 = ∆♯, where for allA ∈ A, for all δA ∈ ∆, and for allu ∈ P ♯(A)

∆♯(δA, u) = ∆♯
1(δA, u) ⊔∆♯

2(δA, u).

4.4 Array Copy Revisited

In this section, we flesh out the schematic illustration of the analysis that was given in§4.1. The

analysis is applied to the code shown in Fig. 4.1. We depict the abstract memory configurations that

81

P ♯ P ♯
1 :

ai

bi
P ♯

2 :
ai

bi

a>i

b>i

Ω♯

n = 1, i = 0,
ai.index = 0

−5 ≤ ai.value ≤ 5
bi.index = 0

n ≥ 2, i = 0,
ai.index = bi.index = 0
1 ≤ a>i.index ≤ n− 1
−5 ≤ ai.value ≤ 5
−5 ≤ a>i.value ≤ 5

1 ≤ b>i.index ≤ n− 1

∆♯ δ♯
b = [bi 7→ 1/2] δ♯

b = [bi 7→ 1/2, b>i 7→ 1/2]

S
♯
1

S
♯
2

Figure 4.4 Abstract memory configurations (AMCs) that reachthe head of the loop in Fig. 4.1 on
the first iteration. The first AMC represents arrays of length1; the second AMC represents arrays
of length 2 and greater.

arise in the course of the analysis as follows. The partitionof the arrays is shown graphically: solid

boxes represent non-summary abstract array elements; dashed boxes represent summary abstract

array elements. Numeric states are shown as sets of linear constraints. Auxiliary predicates are

shown as maps from sets of abstract array elements to corresponding values in{0, 1, 1/2}.
Consider the program in Fig. 4.1. The set of scalar variablesand the set of arrays are defined

as follows: S = {i, n} andA = {a, b}. The analysis uses the set of partitioning functions

Π = {ρa,i, ρb,i}. As we suggested in§4.1, it is impossible for the summarizing abstraction to

express the property “for every indexk, the value ofb[k] is equal to the value ofa[k]”. To

capture this property, we introduce an auxiliary predicateδb, whose semantics is defined by

δb(u) , ∀t ∈ aS
[

IndexbS(u) = IndexaS(t) ⇒ ValuebS(u) = ValueaS(t)
]

.

Fig. 4.4 shows the abstract state that reaches the head of theloop before the first iteration. The

abstract state contains two abstract memory configurations: S♯1 andS♯2. ConfigurationS♯1 represents

the case in which each array contains only a single element. Thus, each array is represented by

a single abstract array element,ai andbi, respectively. The indices of bothai andbi are equal to

zero, and the value ofai ranges from−5 to 5.

82

Abstract memory configurationS♯2 represents the concrete states in which both arrays are of

length greater than or equal to two. In this situation, each array is represented by two abstract

elements:ai and bi represent the first elements of the corresponding arrays, while a>i and b>i

represent the remaining elements. The numeric state associated with this partition indicates that

the indices of the concrete array elements represented byai andbi are equal to zero, the indices of

the concrete array elements represented bya>i andb>i range from1 to n− 1, and the values of all

concrete elements of arraya range from−5 to 5.

The auxiliary predicateδ♯b evaluates to1/2 for all array elements in the abstract memory con-

figurationsS♯1 andS♯2. This means that, in the concrete states represented byS♯1 andS♯2, the values

of the concrete elements of arrayb may either be equal to the values of the corresponding elements

of arraya or not.

Fig. 4.5 shows the abstract memory configurations that are accumulated at the head of the

loop (in addition to the AMCsS♯1 andS♯2 shown in Fig. 4.4) on each iteration of the analysis.

Fig. 4.6 shows the evolution, on successive iterations of the analysis, of the single abstract memory

configuration that reaches the exit of the loop.

The analysis proceeds as follows. BothS♯1 andS♯2 satisfy the loop condition and are propagated

into the body of the loop. After the assignment “b[i] ← a[i]”, two changes happen to both

abstract memory configurations: (i) the constraintai.value = bi.value is added to their numeric

states, and (ii) the value of auxiliary predicateδ♯b(bi) is changed to1.

At the end of the first iteration, as variablei is incremented, abstract memory configuration

S♯1 is transformed into configurationS♯9 (shown in Fig. 4.6). The loop condition does not hold in

S♯9; thus, this memory configuration is propagated to the program point (⋆⋆) at the exit of the loop.

Abstract memory configurationS♯2 is transformed into two new abstract memory configurationsS♯3

andS♯4. These memory configurations, along withS♯1 andS♯2, form the abstract state at the head of

the loop at the beginning of the second iteration.

On the second iteration, the abstract memory configurationsS♯3 andS♯4 are propagated through

the assignment “b[i] ← a[i]”. As the result, their numeric states are updated to makeai.value =

bi.value, and their valuations of auxiliary predicateδ♯b(bi) are changed to1.

83

P ♯ P ♯
3 :

ai

bi

a<i

b<i
P ♯

4 :
a<i

b<i

ai

bi

a>i

b>i

2
-n

d
iteratio

n

Ω♯

i = 1, n = 2,
ai.index = bi.index = 1

a<i.index = 0
−5 ≤ ai.value ≤ 5
−5 ≤ a<i.value ≤ 5

b<i.index = 0
b<i.value = a<i.value

i = 1, n ≥ 3,
ai.index = bi.index = 1
2 ≤ a>i.index ≤ n− 1

a<i.index = 0
−5 ≤ ai.value ≤ 5
−5 ≤ a>i.value ≤ 5
−5 ≤ a<i.value ≤ 5

2 ≤ b>i.index ≤ n− 1
b<i.value = a<i.value

∆♯ δ♯
b = [b<i 7→ 1, bi 7→ 1/2] δ♯

b = [b<i 7→ 1, bi 7→ 1/2, b>i 7→ 1/2]

S
♯
3

S
♯
4

3
-rd

iteratio
n

Ω♯

1 ≤ i ≤ 2
n = i + 1

ai.index = i
0 ≤ a<i.index ≤ i− 1
−5 ≤ ai.value ≤ 5
−5 ≤ a<i.value ≤ 5

bi.index = i
0 ≤ b<i.index ≤ i− 1
−5 ≤ b<i.value ≤ 5

1 ≤ i ≤ 2
i = ai.index = bi.index
0 ≤ a<i.index ≤ i− 1

i + 1 ≤ a>i.index ≤ n− 1
−5 ≤ ai.value ≤ 5
−5 ≤ a>i.value ≤ 5
−5 ≤ a<i.value ≤ 5

0 ≤ b<i.index ≤ i− 1
i + 1 ≤ b>i.index ≤ n− 1
−5 ≤ b<i.value ≤ 5

∆♯ δ♯
b = [b<i 7→ 1, bi 7→ 1/2] δ♯

b = [b<i 7→ 1, bi 7→ 1/2, b>i 7→ 1/2]

S
♯
5

S
♯
6

3
-rd

iteratio
n

(after
w

id
en

in
g

)

Ω♯

1 ≤ i
n = i + 1

ai.index = i
0 ≤ a<i.index ≤ i− 1
−5 ≤ ai.value ≤ 5
−5 ≤ a<i.value ≤ 5

bi.index = i
0 ≤ b<i.index ≤ i− 1
−5 ≤ b<i.value ≤ 5

1 ≤ i
i = ai.index = bi.index
0 ≤ a<i.index ≤ i− 1

i + 1 ≤ a>i.index ≤ n− 1
−5 ≤ ai.value ≤ 5
−5 ≤ a>i.value ≤ 5
−5 ≤ a<i.value ≤ 5

0 ≤ b<i.index ≤ i− 1
i + 1 ≤ b>i.index ≤ n− 1
−5 ≤ b<i.value ≤ 5

∆♯ δ♯
b = [b<i 7→ 1, bi 7→ 1/2] δ♯

b = [b<i 7→ 1, bi 7→ 1/2, b>i 7→ 1/2]

S
♯
7

S
♯
8

Figure 4.5 New abstract memory configurations (ACMs) that reach the head of the loop in Fig. 4.1
on the 2-nd and 3-rd iterations of the analysis. The last row shows the effect of widening on the
numeric portion of abstract state: the numeric states obtained on the 2-nd iteration are widened
with respect to the corresponding numeric states obtained on the 3-rd iteration.

84

P ♯ after 1-st iteration after 2-nd iteration after 3-rd iteration

P ♯
5 :

a<i

b<i

Ω♯

n = 1, i = n,
a<i.index = 0

−5 ≤ a<i.value ≤ 5
b<i.index = 0

b<i.value = a<i.value

1 ≤ n ≤ 2, i = n,
0 ≤ a<i.index ≤ n− 1
−5 ≤ a<i.value ≤ 5

0 ≤ b<i.index ≤ n− 1
−5 ≤ b<i.value ≤ 5

1 ≤ n, i = n
0 ≤ a<i.index ≤ n− 1
−5 ≤ a<i.value ≤ 5

0 ≤ b<i.index ≤ n− 1
−5 ≤ b<i.value ≤ 5

∆♯ δ♯
b = [b<i 7→ 1] δ♯

b = [b<i 7→ 1] δ♯
b = [b<i 7→ 1]

S
♯
9

S
♯
10

S
♯
11

Figure 4.6 The abstract state (consisting of a single abstract memory configuration) that reaches
program point(⋆⋆) after the 1-st, 2-nd, and 3-d iterations of the loop in Fig. 4.1. The last column
shows the stabilized abstract state at(⋆⋆).

At the end of the second iteration, the abstract memory configurationS♯3 is transformed into

a configuration that has array partitionP ♯
5 . This abstract memory configuration is propagated to

the program point (⋆⋆) and is joined withS♯9 to yield S♯10. The abstract memory configuration

S♯4 is transformed into two new abstract memory configurations,with array partitionsP ♯
3 andP ♯

4 .

These configurations are propagated back to the head of the loop, and are joined withS♯3 and

S♯4, resulting in abstract memory configurationsS♯5 andS♯6, respectively. At this moment, the

analysis extrapolates the loop behavior by widening the numeric state ofS♯3 with respect to the

numeric state ofS♯5, and by widening the numeric state ofS♯4 with respect to the numeric state of

S♯6. The application of widening produces abstract memory configurationsS♯7 andS♯8. Thus, the

abstract state at the head of the loop at the beginning of the third iteration contains abstract memory

configurationsS♯1, S
♯
2, S

♯
7 andS♯8.

At the end of the third iteration, abstract memory configuration S♯7 is transformed into a con-

figuration with array partitionP ♯
5 , which is propagated to the program point (⋆⋆), where it is joined

with S♯10, resulting inS♯11. Abstract memory configurationS♯8 is transformed into two memory

configurations, which are propagated to the head of the loop.However, those configurations are

equivalent toS♯7 andS♯8, which were previously encountered by the analysis. Thus, at this stage,

the abstract state at the head of the loop stabilizes and the analysis terminates.

85

The abstract state accumulated at the program point (⋆⋆) contains a single non-trivial memory

configurationS♯11 (shown in Fig. 4.6). It is easy to see that this configuration represents only the

concrete states in which (i) the values stored in the arrayb range from−5 to 5 (this follows from

the constraint “−5 ≤ b<i ≤ 5”in the numeric state); and (ii) the value of each element of array b

is equal to the value of the element of arraya with the same index (this follows from the fact that

δ♯b(b<i) evaluates to the definite value 1).

4.5 Implementation of an Array-Analysis Tool

We built a prototype of our array analysis using the numeric extension that we implemented of

TVLA tool [78] (which was described in§3.7). The implementation is based on the ideas that have

been described above. However, to make the abstraction described in previous sections usable, we

have to define the abstract counterparts for the concrete state transformers shown in§4.2.

In [31], it is shown that for a Galois connection defined by abstraction functionα and con-

cretization functionγ, the best abstract transformer for a concrete transformerτ , denoted byτ ♯,

can be expressed as:τ ♯ = α ◦ τ ◦ γ. This defines the limit of precision obtainable using a given

abstract domain; however, it is a non-constructive definition: it does not provide analgorithm for

finding or applyingτ ♯.

For our tool, we definedoverapproximationsfor the best abstract state transformers by using

TVLA mechanisms. In the rest of this section, we give a brief overview of TVLA, and sketch the

techniques for modeling arrays and defining abstract transformers.

4.5.1 Overview of TVLA

TVLA models concrete states by first-order logical structures. The elements of a structure’s

universe represent the concrete objects. Predicates encode relationships among the concrete ob-

jects. The abstract states are represented bythree-valued logical structures, which are constructed

by applying canonical abstraction to the sets of concrete states. The abstraction is performed by

identifying a vector of unary predicates and representing the concrete objects for which these ab-

straction predicates evaluate to the same vector of values by a single element in the universe of

86

a three-valued structure. In the rest of the paper, we refer to these abstract elements asnodes. A

node that represents a single concrete object is called non-summary node, and a node that represent

multiple concrete objects is called summary node.

TVLA distinguishes between two types of predicates:core predicates andinstrumentation

predicates. Core predicates are the predicates that are necessary to model the concrete states.

Instrumentation predicates, which are defined in terms of core predicates, are introduced to capture

properties that would otherwise be lost due to abstraction.

An abstract state transformer is defined in TVLA as a sequenceof (optional) steps:

• A focus stepreplaces a three-valued structure by a set of more precise three-valued structures

that represent the same set of concrete states as the original structure. Usually, focus is used

to “materialize” a non-summary node from a summary node. Thestructures resulting from

a focus step are not necessarily images of canonical abstraction, in the sense that they may

have multiple nodes for which the abstraction predicates evaluate to the same values.

• A precondition stepfilters out the structures for which a specified property doesnot hold

from the set of structures produced by focus. Generally, preconditions are used to model

conditional statements.

• An update steptransforms each structure that satisfies the precondition,to reflect the effect

of an assignment statement. This is done by creating a new structure in which the core and

instrumentation predicates are assigned appropriate (i.e., sound) values.

• A coerce stepis a cleanup operation that “sharpens” updated three-valued structures by mak-

ing them comply with a set of globally defined integrity constraints.

• A blur steprestores the “canonicity” of coerced three-valued structures by applying canoni-

cal abstraction to them, i.e., merging together the nodes for which the abstraction predicates

evaluate to the same values.

In §3.7, we extended TVLA with the capability to explicitly model numeric quantities. In par-

ticular, we added the facilities to associate a set of numeric quantities with each concrete object,

87

and equipped each three-valued logical structure with an element of a summarizing numeric do-

main to represent the values of these quantities in abstractstates: i.e., each node in a three-valued

structure is associated with a set of dimensions of a summarizing numeric domain. TVLA’s spec-

ification language was extended to permit using numeric comparisons in logical formulas, and to

specify numeric updates.

4.5.2 Modeling arrays

We encode concrete states of a program as follows. Each scalar variable and each array element

corresponds to an element in the universe of the first-order logical structure. We also introduce a

core unary predicate for each scalar variable and for each array.These predicates evaluate to1

on the elements of the first-order structure that represent the corresponding scalar variable or the

element of the corresponding array, and to0 for the rest of the elements. Each element in the

universe is associated with a numeric quantity that represents its value. Each array element is

associated with an extra numeric quantity that represents its index position in the array.

To model the array structure in TVLA correctly, extra predicates are required. We model the

adjacency relation among array elements by introducing a binary instrumentation predicate for

each array. This predicate evaluates to1 when evaluated on two adjacent elements of an array. To

model the property that indices of array elements are contiguous and do not repeat, we introduce

a unary instrumentation predicate for each array that encodes transitive closure of the adjacency

relation.

Partitioning functions are defined by unaryinstrumentationpredicates. Because a partitioning

function may evaluate to three different values, whereas a predicate can only evaluate to0 or 1,

we use two predicates to encode each partitioning function.Auxiliary predicates from§4.3.3 are

implemented as unaryinstrumentationpredicates.

To perform the abstraction, we select a set of abstraction predicates that contains the predicates

corresponding to scalar variables and arrays, the predicates that encode the transitive closure of ad-

jacency relations for each array, and the predicates that implement the partitioning functions. The

88

auxiliary predicates are non-abstraction predicates. Theresulting three-valued structures directly

correspond to the abstract memory configurations we defined in §4.3.

The transformers for the statements that do not require array repartitioning, e.g., conditional

statements, assignments to scalar variables that are not used to index array elements, and array

reads and writes are modeled in a straightforward way. The transformers for the statements that

cause a change in array partitioning, i.e., updates of scalar variables that are used to index array

elements, are defined as follows:

• first, focusis applied to the structure to materialize the array elementthat will be indexed by

the variable after the update;

• then, the value of the scalar variable, and the interpretation of the partitioning predicates are

updated;

• finally, blur is used to merge the array element that was indexed by the variable previously,

into the appropriate summary node.

To update the interpretation of auxiliary predicates, the programmer must supply predicate-

maintenance formulas for each statement that may change thevalues of those predicates. Also, to

update the numeric state with the numeric properties encoded by the auxiliary as the grouping of the

concrete array elements changes, a set of integrity constraints implied by the auxiliary predicates

must be supplied.

Aside from the integrity constraints and update formulas for the auxiliary predicates, the con-

version of an arbitrary program into a TVLA specification canbe performed fully automatically.

The remaining manual steps could also be automated by extending the techniques fordifferenc-

ing logical formulas, described in [95], with the capability tohandle atomic numeric conditions.

However, we did not pursue this direction in our research.

4.6 Experimental Evaluation

In this section, we describe the application of the analysisprototype to four simple examples,

which encompass array manipulations that often occur in practice. We used a simple heuristic to

89

obtain the set of partitioning functions for each array in the analyzed examples. In particular, for

each array access “a[i]” in the program, we added a partitioning functionπa,i to the setΠ. This

approach worked well for all of the examples, except for the insertion-sort implementation, which

required the addition of an extra partitioning function.

4.6.1 Array initialization

Fig. 4.7(a) shows a piece of code that initializes arraya of size n. Each array element is

assigned a value equal to twice its index position in the array, plus3. The purpose of this example

is to illustrate that the analysis is able to automatically discover numeric constraints on the values

of array elements.

The array-partitioning heuristic produces a single partitioning functionπa,i for this example.

The analysis establishes that after the code is executed, the values stored in the array range from3

to 2× n+ 1. No human intervention in the form of introducing auxiliarypredicates is required.

In contrast, other approaches that are capable of handling this example [43, 111] require that the

predicate that specifies the expected bounds for the values of array elements be supplied explicitly,

either by the user or by an automatic abstraction-refinementtechnique [73].

4.6.2 Partial array initialization

Fig. 4.7(b) contains a more complex array-initialization example. The code repeatedly com-

pares elements of arraysa andb and, in case they are equal, writes their index position intothe

arrayc. The portion of arrayc that is initialized depends on the values stored in the arraysa andb.

Three scenarios are possible: (i) none of the elements ofc are initialized; (ii) an initial segment of

c is initialized; (iii) all of c is initialized. The purpose of this example is to illustratethe handling

of multiple arrays, as well as partial array initialization.

The array-partitioning heuristic derives a set of three partitioning functions for this example,

one for each array:Π = {πa,i, πb,i, πc,j}. The analysis establishes that, after the loop, the elements

of arrayc with indices between0 andj − 1 were initialized to values ranging from0 to n − 1.

Again, no auxiliary predicates are necessary.

90

int a[n], i, n;

i ← 0;

while(i < n) {
a[i] ← 2 × i + 3;

i ← i + 1;

}
(a)

int a[n], b[n], c[n], i, j, n;

i ← 0;

j ← 0;

while(i < n) {
if(a[i] == b[i]) {

c[j] ← i;

j ← j + 1;

}
i ← i + 1;

}
(b)

void sort(int a[], int n) {
int i, j, k, t;

i ← 1;

while(i < n) {
j ← i;

while(j > 0) {
k ← j - 1;

if(a[j] ≥ a[k]) break;

t ← a[j];

a[j] ← a[k];

a[k] ← t;

j ← j - 1;

}
i ← i + 1;

}
} (c)

Figure 4.7 Array manipulation code: (a) array-initialization loop; (b) partial array initialization;
(c) insertion-sort routine.

The abstract state that reaches the exit of the loop containsfour abstract memory configurations.

The first configuration represents concrete states in which none of the array elements are initialized.

The value ofj, in this domain element, is equal to zero, and, thus, the array partition does not

contain the abstract elementc<j.

The second and the third memory configurations represent theconcrete states in which only

an initial segment of arrayc is initialized. Two different memory configurations are required to

represent this case because the analysis distinguishes thecase of variablej indexing an element in

the middle of the array from the case ofj indexing the last element of the array.

The last abstract memory configuration represents the concrete states in which all elements of

arrayc are initialized. In the concrete states represented by thismemory configuration, the value

of variablej is equal to the value of variablen, and all elements of arrayc are represented by the

abstract array elementc<j.

The initialized array elements are represented by the abstract array elementc<j . The array

partition of the first memory configuration does not contain elementc<j , which indicates that no

91

elements were initialized. The numeric states associated with the other abstract memory config-

urations capture the property that the values of initialized array elements range between0 and

n− 1.

4.6.3 Insertion sort

Fig. 4.7(c) shows a procedure that sorts an array using insertion sort. Parametern specifies the

size of arraya. The invariant for the outer loop is that the array is sorted up to thei-th element. The

inner loop inserts thei-th element into the sorted portion of the array. An interesting detail about

this implementation is that elements are inserted into the sorted portion of the array in reverse

order. The purpose of this example is to demonstrate the application of the analysis to a more

challenging problem.

The application of the array-partitioning heuristic yields Π = {πa,j}. Unfortunately, this par-

titioning is not sufficient. We also need to use variablei to partition the array so that the sorted

segment of the array is separate from the unsorted segment. However, becausei is never explic-

itly used to index array elements, our array-partitioning heuristic fails to addπa,i to the set of

partitioning functions. To successfully analyze this example, we have to manually addπa,i to Π.

Summarizing numeric domains are not able to preserve the order of summarized array ele-

ments. An auxiliary predicate, defined similarly to the predicateδB in Ex. 4.4, needs to be in-

troduced. Our prototype implementation requires user involvement to specify the explicit update

formulas for this predicate for each of the program statements. Fortunately, the majority of the

program statements do not affect this predicate. Thus, the corresponding update formula for such

statements is the identity function. The only non-trivial case is the assignment to an array element.

The human involvement necessitated by the analysis is (i) minor, and (ii) problem-specific. In

particular, only one auxiliary predicate needs to be introduced. Furthermore, this predicate is not

specific to a given implementation of a sorting algorithm. Rather, it can be reused in the analysis

of other implementations, and even in the analysis of other sorting algorithms.

92

Example Abstract Memory Configurations (AMCs) Time for Time
Max AMCs per prog. pt. Max nodes per AMC Coerce & Focus (%) (sec)

Array initialization 7 8 68.3 1.7
Partial initialization 35 20 86.3 194.0
Array copy 7 13 94.2 338.1
Insertion sort 38 14 85.5 48.5

Figure 4.8 Array-analysis measurements.

Also, this example identifies some directions for future research: (i) designing better techniques

for the automatic array partitioning, and (ii) automatically discovering and maintaining auxiliary

predicates.

4.6.4 Analysis Measurements

We ran the analysis prototype on an Intel-based Linux machine equipped with a 2.4 GHz Pen-

tium 4 processor and 512Mb of memory. Fig. 4.8 shows the measurements we collected while

analyzing the examples discussed above. We report the maximal number of abstract memory

configurations encountered at a program point and the maximal number of abstract objects in an

abstract memory configuration (these objects include scalar variables and abstract array elements).

Also, we report the percentage of analysis time spent on performing TVLA’s focusandcoerce

operations.

Overall, the analysis results show that our prototype implementation is able to establish inter-

esting properties of array-manipulation code, but, at the same time, is not very efficient in terms

of the analysis time: it takes our prototype on the order of minutes to analyze the simple examples

we have considered. In principle, we believe that a dedicated implementation of the array analy-

sis (i.e., not within the confines of some general framework,such as TVLA), as described in this

chapter, will be much more effective in practice. Below we list some of the factors that make us

believe so.

The analysis times are severely affected by our decision to implement the analysis prototype in

TVLA. Because TVLA is a general framework, the structure of an array has to be modeled explic-

itly by introducing a number of instrumentation predicatesand integrity constraints. Consequently,

93

the majority of the analysis time is spent executing focus and coerce operations to ensure that the

array structure is preserved. The measurements in Fig. 4.8 indicate that, on average, focus and

coerce account for about80% of the overall analysis time. Building a dedicated analysisimple-

mentation, in which the knowledge of the linear structure ofarrays is built into the abstract state

transformers, would recover the majority of that time.

However, we must mention that our implementation relies on an older version of TVLA. Recent

developments significantly improved the overall performance of TVLA, and the performance of

the coerce operation, in particular [15, 79]. The reported speedups range from40× to 200×.

Another factor that slows down the analysis is our use of the polyhedral numeric domain. While

offering superior precision, the polyhedral numeric domain does not scale well as the number of

dimensions grows. This property is particularly apparent when a polyhedron that represents the

abstract state is a multidimensional hypercube. In the array-copy example, the constraints on the

values of elements of both arrays form a10-dimensional hypercube, which provides an explanation

of why the analysis takes over 6 minutes. If the constraints on the values of arraya are excluded

from the initial abstract state, the analysis takes merely8 seconds.

Observation of the numeric constraints that arise in the course of the analysis led us to believe

that using the less precise, but more efficient weakly-relational domain of zone intervals [86], may

speed up the analysis of the above examples without sacrificing precision. We reran the analysis

of the array-copy example, using a summarizing extension ofthis weakly-relational domain. The

analysis was able to synthesize the desired property in40 seconds, which is a significant improve-

ment over the time it takes to perform the analysis with a polyhedral domain.

4.7 Related work

The problem of reasoning about values stored in arrays has been addressed in previous research.

Below, we present a comprehensive survey of existing array-analysis techniques.

Masdupuy, in his dissertation [81], uses numeric domains tocapture relationships among values

and index positions of elements ofstatically initializedarrays. In contrast, our framework allows to

94

discover such relationships fordynamically initializedarrays. In particular, canonical abstraction

lets our approach retain precision by handling assignmentsto array elements using strong updates.

Blanchet et al., while building aspecial-purpose static program analyzer[14], recognized the

need for handling values of array elements. They proposed two practical approaches: (i)array

expansion, i.e., introducing an abstract element for each index in thearray; and (ii)array smashing,

i.e., using a single abstract element to represent all arrayelements. Array expansion is precise, but

in practice can only be used for arrays of small size, and is not able to handle unbounded-sized

arrays. Array smashing allows handling arbitrary arrays efficiently, but suffers precision losses due

to the need to perform weak updates. Our approach combines the benefits of both array expansion

and array smashing by dynamically expanding the elements that are read or written so as to avoid

weak updates, and smashing together the remaining elements.

Flanagan and Qadeer used predicate abstraction to infer universally-quantified loop invariants

[43]. To handle unbounded arrays, they used special predicates overSkolem constants, which are

synthetically introduced variables with unconstrained values. These variables are then quantified

out from the inferred invariants. The predicates are eithersupplied manually, or derived from the

program code with some simple heuristics. Our approach is different in that we model the values of

all array elements directly and usesummarizationto handle unbounded arrays. Also, our approach

uses abstract numeric domains to maintain the numeric stateof the program, which obviates the

need for calls to a theorem prover and for performing abstraction refinement.

Lahiri et al., [73] proposed a heuristic for derivingindexedpredicates (similar to the predicates

in Flanagan and Qadeer’s technique) that can be used by predicate abstraction to infer universal

array properties. The heuristic computes the weakest liberal precondition for the predicates that

appear in the property to be verified, and uses a set of simple rules to select certain conjuncts from

the weakest-precondition formula. In contrast, our approach models the values of array elements

directly, and thus, in most cases, does not require special predicates to specify the properties of

array elements. However, in cases when our technique requires auxiliary predicates, either due

95

to summarization (as in the insertion-sort example) or due to logical implications in the univer-

sal property to be verified (as in array copy), predicate abstraction (seeded with the right set of

predicates) may have an edge over our technique.

Černý introduced the technique ofparametric predicate abstraction[111], in which special-

purpose abstract domains are designed to reason about properties of array elements. The domains

are parametrized with numeric quantities that designate the portion of an array for which the de-

sired property holds. The abstract transformers are manually defined for each domain. The analysis

instantiates the domains by explicitly modeling their parameters in the numeric state. Our approach

differs in two respects. First, in our approach numeric states directly model array elements, which

allows the analysis to automatically synthesize certain invariants that involve values of array ele-

ments. Second, our approach separates the task of array partitioning from the task of establishing

the properties of array elements. This separation allows the user to concentrate directly on formu-

lating auxiliary predicates that capture the properties ofinterest.

Armando et al. proposed a technique for model checking linear programs with arrays [2–

4]. The technique is based on abstraction refinement in the sense that the set of variables and

array elements modeled by the analysis may be refined during analysis: i.e., the technique starts

by modeling only scalar variables. If the property cannot beverified, certain array elements are

brought into consideration. The process is repeated iteratively, on each step more and more array

elements are tracked by the analysis. The primary difference of this approach from our work is

that it is not capable to derive universal properties for unbounded arrays.

Jhala and McMillan proposed a technique for deriving array abstractions from the proofs of

infeasibility of spurious counterexamples [67]. The technique uses Craig Interpolation to derive

rangepredicates, which state that certain property holds for array elements with indices in a certian

symbolic range. These predicates are very similar to the parametric predicates used byČerný [111].

Our approach differs in that we model the values of array elements directly, and thus we do not

have to rely on iterative refinement to produce the necessarypredicates.

96

Chapter 5

Guided Static Analysis

The goal of static analysis is as follows: given a program anda set of initial states, compute the

set of states that arise during the execution of the program.Due to undecidability of this problem

in general, the sets of program states are typically over-approximated by families of sets that both

are decidable and can be effectively manipulated by a computer. Such families are referred to as

abstractions or abstract domains. As we outlined in Chapter2, if the abstract domain possesses

certain algebraic properties—namely, if the abstract transformers for the domain are monotonic

and distribute over join, and if the domain does not contain infinite strictly-increasing chains—

then simple iterative techniques yield the the most preciseapproximation for the set of reachable

states.

However, many useful existing abstract domains, especially those for modeling numeric prop-

erties, do not possess the above algebraic properties. As a result, standard iterative techniques

(augmented with widening, to ensure analysis convergence)tend to lose precision. The precision

is lost both due to overly-conservative invariant guesses made by widening, and due to joining

together the sets of reachable states along multiple paths.Moreover, the precision losses tend to

“snowball” throughout the duration of analysis; e.g., an overly-conservative loop-invariant guess

can lead the analysis to consider infeasible execution paths through the body of the loop, which, in

turn, can cause the analysis to generate an even more conservative invariant guess on the next loop

iteration.

In this chapter, we introduceguided static analysis, a general framework that improves the pre-

cision of program analysis by guiding its exploration of theprogram’s state space. The framework

controls state-space exploration by applying standard program-analysis techniques to a sequence

97

of program restrictions, which are modified versions of the analyzed program. The result of each

analysis run is used to derive the next program restriction in the sequence, and also serves as an

approximation of a set of initial states for the next analysis run. Note that existing static-analysis

techniques are utilized “as is”, making it easy to integratethe framework into existing tools. The

framework is instantiated by specifying a procedure for deriving program restrictions.

We present two instantiations of the framework, which target the precision loss due to the ap-

plication of widening operators. Recall from Chapter 2 thatstandard analysis techniques are com-

posed of two phases: theascending iterationphase, which relies on widening to over-approximate

the solution; followed by thedescending iterationphase, which refines the overly-conservative

solution obtained by the first phase. The rationale behind our approach is that therefinementphase

will be applied multiple times throughout the analysis: i.e., once for each program restriction. In-

tuitively, this allows the analysis to refine the intermediate approximations of the solution before

the precision loss has a chance to “snowball”. Thus, the splitting of the analysis into multiple

sequential phases—which is the primary contribution of ourapproach—allows the ascending and

descending iteration sequences to be interleaved. This is something that cannot be done in the

context of the standard approach from Chapter 2 because the interaction between uncontrolled

widening and narrowing operators may cause non-convergence. In contrast, with our approach

convergence is guaranteed (see§5.3 and§5.6.2).

The first instantiation improves the precision of widening in loops that have multiple phases.

This instantiation operates by generating a sequence of program restrictions that gradually intro-

duces individual program phases to the analysis. Individual program phases havesimplerbehav-

iors than that of the entire program; thus, existing program-analysis techniques are able to obtain

a more precise solution for each phase.

The second instantiation addresses the precision of widening in loops where the behavior of

each iteration is chosen non-deterministically. Such loops occur naturally in the realm of syn-

chronous systems [46, 57] and can occur in imperative programs if some condition within a loop

is abstracted away. This instantiation derives a sequence of program restrictions, each of which

enables a single kind of iteration behavior and disables allof the others. In the end, to make the

98

analysis sound, a program restriction with all of the behaviors enabled is analyzed. This strategy

allows the analysis to characterize each behavior in isolation, thus obtaining more precise results.

In non-distributive domains, the join operation loses precision. To keep the analysis precise,

many techniques propagate sets of abstract values instead of individual values. Various heuristics

are used to keep the cardinalities of propagated sets manageable. The main question that these

heuristics address is which abstract elements should be joined and which must be kept separate.

Guided static analysis is comprised of a sequence of phases,where each phase derives and analyzes

a program restriction. The phase boundaries are natural points for separating abstract values: that

is, within each phase the analysis may propagate a single abstract value; however, the results of

different phases need not be joined together, but may be keptas a set, thus yielding a more precise

overall result. In§5.5, we show how to extend the framework to take advantage of such disjunctive

partitioning.

In §5.6, we presentlookahead widening, an implementation technique for the instantiation of

guided static analysis framework that addresses widening precision in loops with multiple phases.

Lookahead widening folds the sequence of standard analysisruns (i.e., one for each program re-

striction) into a single run of a standard analysis. To achieve this, the abstract domain used by the

analysis is extended to propagate two abstract values. The first value is used to keep the analysis

within the current loop phase (i.e., within the current program restriction): this value is used to

decide “where to go” at program conditionals and is never widened. The second value is used to

compute the solution for the current phase: both widening and narrowing are applied to it. When

the second value stabilizes, it is promoted into the first value, thereby allowing the analysis to

advance to the next phase.

We refer to the first value as themain value, because it contains the overall solution after the

analysis converges, and to the second value asthe pilot value, because it “previews” the behavior

of the program along the paths to which the analysis is restricted.1 The overall technique is called

lookahead widening, because, from the point of view of the main value, the pilot value determines

a suitable extrapolation for it by sampling the analysis future.

1The wordpilot is used in the sense of, e.g., a sitcom pilot in the televisionindustry.

99

Historically, we introduced the technique oflookahead wideningfirst [48]. As it is, lookahead

widening is an integral part of all program-analysis tools we have implemented. We present a

comprehensive experimental evaluation of lookahead widening in §5.7.1. Recently, we generalized

the principles behind lookahead widening into theguided static analysisframework [49]. §5.7.2

presents preliminary experimental results for guided static analysis, which we obtained with a

prototype implementation.

5.1 Preliminaries

Recall from Chapter 2, that a program is specified by acontrol flow graph (CFG)G = (V,E),

whereV is a set of program locations, andE ⊆ V × V is a set of edges that represent the flow of

control. Aprogram stateassigns a value to every variable in the program. We useΣ to denote the

set of all possible program states. The functionΠG : E → (Σ → Σ) assigns to each edge in the

CFG the concrete semantics of the corresponding program statement. The semantics of individual

statements is trivially extended to operate on sets of states, i.e.,Π(e)(S) = {ΠG(e)(s) | s ∈ S},
wheree ∈ E andS ⊆ Σ.

Let Θ⊲ : V → ℘(Σ) denote a mapping from program locations to sets of states. The sets of

program states that arereachableat each program location from the states inΘ0 are given by the

least mapΘ⋆ : V → ℘(Σ) that satisfies the following set of equations (Eqn. (2.1)):

Θ⋆(v) ⊇ Θ⊲(v), and Θ⋆(v) =
⋃

〈u,v〉∈E

ΠG(〈u, v〉)(Θ⋆(u)), for all v ∈ V

The problem of computing exact sets of reachable states is, in general, undecidable.

5.1.1 Static Analysis

Static analysis sidesteps undecidability by using abstraction: sets of program states are ap-

proximated by elements of some abstract domainD = 〈D,⊑,⊤,⊥,⊔,∇〉. Let α andγ spec-

ify the abstraction and the concretization functions for the domainD, respectively. The function

Π♯
G : E → (D → D) gives the abstract semantics of individual program statements. To refer

100

to abstract states at multiple program locations, we useabstract-state mapsΘ♯ : V → D. Sim-

ilar to Chapter 2, we define the operationsα, γ, ⊑, and⊔ for Θ♯ as pointwise extensions of the

corresponding operations for the domainD.

A static analysis computes an approximation for the set of states that are reachable from an

approximation of the set of initial states according to the abstract semantics of the program. In the

rest of the paper, we view static analysis as ablack box, denoted byΩ, with the following interface:

Θ♯
⋆ = Ω(Π♯

G,Θ
♯
⊲), whereΘ♯

⊲ = α(Θ⊲) is the initial abstract-state map, andΘ♯
⋆ is an abstract-state

map that satisfies the property from Eqn. (2.2), i.e.,

∀v ∈ V :



Θ♯
⊲(v) ⊔

⊔

〈u,v〉∈E

Π♯
G(〈u, v〉)(Θ♯

⋆(u))



 ⊑ Θ♯
⋆(v).

Chapter 2 demonstrated how to construct a particular staticanalysis,Ω, based on the abstract-

interpretation framework [27, 29].

5.2 Overview of Guided Static Analysis

A guided-static-analysisframework provides control over the exploration of the program’s

state space. Instead of constructing a new analysis by meansof designing a new abstract domain

or imposing restrictions on existing analyses (e.g., by fixing an iteration strategy), the framework

uses an existing static analysis “as is”. Instead, state-space exploration is guided by modifying the

analyzed program to restrict some of its behaviors; multiple analysis runs are performed to explore

all of the program’s behaviors.

The framework is parametrized with a procedure for derivingsuch program restrictions. The

analysis proceeds as follows: the initial abstract-state map,Θ♯
⊲, is used to derive the first program

restriction; standard static analysis is applied to that program restriction to computeΘ♯
1, which

approximates a set of program states reachable fromΘ♯
⊲. Then,Θ♯

1 is used to derive the second

program restriction, which is in turn analyzed by a standardanalysis to computeΘ♯
2. This process

is repeated until thei-th derived restriction is equivalent to the original program; the final answer

is Θ♯
i.

101

x = 0;

y = 0;

while(true)

{
if(x <= 50) y++;

else y--;

if(y < 0) break;

x++;

}
(a)

ne

n1

n2 n3

n4

n5

n6nx

x←0
y←0

x≤50 x≥51

y←y+1 y←y−1

y≥0

x←x+1

y≤−1

(b)

x

y

51

51 102

(c)

xy

−1

102

(d)

Figure 5.1 Running example: (a) a loop with non-regular behavior; (b) control-flow graph for the
program in (a); (c) the set of program states atn1: the points with integer coordinates that lie on
the dark upside-down “v” form the precise set of concrete states; the gray triangle gives the best
approximation of that set in the polyhedral domain; (d) the single program state that reachesnx.

We use the program in Fig. 5.1(a) to illustrate the guided-static-analysis framework. The loop

in the program has two explicit phases: during the first fifty iterations, both variablex and variable

y are incremented; during the next fifty iterations, variablex is incremented and variabley is

decremented. The loop exits when the value ofy falls below0. This program is a challenge

for standard widening/narrowing-based numeric analyses because the application of the widening

operator over-approximates the behavior of the first phase and thus initiates the analysis of the

second phase with overly-conservative initial assumptions. Fig. 5.2 illustrates the application of

standard numeric analysis, using the polyhedral abstract domain, to the program. Widening is

performed at noden1 on the second and third iterations. After the third iteration, an ascending

iteration sequence of the analysis converges to a post-fix-point. A descending iteration sequence

converges in one iteration: it recovers the precision lost by the application of widening on the

third iteration, but is not able to recover the precision lost by the application of widening on the

second iteration. As a result, standard numeric analysis concludes that at the program pointn1 the

relationship between the values ofx andy is 0 ≤ y ≤ x, and at the program pointnx, y = −1 and

102

CFG Ascending iterations Descending iterations

Node 1st iteration 2nd iteration 3rd iteration 1st iteration

ne ⊤ ⊤ ⊤ ⊤

ne ⊔ n6
x

y

x

y

1

1
x

y
50

52
x

y

n1
x

y

x

y

x

y

x

y

n2
x

y

x

y
50

50

x

y
50

50

x

y
50

50

n3 ⊥
x

y
51

51

x

y
51

51

x

y
51

51

n4
x

y

1 x

y
50
51

50 51

1 x

y
50
51

50 51

1 x

y
50
51

50 51

1

-1

n5
x

y

1 x

y
50

51

1 x

y

1 x

y

1

n6
x

y

1

1

x

y
50

52

1

1
x

y

x

y

1

1

nx ⊥ ⊥ x
y

-2

-1

x
y

-1

51

Figure 5.2 Standard analysis trace. Widening is performed at noden1. At the join point,n4, the
polyhedra that are joined are shown in dark gray and the result is shown in light gray.

103

ne

n1

n2 n3

n4

n5

n6nx

x←0
y←0

x≤50 ⊥̄

y←y+1 ⊥̄

y≥0

x←x+1

⊥̄

(a)

ne

n1

n2 n3

n4

n5

n6nx

x←0
y←0

x≤50 x≥51

y←y+1 y←y−1

y≥0

x←x+1

⊥̄

(b)

ne

n1

n2 n3

n4

n5

n6nx

x←0
y←0

x≤50 x≥51

y←y+1 y←y−1

y≥0

x←x+1

y≤−1

(c)

Figure 5.3 Program restrictions for the program in Fig. 5.1:the unreachable portions of each CFG
are shown in gray; (a) the first restriction corresponds to the first loop phase; (b) the second restric-
tion consists of both loop phases, but not the loop-exit edge; (c) the third restriction incorporates
the entire program.

x ≥ 50. This is imprecise compared to the true sets of states at those program points (see Figs.

5.1(c) and 5.1(d)).

Guided static analysis, when applied to the program in Fig. 5.1(a) consecutively derives three

program restrictions, which are shown in Fig. 5.3: (a) consists to the first phase of the program; (b)

incorporates both phases, but excludes the edge that leads out of the loop; (c) includes the entire

program. Each restriction is formed by substituting abstract transformers associated with certain

edges in the control flow graph with more restrictive transformers (in this case, with̄⊥, which is

equivalent to removing the edge from the graph). We defer thedescription of the procedure for

deriving these restrictions to§5.4.1.

Fig. 5.4(a) illustrates the operation of guided static analysis.Θ♯
0 = Θ♯

⊲ approximates the set of

initial states of the program. The standard numeric analysis, when applied to the first restriction

(Fig. 5.3(a)), yields the abstract-state mapΘ♯
1, i.e.,Θ♯

1 = Ω(Π♯
1,Θ

♯
⊲). Note that the invariant for the

first loop phase (0 ≤ x = y ≤ 51) is captured precisely. Similarly,Θ♯
2 is computed asΩ(Π♯

2,Θ
♯
1),

andΘ♯
3 is computed asΩ(Π♯

3,Θ
♯
2). Because the third restriction is equivalent to the programitself,

the analysis stops, yieldingΘ♯
3 as the overall result. Note thatΘ♯

3 is more precise than the solution

104

Node Θ♯
0 Θ♯

1 Θ♯
2 Θ♯

3

ne ⊤ ⊤ ⊤ ⊤

n1 ⊥
x

y
51

51

x

y
51

51 102

x

y
51

51 102

n2 ⊥
x

y
50

50

x

y
50

50

x

y
50

50

n3 ⊥ ⊥
x

y
51

51 102
x

y
51

51 102

n4 ⊥
x

y
51

50

1 x

y
51

50 51 101

1

-1

x

y
51

50 51 101

1

-1

n5 ⊥
x

y
51

50

1 x

y
51

50 101

1 x

y
51

50 101

1

n6 ⊥
x

y
51

51

1

1
x

y
51

51 102

1

1
x

y
51

51 102

1

1

nx ⊥ ⊥ ⊥ x

y

-1

51 102

Figure 5.4 Guided static analysis results for the program inFig. 5.1(a): the sequence of abstract
states that are computed by analyzing the program restrictions shown in Fig. 5.3; abstract-state
mapΘ♯

3 is the overall result of the analysis.

105

computed by the standard analysis: it precisely captures the loop invariant at program pointn1 and

the upper bound for the value ofx at nodenx. In fact,Θ♯
3 corresponds to the least abstract state

map that satisfies Eqn. (2.2) (i.e., the least fix-point) for the program in Fig. 5.1(a) in the polyhedral

domain.

5.3 Guided Static Analysis

We now define guided static analysis formally. We start by extending the partial order of

the abstract domain to abstract transformers and to entire programs. The order is extended in a

straightforward fashion.

Definition 5.1 (Program Order) Let f, g : D → D be two abstract transformers, letG = (V,E)

be a control-flow graph, and letΠ♯
1,Π

♯
2 : E → (D → D) be two programs specified overG. We

define the following two relations:

• f ⊑̄ g , ∀d ∈ D [f(d) ⊑ g(d)]

• Π♯
1 ⊑̇ Π♯

2 , ∀e ∈ E
[

Π♯
1(e)⊑̄Π♯

2(e)
]

.

A program restriction is a version of a programΠ♯ in which some abstract transformers under-

approximate (̄⊑) those ofΠ♯. The aim is to make a standard analysis (applied to the restriction)

explore only a subset of the reachable states of the originalprogram. Note, however, that, if

widening is used by the analyzer, there are no guarantees that the explored state space will be

smaller (because widening is not monotonic, in general).

Definition 5.2 (Program Restriction) Let G = (V,E) be a control-flow graph, andΠ♯ : E →
(D → D) be a program specified overG. We say thatΠ♯

r : E → (D → D) is a restrictionof Π♯

if Π♯
r ⊑̇ Π♯

To formalize guided static analysis, we need a notion of aprogram transformer: that is, a pro-

cedureΛ that, given a program and an abstract state, derives a corresponding program restriction.

We allow a program transformer to maintain internal states,the set of which will be denotedI. We

assume that the setI is defined as part ofΛ.

106

Definition 5.3 (Program transformer) Let Π♯ be a program, letΘ♯ : V → D be an arbitrary

abstract-state map, and letI ∈ I be an internal state of the program transformer. Aprogram

transformer, Λ, computes a restriction ofΠ♯ with respect toΘ♯, and modifies its internal state, i.e.:

Λ(Π♯, I,Θ♯) = (Π♯
r, Ir), where Π♯

r ⊑̇ Π♯ and Ir ∈ I.

To ensure the soundness and the convergence of the analysis,we require that the program

transformer possess the following property: the sequence of program restrictions generated by a

non-decreasing chain of abstract states must converge to the original program in finitely many

steps.

Definition 5.4 (Chain Property) Let (Θ♯
i) be a non-decreasing chain, s.t.,

Θ♯
0 ⊑ Θ♯

1 ⊑ ... ⊑ Θ♯
k ⊑

Let (Π♯
i) be a sequence of program restrictions derived from(Θ♯

i) as follows:

(Π♯
i+1, Ii+1) = Λ(Π♯, Ii,Θ

♯
i)

whereI0 is the initial internal state forΛ. We say thatΛ satisfies thechain propertyif there exists

a natural numbern such thatΠ♯
i = Π♯, for all i ≥ n.

The above property is not burdensome: any mechanism for generating program restrictions can

be forced to satisfy the property by introducing a thresholdand returning the original program after

the threshold has been exceeded.

Definition 5.5 (Guided Static Analysis) Let Π♯ be a program, and letΘ♯
⊲ be an initial abstract-

state map. Also, letI0 be an initial internal state for the program transformerΛ. Guided static

analysisperforms the following sequence of iterations:

Θ♯
0 = Θ♯

⊲ and Θ♯
i+1 = Ω(Π♯

i+1,Θ
♯
i), where(Π♯

i+1, Ii+1) = Λ(Π♯, Ii,Θ
♯
i),

until Π♯
i+1 = Π♯. The analysis result isΘ♯

⋆ = Θ♯
i+1 = Ω(Π♯

i+1,Θ
♯
i) = Ω(Π♯,Θ♯

i).

107

Let us show that if the program transformer satisfies the chain property, the above analysis is

sound and converges in a finite number of steps. Both arguments are trivial:

Soundness.Let Π♯
a be an arbitrary program and letΘ♯

a be an arbitrary abstract-state map. Due to

the soundness ofΩ, the following holds:Θ♯
a ⊑ Ω(Π♯

a,Θ
♯
a). Let (Π♯

i) be a sequence of programs,

and let(Θ♯
i) be a sequence of abstract-state maps computed according to the procedure in Defn. 5.5.

Because eachΘ♯
i is computed asΩ(Π♯

i,Θ
♯
i−1), clearly, the following relationship holds:Θ♯

0 ⊑ Θ♯
1 ⊑

... ⊑ Θ♯
k ⊑

BecauseΛ satisfies the chain property, there exists a numbern such thatΠ♯
i = Π♯ for all i ≥ n.

The result of the analysis is computed as

Θ♯
⋆ = Θ♯

n = Ω(Π♯
n,Θ

♯
n−1) = Ω(Π♯,Θ♯

n−1)

and, sinceΘ♯
⊲ ⊑ Θ♯

0 ⊑ Θ♯
n−1 (i.e., then-th iteration of the analysis computes a set of program

states reachable from an over-approximation of the set of initial states,Θ♯
⊲), it follows that guided

static analysis is sound.

Convergence. Convergence follows trivially from the above discussion: becauseΠ♯
n = Π♯ for

some finite numbern, guided static analysis converges aftern iterations.

5.4 Framework Instantiations

The framework of guided static analysis is instantiated by supplying a suitable program trans-

former,Λ. This section presents two instantiations that are aimed atrecovering precision lost due

to the use of widening.

5.4.1 Widening in loops with multiple phases

As was illustrated in§5.2, multiphase loops pose a challenge for standard analysis techniques.

The problem is that standard techniques are not able to invoke narrowing after the completion of

each phase to refine the analysis results for that phase. Instead, narrowing is invoked at the very

end of the analysis when the accumulated precision loss is too great for precision to be recovered.

108

In this section, we present an instantiation of the guided-static-analysis framework that was

illustrated in§5.2. To instantiate the framework, we need to construct a program transformer,

Λphase, that derives program restrictions that isolate individual loop phases (as shown in Fig. 5.3).

Intuitively, given an abstract-state map, we would like to include into the generated restriction

the edges that are immediately exercised by that abstract state, and exclude the edges that require

several loop iterations to become active.

To define the program transformer, we again rely on the application of a standard static analysis

to a modified version of the program. Let̂Π♯ denote the version ofΠ♯ from which all backedges

have been removed. Note that the programΠ̂♯ is acyclic and thus can be analyzed efficiently and

precisely.2 The program transformerΛphase(Π
♯,Θ♯) is defined as follows (no internal states are

maintained, so we omit them for brevity):

Π♯
r(〈u, v〉) =







Π♯(〈u, v〉) if Π♯(〈u, v〉)(Ω(Π̂♯,Θ♯)(u)) 6= ⊥
⊥̄ otherwise

In practice, we first analyze the acyclic version of the program: i.e., computêΘ♯ = Ω(Π̂♯,Θ♯).

Then, for each edge〈u, v〉 ∈ E, we check whether that edge should be included in the program

restriction: if the edge is active (that is, ifΠ♯(〈u, v〉)(Θ̂♯(u)) yields a non-bottom value), then the

edge is included in the restriction; otherwise, it is omitted.

Fig. 5.5 illustrates this process for the program in Fig. 5.1(a). Π̂♯ is constructed by removing

the edge〈n6, n1〉 from the program. The first column in Fig. 5.5 shows the resultof analyzing

Π̂♯ with Θ♯
0 used as the initial abstract-state map. The transformers associated with the edges

〈n1, n3〉, 〈n3, n4〉, and〈n4, nx〉 yield ⊥ when applied to the analysis results. Hence, these edges

are excluded from the program restrictionΠ♯
1 (see Fig. 5.3(a)). Similarly, the abstract-state map

shown in the second column of Fig. 5.5 excludes the edge〈n4, nx〉 from the restrictionΠ♯
2. Finally,

all of the edges are active with respect to the abstract-state map shown in the third column. Thus,

the program restrictionΠ♯
3 is equivalent to the original program.

Note that the program transformerΛphase, as defined above, does not satisfy the chain property

from Defn. 5.4: arbitrary non-decreasing chains of abstract-state maps may not necessarily lead to

2We use the word “precisely” in the sense that the analysis need not rely on widening.

109

Node Ω(Π̂♯,Θ♯
0) Ω(Π̂♯,Θ♯

1) Ω(Π̂♯,Θ♯
2)

ne ⊤ ⊤ ⊤

n1
x

y

x

y
51

51
x

y
51

51 102

n2
x

y

x

y
50

50

x

y
50

50

n3 ⊥
x

y
51

51

x

y
51

51 102

n4
x

y

1 x

y
50
51

50 51

1 x

y
51

50 51 101

1

-1

n5
x

y

1 x

y
50
51

50 51

1 x

y
51

50 101

1

n6
x

y

1

1

x

y
50
51

51 52

1

1

x

y
51

51 102

1

1

nx ⊥ ⊥ x

y

-1

51 102

Figure 5.5 The abstract states that are obtained by analyzing the acyclic version of the program in
Fig. 5.1(a), which are used to construct the program restrictions in Fig. 5.3 (see§5.4.1).

110

the derivation of program restrictions that are equivalentto the original program (e.g., unreachable

code will not be included in any restriction). However, notethat the process is bound to converge

to some program restriction after a finite number of steps. Tosee this, note that each consecutive

program restriction contains all of the edges included in the previously generated restrictions, and

the overall number of edges in the program’s CFG is finite. Thus, to satisfy the chain property, we

makeΛphase returnΠ♯ after convergence is detected.

5.4.2 Widening in loops with non-deterministically chosenbehavior

Another challenge for standard analysis techniques is posed by loops in which the behavior of

each iteration is chosen non-deterministically. Such loops often arise when modeling and analyzing

synchronous systems [46, 57], but they may also arise in the analysis of imperative programs when

a condition of an if statement in the body of the loop is abstracted away (e.g., if variables used in

the condition are not modeled by the analysis). These loops are problematic due to the following

two reasons:

• the analysis may be forced to explore multiple iteration behaviors at the same time (e.g.,

simultaneously explore multiple arms of a non-deterministic conditional), making it hard for

widening to predict the overall behavior of the loop accurately;

• narrowing is not effective in such loops: narrowing operates by filtering an over-approximation

of loop behavior through the conditional statements in the body of the loop; in these loops,

however, the relevant conditional statements are buried within the arms of a non-deterministic

conditional, and the join operation at the point where the arms merge cancels the effect of

such filtering.

Fig. 5.6(a) shows an example of such loop: the program modelsa speedometer with the as-

sumption that the maximum speed isc meters per second (c > 0 is an arbitrary integer con-

stant) [46]. Variablesm and sec model signals raised by a time sensor and a distance sensor,

respectively. Signalsec is raised every time a second elapses: in this case, the time variablet is

incremented and the speed variables is reset. Signalm is raised every time a distance of one meter

111

volatile bool m, sec;

d = t = s = 0;

while(true)

{
if(sec) {
t++; s = 0;

}
else if(m) {
if(s < c) {
d++; s++;

}
}

}
(a)

ne

n1

n2 n4

n3 n5

n6

d←0
t←0
s←0

t←t+1
s←0 s<c

s≥c

d←d+1
s←s+1

(b)

0 ≤ d = s ≤ c
t = 0
(c)

s ≤ d ≤ c× t + s
0 ≤ d ≤ c

(d)

s ≤ d ≤ c× t + s
0 ≤ s ≤ c

(e)

Figure 5.6 A model of a speedometer with the assumption that maximum speed isc meters per
second [46] (c is a positive constant): (a) a program; (b) control-flow graph for the program in (a);
(c) abstract state atn1 afterΠ♯

1 (edge〈n1, n2〉 disabled) is analyzed; (d) abstract state atn1 after
Π♯

2 (edge〈n1, n4〉 disabled) is analyzed; (e) abstract state atn1 afterΠ♯
3 = Π♯ is analyzed.

is traveled: in this case, both the distance variabled and the speed variables are incremented.

Fig. 5.6(b) shows the CFG for the program: the environment (i.e., the signals issued by the sen-

sors) is modeled non-deterministically (noden1). The invariant that we desire to obtain at noden1

is d ≤ c× t+ s, i.e., the distance traveled is bound from above by the number of elapsed seconds

times the maximum speed, plus the distance traveled during the current second.

Standard polyhedral analysis when applied to this example yields the following sequence of

abstract states at noden1 during the firstk iterations (we assume thatk < c):

{ 0 ≤ s ≤ d ≤ (k − 1)× t+ s, t+ d ≤ k }

The application of widening extrapolates the above sequence to{ 0 ≤ s ≤ d } (i.e., by lettingk go

to∞). Narrowing refines the result to{ 0 ≤ s ≤ c, s ≤ d }. Thus, unless the widening delay is

greater thanc, the result obtained with standard analysis is imprecise.

To improve the analysis precision, we would like to analyze each of the loop’s behaviors in

isolation. That is, we would like to derive a sequence of program restrictions, each of which

captures exactly one of the loop’s behaviors and suppressesthe others. This can be achieved by

making each program restriction enable a single edge outgoing from the node where the control

112

is chosen non-deterministically and disable the others. After all single-behavior restrictions are

processed, we can ensure that the analysis is sound by analyzing a program restriction where all of

the outgoing edges are enabled.

For the program in Fig. 5.6(a), we construct three program restrictions: Π♯
1 enables edge

〈n1, n4〉 and disables〈n1, n2〉, Π♯
2 enables edge〈n1, n2〉 and disables〈n1, n4〉, Π♯

3 enables both

edges. Figs. 5.6(c), 5.6(d), and 5.6(e) show the abstract statesΘ♯
1(n1), Θ♯

2(n1), andΘ♯
3(n1) com-

puted by guided static analysis instantiated with the abovesequence of program restrictions. Note

that the overall result of the analysis in Fig. 5.6(e) implies the desired invariant.

We formalize the above strategy as follows. LetVnd ⊆ V be a set of nodes at which loop

behavior is chosen. An internal state of the program transformer keeps track of which outgoing

edge is to be enabled next for each node inVnd. One particular scheme for achieving this is to

make an internal stateI map each nodev ∈ Vnd to a non-negative integer: ifI(v) is less then the

out-degree ofv, thenI(v)-th outgoing edge is to be enabled; otherwise, all outgoing edges are to

be enabled. The initial stateI0 maps all nodes inVnd to zero.

If iteration behavior can be chosen at multiple points (e.g., the body of the loop contains a chain

of non-deterministic conditionals), the following problem arises: an attempt to isolate all possible

loop behaviors may generate exponentially-many program restrictions. In the prototype imple-

mentation, we resort to the following heuristic: we simultaneously advance the internal states for

all reachable nodes inVnd. This strategy ensures that the number of generated programrestrictions

is linear in|Vnd|; however, some loop behaviors will not be isolated.

As we illustrate in§5.7.2, the order in which the behaviors are enabled affects the overall

precision of the analysis. In our research, we do not addressthe question of finding an optimal

order. In our experiments, we used the above heuristic, and the level of precision achieved is quite

good (see§5.7.2). Another possibility would be to randomly choose theorder in which behaviors

are enabled. To increase the probability of obtaining a precise result, one can perform multiple

runs of the analysis and take the meet of the resulting values[105]: each run produces an over-

approximation; hence, their meet is also an over-approximation.

113

Let degout(v) denote the out-degree of nodev; also, letedgeout(v, i) denote thei-th edge out-

going fromv, where0 ≤ i < degout(v). The program transformerΛnd(Π
♯, I,Θ♯) is defined as

follows:

Π♯
r(〈u, v〉) =



















⊥̄ if





u ∈ Vnd, Θ♯(u) 6= ⊥, I(u) < degout(u)

and〈u, v〉 6= edgeout(u, I(u))





Π♯(〈u, v〉) otherwise

The internal state ofΛnd is updated as follows: for allv ∈ Vnd such thatΘ♯(v) 6= ⊥, Ir(v) =

I(v) + 1; for the remaining nodes,Ir(v) = I(v).

As with the first instantiation, the program transformer defined above does not satisfy the chain

property. However, the sequence of program restrictions generated according to Defn. 5.4 is bound

to stabilize in a finite number of steps. To see this, note thatonce nodev ∈ Vnd becomes reachable,

at mostdegout(v) + 1 program restrictions can be generated before exhausting all of the choices

for nodev. Thus, we can enforce the chain property by makingΛnd returnΠ♯ once the sequence

of program restrictions stabilizes.

5.5 Disjunctive Extension

A single iteration of guided static analysis extends the current approximation for the entire set

of reachable program states (represented with a single abstract-domain element) with the states

that are reachable via the new program behaviors introducedon that iteration. However, if the

abstract domain is not distributive, using a single abstract-domain element to represent the entire

set of reachable program states may degrade the precision ofthe analysis. A more precise solution

can potentially be obtained if, instead of joining togetherthe contributions of individual iterations,

the analysis represents the contribution of each iterationwith a separate abstract-domain element.

In this section, we extend guided static analysis to performsuch disjunctive partitioning. To

isolate a contribution of a single analysis iteration, we add an extra step to the analysis. That

step takes the current approximation for the set of reachable program states and constructs an

approximation for the set of states that immediately exercise the new program behaviors introduced

on that iteration. The resulting approximation is used as a starting point for the standard analysis

114

run performed on that iteration. That is, an iteration of theanalysis now consists of three steps:

the algorithm (i) derives the (next) program restrictionΠ♯
r; (ii) constructs an abstract-state mapΘ♯

r

that forces a fix-point computation to explore only the new behaviors introduced inΠ♯
r; and (iii)

performs a fix-point computation to analyzeΠ♯
r, usingΘ♯

r as the initial abstract-state map.

Definition 5.6 (Analysis History) Analysis historyHk captures the sequence of abstract-state maps

obtained by the firstk ≥ 0 iterations ofdisjunctiveguided static analysis.Hk maps an integer

i ∈ [0, k] to the result of thei-th iteration of the analysis.Hk approximates the set of program

states reached by the firstk analysis iterations as follows:

γ(Hk) =

k
⋃

i=0

γ(Hk(i)).

The introduction of the analysis history necessitates a change in the definition of a program

transformerΛ (Defn. 5.3): instead of a single abstract domain element, a program transformer

must accept an analysis history as input. We leave it in the hands of the user to supply a suitable

program transformerΛdj . In our implementation, we used a simple, albeit conservative way to

construct such a program transformer fromΛ:

Λdj(Π
♯, I, Hk) = Λ(Π♯, I,

k
⊔

i=1

Hk(i)).

For the program in Fig. 5.1,Λdj derives the same program restrictions as the ones derived byplain

guided static analysis (see Fig. 5.3).

Definition 5.7 (Fronier Edges) Let Π♯
k be the program restriction derived on thek-th iteration of

the analysis, wherek ≥ 1. The set offrontier edgesfor thek-th iteration consists of the edges

whose associated transformers are changed inΠ♯
k from Π♯

k−1 (for convenience, we defineΠ♯
0 to

map all edges tō⊥):

Fk =
{

e ∈ E | Π♯
k(e) 6= Π♯

k−1(e)
}

.

For the program in Fig. 5.1, the sets of frontier edges on the second and third iterations are

F1 = {〈ne, n1〉, 〈n1, n2〉, 〈n2, n4〉, 〈n4, n5〉, 〈n5, n6〉, 〈n6, n1〉}, F2 = {〈n1, n3〉, 〈n3, n4〉} andF3 =

{〈n4, nx〉}.

115

Definition 5.8 (Local Analysis Frontier) The local analysis frontierfor thek-th iteration of the

analysis is an abstract-state map that approximates the setof states that are immediately reachable

via the frontier edges inFk:

LFk(v) =
⊔

〈u,v〉∈Fk

[

k−1
⊔

i=0

Π♯
k(〈u, v〉)(Hk−1(i)(u))

]

.

For the program in Fig. 5.1, the local analysis frontier on the second iteration contains a single

program state:LF2(n3) = {x = y = 51}, which is obtained by applying the transformer associated

with the edge〈n1, n3〉 to the abstract stateH1(1)(n1) = {0 ≤ x = y ≤ 51}.
Some program states in the local analysis frontier may have already been explored on previous

iterations of the analysis. Theglobal analysis frontierrefines the local frontier by taking the

analysis history into consideration.

Definition 5.9 (Global Analysis Frontier) Global analysis frontierfor the k-th iteration of the

analysis is an abstract state map that approximates the set of states in the local analysis frontier

LFk that has not yet been explored by the analysis:

GFk(v) = α(γ(LFk(v))−
k−1
⋃

i=0

γ(Hk−1(i)(v))),

where “−” denotes set difference.

However, this definition of global analysis frontier is hardto compute in practice. In our imple-

mentation, we take a simplistic approach and compute:

GFk(v) =







⊥ if LFk(v) ∈ {Hk−1(i)(v) | 0 ≤ i ≤ k − 1}
LFk(v) otherwise

For the program in Fig. 5.1,GF2 = LF2 andGF3 = LF3.

Definition 5.10 (Disjunctive Extension) Let Π♯ be a program, and letΘ♯
⊲ be an abstract state that

approximates the initial configuration of the program. Also, let I0 be an initial internal state for the

116

program transformer,Λdj. The disjunctive extension of guided static analysis computes the set of

reachable states by performing the following iteration,

H0 =
[

0 7→ Θ♯
⊲

]

and Hi+1 = Hi ∪
[

(i+ 1) 7→ Ω(Π♯
i+1, GFi+1)

]

,

where(Π♯
i+1, Ii+1) = Λdj(Π

♯, Ii, Hi),

until Π♯
i+1 = Π♯. The result of the analysis is given byHi+1.

Fig. 5.7 illustrates the application of the disjunctive extension to the program in Fig. 5.1(a). The

analysis precisely captures the behavior of both loop phases. Also, the abstract value computed for

program pointnx exactly identifies the set of program states reachable atnx.

5.6 Lookahead Widening

The guided-static-analysis framework has extra computational costs associated with it: that is,

guided static analysis must perform certain auxiliary operations, which are external to the actual

computation of the set of reachable states. For instance, oneach iteration of the analysis, the

program transformerΛ must be executed. In the case of disjunctive extension, the number of

auxiliary operations performed on each iteration is even greater: the operations that have to be

executed in addition toΛ include the computation of the local and global analysis frontiers.

In this section, we propose an implementation for the instantiation of guided static analysis

in §5.4.1, which targets widening precision in loops with multiple phases. The implementation

allows to strip away completely the cost of auxiliary operations for the non-disjunctive guided

static analysis: that is, the implementation performs only“useful” work from the point of view of

state-space exploration. However, there is certain price to pay: namely, some restrictions must be

imposed on the implementation of a standard analysis for it to be usable in the framework; also,

the disjunctive extension does not fit well with this implementation scheme.

5.6.1 Approximation of Loop Phases

Instead of deriving syntactic program restrictions explicitly, as we described in§5.3, lookahead

widening approximates this behavior by using a specially designed abstract value to guide the

117

Node GF1 = Θ♯
0 Θ♯

1 GF2 Θ♯
2 GF3 Θ♯

3

ne ⊤ ⊤ ⊥ ⊥ ⊥ ⊥

n1 ⊥
x

y
51

51

⊥
x

y
50

52 102

⊥ ⊥

n2 ⊥
x

y
50

50

⊥ ⊥ ⊥ ⊥

n3 ⊥ ⊥
x

y
51

51
x

y
51

51 102

⊥ ⊥

n4 ⊥
x

y
51

50

1
⊥

x

y

102

-1

50

51

⊥ ⊥

n5 ⊥
x

y
51

50

1
⊥

x

y

101

50

51

⊥ ⊥

n6 ⊥
x

y
51

51

1

1

⊥
x

y
50

52 102

⊥ ⊥

nx ⊥ ⊥ ⊥ ⊥ x

y

-1

102
x

y

-1

102

Figure 5.7 Disjunctive extension of guided static analysis: the analysis trace for the program in
Fig. 5.1(a); for each analysis phase, the global frontier and the resulting abstract state are shown.
Note that the set of abstract values computed for program point nx describes the true set of states
reachable atnx (see Fig. 5.1(d)).

118

analysis through the program. That is, the analysis propagates a pair of abstract values: the first

value (referred to asthe main value) is used to decide at conditional points which paths are to be

explored; the second value (referred to asthe pilot value) is used to compute the solution along

those paths. Widening and narrowing are only ever applied tothe pilot value. Intuitively, the main

value restricts the analysis to a particular loop phase, while the pilot value computes the solution

for it. After the pilot value stabilizes, it is used to updatethe main value, essentially switching the

analysis to the next syntactic restriction in the sequence.

Let D be an arbitrary abstract domain:D = 〈D,⊑,⊔,⊤,⊥,∇,∆, {τ}〉, whereD is a set of

domain elements;⊑ is a partial order onD; ⊔, ⊤, and⊥ denote least-upper-bound operation, the

greatest element, and the least element ofD with respect to⊑;∇ and∆ are the widening operator

and the narrowing operator; and{τ : D → D} is the set of (monotonic) abstract transformers as-

sociated with the edges of program’s CFG (i.e., the transformers inΠ♯
G—we useτ here to simplify

the notation). We construct a new abstract domain:

DLA = 〈DLA,⊑LA,⊔LA,⊤LA,⊥LA,∇LA, {τLA}〉 ,

each element of which is a pair of elements ofD: one for the main value and one for the pilot value.

The pilot value must either equal the main value or over-approximate it. Also, the main value (and

consequently the pilot value) cannot be bottom. We add a special element to represent bottom for

the new domain:

DLA = {〈dm, dp〉 | dm, dp ∈ D, dm ⊑ dp, dm 6= ⊥} ∪ {⊥LA} .

The top element for the new domain is defined trivially as⊤LA = 〈⊤,⊤〉.
Abstract transformers are applied to both elements of the pair. However, to make the main

value guide the analysis through the program, if an application of the transformer to the main

value yields bottom, we make the entire operation yield bottom:

τLA(〈dm, dp〉) =







⊥LA if τ(dm) = ⊥
〈τ(dm), τ(dp)〉 otherwise

We define the partial order for this domain as lexicographic order on pairs:

〈cm, cp〉 ⊑LA 〈dm, dp〉 , (cm ⊏ dm) ∨ [(cm = dm) ∧ (cp ⊑ dp)] .

119

This ordering allows us to accommodate a decrease in the pilot value by a strict increase in the main

value, giving the overall appearance of an increasing sequence. However, the join operator induced

by⊑LA, when applied to pairs with incomparable main values, sets the pilot value to be equal to

the main value in the result. This is not suitable for our technique, because joins at loop heads,

where incomparable values are typically combined, would lose all the information accumulated by

pilots. Thus, we use an over-approximation of the join operator that is defined as a componentwise

join:

〈cm, cp〉 ⊔LA 〈dm, dp〉 = 〈cm ⊔ dm, cp ⊔ dp〉 .

The definition of the widening operator encompasses the essence of our technique: the main

value is left intact, while the pilot value first goes throughan ascending phase, then through a de-

scending phase, and ispromotedinto the main value after stabilization. Conceptually, thewidening

operator is defined as follows:

〈cm, cp〉∇LA 〈dm, dp〉 =



















〈cm ⊔ dm, cp∇ dp〉 if the pilot value is ascending

〈cm ⊔ dm, cp ∆ dp〉 if the pilot value is descending

〈dp, dp〉 if the pilot value has stabilized

The direct implementation of the above definition requires an analyzer to be modified to detect

whether the pilot value is in ascending mode, descending mode, or whether it has stabilized. Also,

for short phases, there is a possibility that the main value exits the phase before the pilot value

stabilizes, in which case the pilot must be switched to ascending mode. These are global properties,

and the modifications that are required depend heavily on theimplementation of the analyzer. In

our implementation, we took a somewhat different route, which we describe in the next section.

5.6.2 Practical Implementation

To simplify the integration of our technique into an existing analyzer, we impose on both the

analyzer and the underlying abstract domain restrictions that allow us to check locally the global

properties that are necessary for defining a widening operator:

120

• R1. Analyzer restriction: the analyzer must follow arecursive iteration strategy[18];

that is, the analysis must stay within each WTO component until the values within that

component stabilize. (See§2.3.4 for the definition of recursive iteration strategy.)

• R2. Abstract domain restriction: the abstract domain must possess astable widening

operator[18]; that is,x ⊑ y must imply thaty∇x = y.

Furthermore, our implementation does not utilize narrowing operators, and only computes the

equivalent of a single descending iteration for each loop phase. We believe that this simplification

is reasonable because meaningful narrowing operators are only defined for a few abstract domains;

also, in the experimental evaluation we did not encounter examples that would have significantly

benefited from a longer descending-iteration sequences.

We define the widening operator as follows:

〈cm, cp〉∇LA 〈dm, dp〉 =



















〈cm, cp〉 if 〈dm, dp〉 ⊑LA 〈cm, cp〉
〈dp, dp〉 if dp ⊑ cp

〈cm ⊔ dm, cp∇dp〉 otherwise

The first case ensures that the widening operator is stable. The second case checks whether the pilot

value has stabilized, and promotes it into the main value. Note that the pilot value that is promoted

is notcp, but the valuedp, which was obtained fromcp by propagating it through the loop to collect

the effect of loop conditionals (i.e., one possibly-descending iteration is performed). The last case

incorporates the pilot’s ascending sequence: the main values are joined, and the pilot values are

widened.

Soundness. It is easy to see that the results obtained with our techniqueare sound. Consider

the operations that are applied to the main values: they precisely mimic the operations that the

standard approach applies, except that widening is computed differently. Therefore, because the

application of∇LA never decreases main values and because main values must stabilize for the

analysis to terminate, the obtained results are guaranteedto be sound.

Convergence. We would like to show that a standard analyzer that is constructed in accordance

with the principles outlined in Chapter 2 and that employsDLA as an abstract domain converges.

121

The use of the recursive iteration strategy (R1) allows us tolimit our attention to a single WTO

component: that is, if we show that the analysis converges for an arbitrary component, then it must

converge for the entire program. Let us focus on the head of anarbitrary component: this is where

both widening is applied and stabilization is checked.

First, we show that either the pilot value is promoted or the entire component stabilizes after a

finite number of iterations. To do this, we rely on the property of the recursive-iteration strategy

that the stabilization of a component can be detected by stabilization of the value at its head [18,

Theorem 5]. The main value goes through a slow ascending sequence, during which time the

analysis is restricted to a subset of the component’s body. The pilot goes through an accelerated

ascending sequence, which, if the underlying widening operator∇ is defined correctly, must con-

verge in a finite number of iterations.∇LA detects stabilization of the pilot’s ascending sequence

by encountering a first pilot value (dp) that is less than or equal to the pilot value on the previous it-

eration (cp): because the widening operator is stable (R2), application of widening will not change

the previous pilot value. Note thatcp is a (post-)fix-point for the restricted component, anddp is the

result of propagating that (post-)fix-point through the same restricted component, and thus, is itself

a (post-)fix-point. Two scenarios must now be considered: either the main value has also stabilized

(i.e.,dm ⊑ cm), in which case〈dm, dp〉 ⊑LA 〈cm, cp〉 and the entire component stabilizes (due to

stability of∇LA); or the main value has not yet stabilized, in which case the (post-)fix-pointdp is

promoted into the main value.

Next, we show that only a finite number of promotions can ever occur. The argument is based

on the number of edges in the CFG. Depending on whether or not new CFG edges within the

component’s body are brought into consideration by the promotion of the pilot value into the main

value, two scenarios are possible. If no new edges are brought into consideration, then the analysis

stabilizes on the next iteration because both main value andpilot value are (post-)fix-points for this

component. Alternatively, new CFG edges are taken into consideration. In this case, the process

described in the previous paragraph starts anew, eventually leading to the next promotion. Because

the body of the component is finite, new edges can only be brought into consideration a finite

122

number of times. Thus, there can only be a finite number of promotions before the analysis of a

component converges.

5.6.3 Revisiting the Running Example

We illustrate the technique of lookahead widening by applying it to our running example.

Fig. 5.8 shows the trace of abstract operations performed bythe analysis. The first iteration is

identical to the standard numeric analysis shown in Fig. 5.2. Differences are manifested on the

second iteration: the widening operator propagates the unmodified main value, but applies widen-

ing to the pilot value. At noden4, note that the pilot value has been filtered by the conditional on

the edge(n1, n2). In contrast, in Fig. 5.2, the abstract state atn4 on the second iteration has an

unbounded band running off to the northeast. On the third iteration, the pilot value that reaches

noden1 is smaller than the pilot value stored there on the second iteration. Thus, this pilot value

is promoted into the main value. This corresponds to the solution of the first loop phase from

Fig. 5.3(a). As the third iteration progresses, the analysis starts exploring new CFG edges that

were brought into consideration by the promotion, in essence, analyzing the program restriction

from Fig. 5.3(b).

On the fourth iteration, atn1, the widening operator is applied to the pilot value again. At n6,

note that the pilot value has been filtered through the conditional on the edge(n4, n5). On the

fifth iteration, the pilot value is promoted again. From hereon, the analysis proceeds in the same

fashion as the standard analysis would, and converges on thenext iteration. The analysis obtains

more precise abstract values at all program points, except forn2, where the value is the same. Also,

note that the resulting solution is similar to that obtainedwith the first instantiation of guided static

analysis (see Fig. 5.4).

5.6.4 Discussion

In this section, we discuss several issues that are of relevance to lookahead widening. These

issues include interfacing with existing analyses tools and techniques, and certain limitations of

lookahead widening.

123

1st iteration 2nd iteration 3rd iteration 4th iteration 5th iteration

ne ⊤ ⊤ ⊤ ⊤ ⊤

ne ⊔ n6
x

y

x

y

1

1

x

y

2

2

51

51

x

y
50
51

51 52

x

y
51

48

51 54 102

n1
x

y

x

y

1

1

x

y
51

51

x

y
50
51

51 52 102

x

y
51

51 102

n2
x

y

x

y
50

50

1

1
x

y
50

50
x

y
50

50
x

y
50

50

n3 ⊥ ⊥
x

y
51

51
x

y
50
51

51 52 102
x

y
51

51 102

n4
x

y

1 x

y
51

50

1
2

1

x

y
50
51

50 51

1 x

y
51

49

50 52 101

1 x

y
51

50 51 101

1

-1

n5
x

y

1 x

y
51

50

1
2

1
x

y
50
51

50 51

1 x

y
51

49

50 52 101

1 x

y
51

50 101

1

n6
x

y

1

1
x

y
51

51

1
2

1 2
x

y
50
51

51 52

1

1
x

y
51

49

51 53 102

1

1
x

y
51

51 102

1

1

nx ⊥ ⊥ ⊥ ⊥ x

y

-1

51 102

Figure 5.8 Lookahead-widening analysis trace. Widening isapplied at noden1. Main values are
shown in dark gray. Light gray indicates the extent of the pilot value beyond the main value. Pilot
values are promoted on the 3rd and 5th iterations.

124

“Accumulating” analyzers. Some analyzers, rather than computing the abstract value for a CFG

nodev ∈ V as the join of the values coming from predecessors, i.e., instead of computing

Θ♯
i+1(v) =

⊔

〈u,v〉∈E

Π♯(〈u, v〉)(Θ♯
i(u)),

accumulatethe abstract value atv by joining the (single) abstract value contributed by a given

predecessorui to the value stored atv:

Θ♯
i+1(v) = Θ♯

i(v) ⊔ Π♯(〈mi, n〉))(Θ♯
i(mi)).

In particular, the WPDS++ implementation of weighted pushdown systems [69], on which our

numeric program analysis tool is based, follows this model.

The challenge that such an analyzer design poses to lookahead widening is that the pilot value

cannot be promoted directly into the main value by applying∇LA of the previous section. That is,

it is not sound to updatev’s value by

Θ♯
i+1(v) = Θ♯

i(v) ∇LA Π♯(〈mi, n〉))(Θ♯
i(mi))

because if the pilot value ofΠ♯(〈mi, n〉))(Θ♯
i(mi)) is promoted to be the main value atv, the

contributions of otherv’s predecessors may be lost.3 For instance, in Fig. 5.8, on the third iteration,

an accumulating analyzer would attempt to widen the value atn1 with the value atn6. (The identity

transformation is associated with edge〈n6, n1〉.) The pilot value atn6 is strictly smaller than the

pilot value atn1, and thus qualifies to be promoted. However, promoting it would result in an

unsound main value: the point(0, 0) would be excluded.

On the other hand, if the analyzer first performs a join and then widens (as is customarily done

in “accumulating” analyzers): i.e.,

Θ♯
i+1(v) = Θ♯

i(v) ∇LA

[

Θ♯
i(v) ⊔LA Π♯(〈mi, n〉))(Θ♯

i(mi))
]

, (5.1)

3In contrast, in analyzers that updatev with the join of the values from all predecessors, any promotion of the pilot
in

Θ♯
i+1(v) = Θ♯

i+1(v) ∇LA

⊔

〈u,v〉∈E

Π♯(〈u, v〉)(Θ♯
i(u))

does account for the contributions from all predecessors.

125

then the application of the join operatorcancelsthe effects of filtering the pilot value through the

conditionals in the body of the loop, thereby reducing lookahead widening into plain widening

with a delay.

To allow lookahead widening to be used in such a setting, we slightly redefine the widening

operator for accumulating analyzers. In particular, before making decisions about promotion, we

join the new pilot value with the main value that is stored at the node. This makes the pilot value

account for the values propagated along other incoming edges. The new widening operator is

defined as follows:

〈cm, cp〉 ∇acc
LA 〈dm, dp〉 =



















〈cm, cp〉 if 〈dm, dp〉 ⊑LA 〈cm, cp〉
〈dp ⊔ cm, dp ⊔ cm〉 if dp ⊔ cm ⊑ cp

〈dm ⊔ cm, cp∇(dp ⊔ cm)〉 otherwise

Note that for this widening operator to work, the widening must be performed as follows:

Θ♯
i+1(v) = Θ♯

i(v) ∇acc
LA Π♯(〈mi, n〉))(Θ♯

i(mi)),

and not according to Eqn. (5.1).

Runaway pilots. In loops (or loop phases) that consist of a small number of iterations, it is

possible for the analysis to exit the loop (or phase) before the pilot value has stabilized. For

instance, if the condition of the if-statement in the running example is changed tox < 1, the

pilot value will be widened on the second iteration, but willnot be effectively filtered through the

conditionals because of the contribution from the path through noden3, which is now enabled by

the main value. As a result, the analysis will propagate a pilot value that is larger than desired,

which can lead to a loss of precision at future promotions. Werefer to this as the problem of

runaway pilots.

One possible approach to alleviating this problem is to perform a promotion indirectly: that is,

instead of replacing the main value with the pilot value, apply widening “up to” [57] to the main

values using the symbolic concretization [96] of the pilot value as the set of “up to” constraints.

However, we did not try this approach in practice.

126

Memory usage. The abstract states shown in Fig. 5.8 suggest that the main value and the pilot

value are often equal to each other: in our running example, this holds for abstract states that arise

on the first, third, and fifth iterations of the analysis (morethan half of all abstract states that arise).

In our implementation, to improve memory usage, we detect this situation and store a single value

instead of a pair of values when the pilot value is equal to themain value.

Delayed widening. Another interesting implementation detail is the interaction of lookahead

widening with a commonly used technique calleddelayed widening. The idea behind delayed

widening is to avoid applying the widening operator during the firstk iterations of the loop, wherek

is some predefined constant. This allows the abstract statesto accumulate more explicit constraints

that will be used by the widening operator to generalize the loop behavior. We found it useful

in practice to reset the delayed-widening counter after each promotion of the pilot value. Such

resetting allows the analysis to performk widening-free iterations at the beginning of each phase.

5.7 Experimental Evaluation

In this section, we present the experimental evaluation of the techniques that were described in

this chapter. We experimented with a stable and time-testedimplementation of lookahead widen-

ing, and with early prototypes of the two instantiations of guided static analysis.

We compared lookahead widening to standard numeric analysis techniques, which we pre-

sented Chapter 2. We built a small analyzer that incorporated both the standard approach and

lookahead widening, and applied it to a collection of benchmarks that appeared recently in the

literature on widening [14, 26]. Lookahead widening improved analysis precision for half of the

benchmarks, with overheads of at most30% extra analysis iterations (i.e., extra chaotic iterations—

see§2.3.4).

Lookahead widening is also a part of our WPDS-based numeric program-analysis tool. There,

incorporation of lookahead widening carries special significance: the integration of a descending

iteration sequence, which is an integral part of standard numeric analysis, would have required

a major redesign of the WPDS++ solver, on which our implementation is based. In contrast,

127

the integration of lookahead widening did not require any modifications to the analysis engine.4

The integration of lookahead widening allowed our numeric analysis tool to establish tighter loop

invariants for 4-40% of the loops in a selected set of benchmarks, with overheads ranging from 3%

to 30%.

We implemented prototypes for the instantiations of guidedstatic analysis within the WPDS-

based analysis tool. The prototypes were compared against the lookahead-widening implementa-

tion on a collection of small benchmarks from [14, 26, 46].

5.7.1 Lookahead-Widening Experiments

We experimented with two implementations of lookahead widening: the first implementation

was built into a small intraprocedural analyzer; the secondimplementation was built into an off-the-

shelf weighted-pushdown-system solver, WPDS++ [69]. In both cases, incorporation of lookahead

widening required virtually no changes to the analysis engine Both implementations used polyhe-

dral abstract domains built with the Parma Polyhedral Library [7].

Intraprocedural implementation. We applied the first implementation to a number of small

benchmarks that appeared in recent papers about widening. The benchmarkstest* come from

work on policy iteration [26]. Theastree* examples come from [14], where they were used to

motivatethreshold widening: a human-assisted widening technique.Phase is our running exam-

ple, andmerge is a program that merges two sorted arrays.

Because lookahead widening essentially makes use of one round of descending iteration for

each WTO component, we controlled for this effect in our experiments by comparing lookahead

widening to a slight modification of the standard widening approach: in Standard+, after each

WTO component stabilizes, a single descending iteration isapplied to it.5 This modified analysis

converged for all of our benchmarks, and yielded solutions that were at least as precise and often

4Weighted pushdown systems, by default, do not support widening. Certain changes had to be made to the engine
to make it widening-aware.

5In general, interleaving ascending and descending iteration sequences in this way is an unsafe practice and may
prevent the analysis from converging.

128

Program Vars Loops Depth Standard+ Lookahead Overhead Improved
steps LFP steps LFP (% steps) precision (%)

test1 1 1 1 19 yes 19 yes - -
test2 2 1 1 24 yes 24 yes - -
test3 3 1 1 16 - 19 - 18.8 -
test4 5 5 1 79 - 97 - 22.8 33.3
test5 2 2 2 84 yes 108 yes 28.6 -
test6 2 2 2 110 - 146 - 32.7 100.0
test7 3 3 2 93 no 104 yes 11.8 25.0
test8 3 3 3 45 yes 45 yes - -
test9 3 3 3 109 yes 142 yes 30.3 -
test10 4 4 3 227 no 266 no 17.2 20.0
astree1 1 1 1 16 no 19 yes 18.8 50.0
astree2 1 1 1 27 - 33 - 22.2 -
phase 2 1 1 46 no 58 yes 26.1 100.0
merge 3 1 1 63 no 64 yes 1.6 100.0

Table 5.1 Lookahead wideining: intraprocedural implementation results. Columns labeledsteps
indicate the number of node visits performed;LFP indicates whether the analysis obtains the
least-fix-point solution (‘-’ indicates that we were not able to determine the least fix-point for
the benchmark);improved precisionreports the percentage ofimportantprogram points at which
the analysis that used lookahead widening yielded smaller values (‘-’ indicates no increase in
precision). Important program points include loop heads and exit nodes.

more precise than the ones obtained by the standard analysis. The only exception wastest10,

where the results at some program points were incomparable to the standard technique.

Tab. 5.1 shows the results we obtained. To determine least-fix-points, we ran the analysis with-

out applying widening.6 The results indicate that lookahead widening achieved higher precision

than the strengthened standard approach on half of the benchmarks. Also, the cost of running

lookahead widening was not extremely high, peaking at about33% extra node visits fortest6.

We will discuss one benchmark in detail. Inastree1, an inequation is used as the loop condi-

tion; e.g.,

6For some benchmarks, this approach was not able to produce the LFP solution:test3 andastree2 contain loops
of the form “while(1) {...}” and so the analysis failed to terminate with widening turned off; programstest4 and
test6 terminate, but polyhedral analysis of them (with no widening) does not. This is due to the fact that the set of
polyhedra over rational numbers (as implemented in Parma PPL) does not form a complete lattice: i.e., it may contain
chains of polyhedra that do not have upper bounds; e.g., consider a sequence of one-dimensional polyhedra (intervals),
whose lower bound is fixed and whose upper bounds gradually approach to an irrational number.

129

Name Program Push-down System Time (sec) Overhead Improved
instr coverage stack same push pop std look (%) precision

(%) sym level ahead (%)
speex 22364 7.9 517 483 26 20 1.13 1.33 17.4 40.0
gzip 13166 29.0 1815 2040 76 20 5.70 7.32 28.4 38.2
grep 30376 22.0 9029 10733 201 39 18.62 20.61 10.7 3.3
diff 142959 24.7 9516 11147 217 67 28.41 32.87 15.7 7.5
plot 119910 27.5 15536 15987 1050 159 44.08 45.41 3.0 20.3
graph 129040 26.0 16610 17800 824 155 53.92 56.67 5.1 19.8
calc 178378 18.7 26829 28894 1728 241 85.33 92.23 9.3 5.2

Table 5.2 Lookahead widening: WPDS implementation results. Instr lists the number of x86 in-
structions in the program.Coverageindicates what portion of each program was analyzed.Stack
symbolscorrespond to program points: there are (roughly) two stacksymbols per basic block.
Same-levelrules correspond to intraprocedural CFG edges between basic blocks;pushrules cor-
respond to procedure calls;pop rules correspond to procedure returns. Reported times are for
the WPDSpoststaroperation. Precision improvement is given as the percentage of loop heads at
which the solution was improved by the lookahead-widening technique.

i = 0;

while(i != 100)

i++;

The inequation ‘i 6= 100’, which is hard to express in abstract domains that rely on convexity, is

modeled by replacing the corresponding CFG edge with two edges: one labeled with ‘i < 100’,

the other labeled with ‘i > 100’. The application of widening extrapolates the upper boundfor i

to +∞; the descending iterations fail to refine this bound. In contrast, lookahead widening is able

to obtain the precise solution: the main value, to which widening is not applied, forces the analysis

to always follow the ‘i < 100’ edge, and thus the pilot value picks up this constraint before being

promoted.

WPDS implementation. We used the WPDS++ implementation to determine linear relations

over registers in x86 executables. CodeSurfer/x86 was usedto extract a pushdown system from

the executable. The contents of memory were not modeled and reads from memory were handled

conservatively, e.g., by assigning the value? to the corresponding register (see§2.1.2). Also, we

chose to ignore unresolved indirect calls and jumps: as the result, only a portion of each program

was analyzed. We applied this implementation to a number of GNU Linux programs that were

130

Prog. Lookahead GSA Disjunctive GSA
steps phases steps prec. speedup (%) phases steps prec. speedup (%)

test1 58 2 54 - 7.9 2 42 - 22.2
test2 56 2 56 - - 2 42 - 25.0
test3 58 1 44 - 24.1 1 42 - 4.5
test4 210 6 212 - -1.0 6 154 - 27.4
test5 372 3 368 - 1.1 3 406 1/3 -10.3
test6 402 3 224 3/3 44.3 3 118 2/3 47.3
test7 236 3 224 - 3.4 3 154 4/4 31.3
test8 106 4 146 - -37.7 3 114 - 21.9
test9 430 4 444 - -3.3 4 488 4/4 -9.9
test10 418 4 420 - -0.5 4 246 5/5 41.4

Table 5.3 Guided static analysis: loops with multiple phases (§5.4.1): GSA is compared against
lookahead widening; disjunctive GSA is compared against GSA. stepsis the total number of steps
perfomed by each of the analyses;phasesis the number of GSA phases;prec reports precision
improvement: “-” indicates no imrovement,k/m indicates that sharper invariants are obtained at
k out ofm “interesting” points (interesting points include loop heads and exit nodes);

compiled under Cygwin. The lookahead-widening technique was compared to standard widening.

No descending-iteration sequence was applied, because it would have required a major redesign

of the WPDS++ solver. Tab. 5.2 presents the results obtained: lookahead widening improves the

precision of the analysis on all of the benchmarks, and runs with an overhead of at most 30%.

5.7.2 Guided-Static-Analysis Experiments

We implemented a prototype of the guided-static-analysis framework with both of the instanti-

ations from§5.4.1 and§5.4.2 within the WPDS based numeric program analyzer. As we mentioned

in §5.6, there are extra operations that are carried out by guided static analysis, such as deriving

program restrictions and computing analysis frontiers. Inthe WPDS setting, there are additional

concerns that have to be addressed. Most notably, some of ourWPDS techniques, such as the

support for local variables [75], are implemented as weight-wrappers (i.e., a layer on top of an

existing weight that also exposes a weight interface). These wrappers must be preserved from it-

eration to iteration of guided static analysis. In our current implementation, we did not attempt to

optimize or even speed up these operations. Instead, our primary concern was the precision of the

analysis and the efficiency of actual state-space exploration. Thus, we measure the performance of

131

the analysis in terms ofanalysis steps: each step corresponds to an application of a single abstract

transformer.7 Note that, although, guided static analysis seems to sometimes outperform looka-

head widening in terms of analysis steps, in practice, guided-static-analysis runs take much longer

compared to lookahead-widening analysis runs.

A widening delay of 4 was used in all of the experiments. Speedups (overheads) are reported as

the percentage of extra steps performed by the baseline analysis (evaluated analysis), respectively.

We applied the instantiation from§5.4.1 to a subset of benchmarks that were used to eval-

uate the intraprocedural implementation of lookahead widening. Tab. 5.3 shows the results we

obtained. With the exception oftest6, the results from GSA and lookahead widening are com-

parable: the precision is the same, and the difference in running times can be attributed to im-

plementation choices. This is something we expected, because GSA is a generalization of the

lookahead-widening technique. However, GSA yields much better results fortest6: in test6,

the loop behavior changes when the induction variable is equal to certain values. The changes in

behavior constitute short loop phases, which cause problems for lookahead widening. Also, GSA

stabilized in a fewer number of steps because simpler polyhedra arise in the course of the analysis.

Tab. 5.3 also compares the disjunctive extension to plain GSA. Because the analysis performed

in each phase of the disjunctive extension does not have to reestablish the invariants obtained on

previous phases, the disjunctive extension requires feweranalysis steps for most of the bench-

marks. To compare the precision of the two analyses, we joined the analysis history obtained by

the disjunctive extension for each program location into a single abstract value: for half of the

benchmarks, the resulting abstract values are still significantly more precise than the ones obtained

by plain GSA. Most notably, the two loop invariants intest6 are further sharpened by the dis-

junctive extension, and the number of analysis steps is further reduced.

The instantiation in§5.4.2 is applied to a set of examples from [14, 46]:astree is the (second)

example that motivates the use of threshold widening in [14], speedometer is the example used

7Note that, due to the difference between implementations, thestepsin Tab. 5.1 and in Tab. 5.3 are quite different:
in Tab. 5.1, one step corresponds to applying a corresponding transformer toeachpredecessor of the node, computing
the join of the resulting values, and updating the value of that node; in Tab. 5.3, one step corresponds to applying
a transformer associated with asingleCFG edge and updating the value stored at the destination of that edge. This
explains the difference in values between the two tables.

132

Program Vars Nodes ND Lookahead GSA Overhead
steps inv. runs phases steps inv. (%)

astree 1 7 1(2) 104 no 2 3 107 yes 2.9
speedometer 3 8 1(2) 114 no 2 3 207 yes 81.6
gas burner 3 8 2(2) 164 no 4 3.5 182.5 3/4 11.3
gas burner II 4 5 1(3) 184 no 6 4 162 4/6 -12.0

Table 5.4 Guided static analysis: loops with non-deterministic behavior (§5.4.2):ND k(m) gives
the amount of non-determinism:k = |Vnd| andm is the out-degree for nodes inVnd; runs is the
number of GSA runs, each run isolates iteration behaviors indifferent order;stepsis the total
number of analysis steps (for GSA it is the average across allruns);phasesis the average number
of GSA phases;inv. indicates whether the desired invariant is obtained (for GSA, k/m indicates
that the invariant is obtained onk out ofm runs).

in §5.4.2; the two other benchmarks are the models of a leaking gas burner from [46]. The results

are shown in Tab. 5.4: guided static analysis was able to establish the desired invariants for all of

the examples.

When defining the instantiation, we did not specify an order in which the loop behaviors are

to be enabled. An interesting experimental question is whether there is a dependence between the

order in which behaviors are enabled and the precision of theanalysis. To answer this question,

we enumerated all possible orders in which iteration behaviors can be enabled for these examples.

Interestingly, the precision of the analysis on the two gas-burner benchmarks does depend on

the order in which the behaviors are enabled. However, if theorder is picked randomly, guided

static analysis has more than66% chance of succeeding for these benchmarks. An interesting

open question is whether there is a more systematic way for ordering loop behaviors to improve

the precision of the analysis. Another possibility is to usemultiple runs—taking the meet of the

results [105]—as a way to boost the chances of succeeding.

5.8 Related Work

In this section, we discuss some of the techniques that are related to guided static analysis

and lookahead widening. We consider three groups of techniques: techniques that have some

control over state-space exploration, techniques that address widening precision, and techniques

that address precision loss due to non-distributivity of abstraction.

133

5.8.1 Controlled state-space exploration

Bourdoncle discusses the effect of an iteration strategy onthe overall efficiency of analysis [18].

Model checking in general, andlazy abstraction[59] in particular, perform state-space exploration

in a way that avoids performing joins: in lazy abstraction, the CFG of a program is unfolded as a

tree, and stabilization is checked by a specialcoveringrelation. Thedirected automated random

testing (DART)technique [45] restricts the analysis to the part of the program that is exercised by

a particular test input; the result of the analysis is used togenerate inputs that exercise program

paths not yet explored. The analysis is carried out dynamically by an instrumented version of the

program. Grumberg et al. construct and analyze a sequence ofunder-approximated models by

gradually introducing process interleavings in an effort to speed up the verification of concurrent

processes [54]. We believe that the GSA framework is more general than the above approaches.

Furthermore, the GSA instantiations presented in this chapter address the precision of widening,

which is not addressed by any of the above techniques.

5.8.2 Widening precision

Improving widening operators [6]. One research direction is the design of more precise widening

operators—that is, widening operators that are better at capturing the constraints that are present in

their arguments. This approach is orthogonal to our technique: lookahead widening would benefit

from the availability of more precise (base-domain) widening operators.

Widening “up to” [57] (a.k.a. limited widening). In this technique, each widening point is

augmented with a fixed set of constraints,M . The value that is obtained from the application of

the standard widening operator is further restricted by those constraints fromM that are satisfied by

both arguments of the widening operator. Given a well-chosen set of constraints, this technique is

very powerful. A number of heuristics are available for deriving these constraint sets. In principle,

the propagation of the pilot value by our technique can be viewed as an automatic way to collect

and propagate such constraints to widening points. Alternatively, whenever such constraint sets are

available (e.g., are derived by some external analysis or heuristic), lookahead widening can utilize

134

them by applying widening “up to” to the pilot values. This will be beneficial when lookahead

widening is not able to break a loop into simpler phases (for instance, if a loop contains a non-

deterministic conditional).

“New-control-path” heuristic [57]. This heuristic addresses imprecision that is due to new loop

behaviors that appear on later loop iterations: it detects whether new paths through the loop body

were explored by the analysis on its last iteration—in whichcase the application of widening is

delayed (to let captured relationships evolve before widening is applied). While this heuristic

handles the introduction of new loop behaviors well, it doesnot seem to be able to cope with

complete changes in loop behavior, e.g., it will not improvethe analysis precision for our running

example. The lookahead-widening technique can be viewed asan extension of the new-control-

path heuristic: not only the application of widening is delayed when the new control paths become

available, but also the solution for the already explored control paths is refined by computing a

descending iteration sequence.

Policy iteration [26, 44]. Policy-iteration techniques derive a series of program simplifications

by changing the semantics of the meet operator: each simplification is analyzed with a dedi-

cated analysis. We believe that our approach is easier to adopt because it relies on existing and

well-understood analysis techniques. Furthermore, existing policy-iteration techniques support the

interval abstact domain [26], and certain weakly-relational abstract domains [44], but it is not ob-

vious whether it is possible to extend the technique to support fully-relational abstract domains

(e.g., polyhedra).

Widening with landmarks [108]. Widening with landmarks collects unsatisfiable inequalities

(landmarks) and uses them as oracles to guide fix-point acceleration: i.e., at widening points, a

special technique that extends the polyhedron to the closest landmark is used in place of widening.

The technique is similar in spirit to lookahead widening in that it also collects certain information

about the analysis “future” in the form of landmarks. However, widening with landmarks requires

specially designed extrapolation operators, which (at thetime of writing) are only available for

the polyhedral domain. In contrast, lookahead widening canbe used with any existing abstract

domain, and is much easier to implement and integrate into existing analysis tools.

135

Combining widening and loop acceleration [46]. Gonnord et al. combine polyhedral analy-

sis with acceleration techniques: complex loop nests are simplified by “accelerating” some of the

loops. The analysis requires a preprocessing step, which (i) computes the transformers for indi-

vidual loop behaviors; (ii) accelerates the transformers (that is, computes the transitive closure of

the transition relation imposed by the transformer — this can only be done if the transformer falls

into one of the categories supported by the analysis); and (iii) replaces the loops in the program

with the accelerated transformers. After that, a standard numeric analysis is executed on the mod-

ified program. The instantiation in§5.4.2 attempts to achieve the same effect, but does not rely on

explicit acceleration techniques, and is much simpler to implement in practice.

5.8.3 Powerset extensions

Disjunctive completion[31] improves the precision of an analysis by propagating sets of abstract-

domain elements. However, to allow its use in numeric program analysis, widening operators must

be lifted to operate on sets of elements [5]. Sankaranarayanan et al. [102] circumvent this problem

by propagating single abstract-domain elements through anelaboration of the control-flow graph

(constructed on the fly).ESP[34], TVLA [78], and thetrace-partitioning framework[83] structure

abstract states as functions from a specially-constructedfinite set (e.g., set of FSM states [34], set

of valuations of nullary predicates [78], and a set of trace-history descriptors, respectively) into the

set of abstract-domain elements: at merge points, only the elements that correspond to the same

member of the set are joined. The disjunctive extension in§5.5 differs from these techniques in two

aspects: (i) the policy for separating abstract-domain elements is imposed implicitly by the pro-

gram transformer; and (ii) the base-level static analysis,invoked on each iteration of GSA, always

propagates single abstract-domain elements.

136

Chapter 6

Numeric Program Analysis with Weighted Pushdown Systems

The program-analysis techniques that we described in Chapter 2 target programs that consist

of a single procedure. In reality, however, this is rarely the case: a typical program is composed

of a large number of functions, which may invoke each other (possibly recursively). The set of

variables used by a program is no longer uniform: it consistsof a set ofglobal variables, which

are visible to all of the functions in the program; also, eachfunction has a set oflocal variables,

which are only used by that function. The information transferred between functions is passed

either through global variables or through the function’s formal parameters: in this section, we

assume that a function has a set ofinput parameters, whose values are specified at the call site

of the function and are used to pass the information to the invoked function, and a set ofoutput

parameters, which are used to return the computed information back to the point in the calling

function just after the call site (for simplicity, we will view the function’s return value as an output

parameter).

A program is specified as a set of control-flow graphs (CFGs)—one for each function in the

program. A special program-state transition, referred to as acall transition, is used to invoke a

specified function. Also, a subset of nodes of each CFG are designated asreturnnodes: that is, the

nodes from which control is transferred back to the calling function.

A straightforward way to apply the techniques from Chapter 2to perform interprocedural anal-

ysis is to connect the CFGs of the individual functions into asingle graph, referred to as the

supergraph[88]. A supergraph is constructed by replacing each call-transition edge in each CFG

with a set of edges—an edge from the source of the call-transition edge to the entry node of the

137

main() {;
x = 0;
foo();

}
foo() {

if(x <= 100) {
x = x + 1;
foo();
x = x + 1;

}
}

(a)

me

m1

m2

m3

m4

m5

ne

n1

n2

x≤100

x←x+1

call foo

x←x+1

x≥101

x←0

call foo

main:

foo:

(b)

Figure 6.1 A simple program that consists of two functions:mainandfoo (function foo is called
recursively); (a) textual representation of the program; (b) control-flow graphs formainandfoo;
the call-transition edges are shown as dotted arrows; dashed edges illustrate the construction of the
supergraph.

called-function’s CFG, and an edge from each return node of the called-function’s CFG to the des-

tination of the call-transition edge. The entry node of the supergraph corresponds to the entry node

of a specially-designatedmain function. The application of the techniques from Chapter 2 to the

supergraph of the program yields a sound solution; however,the solution obtained is, in general,

not precise.1

Fig. 6.1(a) shows a simple program that consists of two functionsmainandfoo: functionmain

calls functionfoo, and functionfoocalls itself recursively. The program has one global variable x.

Fig. 6.1(b) shows the control-flow graphs for functions mainandfoo; the supergraph is constructed

by replacing the dotted edges in the CFGs with the dashed edges. The program behaves as follows:

the first101 invocations offoofollow the left branch of the conditional (the recursive case) bringing

the value ofx to 101; also, the run-time stack accumulates101 unfinished invocations offoo. On

1For an in-depth discussion of the comparative precision of interprocedural analysis vs. intraprocedural analysis,
see for instance [94]. We omit the formal discussion ofmeet-over-all-pathssolutions vs.meet-over-all-valid-paths
solutions, because we primarily work with abstract domainsthat are non-distributive and rely on extrapolation: thus,
we generally have no guarantee of obtaining such solutions in either the intraprocedural case or the interprocedural
case.

138

the102-nd invocation, the right arm of the conditional (the base case) is followed. After that, the

run-time stack is unwound by completing the unfinished invocations offoo, which brings the value

of x to 202. Thus, the value of variablex at the program pointn2 is 202.

The analysis of the supergraph is inherentlynotable to obtain the precise value for the variable

x at n2. The primary challenge for the analysis is the loop formed bynodesm3, m4, andm5:

the number of iterations performed by this loop is determined by the configuration of the run-

time stack, which is not modeled by the analysis. That is, theanalysis fails to separate the valid

interprocedural paths (i.e., paths with matching functioncalls and returns) from other paths. Thus,

the analysis assumes that the control at nodem5 is transferred non-deterministically to eitherm3

or n2, and, at best, computes the following over-approximation for the value ofx atn2: x ≥ 101.

A well-known technique for improving the precision of the analysis described above is the

use ofcall-strings[106]: call-strings are finite prefixes of the run-time stack(the run-time stack

itself isunbounded) that allow to separate the abstract program states that arise in (a finite number

of) different contexts. However, to synthesize the property “x = 202” at n2, the length of the

call-strings used by the analysis must be at least101.

To obtain more precise analysis results, afunctionalapproach to interprocedural program anal-

ysis was proposed [30, 94, 106]. In the functional approach,the analysis computes an abstract

summary for each function in the program: each function summary represents how the abstract

program state accumulated at the call site of the function istransformed into the abstract program

state at the return site of the function. Note that functional program analyses deviate from the ones

described in Chapter 2 in the sense that the “unit” of abstraction is no longer a set of concrete

states, but rather atransformationon a set of concrete states. A suitable summary for functionfoo

in the program in Fig. 6.1(a) is:

(x0 ≤ 101)⇒ (x0 + x′ = 202),

wherex0 denotes the value of variablex at the call site offoo andx′ denotes the value ofx at the

return site. The value ofx at the call siten1 is zero (i.e.,x0 = 0); thus, the value ofx at the return

siten2 must be202.

139

Recently,Weighted Pushdown Systems (WPDSs)have emerged as a generalization of the func-

tional approaches to interprocedural program analysis [97]. WPDSs use pushdown-system mech-

anisms to characterize precisely valid interprocedural control-flow paths in the program. Weights

are abstractions of the program’s transfer functions (i.e., the function summaries in the previous

paragraph are encoded as weights). To be used in a WPDS, the domain of weights must satisfy

certain algebraic properties, which we describe in detail in §6.2. In this chapter, we show how to

construct a weight domain with the use of an existing numericabstract domain (we use the polyhe-

dral abstract domain to illustrate the process), and discuss the issues that arise in the construction.

The construction is based on therelational program analysis[30].

6.1 Preliminaries

Let us extend the terminology of Chapter 2 to support multi-procedural programs. LetProcs

denote the set of all functions in the program. A program is specified by a set of control-flow

graphs{Gf | f ∈ Procs}. For eachGf = (Vf , Ef), Entry(Gf) ∈ Vf denotes the unique entry

node ofGf , andRet(Gf) ∈ ℘(Vf) denotes the set of return nodes ofGf .

Let GVarsdenote the set of global variables. Also, for each functionf in the program, let

LVarsf andPVarsf denote the local variables and the parameters off , respectively. For function

f , we useinf ∈ PVars
kf
f to denote an ordered vector of input parameters, andoutf ∈ PVars

mf
f to

denote an ordered vector of output parameters. Each parameter inPVarsf must appear either ininf

or in outf , or in bothinf andoutf .

6.1.1 Program States

A program state assigns to each variable its corresponding value. Similarly to Chapter 2, we

use functions to map variables to their values. However, unlike Chapter 2, the functions that map

variables to their corresponding values form only part of the program state: the other component

of the program state is arun-timestack.

Valuations of Program Variables. We useVarsg to denote the set of variables that can be

accessed by program functiong. This set includes the global variables, the local variables of g,

140

and the parameters ofg:

Varsg = GVars∪ PVarsg ∪ LVarsg.

For a program functiong, the valuations of variables are given by functionsS : Varsg → V. Note

that the domains of variable-valuation functions change from one program function to another. We

define the following operations for manipulating variable-valuation functions:

• Operation addA: Let S : W → V denote an arbitrary function, and letA denote a set, such

thatA ∩W = ∅. The operation[[addA]](S) yields a functionS ′ : (W ∪ A) → V, such that

for all w ∈ W , S ′(w) = S(w), and for alla ∈ A, the value is chosen non-deterministically

from V.

• Operation dropA: Let S : W → V denote an arbitrary function, and letA denote a set, such

thatA ⊆ W . The operation[[dropA]](S) yields a functionS ′ : (W \ A) → V, such that for

all w ∈ W \ A, S ′(w) = S(w).

• Operation merge:Let S1 : W1 → V andS2 : W2 → V denote arbitrary functions, such that

W1 ∩W2 = ∅. The operation[[merge]](S1, S2) yields a functionS ′ : (W1 ∪W2) → V, such

that for allw ∈W1, S ′(w) = S1(w), and for allw ∈W2, S ′(w) = S2(w).

Run-Time Stack. The other part of the program state is arun-time stack, which stores local

information about the functions that have been called, but have not yet returned. Each element of

the stack is a tupleVf × (W → V), whereW = PVarsf ∪ LVarsf for some functionf ∈ Procs.

Intuitively, each stack element stores a node in the control-flow graph of the corresponding function

to which the control should be transferred when the callee returns, as well as the values of the local

variables and parameters of the function. There is no bound on the size of the stack: in the presence

of recursion the stack may grow arbitrarily large.

Program States. A program state is a tuple〈T, S〉, whereT is a run-time stack andS is a

function that maps program variables (accessible to the function that is currently being executed)

to their values. Letmainbe the “entry” function of the program. The initial program state (that is,

the program state at the nodeEntry(Gmain)) is a tuple consisting of an empty stack and a function

141

S0 : Varsmain→ V, which maps variables inVarsmain to values that are non-deterministically chosen

from V.

6.1.2 Concrete Semantics of the Call Transition

Let g, f ∈ Procsbe two program functions, such thatg callsf . Let 〈u, v〉 ∈ Eg be the control-

flow edge to which the call transition̄x ← f(φ̄) is associated: in a call transition,φ̄ ∈ Φkf is a

vector of expressions that specify the values for the input parameters off , andx̄ ∈ Vars
mf
g is a

vector of variables to which the output parameters off are to be assigned.

We break the definition of the concrete semantics for the calltransition into two parts. The first

part handles the invocation of a function: that is, given a program state at the call site (nodeu), it

constructs the program state at the entry node of the callee;the second part handles the return from

a function: that is, given a program state at the return node of a function, it constructs a program

state at the return site (nodev).

Function Invocation. Let 〈T, S〉 denote the program state at nodeu. The program state at the

entry node off (i.e., at the nodeEntry(Gf)) is given by〈T ′, S ′〉, where

T ′ = push(T, 〈v, [[dropGVars]](S)〉)

and

S ′ = [[dropLVarsg ∪PVarsg]] ◦ [[inf ← φ̄]] ◦ [[addLVarsf ∪PVarsf]])(S).

That is, at a function invocation, the caller’s local information (i.e., the values of local variables

and parameters) are stored on the stack along with the returnpoint v. The state at the entry of

the callee is computed by injecting the local variables and parameters of the callee, initializing the

parameters, and eliminating the local information of the caller.2

2In cases, when functionf calls itself recursively, the local variables and parameters of f that are added and
dropped by the above transformer are two distinct sets of variables: one for the instance off that performs a call
(these are dropped), and one for the instance off that is being called (these are added). The notation that we use is too
weak to distinguish between these two sets of variables.

142

Function Return. Let 〈T, S〉 denote the program state at one of thef ’s return nodes, such that

top(T) = 〈v, Sl〉 The program state at the return sitev is given by〈T ′, S ′〉, where

T ′ = pop(T) and S ′ = ([[dropLVarsf ∪PVarsf
]] ◦ [[x̄← outf]] ◦ [[merge]])(S, Sl).

That is, the program state at the return site is constructed by merging together the valuation of

variables at the return node of the callee with the caller’s local information obtained from the stack,

assigning the values of output parameters to the corresponding target variables, and eliminating the

local information of the callee.

6.2 Overview of Weighted Pushdown Systems

In this section, we give a brief overview of weighted pushdown systems and show how to

use them for performing interprocedural program analysis.We start by showing how to use plain

(unweighted) pushdown systems to model precisely the control flow of multi-procedural program.

Then, we describe the use of weights for representing program-state transformations. We briefly

discuss existing techniques for computing the set of reachable WPDS configurations. In the end,

we describe the extension of WPDSs for handling local variables.

For an in-depth discussion of pushdown systems, weighted pushdown systems, and extended

weighted pushdown systems, we direct the reader to Reps et al. [97] and Lal et al. [75].

6.2.1 Pushdown Systems

Pushdown system (PDSs)are similar to pushdown automata (PDA), but they do not have an

input tape. Rather, they represent transition systems for PDA configurations.

Definition 6.1 A pushdown systemis a tripleP = (P,Γ,∆) whereP is the set of states or control

locations,Γ is the set of stack symbols, and∆ ⊆ P × Γ × P × Γ∗ is the set of pushdown rules.

A configurationof P is a pair〈p, u〉 wherep ∈ P andu ∈ Γ∗. A rule r ∈ ∆ is written as

〈p, γ〉 →֒ 〈p′, u〉 wherep, p′ ∈ P , γ ∈ Γ andu ∈ Γ∗. The rules in∆ define atransition relation

⇒ on configurations ofP as follows: ifr = 〈p, γ〉 →֒ 〈p′, u〉, then〈p, γu′〉 ⇒P 〈p′, uu′〉 for all

u′ ∈ Γ∗. The reflexive transitive closure of⇒ is denoted by⇒∗. For a set of configurationsC, we

143

usepre∗(C) = {c′ | ∃c ∈ C : c′ ⇒∗ c} andpost∗(C) = {c′ | ∃c ∈ C : c ⇒∗ c′} to denote the

sets of configurations that arebackward-reachableandforward-reachable, respectively, from the

configurations inC under the transition relation⇒.

To simplify the presentation, we restrict PDS rules to have at most two stack symbols on the

right-hand side: i.e., for every ruler ∈ ∆ of the form 〈p, γ〉 →֒ 〈p′, u〉, the length ofu is at

most two (|u| ≤ 2). The restriction does not decrease the expressiveness of pushdown systems:

it has been shown that an arbitrary pushdown system can be converted into one that satisfies this

restriction [104].

The control flow of a program is modeled as follows. The set of statesP contains a single state:

P = {p}. The set of stack locations corresponds to the set of programpoints: Γ =
⋃

f∈ProcsVf .

The rules in∆ represent the program transitions (i.e., the edges of the control-flow graphs) as

follows:

• For eachintraproceduraledge〈u, v〉 in the program (i.e., edges associated with either an

assignment or an assume transition), a rule of the form〈p, u〉 →֒ 〈p, v〉 is added to∆.

• For each call-transition edge〈u, v〉, which represents a call to functionf ∈ Procs, a rule of

the form〈p, u〉 →֒ 〈p,Entry(Gf) v〉 is added to∆.

• For each return nodeu ∈ Ret(Gg), whereg ∈ Procs, a rule of the form〈p, u〉 →֒ 〈p, ε〉 is

added to∆.

With this construction, a PDS configuration can be thought ofas a CFG node with its calling

context, i.e., the stack of return addresses of unfinished calls leading up to the node. The num-

ber of possible PDS configurations is unbounded (because thestack can be arbitrarily large). To

effectively encode possibly-unbounded sets of configurations finite automata are used.

Definition 6.2 Let P = (P,Γ,∆) be a pushdown system. AP-automatonis a finite automaton

(Q,Γ,→, P, F), whereQ ⊇ P is a finite set of states,→⊆ Q × Γ × Q is the transition relation,

P is the set of initial states, andF is the set of final states. A configuration〈p, u〉 is represented by

144

aP-automaton if the automaton acceptsu (a string over stack alphabetΓ) starting from the initial

statep. A set of configurations is calledregular if there exists aP-automaton that accepts it.

The result that paved the way for model-checking pushdown systems states that for aregular

set of configurationsC the setspost∗(C) andpre∗(C) are alsoregular [16, 39, 41, 104].

6.2.2 Weighted Pushdown Systems

Pushdown systems provide machinery for checking, in a multi-procedural setting, whether a

particular program point may be reachable by some executionof the program. However, from the

point of view of program analysis, we would like to know not only whether a program point may be

reachable, but also the program properties that may arise there. To answer this question,weighted

pushdown systems (WPDSs)were introduced [17, 97]. WPDSs combine pushdown-system ma-

chinery with a domain of weights, which must be a bounded idempotent semiring. Intuitively,

pushdown systems are used to model interprocedurally-valid control-flow paths, and weights are

used to capture the program properties that arise along those paths.

Definition 6.3 A bounded idempotent semiringis a quintuple(D,⊕,⊗, 0, 1), whereD is a set,0

and1 are elements ofD, and⊕ (the combine operation) and⊗ (the extend operation) are binary

operators onD, such that

1. (D,⊕) is a commutative monoid with0 as its neutral element (i.e., for alla ∈ D, a⊕0 = a),

where⊕ is idempotent (i.e.,a ∈ D, a ⊕ a = a). Also, (D,⊗) is a monoid with the neutral

element1 (i.e., for alla ∈ D, a⊗ 1 = a).

2. ⊗ distributes over⊕, i.e., for alla, b, c ∈ D we have

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) .

3. 0 is an annihilator with respect to⊗, i.e., for alla ∈ D, a⊗ 0 = 0 = 0⊗ a.

145

4. The partial order⊑, defined asa ⊑ b , a ⊕ b = a, does not have infinite descending

chains.3

For the purpose of program analysis, the weights inD are the abstract transformers, the extend

operation⊗ composes abstract transformers (i.e., to construct an abstract transformer for an entire

path), the combine operation⊕ joins abstract transformers transformers (i.e., to merge the trans-

formations along multiple paths),0 is the transformer that maps all abstract states to⊥, and1 is

the identity transformer.

Definition 6.4 A weighted pushdown systemis a tripleW = (P,S, f), whereP = (P,Γ,∆) is

a pushdown system,S = (D,⊕,⊗, 0, 1) is a bounded idempotent semiring andf : ∆ → D is a

map that assigns a weight to each pushdown rule.

Let σ ∈ ∆∗ be a sequence of rules. Usingf , we can associate a value toσ, i.e., if σ =

[r1, . . . , rk], then we definev(σ) , f(r1)⊗ . . .⊗ f(rk). Let c andc′ denote two configurations of

P. If σ is a rule sequence that transformsc to c′, we sayc⇒σ c′. We denote the set of all such rule

sequences bypaths(c, c′), i.e.,

paths(c, c′) = {σ | c⇒σ c′} .

Definition 6.5 LetW = (P,S, f) be a WPDS, whereP = (P,Γ,∆), and letC ⊆ P × Γ∗ be a

regular set of configurations. Thegeneralized pushdown predecessor (GPP) problemis to find for

eachc ∈ P × Γ∗:

• δ(c) ,
⊕ {v(σ) | σ ∈ paths(c, c′), c′ ∈ C};

• awitness setof paths:w(c) ⊆ ⋃

c′∈C paths(c, c′) such that
⊕

σ∈w(c) v(σ) = δ(c).

Thegeneralized pushdown successor (GPS) problemis to find for eachc ∈ P × Γ∗:

• δ(c) ,
⊕ {v(σ) | σ ∈ paths(c′, c), c′ ∈ C};

3Traditionally, the literature on weighted pushdown systems uses data-flow methodology (as opposed to the abstract
interpretation methodology used in Chapter 2). That is, thepartial order on weights has meaning that is opposite to
the meaning of the partial order defined in Chapter 2: the smaller the weight, the less precise it is.

146

• awitness setof paths:w(c) ⊆ ⋃

c′∈C paths(c′, c) such that
⊕

σ∈w(c) v(σ) = δ(c).

There are techniques available for solving the generalizedreachability problems [74, 97].

These techniques use finite automata annotated with weightsto symbolically represent sets of

weighted-pushdown-system configurations: that is, the techniques accept an automaton that repre-

sents the initial set of configurations and return an automaton that represents the set of configura-

tions that are either backward-reachable or forward-reachable from the configurations in the initial

set. The weightδ(c) for a particular configurationc is then extracted from the resulting automaton.

If the domain of weights is not distributive: that is, if condition 2 in Defn. 6.3 is not satisfied, the

existing techniques can still be used, but they yield a conservative approximation forδ(c).

Definition 6.6 Given a WPDSW = (P,S, f), aW-automatonA is aP-automaton, where each

transition is labeled with a weight. The weight of a path in the automaton is obtained by computing

an extend of the weights on the transitions in the path eitherin the forward direction (in aforward

W-automata) or in the backward direction (in abackwardW-automata). The automatonA is said

to accept a configuration〈p, u〉 with weightw if w is the combine of weights ofall accepting paths

for u starting from statep in the automaton.

The techniques for solving the generalized predecessor problem use forwardW-automata, whereas

the techniques for solving generalized successor problem use backwardW-automata.

6.2.3 WPDS in Program Analysis

Let us briefly outline how to use the WPDS machinery describedabove to analyze program

with the concrete semantics shown in§6.1. First, a WPDSW, which represents the program,

is constructed: the rules are constructed in the way described in §6.2.1; each rule is annotated

with a weight that describes the corresponding program-state transformation (we address weight

construction for numeric program analysis in detail in§6.3).

As we stated in Chapter 2, we are interested in computing the set of program states that are

reachable by some execution of the program, starting from the set of initial states. AW-automaton

is used to encode the set of initial states. In§6.1, we made the assumption that, initially, the control

147

is at the entry node of themain function, the run-time stack is empty, and the values of variables

are unconstrained. TheW-automatonA that represents such configurations is trivial: it has two

statesp anda, wherep is the initial state anda is the final state, and a transition fromp to a, which

is labeled by a stack-alphabet symbol corresponding to the nodeEntry(Gmain), and annotated with

the weight1.

A procedure for solving the generalized successor problem is applied toW andA to yield an

automatonB, which represents the set of configurations ofW reachable from the configurations

in A. The automatonB is used to compute, for each program point, a weight that represents the

abstract-state transformation from the entry to the program to that program point. There exists an

efficient procedure, referred to aspath summary, for computing these weights fromB [97].

The resulting weights approximate the relation between theprogram states (variable valuations)

at the entry of the program, and the program states (variablevaluations) at the corresponding

program point. LetΣf denote the set of program states that may arise in functionf (in our case,

Σ = Varsf → V). Intuitively, a weight computed for a program point in function f can be viewed

as a subset ofΣmain×Σf . Note that weights do not explicitly model the run-time-stack component

of the concrete program states: instead, the stack is modeled by the procedures for solving GPP

and GPS, and by the path-summary computation.

The resulting weights can be used in a variety of ways. A weight can be used directly to

summarize the transformations performed by the program: inChapter 7 we use weights directly

to construct summary transformers of library functions. A weight can be projected onto its second

component (e.g.,Σf above) to obtain the approximation for the set of states thatcan arise at the

corresponding program point. Alternatively, a weight can be projected onto its first component

(e.g.,Σmain above) to obtain the approximation for the set of conditionsthat must be satisfied at the

entry of the program for the corresponding program point to be reached. In Chapter 7, we use the

latter approach to generate error preconditions for library functions.

148

6.2.4 Solving the Generalized Successor Problem

In this section, we give a brief description of how the set of reachable configurations is deter-

mined. Also, we describe the extension of weighted pushdownsystems that provides a convenient

way for handling local variables. For an in-depth coverage of these topics, see [75, 97].

The technique for solving GPS proposed by Reps et al. [97] is similar in spirit to the functional

program-analysis approach proposed by Sharir and Pnueli [106].4 The main idea is to compute,

for each function in the program, the weight that approximates the transformation that the func-

tion performs. To compute such a weight, the technique starts at the function’s entry node with

the weight1. The weights for the immediate successors of the entry node are computed by ex-

tending the weight1 with the weights associated with the corresponding CFG edges. In general,

the weight for a nodev is computed by extending the weight at each predecessoru of v with

the weight associated with the edge〈u, v〉, and combining the resulting weights. If a call-site of

some function is reached, the analysis starts the exploration of that function (unless the weight that

approximates the behavior of that function is already available). The weight at the return site is

obtained by extending the weight at the call site of the function with the weight computed for the

called function.

Lal et al. proposed a more efficient technique for solving GPS[74]. That technique is also

based on the premise that a weight for each function is constructed and used to approximate the

behavior of the function at each of its call sites.

As we discussed in§6.1, the sets of variables that can be accessed by the programdiffer from

function to function. As a consequence, the extend operations at function call sites have to perform

more work than the extend operations at other program locations: in particular, an extend operation

at a call site has to merge the information about the caller’slocal variables (which come from

the weight at the call site) with the information about how the global variables are modified by

the callee. Lal et al. proposed an extension to weighted pushdown systems that addresses this

problem [75]. The extension uses so-calledmerge functionsat function call-sites in place of extend

4The technique in [97] is expressed as a saturation procedurefor thewpds-automaton, and, in general, captures
more information than the technique in [106]. In particular, the automaton-based representation gives WPDSs the
ability to answer stack-qualified queries.

149

operations. An individual merge function is associated with each call site in the program: thus,

merge functions can be specialized to their corresponding call sites. Generally, the extension allows

to keep the definition of the extend operation simple and efficient, and also gives an opportunity

for an analyzer to have a cleaner design.

6.3 Numeric Program Analysis

In the previous section, we showed how weighted pushdown systems could be used to carry

out interprocedural program analysis. The only thing that we have not yet described is how to

construct the weights that approximate numeric program-state transitions. In particular, we need

to construct weights for assignment transitions, for assume transitions, and for introducing and

eliminating local variables and parameters of functions. Also, we need to show how to construct

merge functions.

To construct these weights we use ideas fromrelational program analysis[30]: that is, weights

capture the relationships between the values of program variables before and after the transforma-

tion. More formally, letWin denote the set of variables that are active before the transformation and

letWout denote the set of variables that are active after the transformation (we will use subscripts

“ in” and “out” to distinguish between the variables from the two sets); the transformation is rep-

resented by a set of functions with signature(Win ∪Wout)→ V, such that each function maps the

variables inWin to the values that the corresponding variables had before the transformation, and

maps the variables inWout to the values that the corresponding variables have after the transforma-

tion is applied. For example, consider the assignment transition “x ← x + 5”: there is one input

and one output variable (both correspond to the program variablex), and the transformation is rep-

resented by the set of functions{[xin 7→ α, xout 7→ α + 5] | α ∈ V} . In many cases, especially for

the transformations associated with WPDS rules, the same set of variables is active before and after

the transformation. However, for the transformations along paths that cross function boundaries,

the sets of input and output variables may be, and in most cases will be, different.

In the following, we express the transformations that are ofinterest to us as sets of functions.

The actual weights are constructed by approximating these sets of functions by elements of some

150

abstract domain. In principle, any numeric abstract domaincan be used to approximate the sets of

functions described above. However, weakly-relational abstract domains that restrict the number

of variables that can appear in a relationship seem to be at disadvantage in this setting: for instance,

to represent the transformation “x← x+ y”, the abstract domain needs to capture the relationship

xout = xin + yin, which cannot be represented by the abstract domains that only allow two variables

per constraint (e.g., octagons [85] or TVPLI [109]). In the remainder of this section, we will use

the domain of polyhedra to illustrate the constructed weights.

Weights 0 and 1. The weight0 represents the transformation that is given by the empty setof

functions. The weight1 represents the identity transformation. LetW denote the set of variables

that are active before and after the identity transformation, i.e.,Win = {vin | v ∈ W} andWout =

{vout | v ∈ W}; the identity transformation is given by the set of functions:

Id , {f : (Win ∪Wout)→ V | ∀v ∈W [f(vin) = f(vout)]}

Technically, the weights0 and1 can be constructed in any existing relational numeric abstract

domain:0 can be represented by the⊥ element, and1 only requires constraints of the formvin =

vout, which all relational and weakly-relational abstract domains are able to represent. However, in

general, we would like weights0 and1 to be uniform for all functions in the program: this poses

a challenge because the sets of active variables change fromfunction to function. Thus, in our

implementation, we inject special objects to represent weights0 and1 into the domain of weights,

and make the combine and extend operations recognize these objects and behave according to

Defn. 6.3.

Extend operation: ⊗. The extend operation composes two transformations. The constraint im-

posed by the extend operation on the two transformations is that the set of variables that are

active after the first transformation must be equivalent to the set of variables that are active be-

fore the second transformation. Let the first transformation be represented by the set of functions

S1 : (Win ∪ Wext) → V, and let the second transformation be represented by the setof func-

tions S2 : (Wext ∪ Wout) → V. The resulting transformation is given by the set of functions

151

S : (Win ∪Wout)→ V, which is constructed as follows

S = [[dropWext
]] ([[addWout]](S1) ∩ [[addWin]](S2)).

Theaddanddropoperations in the definition above are the pointwise extensions of the correspond-

ing operations in§6.1.1: i.e., LetS : W → V denote an arbitrary function:

[[addA]](S) , {f ′ : (W ∪ A)→ V | ∃f ∈ S ∀w ∈W [f ′(w) = f(w)]}

and

[[dropA]](S) , {f ′ : (W \ A)→ V | ∃f ∈ S ∀w ∈W \ A [f ′(w) = f(w)]}

The extend operation can be trivially approximated by a numeric abstract domain: set intersec-

tion is approximated by the meet operation (⊓), the approximations foraddanddropoperations are

also easy to construct—we discussed those operations in thecontext of summarizing abstractions

(see§3.3).

Combine operation: ⊕. The combine operation yields the disjunction of the two transforma-

tions: the effect of the resulting transformation is that either of the two input transformations have

been applied. In terms of sets of functions, the combine operation yields the union of the sets of

functions that represent the input transformations. The combine operation makes sense only if the

signatures of the functions in the two input transformations match. At the level of the abstract

domain, the combine operation is approximated by the join operation (⊔).

Assume transition: assume(ψ). Suppose that the assume transitionassume(ψ) appears in pro-

gram functionf ∈ Procs. Let ψ ∈ Ψ be ak-ary conditional expression, where each variable

wi ∈ Varsf for i = 1..k. For the assume transition, the sets of variables in the input and output

program states are the same: i.e.,Win = {vin | v ∈ Varsf} andWout = {vout | v ∈ Varsf}. The

program-state transformation is represented by the following set of functions:

{ f : (Win ∪Wout)→ V | true∈ [[ψout]]ND(f) ∧ ∀v ∈ Varsf [f(vin) = f(vout)] } ,

whereψout is obtained fromψ by renaming every variablew in ψ towout. The first conjunct makes

sure that the program states constructed by the transformation satisfy the conditionψ; the second

conjunct makes sure that the assume transition does not modify individual program states.

152

At the level of the abstract domain, the weight that approximates the assume transition is con-

structed as follows:

1. construct the top element of a(2× |Varsf |)-dimensional abstract domain;

2. for each variablev ∈ Varsf establish the constraintvin = vout: this can be done by applying

either a sequence of assume transitions of the form[[assume(vin = vout)]]
♯ or a sequence of

assignment transitions of the form[[vin ← vout]]
♯ to the abstract-domain element constructed

in step 1;

3. establish the constraintψ on the output program states: this is done by applying[[assume(ψout)]]
♯

to the abstract-domain element constructed in step 2.

We denote the resulting weight by(|assume(ψ)|).

Example 6.7 We use the polyhedral abstract domain to illustrate the construction of weights. The

assume transitionassume(x ≤ 100) associated with the edge〈me, m1〉 in Fig. 6.1 is approximated

by the polyhedron that has the following system of constraints:

{xin = xout, xout ≤ 100} .

Assignment transition: x̄ ← φ̄. Suppose that the assignment transitionx̄ ← φ̄ appears in the

program functionf ∈ Procs. Let r denote the length of vectors̄x andφ̄. The variables that appear

in x̄ andφ̄ come from the setVarsf . Similarly to the assume transition, the sets of variables in the

input and output program states for the assignment transition are the same:Win = {vin | v ∈ Varsf}
andWout = {vout | v ∈ Varsf}. The transformation is represented by the following set of functions:







f : (Win ∪Wout)→ V

∣

∣

∣

∣

∣

∣





f(vout) ∈ [[φ̄in[i]]]ND(f) if v = x̄[i] for somei ∈ [1, r]

f(vout) = f(vin) otherwise











,

whereφ̄in is obtained from̄φ by renaming every variablew in φ̄ towin.

At the level of the abstract domain, the weight that approximates the assignment transition may

be constructed as follows (there are several different waysin which the weight can be constructed):

153

1. construct the top element of a(2× |Varsf |)-dimensional abstract domain;

2. for each variablev ∈ Varsf that does not appear in̄x, establish the relationshipsvin =

vout: this can be done by applying either a sequence of assume transitions of the form

[[assume(vin = vout)]]
♯ or a sequence of assignment transitions of the form[[vin ← vout]]

♯ to

the abstract-domain element constructed in step 1;

3. for each variablev ∈ Varsf that does appear in̄x, establish the relationship betweenvout and

the variables in the setWin: this can be done by applying the abstract transformer[[x̄out ←
φ̄in]]

♯, wherex̄out is constructed from̄x by renaming each variablev in x̄ tovout, to the abstract-

domain element constructed in step 2.

We denote the resulting weight by(|x̄← φ̄|).

Example 6.8 The weight for the assignment transitionx ← x+ 1 associated with the edge

〈m1, m2〉 in Fig. 6.1 is given by the polyhedron formed by a single constraint: {xout = xin + 1}

Adding and Removing Variables. To support local variables and parameter passing, we need

to define weights for modifying the set of variables modeled by the analysis. For instance, at the

entry to the function, the local variables for that functionmust be created; and at the return from

the function, the local variables must be removed. LetW denote the set of variables in the input

state (i.e.,Win = {vin | v ∈ W}), and letA denote the set of variables that have to be added (i.e.,

Wout = {vout | v ∈W ∨ v ∈ A}); the transformation for adding variables is expressed as follows:

{f : (Win ∪Wout)→ V | ∀v ∈W [f(vout) = f(vin)]} .

For the transformation that removes variables, letW denote the set of variables in the input

state (i.e.,Win = {vin | v ∈ W}), and letA denote the set of variables to be removed (i.e.,

Wout = {vout | v ∈W \ A}); the transformation is expressed as follows:

{f : (Win ∪Wout)→ V | ∀v ∈W \ A [f(vout) = f(vin)]} .

154

At the level of the abstract domain, the above transformations can be approximated trivially by

elements of the abstract domains with (2×|W |+|A|) and (2×|W |−|A|) dimensions, respectively.

The weight for adding variables (removing variables) is created as follows:

1. construct the top element of a(2×|W |+|A|)-dimensional abstract domain (a (2×|W |−|A|)-
dimensional abstract domain);

2. for each variablev ∈ W (for each variablev ∈ W \ A), establish the relationshipvin =

vout: this can be done by applying either a sequence of assume transitions of the form

[[assume(vin = vout)]]
♯ or a sequence of assignment transitions of the form[[vin ← vout]]

♯ to

the abstract-domain element constructed in step 1;

We denote the corresponding weights by(|addA|) and(|dropA|).

Local Variables. In our implementation, local variables are created on entryto called function and

are removed before returning. Also, if the function contains call transitions, the local variables are

removed before the exploration of the callee is started. More formally, letf ∈ Procsdenote an

arbitrary program function. The weights constructed for the WPDS rules that model the control-

flow edges whose source node isEntry(Gf) arepre-extendedwith the weight(|addLVarsf |): e.g., the

following weight is created for the edge〈me, m1〉 in Fig. 6.1:(|addLVarsfoo|)⊗ (|assume(x ≤ 100)|).
The weights that are constructed for the WPDS pop rules and push rules, which model the

return from the functionf and the function calls performed byf , respectively, are extended with

the weight that removesf ’s local variables:(|dropLVarsf |).

Parameter Passing.Let g, f ∈ Procsbe two program functions, such thatg calls f . Also, let

〈u, v〉 ∈ Eg be the control-flow edge that is associated with the call transition x̄ ← f(φ̄), where

the variables in the vector̄x and the variables in the expressions inφ̄ come from the setVarsg. To

deal with the input parameters ofg, we generate special weights for the WPDS rules that model

the control-flow edges whose destination node isu. Letw denote the weight that approximates the

program-state transition associated with such an edge. Thecorresponding WPDS rule is annotated

with the weight that is constructed as follows:

w ⊗ (|addPVarsg |)⊗ (|ing ← φ̄|).

155

The above weight first introduces the parameters for the function g, and then initializes them to

their respective values.

To deal with the output parameters of functiong, we generate special weights for the WPDS

rules that model control-flow edges whose source node isv. Letw denote the weight that approx-

imates the program-state transition associated with such edge. The corresponding WPDS rule is

annotated with the following weight:

(|x̄← outg|)⊗ (|dropPVarsg |)⊗ w. (6.1)

This weight first copies the values of the output parameters to the corresponding target variables,

and then removes the parameters ofg from consideration.

Merge functions. Let g, f ∈ Procs be two program functions, such thatg calls f . Also, let

〈u, v〉 ∈ Eg be the control-flow edge that is associated with the corresponding call transition. The

goal of the merge function is to take the weight computed for the call site of functiong (i.e., node

u) and the weight that approximates the transformation performed byg, and construct the weight

for the return site ofg (i.e., nodev). We denote these weights bywu, wg, andwv, respectively.

The weight computed for the nodeu has the following set of output variables:

W u
out = GVars∪ PVarsf ∪ LVarsf ∪ PVarsg.

The weight that approximates functiong, has the following set of input variables:

W g
in = GVars∪ PVarsg

We extend both the set of input variablesW g
in and the set of output variablesW g

in of the weight

wg with the variables inPVarsf ∪ LVarsf . For each such variablev ∈ PVarsf ∪ LVarsf , we add

an identity constraintvin = vout to wg. We denote the resulting weight bywg ′. The weight for the

nodev is constructed as follows:

wv = wu ⊗ wg ′.

The weightwg ′ transforms the global variables and the parameters ofg to reflect the behavior of

the function. At the same time,wg ′ preserves the values off ’s local variables and parameters.

156

Thus, the operation defined abovemergesthe transformation of the local variables of the caller

(which comes from the weightwu) with the the transformation of the global variables and (output)

parameters of the callee (which is constructed from both weightswu andwg). The parameters ofg

are later removed by the weights associated with the edges leading fromg’s return site, as shown

in Eqn. (6.1).

6.4 Widening

In the previous section, we showed how to construct a domain of weights from a numeric ab-

stract domain. However, the weight domains constructed from most existing numeric abstract do-

mains fail to satisfy two of the conditions in the definition Defn. 6.3: namely, condition 2 (⊗must

distribute over⊕) and condition 4 (the weight domain must have no infinite descending chains).

The non-distributivity condition is somewhat less important: as we mentioned earlier, existing

WPDS techniques produce conservative (sound), although imprecise, results for non-distributive

weight domains. Thus, we omit the detailed discussion of non-distributivity.5

The presence of infinite descending chains poses a much more significant problem: existing

techniques for solving generalized pushdown reachabilityproblems may not converge for such

weight domains. To make these techniques work in practice, they have to be augmented with

widening, much like the iterative techniques in Chapter 2. The WPDS library, which we used

in our implementation, implements the techniques described in [97]: the widening approach we

describe below is specific to these techniques, and may not work for other techniques for solving

generalized pushdown reachability problems (e.g., [74]).

We construct two versions of the combine operation: aregular combine, denoted by⊕r, and

a wideningcombine, denoted by⊕w. The regular combine is implemented as the join of the two

input abstract-domain elements:w1 ⊕r w2 , w1 ⊔ w2. The widening combine is slightly more

complicated: it is defined as follows:

w1 ⊕w w2 , w1∇(w1 ⊔ w2).

5The issue of non-distributivity is discussed to some degreein Chapter 7.

157

Note that, in contrast to the regular combine, the widening combine isnot commutative. Thus,

special care should be taken by the solver to feed the combinearguments in the proper order:

generally,w1 should be the “older” weight computed for a particular program point, whereasw2

should be the “newer” weight, e.g., the weight computed for that program point after analyzing a

loop iteration.

We identify the set of program pointsW , where the sequence of weights may form infinite

descending chains. For that, we rely on the techniques proposed by Bourdoncle [18]: the setW

contains the set of heads for all intraprocedural loops in the program. Also, for each interprocedural

loop—i.e., for each loop in the call-graph of the program—weidentify a single call-transition that

breaks that loop and addtwo program points to the setW : the entry point of the callee, and the

return site. To see why two program points need to be added, see Fig. 6.1: there are two loops—

one formed by the nodesme, m1, andm2, the other formed by the nodesm5, m3, andm4—that

must be broken by widening points. For this example, the nodesme andm3 are added to the set

W .

Each iteration of the procedure for solving the GPS problem computes a new approximation

for the weight at some program point by combining the weight approximation that has already

been computed for that program point with the contribution made by one of the predecessors of

that point: e.g., for a simple intraprocedural case, let〈u, v〉 denote a control-flow edge, letwu and

wv denote the weights at nodesu andv, and letw〈u,v〉 denote the weight associated with the edge

〈u, v〉; the new weight for the nodev is computed as follows:

wv
′ = wv ⊕ (wu ⊗ w〈u,v〉).

To incorporate widening, we modify the procedure as follows: if v ∈ W , we use the widening-

combine operator⊕w in place of⊕; otherwise, we use the regular-combine operator⊕r. At the

implementation level, rather than change the analysis engine, we extend the weight domain to

incorporate certain annotations: the combine operation ofthe extended weight uses these annota-

tions to choose whether to apply the regular combine or the widening combine to the underlying

weights.

158

The need for widening also arises in thepath-summarycomputation, which extracts the anal-

ysis results from theW-automaton constructed by the procedure for solving GPS problem. The

path-summary computation is similar in spirit to the intraprocedural analysis described in Chap-

ter 2, where the control-flow graph of the program is given by the graph representation of the

W-automaton. Thus, the widening techniques from Chapter 2 can be used directly.

159

Chapter 7

Low-Level Library Analysis and Summarization

Static program analysis works best when it operates on an entire program. In practice, however,

this is rarely possible. For the sake of maintainability andquicker development times, software

is kept modular with large parts of the program hidden in libraries. Often, commercial off-the-

shelf (COTS) modules are used. The source code for COTS components and libraries (such as the

Windows dynamically linked libraries) is not usually available. Typically, to help program analysis

deal with the absence of source code, library calls are modeled manually: either, by hard-coding the

abstract transformers for selected library calls directlyinto the analyzer, or by providing function

stubs that emulate certain aspects of the library calls in the language that the analyzer is able to

understand. Manual modeling of library calls is time consuming, and it leaves open the question

of whether the actual library implementation conforms to the models provided to the analyzer.

In this chapter, we take the first steps towards automating the process of modeling the effects

of library functions. We present a technique that constructs automaticallysummariesfor library

functions by analyzing their low-level implementation (i.e., the library’s binary). The “client”

program analysis for which the summaries are constructed ismemory-safety analysis [1, 37, 38,

107, 114]: the analysis that checks statically whether eachmemory accesses in the program issafe.

We assume that the memory-safety analysis generates two types of error reports: buffer overruns

and buffer underruns.

A library function’s summary consists of a set oferror triggersand asummary transformer.

Error triggers are assertions over the program state that, if satisfied at the call site of the function,

indicate a possibility of an error during the invocation of the function (e.g., a possibility of a buffer

overrun or a buffer underrun, for the memory-safety analysis). A summary transformer specifies

160

how the program state is affected by a function call; they areexpressed astransfer relations, i.e.,

relations that hold among the values of global variables andfunction parametersbeforeandafter

the call.

To use the function summaries, a client analysis must approximate the set of program states that

reach the call site of a library function. The analysis should report a possible error if the approx-

imation contains states that satisfy an assertion that corresponds to some error trigger. Summary

transformers are applied as follows: the “before” values ofglobal variables and function parame-

ters are restricted to those that reach the call site; the restricted transfer relation is projected onto

the “after” values to yield an approximation for the set of program states at the function’s return

point.

The application/library division provides a natural modularity border that should be useful to

exploit for program-analysis purposes: typically, many applications link against the same library;

summarizing the functions in that library obviates the needto reanalyze the library code for each

application, which could improve analysis efficiency. (See§7.6 for a discussion of other work that

has had the same motivation.)

Additionally, during development, application code is changed more frequently than library

code. Because an application can be analyzed repeatedly against the same set of library summaries,

it is possible to recoup the cost of applying more sophisticated (and thus, more expensive) analyses,

such as polyhedral analysis [32] and shape analysis [78, 100], for library summarization.

Constructing summaries directly from the library implementation (as opposed to constructing

them from the library specification) allows the client analysis to model precisely the deviations

that that particular library implementation may have from its general specification (i.e., “bugs”

and “features” in the library code). For instance, while experimenting with memory-management

functions, we discovered that the standard C library implementation that came with Microsoft De-

veloper Studio 6 assumes that the direction flag, the x86 flag that specifies the direction for string-

manipulation instructions, is set tofalseon entry to the library. Thus, if a memory-management

function (e.g.,memset) is invoked in a program state in which the direction flag is set, the func-

tion does not behave in accordance with the specification (infact, such an invocation causes the

161

program to crash). If the summaries of memory-management functions constructed from this im-

plementation of the library capture the relationship between the value of the direction flag and the

behavior of the function, then the client analysis is able toalert the user about a potential problem

when it detects that the direction flag is set totrueat a call site ofmemset.

7.1 Overview of the Analysis

We use the functionmemsetas the running example for this chapter. The function is declared

as follows:

void * memset (void * ptr, int value, size t num);

Its invocation sets the firstnumbytes of the block of memory pointed to byptr to the specified

value (interpreted as anunsigned char). The value ofptr is returned.

As we suggested before, we address two types of memory-safety errors: buffer overruns and

buffer underruns. Typically, analyses that target these types of errors propagate allocation bounds

for each pointer. There are many ways in which this can be done. We use the following model.

Two auxiliary integer variables are associated with each pointer variable:allocf is the number of

bytes that can be safely accessed beyond the address stored in the pointer variable (i.e., provides in-

formation about allowed positive offsets),allocb is the number of bytes that can be safely accessed

before the address stored in the pointer variable (i.e., provides information about allowed negative

offsets). We believe that this scheme can be easily interfaced with other choices for representing

allocation bounds. We use dot notation to refer to an allocation bound of a pointer variable, e.g.,

ptr.allocf .

7.1.1 Analysis Goals

A function summary specifies how to transform the program state at the call site of the function

to the program state at its return site. Also, it specifies conditions that, if satisfied at the call

site, indicate that a run-time error is possible during the function call. Intuitively, we expect the

summary-transformer component of the function summary formemsetto look like this (for the

162

moment, we defer dealing with memory locations overwrittenby memset—see§7.3.6):

ret = ptr ∧ ret.allocf = ptr.allocf ∧ ret.allocb = ptr.allocb, (7.1)

whereret denotes the value that is returned by the function. We expectthat a sufficient condition

for the buffer overflow would look like this:

num ≥ 1 ∧ ptr.allocf ≤ num− 1. (7.2)

That is, the value ofnum must be strictly greater than 0, otherwise memory is not accessed at all.

Also, to cause the buffer overrun, the forward allocation boundptr.allocf must be strictly smaller

than the number of bytes that are to be overwritten (i.e., thevalue ofnum). Similarly, a sufficient

condition for the underflow should look like this:

num ≥ 1 ∧ ptr.allocb ≤ −1. (7.3)

The goal of our analysis is to construct such function summaries automatically.

7.1.2 Analysis Architecture

Fig. 7.1 shows the disassembly ofmemset from the C library that is bundled with Visual C++.1

Observe that there are no explicit variables in the code; instead, offsets from the stack register (esp)

are used to access parameter values. Also, there is no type information, and thus it is not obvious

which registers hold memory addresses and which do not. Logical instructions and shifts, which

are hard to model numerically, are used extensively. Ratherthan addressing all these challenges at

once, the analysis constructs the summary of a function in several phases.

Intermediate Representation (IR) Recovery.First,value-set analysis (VSA)[8, 9] is performed

on the disassembled code to discover low-level information: variables that are accessed by each

instruction, parameter-passing details, and, for each program point, an overapproximation of the

values held in the registers, flags, and memory locations at that point. Also, VSA resolves the

targets of indirect control transfers (indirect jumps and indirect calls).

1We used Microsoft Visual Studio 6.0, Professional Edition,Releasebuild.

163

00401070 mov edx, dword ptr [esp + 12] edx← count
00401074 mov ecx, dword ptr [esp + 4] ecx← ptr
00401078 test edx, edx

0040107A jz 004010C3 if(edx = 0) goto004010C3
0040107C xor eax, eax eax← 0
0040107E mov al, byte ptr [esp + 8] al ← (char)value
00401082 push edi

00401083 mov edi, ecx edi← ecx
00401085 cmp edx, 4

00401088 jb 004010B7 if(edx < 4) goto004010B7
0040108A neg ecx ecx← −ecx
0040108C and ecx, 3 ecx← ecx & 3
0040108F jz 00401099 if(ecx = 0) goto00401099
00401091 sub edx, ecx edx← edx− ecx
00401093 mov byte ptr [edi], al ∗edi← al
00401095 inc edi edi← edi + 1
00401096 dec ecx ecx← ecx− 1
00401097 jnz 00401093 if(ecx 6= 0) goto00401093
00401099 mov ecx, eax ecx← eax
0040109B shl eax, 8 eax← eax << 8
0040109E add eax, ecx eax← eax + ecx
004010A0 mov ecx, eax ecx← eax
004010A2 shl eax, 10h eax← eax << 16
004010A5 add eax, ecx eax← eax + ecx
004010A7 mov ecx, edx ecx← edx
004010A9 and edx, 3 edx← edx & 3
004010AC shr ecx, 2 ecx← ecx >> 2
004010AF jz 004010B7 if(ecx = 0) goto004010B7
004010B1 rep stosd while (ecx 6= 0) {

∗edi← eax; edi++; ecx--; }
004010B3 test edx, edx

004010B5 jz 004010BD if(edx = 0) goto004010BD
004010B7 mov byte ptr [edi], al ∗edi← al
004010B9 inc edi edi← edi + 1
004010BA dec edx edx← edx− 1
004010BB jnz 004010B7 if(edx 6= 0) goto004010B7
004010BD mov eax, dword ptr [esp + 8] eax← ptr
004010C1 pop edi

004010C2 retn return
004010C3 mov eax, dword ptr [esp + 4] eax← ptr
004010C7 retn return

Figure 7.1 The disassembly ofmemset. The rightmost column shows the semantics of each in-
struction using a C-like notation.

164

In x86 executables, parameters are typically passed via thestack. The registeresp points to the

top of the stack and is implicitly updated bypush andpop instructions. VSA identifies numeric

properties of the values stored inesp, and maps offsets fromesp to the corresponding parameters.

To see that this process is not trivial, observe that different offsets map to the same parameter at

addresses0x4010BDand0x4010C3: at 0x4010BDan extra 4 bytes are used to account for the push

of edi at0x401082.

Numeric-Program Generation. VSA results are used to generate a numeric program that cap-

tures the behavior of the library function. The primary challenge that is addressed in this phase is

to translate non-numeric instructions, such as bitwise operations and shifts, into a program that a

numeric analyzer is able to analyze. Bitwise operations areused extensively in practice to perform

certain computations because they are typically more efficient in terms of CPU cycles than corre-

sponding numeric instructions. A ubiquitous example is theuse of thexor instruction to initialize

a register to zero. In Fig. 7.1, thexor at0x40107Cis used in this way. Thetest instruction updates

the x86 flags to reflect the application ofbitwise andto its operands (the operands themselves are

not changed). Compilers often usetest to check whether the value of a register is equal to0 (see

the instructions at addresses0x401078and0x4010B3in Fig. 7.1).

A more complicated case is when several instructions, neither of which can be modeled pre-

cisely with the numeric abstraction we use, cooperate to establish a numeric property that is rele-

vant to the analysis. In Fig. 7.1, the two consecutive instructions at0x4010A9, abitwise andand a

right shift, cooperate to establish the property

edx0 = 4× ecx+ edx,

whereedx0 denotes the value stored in registeredx before the instructions are executed. Note that

the property itself can be expressed with the numeric abstraction we use (the polyhedral abstract

domain), but it is impossible to capture it by considering each instruction in isolation. We describe

how we handle this situation in§7.3.5.

The numeric-program-generation phase also introduces theauxiliary variables that store allo-

cation bounds for pointer variables. A simple type inference is performed to identify variables and

165

registers that may hold memory addresses. For each instruction that performs address arithmetic,

additional statements that update corresponding allocation bounds are generated. Also, for each

instruction that dereferences an address, a set of numeric assertions are generated to ensure that

memory safety is not violated by the operation. The assertions divert program control to a set of

specially-introducederror program points: two sink2 nodes are introduced into the program’s CFG

for each memory access that is checked—one node for the buffer overflow, the other for the buffer

underflow.

Fig. 7.2 shows the numeric program that is generated formemset.

Numeric Analysis and Summary Construction. The generated numeric program is fed into

our WPDS-based numeric program analyzer. The analyzer computes, for each program point, a

function that maps an approximation for the set of initial states at the entry of the program to an

approximation for the set of states that arise at that program point. The numeric-analysis results are

used to generate a set of error triggers and a set of summary transformers for the library function.

The transfer functions computed for program points that correspond to return instructions form a

set of summary transformers for the function. Error triggers are constructed by projecting transfer

functions computed for the set of error program points onto their domains.

One challenge posed by the numeric analysis is that the polyhedral abstract domain, which

is employed by our analyzer, does not scale well as the numberof program variables that need

to be modeled increases. We address this issue by using an existing technique for improving

scalability of numeric analysis:variable packing[87]. The idea behind this technique is to identify

groups of related variables (referred to aspacks) and to track numeric relationships in each group

individually. That is, instead of a single polyhedron with alarge number of dimensions, a larger

number of lesser-dimensional polyhedra are propagated by the analysis. The groups of variables

need not be disjoint, and some program variables may not be inany group at all. We identify the

groups of related variables by tracking variable dependences, such as data and control dependences.

The detailed description of our use of variable packing is presented in§7.4.1.

2A sinknode is a node that has no outgoing edges.

166

memset(ptr, value, num)
00401070 edx← count;
00401074 ecx← ptr; ecx.allocf ← ptr.allocf ; ecx.allocb ← ptr.allocb;
00401078-7A if(edx = 0) gotoL5;
0040107C-82 ...
00401083 edi← ecx; edi.allocf ← ecx.allocf ; edi.allocb ← ecx.allocb;
00401088 if(edx < 4) gotoL3;
0040108A ecx← −ecx;
0040108C ecx←?; assume(0 ≤ ecx ≤ 3);
0040108F if(ecx = 0) gotoL2;
00401091 edx← edx− ecx;
00401093 L1: assert(edi.allocf >= 1); assert(edi.allocb >= 0);
00401095 edi← edi + 1; edi.allocf ← edi.allocf − 1; edi.allocb ← edi.allocb + 1;
00401096 ecx← ecx− 1;
00401097 if(ecx 6= 0) gotoL1;
00401099-A5 L2: ...
004010A7 edx.rem4 =?; edx.quot4 =?;

assume(0 ≤ edx.rem4 ≤ 3); assume(edx = 4× edx.quot4 + edx.rem4);
ecx← edx; ecx.quot4 ← edx.quot4; ecx.rem4 = edx.rem4;

004010A9 edx← edx.rem4;
004010AC ecx← ecx.quot4;
004010AF if(ecx = 0) gotoL3;
004010B1 assert(edi.allocf >= 4× ecx); assert(edi.allocb >= 0);

edi← edi + 4× ecx;
edi.allocf ← edi.allocf − 4× ecx; edi.allocb← edi.allocb + 4× ecx;
ecx← 0;

004010B3-B5 if(edx = 0) gotoL4;
004010B7 L3: assert(edi.allocf >= 1); assert(edi.allocb >= 0);
004010B9 edi← edi + 1; edi.allocf ← edi.allocf − 1; edi.allocb ← edi.allocb + 1;
004010BA edx← edx− 1
004010BB if(edx 6= 0) gotoL3;
004010BD L4: eax← ptr; eax.allocf = ptr.allocf ; eax.allocb ← ptr.allocb;
004010C2 return eax, eax.allocf , eax.allocb;
004010C3 L5: eax← ptr; eax.allocf = ptr.allocf ; eax.allocb ← ptr.allocb;
004010C7 return eax, eax.allocf , eax.allocb;

Figure 7.2 The numeric program generated for the code in Fig.7.1; parts of the program that are
not relevant for the summary construction are omitted from the listing shown above.

7.1.3 The summary obtained formemset

The implementation ofmemsetuses two loops and a “rep stosd” instruction, which invokes

a hardware-supported loop. The “rep stosd” instruction at0x4010B1is the workhorse; it per-

forms the bulk of the work by copying the value ineax (which is initialized in lines0x40107C–

0x40107Eand0x401099–0x4010A5to contain four copies of the low byte ofmemset’s value pa-

rameter) into successive 4-byte-aligned memory locations. The loops at0x401093–0x401097and

167

0x4010B7–0x4010BBhandle any non-4-byte-aligned prefix and suffix. If the totalnumber of bytes

to be initialized is less than 4, control is transfered directly to the loop at0x4010B7.

The application of our technique to the code in Fig. 7.1 yields exactly the summary transformer

we conjectured in Eqn. (7.1). The situation with error triggers is slightly more complicated. First,

observe that there are three places in the code where the buffer is accessed: at addresses0x401093,

0x4010B1, and0x4010B7. Each access produces a separate error trigger:

Buffer overrun Buffer underrun

0x401093 num ≥ 4 ∧ ptr.allocf ≤ 2 num ≥ 4 ∧ ptr.allocb ≤ −1

0x4010B1 num ≥ 4 ∧ ptr.allocf ≤ num− 1 num ≥ 4 ∧ ptr.allocb ≤ −1

0x4010B7 num ≥ 1 ∧ ptr.allocf ≤ num− 1 num ≥ 1 ∧ ptr.allocb ≤ −1

∧ ptr.allocb ≤ 2− num

Note that the first buffer-overrun trigger is stronger than the one conjectured in Eqn. (7.2): it

gives a constant bound onptr.allocf ; furthermore, the bound is less than3, which is the smallest

bound implied by the conjectured trigger fornum ≥ 4 (see Eqn. (7.2)). The issue is that the

instruction at0x401093is executed only if the number of bytes to be overwritten (num) is greater

than4, and accesses at most three first bytes of the buffer pointed to by ptr (the actual number of

bytes that are accessed depends on the alignment of the memory address inptr). Thus, a buffer

overrun at0x401093can only happen if the forward allocation bound forptr is less than3. In

cases wherenum ≥ 4 andptr.allocf is equal to3, memsetwill generate a buffer overrun not at

0x401093, but at one of the other two memory accesses instead.

The other two buffer-overrun triggers are similar to the trigger conjectured in Eqn. (7.2) and

differ only in the value ofnum. The buffer-underrun triggers are similar to the trigger that was

conjectured in Eqn. (7.3), except for the trigger generatedfor the memory access at0x4010B7.

That trigger contains an extra constraintptr.allocb ≤ 2 − num, which indicates that, by the time

the control gets to0x4010B7, the memory address that was originally specified inptr has been

advanced by at leastnum− 3 bytes.

Note that, although the triggers shown above provide error conditions that are sufficiently pre-

cise for the client analysis to avoid generating spurious error reports (false positives), these triggers

168

are somewhat imprecise. For instance, if the value of variablenum is 5 and the forward allocation

boundptr.allocf is 1, then the above triggers indicate that the buffer overrun can happen at any of

the three memory accesses. For the purpose of providing better diagnostic information, however, it

may be advantageous to link the buffer overrun to the particular memory access that could generate

it. In the situation above, the memory access at which the buffer overrun occurs is determined by

the alignment of the pointerptr: if ptr is either 4-byte aligned or 3 bytes off (i.e.,ptr ≡ 3 mod 4),

the buffer overrun occurs at0x4010B1; if ptr is either1 or 2 bytes off, the buffer overrun occurs at

0x401093; the buffer overrun never occurs at0x4010B7. This imprecision in the triggers is due to

the conservative translation of the instructions that check pointer alignment into the corresponding

numeric statements. In§7.3.5, we present a technique that allows pointer alignmentto be modeled

more precisely, resulting in better error triggers.

The next several sections present the phases of the analysisoutlined above in greater detail.

Particular attention is paid to the numeric-program-generation phase, which is the primary contri-

bution of our work.

7.2 Intermediate-Representation Recovery

The IR-recovery phase recovers intermediate representations from the library’s binary that are

similar to those that would be available had one started fromsource code. For this phase, we use

the CodeSurfer/x86 analyzer that was developed jointly by Wisconsin and GrammaTech, Inc. This

tool recovers IRs that represent the following information:

• control-flow graphs (CFGs), with indirect jumps resolved;

• a call graph, with indirect calls resolved;

• information about the program’s variables;

• possible values of pointer variables;

• sets of used, killed, and possibly-killed variables for each CFG node; and

169

• data dependences.

The techniques employed by CodeSurfer/x86 do not rely on debugging information being present,

but can use available debugging information (e.g., Windows.pdb files) if directed to do so.

The analyses used in CodeSurfer/x86 (see [8, 9]) are a great deal more ambitious than even

relatively sophisticated disassemblers, such as IDAPro [61]. At the technical level, they address the

following problem:Given a (possibly stripped) executableE (i.e., with all debugging information

removed), identify the procedures, data objects, types, and libraries that it uses, and,

• for each instructionI in E and its libraries,

• for each interprocedural calling context ofI, and

• for each machine register and variableV ,

statically compute an accurate over-approximation to the set of values thatV may contain whenI

executes.

7.2.1 Variable and Type Discovery.

One of the major stumbling blocks in analyzing executables is the difficulty of recovering

information about variables and types, especially for aggregates (i.e., structures and arrays).

When debugging information is absent, an executable’s dataobjects are not easily identifiable.

Consider, for instance, a data dependence from statementa to statementb that is transmitted by

write/read accesses on some variablex. When performing source-code analysis, the programmer-

defined variables provide us with convenient compartments for tracking such data manipulations.

A dependence analyzer must show thata definesx, b usesx, and there is anx-def-free path from

a to b. However, in executables, memory is accessed either directly—by specifying an abso-

lute address—or indirectly—through an address expressionof the form “[base + index× scale

+ offset]”, where baseand indexare registers andscaleandoffsetare integer constants. It is not

clear from such expressions what the natural compartments are that should be used for analysis.

Because, executables do not haveintrinsic entities that can be used for analysis (analogous to

source-level variables), a crucial step in IR recovery is toidentify variable-like entities.

170

The variable and type-discovery phase of CodeSurfer/x86 [9], recovers information about vari-

ables that are allocated globally, locally (i.e., on the run-time stack), and dynamically (i.e., from

the heap). An iterative strategy is used; with each round of the analysis—consisting of aggregate

structure identification (ASI) [9, 93] and value-set analysis (VSA) [8, 9]—the notion of the pro-

gram’s variables and types is refined. The net result is that CodeSurfer/x86 recovers a set of proxies

for variables, calleda-locs(for “abstract locations”). The a-locs are the basic variables used in the

method described below.

7.3 Numeric-Program Generation

The generation of a numeric program is the central contribution of our technique. The target

language for the numeric program corresponds to the language we described in Chapter 2 with the

exception that programs with multiple procedures can be generated. The language supports as-

signments, assumes, asserts, if-statements, procedure calls, and gotos. The expression “?” selects

a value non-deterministically. The condition “*” transfers control non-deterministically.

The generation process abstracts away some aspects of the binary code that cannot be mod-

eled precisely in the polyhedral abstract domain; thus, thegenerated program is usually non-

deterministic and cannot be directly executed. Note that this represents a slight deviation from the

discussion in Chapter 2, where we relied on the abstract domain to conservatively handle arbitrary

numeric and conditional expressions. For this application, we chose to deal with the expressions

that cannot be modeled precisely by the polyhedral domain atthe level of numeric-program gen-

eration. This gave us more flexibility in designing techniques that improve the overall precision of

the analysis.

We strive as much as possible to generate a sound representation of the binary code. However,

the current implementation of the analysis assumes that numeric values are unbounded. In the

future, we hope to add support for bounded arithmetic.

171

7.3.1 Numeric-Program Variables

The initial set of numeric-program variables is constructed from the results obtained by value-

set analysis (VSA): a numeric variable is created for each 4-byte a-loc identified by VSA. We only

consider 4-byte a-locs because only those a-locs can store 32-bit memory addresses, which we

need to model for the memory-safety analysis. The eight x86 registers:eax, ebx, ecx, edx, esi,

edi, ebp, andesp, are modeled by global variables. A number of additional variables—to keep

track of allocation bounds, to model memory locations that are not resolved by the VSA, and to

handle integer division and remainder computations—are introduced as described in the rest of this

section.

An operand of x86 instruction can be either an immediate value, a register, or a memory lo-

cation specified via one of the x86 memory-addressing modes.We map the x86 operands to the

numeric-program operands as follows:

• Immediate values. The generated numeric statement uses the immediate value that is

specified by the instruction.

• Registers. If the register is one of the eight registers that we model, the generated numeric

statement uses the global variable that corresponds to thatregister; otherwise, if it is a register

that we do not model, there are two cases: (i) if it is thetargetoperand (that is, the operand

that is updated by the instruction), the instruction is translated into the numeric program’s

equivalent of a no-op, (ii) if it is a source operand, the non-deterministic value “?” is used in

the generated numeric statement.

• Memory operands. The VSA results are queried to get a set of a-locs that the memory

operand may refer to. There are two possible answers: either(i) the memory operand is

resolved, in which case a set of a-locs is returned, or (ii) the memory operand isunresolved,

in which case the value⊤ is returned.

– Resolved operands. The set of a-locs constructed by VSA may containfull a-locs

(that is, the memory operand refers to the entire a-loc), andpartial a-locs (that is,

172

the memory operand refers only to a part of the a-loc). If the operand is updated by

the instruction, numeric-update statements are generatedfor the numeric variables that

corresponds to each full 4-byte a-loc in the set, andforgetstatements3 are generated for

the numeric variables that correspond to each 4-byte partial a-loc.

If the operand is used, but not updated, then there are two possibilities: either (i) the

operand is determined exactly (i.e., the set contains a single full 4-byte a-loc), in which

case the numeric variable that corresponds to that a-loc is used in the generated numeric

statement; or (ii) the set contains more than one a-loc, in which case a non-deterministic

value? is used in the generated numeric statement.

– Unresolved operands. The unresolved memory operands are modeled bysymbolic

memory constants; that is, a global variable is created for each unresolved memory

operand to model symbolically the value at the accessed memory location. That global

variable is used in the generated numeric statement. We describe symbolic memory

constants in more detail in§7.3.6

We will use a functionVarNP to map the operands of x86 instructions to the corresponding

numeric variables.

7.3.2 Basic Translation of x86 Instructions

In the previous section, we explained how instruction operands are mapped to the correspond-

ing numeric variables. In this section, we briefly outline the basic translation of x86 instructions

into the corresponding numeric statements. The goal of the basic translation is to capture the “nat-

ural” semantics of each instruction. We address the effect of the instructions on auxiliary variables

(e.g., allocation bounds) in§7.3.4 and§7.3.5.

For most instructions, the translation is straightforward. Simple instructions, such asmov,

add, sub, lea, etc., are directly translated into the corresponding numeric statements: e.g., the

3Recall from Chapter 2 that theforgetstatementx ← ? assigns a non-deterministically chosen value to the target
variablex.

173

instruction “sub edx,ecx” at 0x401091in Fig. 7.1 is translated into numeric statementedx ←
edx− ecx.

Bitwise operations and shifts typically cannot be converted precisely into a single numeric

statement, and thus pose a greater challenge. Several numeric statements, including ifs and as-

sumes, may be required to translate each of these instructions. At first, we were tempted to design

universal translations that would work equally well for allpossible contexts in which the instruc-

tion occurs. In the end, however, we noticed that these instructions, when employed in numeric

computations, are only used in a few very specific ways. For instance, bitwise-and is often used to

compute the remainder from dividing a variable by a power of two. The instruction “and ecx,3”

at 0x40108Cin Fig. 7.1 is used to computeecx mod 4. The translation treats these special cases

with precision; other cases are treated imprecisely, but soundly.

Below we show how theand andor instructions are translated into numeric program state-

ments. The translation of an instruction of the form “and op1, op2” recognizes the special case of

op2 being an immediate value that is greater than zero:

and op1, op2 ⇒























VarNP(op1)← ?;

assume(0 ≤ VarNP(op1) ≤ VarNP(op2));



 if op2 > 0 is an imm. value

VarNP(op1)← ?; otherwise

The translation of an instruction of the form “or op1, op2” recognizes two special cases: (i) the

case ofop2 being an immediate value0x0xFFFFFFFF(−1 in 2’s complement arithmetic), and (ii)

the case in which both operands are the same:

or op1, op2 ⇒



















VarNP(op1)← (−1); if op2 = 0xFFFFFFFF

nop; if op1 = op2

VarNP(op1)← ?; otherwise

Hardware-supported loops. An interesting class of instructions is the x86 hardware-supported

loops, such as the instruction “rep stosd” at address0x4010B1in Fig. 7.1. The “stosd” instruc-

tion writes the value stored in registereax into a memory location specified by the address stored

in registeredi, and advances the address inedi either forwards (i.e.,edi← edi+ 4) if the direc-

tion flagDF is cleared (i.e.,DF = false), or backwards (i.e.,edi ← edi − 4) if the direction flag

174

is set (i.e.,DF = true). The prefix “rep” repeats the “stosd” instruction until the values stored in

registerecx becomes zero:ecx is decremented on each iteration.4.

The current implementation translates the instruction “rep stosd” as follows: the intermedi-

ate representation is queried for the value of the directionflag: if the flag isfalse, the instruction is

translated into the following set of numeric statements: “edi ← edi + 4× ecx; ecx ← 0;”; if the

flag istrue, the instruction is translated into “edi← edi− 4× ecx; ecx← 0;”; if the intermediate

representation cannot determine the state of the flag definitely (i.e., if the flag can be eithertrueor

false), the instruction is translated as follows:

if(∗) edi← edi+ 4× ecx; elseedi← edi− 4× ecx;
ecx← 0;

(7.4)

Other instructions that execute hardware-supported loopsare translated similarly. The only

complication is caused by the instructions “rep cmpsd” and “rep scasd”: these instructions may

exit the loop before the value stored in registerecx reaches zero: on each iteration, the value of

the x86 zero flagZF is checked—if the instruction prefix is “repe”, the instruction checks whether

the flag istrue; if the prefix is “repne”, the instruction checks whether the flag isfalse—and if the

flag is set accordingly, the loop is terminated. To translatethese instructions, we introduce an extra

numeric variable for which the value is selected non-deterministically from the range[1, ecx]: this

variable models the number of iterations performed by the loop. For instance, if the direction flag

is false, the instruction “rep cmpsd” is translated into the following sequence of numeric-program

statements:
temp =?; assume(1 ≤ temp ≤ ecx);

edi← edi+ 4× temp; esi← esi+ 4× temp;
ecx← ecx− temp;

Let us briefly discuss the direction-flag issue mentioned in the introduction to this chapter.

The particular implementations of memory functions that weexperimented with, such asmemset,

assume that the direction flag isfalseon the entry to the function; i.e., these implementations do

not clear the flag explicitly. As a result, the IR-recovery phase presumes that the value of the

4When “stosd” appears without prefix “rep”, registerecx is not decremented.

175

direction flag is unknown at the program point where a particular x86 hardware-loop instruction

is executed. Consequently, that instruction is translatedaccording to Eqn. (7.4). Note that this

translation is overly conservative in the sense that the function summary synthesized from this

translation is independent from the value of the direction flag at the call-site of the function; i.e.,

the client analysis may generate spurious error reports in case the direction flag is indeedfalseat

the call site. In our experiments, we dealt with this issue bymaking the same assumption that

the implementation of the functions makes: that is, that thedirection flag isfalseon entry to the

function. However, this assumption is unsound. A better wayof handling this issue is to produce

two function summaries: one for the case where the directionflag is true at the call site, the other

for the case where it isfalseat the call site. Then, the client analysis may use its own approximation

for the value of the direction flag to select the function summary to be applied.

Recovering conditions from the branch instructions. An important part of numeric-program

generation is the recovery of conditional expressions. In the x86 architecture, several instructions

must be executed in sequence to perform a conditional control transfer. The execution of most

x86 instructions affects the set of flags maintained by the processor. The flags include thezero

flag, which is set if the result of the currently executing instruction is zero, thesign flag, which

is set if the result is negative, and many others. Also, the x86 architecture provides a number of

control-transfer instructions, each of which performs a jump if the flags are set in a specific way.

Technically, the flag-setting instruction and the corresponding jump instructions do not have to be

adjacent and can, in fact, be separated by a set of instructions that do not affect the flags (such as

themov instruction.

We symbolically propagate the expressions that affect flagsto the jump instructions that use

them. Consider the following sequences of instructions andtheir translation:

cmp eax,ebx

mov ecx,edx ecx← edx;

jz label if (eax− ebx = 0) goto label;

We derive a flag-setting expressioneax−ebx from thecmp instruction; themov instruction does not

affect any flags; thejz instruction transfers control tolabel if the zero flag is set, which can only

176

happen if the expressioneax − ebx is equal to zero. Note, however, that if the intervening move

affects one of the operands in the flag-setting expression, that expression is no longer available at

the jump instruction. This can be circumvented with the use of a temporary variable:

cmp eax,ebx

mov eax,edx temp← eax− ebx; eax← edx;

jz label if (temp = 0) goto label;

7.3.3 Value Dependence Graph

To aid in the generation of numeric programs, we construct anauxiliary data structure, which

we call thevalue dependence graph (VDG). Intuitively, the graph captures the dependences among

values stored in registers and a-locs identified by the IR-recovery phase (we will refer to these

collectively asx86 variables). The dependence information is used for the following purposes:

• To identify variables that are used to store and propagate memory addresses. These variables

must have auxiliary variables that represent allocation bounds associated with them (see

§7.3.4).

• To identify variables that are used to store and propagate values to which an integer division

and a remainder computation are applied. These variables are also associated with a certain

set of auxiliary variables, which allow the precision of polyhedral analysis to be improved

(see§7.3.5).

• To identify variable packs (that is groups of related variables) for polyhedral analysis. Recall

from §7.1.2 that the polyhedral analysis scales poorly as the number of variables that have

to be tracked increases. Variable packing is a technique forimproving the scalability of the

analysis (see§7.4.1).

The nodes of the graph correspond to the x86 variables, and edges represent dependences among

them. The graph is constructed by taking a single path through the program and introducing

corresponding nodes and edges for each instruction. More formally:

177

VDG nodes. Ideally, we would like to have a separate node for eachrole of an x86 variable (e.g.,

for each class of values that the variable stores). While a-locs that correspond to the “natural”

global and local variables of the analyzed program are likely to play the same role throughout

their lifetime, registers and a-locs that correspond to stack locations accesses by thepush andpop

instructions5 generally play many different roles. That is, the same register may be used to store

both numeric values and memory addresses, and the same location on the stack can be used to pass

parameters of different types to different functions.

We create a single graph node for each a-loc that correspondsto a local or global variable and

for each symbolic memory constant. To distinguish among themultiple roles played by registers

and stack locations, we create a graph node for each definition and a graph node for each use of

a register or a stack location. That is, a separate node is created for each instruction that uses

or defines a register, and two nodes are created for the instructions that both use and define a

register. For example, instruction “add eax, ebx” generates three graph nodes: two for the uses

of registerseax andebx, and one for the definition ofeax. For stack locations, the definition

nodes are created bypush instructions, and the use nodes are created by function calls andpop

instructions.6

For each instruction, there is a unique mapping of its operands to the corresponding graph

nodes. We define two functions to represent this mapping:

NodeD : Instr×Operand→ Node and NodeU : Instr×Operand→ Node

That is, for the instructionI, NodeD(I, op1) gives the node corresponding to the new definition of

the first operand create byI, andNodeU(I, op2) gives the node corresponding to the use of the sec-

ond operand. We also define a function that maps the nodes of the VDG back to the corresponding

a-locs, registers, and symbolic memory constants:Varx86.

5These stack locations are used for two main purposes: (i) to store register values during function calls, and (ii) to
pass function parameters.

6Some programs manipulate the stack directly, that is without using push and pop instructions. Our current
implementation does not handle such programs yet, but can betrivially extended to do so.

178

VDG edges. Edges are added to reflect the dependences between values induced by x86 instruc-

tions. We distinguish among several types of edges (the edges are explicitly labeled with their

corresponding types):

• Affine-dependence edges:an affine-dependence edge is added to the graph if the value of

the x86 variable at the destination of the edge is computed asan affine transformation of the

value of the x86 variable at the source of the edge. That is, ifthe effect of the instructionI

on its operands is:

opi ← opj + c1 × opk + c2,

where c1 and c2 are constants, then an affine-dependence edge fromNodeU(I, opj) to

NodeD(I, opi) is added to the graph. Affine-dependence edges are induced bymov, add,

sub, inc, dec, lea, push, pop, etc. Also, affine-dependence edges are used to connect the

nodes representing stack locations that store the values ofactual parameters at a function

call site to the nodes that represent the formal parameters of the function, and to connect the

nodes that represent the registereax at a function return statement to the node that represents

the registereax at the call site’s return point.

• Non-affine-dependence edges:a non-affine-dependence edge is added to the graph if the

value of the variable at the source of the edge contributes tothe computation of the value

of the variable at the destination of the edge, but the dependence cannot be qualified as

affine. For the instructionI in the previous bullet point, a non-affine-dependence edge from

NodeU(I, opk) to NodeD(I, opi) is added to the graph. Non-affine-dependence edges are

induced by most of the same instructions as the affine flow edges, plus the instructionsand,

shl, shr, sar, etc.

• Conditional-dependence edges:conditional-dependence edges represent the dependences

that are induced by the instructions that evaluate conditions. These edges are generated by

thecmp andtest instructions. For instance, the instructionI, “cmp op1, op2”, generates

two edges, in opposite directions, between the nodesNodeU(I, op1) andNodeU(I, op2).

179

• Loop-dependence edges:loop-dependence edges capture dependences between loop induc-

tion variables and variables that appear in loop-exit conditions. These edges are not gener-

ated by a particular x86 instruction, rather several instructions cooperate to create a single

loop-dependence edge. To generate these edges, a set of variables that are incremented in

the body of the loop and a set of variables that appear in loop-exit conditions are collected

for each loop. A loop-dependence edge is added to the graph from each node that represents

an incremented variable to each node that represents a loop-exit-condition variable.

The affine-dependence edges are used for identifying variables that (i) store memory addresses,

or (ii) variables that participate in integer computations, such as integer division and remainder

computations. All dependence edges are used in the algorithm for variable-pack identification.

Implicit dependencies. Due to the choice to introduce a unique VDG node for each definition and

each use of registers and stack locations, certain dependences cannot be recovered by interpreting

individual instructions. In particular, the edges that link definitions of registers and stack locations

to their subsequent uses need to be added to the graph. The following sequence of instructions

provides an example:

mov eax, 5

mov ebx, eax

Neither of the two instructions generates an edge from the node that corresponds to the definition

of eax created by the first instruction to the node that correspondsto the use ofeax created by

the second instruction. The missing dependence edges can begenerated by performing a simple

intraprocedural reaching-definitions analysis for registers and stack locations, and adding affine-

dependence edges from each definition node to each use node reached by that definition.

7.3.4 Memory-Safety Checks and Allocation Bounds

As we mentioned before, each numeric-program variablevar that may contain a memory ad-

dress is associated with two auxiliary variables that specify allocation bounds for that address. The

auxiliary variablevar.allocf specifies the number of bytes following the address that can be safely

accessed; the auxiliary variablevar.allocb specifies the number of bytes preceding the address

180

that can be safely accessed. These auxiliary variables are central to our technique: the purpose

of numeric analysis is to infer constraints on the auxiliaryvariables that are associated with the

function’s parameters, global variables, and return value. These constraints form the bulk of the

function summaries.

Memory-Safety Checks. The auxiliary variables are used to generate memory-safetychecks:

checks for buffer overflows and checks for buffer underflows.We generate memory-safety checks

for each memory access that is not resolved by the IR-recovery phase to a particular global or

local variable: these memory accesses correspond to accesses to global and local buffers, and to

dereferences of pointers that are either passed as parameters or stored in global variables. As

mentioned in§7.2, general indirect memory accesses in x86 instructions have the form “[base +

index× scale + offset]”, wherebaseandindexare registers andscaleandoffsetare constants. Let

sizedenote the number of bytes to be read or written. The following checks are generated:

• Buffer-overflow check:assert(base.allocf ≥ index× scale + offset+ size)

• Buffer-underflow check:assert(base.allocb + index× scale + offset≥ 0)

The instructions that execute hardware-supported loops require slightly more care: the value

of the x86 direction flag and the number of iterations must be taken into consideration. For in-

stance, for the the instruction “rep stosd”, which we described in§7.3.2, the following checks

are generated:

Buffer overrun Buffer underrun

DF = false assert(edi.allocf ≥ 4× ecx) assert(edi.allocb ≥ 0)

DF = true assert(edi.allocf ≥ 0) assert(edi.allocb ≥ 4× ecx)
DF = unknown assert(edi.allocf ≥ 4× ecx) assert(edi.allocb ≥ 4× ecx)

Some instructions, namely “rep movsd” and “rep cmpsd”, require that memory-safety checks

are generated for both of its implicit operands: registeredi and registeresi. Also, note that the

discussion regarding the modeling of the direction flag at the end of§7.3.2 applies to the case of

generating memory-safety checks, too.

181

Allocation bounds. Maintaining allocation bounds for all variables is unnecessarily expensive.

For this reason, we only associate allocation bounds with variables that can hold memory ad-

dresses. To identify this set of variables, we use the value-dependence graph, which was described

in §7.3.3. We perform a backward traversal of the graph, starting from the set of nodes that are

guaranteed to represent pointer variables (i.e., they are dereferenced by some x86 instructions).

The nodes that are visited by the traversal are collected into the resulting set, which we denote by

Addr.

More formally, the initial approximation for the setAddrcontains the VDG nodes that represent

variables that are treated as pointers in the memory-safetychecks we introduced. For instance, for

the instruction

I: mov eax, [esi + 4 × ecx + 4]

we addNodeU(I, esi) to the initial approximation forAddr. The setAddr is iteratively grown by

adding the nodes that reach the nodes in the set via affine-dependence edges. The process stops

when no more nodes can be added.

The updates for the auxiliary variables are generated in a straightforward way. That is, the

translation of themov instruction contains assignments for the corresponding allocation bounds.

The translations ofadd, sub, inc, dec, andlea, as well as the x86 string-manipulation instruc-

tions, contain affine transformations of the correspondingallocation bounds (see Figs. 7.1 and 7.2

for some examples).

7.3.5 Integer Division and Remainder Computations

Memory functions, such asmemset, rely heavily on integer division and remainder computa-

tions to improve the efficiency of memory operations. In low-level code, the quotient and remain-

der from dividing by a power of two are typically computed with a shift-right (shr) instruction

and a bitwise-and (and) instruction, respectively. In Fig. 7.1, the two consecutive instructions at

0x4010A9establish the property:edx0 = 4 × ecx + edx, whereedx0 denotes the value contained

in edx before the instructions are executed. This property is essential for inferring precise error

182

triggers for the memory accesses at0x4010B1and0x4010B7. However, polyhedral analysis is not

able to handle integer division with sufficient precision.

We overcome this problem by introducing additional auxiliary variables: each variablevar

that may hold a value for which both a quotient and remainder from division byk are computed

is associated with two auxiliary variables,var.quotk and var.remk, which denote the quotient

and the remainder, respectively. These variables represent the result of the corresponding integer

computation symbolically. Furthermore, the following global constraint links the value of the

variable to the values of the two auxiliary variables:

var = k × var.quotk + var.remk ∧ 0 ≤ var.remk ≤ k − 1. (7.5)

We define a functionIntOp : Node→ ℘(N) that maps each node in the VDG to the corre-

sponding set of divisors. To identify variables that may hold the values for which quotients and

remainders are computed, we again use the value-dependencegraph. Much like we did for al-

location bounds, we compute the initial approximation for the IntOp function by including the

mappings for the nodes that immediately participate in the corresponding integer operations. The

IntOp function is then iteratively grown by adding mappings for nodes that are reachable or them-

selves reach the nodes for which the mappings have already been added to the function. There

are multiple potential strategies for building theIntOp function, each with a corresponding preci-

sion/cost trade-off. Below we describe the two strategies that we experimented with:

Minimal construction [50]. The minimal-construction method looks for the VDG nodes that are

reachable by backward traversals from both the division andremainder computation for the same

divisork (only affine-dependence edges are traversed). The auxiliary variables are associated with

all of the nodes that are visited by the traversals, up to the first shared node: that is, for every such

nodeu, the divisork is added to the setIntOp(u).

For the above example, the starting point for the “quotient”traversal is the use ofecx at

0x4010AC, and the starting point for the “remainder” traversal is theuse ofedx at 0x4010A9: at

these points, we generate assignments that directly use thecorresponding auxiliary variables. The

first shared node is the use ofedx at0x4010A7: at that point, we generate numeric instructions that

183

impose semantic constraints on the values of the auxiliary variables (see Fig. 7.2). This construc-

tion introduces a relatively small number of auxiliary variables, and allows polyhedral analysis to

compute precise error triggers for the memory accesses at0x4010B1and0x4010B7.

Maximal construction. The alternative is to aggressively introduce auxiliary variables: that is,

to associate the auxiliary variables with all the variablesthat are reachable by either backward or

forward traversal of the VDG from the initial set of nodes. More formally, for each edgeu→ v in

the VDG, the functionIntOp is updated as follows: the divisors inIntOp(u) are added to the set

IntOp(v), and vice versa. The process is repeated until the functionIntOp stabilizes.

This approach introduces a large number of auxiliary variables, but also allows the analysis to

handle pointer alignment. For instance, the overflow trigger that we obtain with this technique for

the memory accesses at0x401093(see Fig. 7.1) looks as follows:

len ≥ 4 ∧ 1 ≤ ptr.rem4 ≤ 3 ∧ ptr.allocf ≤ 4− ptr.rem4.

Note that this trigger is much more precise then the ones shown in §7.1.3: in particular, the con-

straint1 ≤ ptr.rem4 ≤ 3 indicates thatptr must not be 4-byte aligned for the buffer overrun to

occur; the constraintptr.allocf ≤ 4− ptr.rem4 is the strongest condition for the buffer overrun at

0x401093.

Instruction translation. The numeric translations of x86 instructions must update the corre-

sponding auxiliary variables in such a way that the global constraint shown in Eqn. (7.5) is satisfied

for every annotated variable. This is not very hard in practice. The only complication is that the

remainder auxiliary variables may wrap around as the resultof an increment or a decrement. Thus,

necessary checks must be inserted. In§7.3.7, we show an example translation.

7.3.6 Symbolic Memory Constants

The goal of our technique is to synthesize the summary of a library function by looking at its

code in isolation. However, library functions operate in a larger context: they may access memory

of the client program that was specified via their parameters, or they may access global structures

that are internal to the library. The IR-recovery phase has no knowledge of either the contents

184

or the structure of that memory: they are specific to the client application. As an example, from

the IR-recovery perspective,memset parameterptr may contain any memory address. Thus, from

the point of view of numeric-program generation, a write into ∗ptr may potentially overwrite any

memory location: local and global variables, a return address on the stack, or even the code of the

function. As the result, the generated numeric program, as well as the function summary derived

from it, will be overly conservative (causing the client analysis to lose precision).

We attempt to generate more meaningful function summaries by usingsymbolic memory con-

stantsto model memory that cannot be confined to a specific a-loc by the IR-recovery phase.

A unique symbolic memory constant is created for each unresolved memory access. From the

numeric-analysis perspective, a symbolic constant is simply a global variable that has a special

auxiliary variableaddr associated with it. This auxiliary variable represents theaddress of a mem-

ory location that the symbolic constant models. If the memory location may hold an address, then

the corresponding symbolic memory constant has allocationbounds associated with it.

We illustrate the use of symbolic memory constants with an example that comes from function

lseek: The function lseek moves a file pointer to a specified position within the file. It is

declared as follows:

off t lseek(int fd, off t offset, int origin);

fd is a file descriptor;offsetspecifies the new position of the pointer relative to either its current

position, the beginning of the file, or the end of the file, based onorigin.

A recurring memory-access pattern inlseek is to read a pointer from a global table and then

dereference it. Fig. 7.3 shows a portion oflseek that contains a pair of such memory accesses:

the firstmov instruction reads the table entry, the second dereferencesit. The registersecx andedx

hold the valuesfd/32 andfd mod 32, respectively. The global variableuNumbergives the upper

bound for the possible values offd. Symbolic constantsmc1 andmc2 model the memory locations

accessed by the first and secondmov instructions, respectively.

Our technique synthesizes the following buffer-overrun trigger for the secondmov instruction:

0x424DE0≤ mc1.addr ≤ 0x424DE0+ (uNumber− 1)/8 ∧ mc1.allocf <= 251

185

mov eax, dword ptr [4×ecx + 0424DE0h]

assume(mc1.addr = 0x424DE0+ 4 ∗ ecx);
eax← mc1; eax.allocf = mc1.allocf ; eax.allocb = mc1.allocb;

movsx ecx, byte ptr [eax + 8×edx + 4]

assert(eax.allocf ≤ 8 ∗ edx + 5); assert(eax.allocb + 8 ∗ edx + 4 ≥ 0);
assume(mc2.addr = eax.allocb + 8 ∗ edx + 4 ≥ 0); ecx← mc2;

Figure 7.3 Symbolic memory modeling: the symbolic constantsmc1 andmc2 model the memory
location accessed by themov andmovsx instructions, repsectively.

The above trigger can be interpreted as follows:if any of the addresses stored in the table at

0x424DE0point to a buffer of length that is less than 252 bytes, there is a possibility of a buffer-

overrun error. The error trigger is sufficient for a client analysis to implement sound error report-

ing: if the client analysis does not know the allocation bounds for pointers in the table at0x424DE0,

it should emit an error report for this trigger at the call site to lseek. However, we hope that the

summary generated by our technique for the library-initialization code will capture the proper al-

location bounds for the pointers in the table at0x424DE0. If that is the case, the analysis will not

emit spurious error reports.

Note that anassumestatement is used to restrict the value of variablemc1.addr, rather than

the assignment statement. The reason for that is that if we were to overwrite the address variable,

we would not obtain the constraints on its value in the error triggers because the assignment kills

the relationships between the value ofmc1.addr at the call site of the function and the value of

mc1.addr at the error point. Thus, we adopt the philosophy that beforethe memory access is

reached by the analysis, the corresponding symbolic memoryconstant represents any memory

location. The memory access “selects” a particular memory location that the symbolic memory

constant must represent.

An interesting question is to see what soundness guaranteescan be provided for the symbolic

memory constants. An obvious concern is aliasing, i.e., what if two symbolic memory constants

refer to the same location? Unfortunately, such aliasing can cause the translation to be unsound.

Consider the following scenario: a write to a memory location is followed by a read from the

same memory location, and the symbolic constant generated for the memory read is used in one

of the error-trigger constraints. Suppose that the value stored at that memory location at the call

186

site of the function does not satisfy the constraint; thus, the client analysis does not report an error.

However, the write statement may have overridden the value that is stored in that memory location

with the value that does violate the constraint, and the error is actually possible.

Currently, we do not have a good solution to this problem. Onepossibility is to perform a

post-processing step: compare numerically theaddr variables associated with symbolic memory

constants. Overlap between the values of two address variables indicates that the two symbolic

memory constants may represent the same memory location, thus certain precautions must be

taken before using the produced summary. For the same reason, the address variables associated

with symbolic memory constants must be checked against the addresses of global variables that

were resolved by the IR-recovery phase. Also, the client analysis must check that none of the sym-

bolic constants represent memory locations in the activation record of the function to be invoked.

Ultimately, we hope to add better memory modeling in the future.

7.3.7 Numeric-Program Generation

The actual numeric program generation is done by performingtwo passes over the x86 code:

on the first pass, the value-dependence graph is constructed, and the set of variables that hold

memory addresses (Addr) and the function that maps each node in the VDG to the corresponding

set of divisors (IntOp) are built; on the second pass, the actual numeric program isgenerated.

Below, we illustrate the translation process by translating the instructionI: inc op1. The

overall translation is the concatenation of three pieces: basic translation, updates to the alloca-

tion bounds, and updates to the symbolic quotients and remainders. In the following, we use

the functionσ to map the VDG nodes to the corresponding numeric-program variables, i.e.,

σ = VarNP ◦ Varx86.

Basic Translation. Basic translation is trivial: the increment instruction istranslated into a

numeric assignment statement that adds one to the numeric variable that represents the use of the

operandop1 and assigns the result to the numeric variable that represents the definition ofop1. The

following numeric statement is produced:

σ(NodeD(I, op1))← σ(NodeU(I, op1)) + 1;

187

NodeD(I, op1) NodeU(I, op1) Generated Statements

6∈ Addr − nop;

∈ Addr ∈ Addr
σ(NodeD(I, op1)).allocf ← σ(NodeU(I, op1)).allocf − 1;

σ(NodeD(I, op1)).allocb ← σ(NodeU(I, op1)).allocb + 1;

∈ Addr 6∈ Addr
σ(NodeD(I, op1)).allocf ← ?;

σ(NodeD(I, op1)).allocb ← ?;

Table 7.1 The generation of updates for the allocation bounds.

Note that the same numeric variable will be used on both the left-hand-side and right-hand-side of

the assignment statement.

Allocation-Bound Updates. The generation of numeric statements for maintaining allocation

bounds makes use of the setAddr, which contains VDG nodes that are used to propagate memory

addresses. If the node that corresponds to the definition ofop1 is not in the set, no statements need

to be generated. Otherwise, the use of the operandop1 is checked: if the node that corresponds

to the use of the operand is also found in the setAddr, the allocation bounds for the definition of

the operand are constructed from the allocation bounds associated with the use of the operand; on

the other hand, if the node is not found, the allocation bounds for the definition ofop1 are handled

conservatively. The details are shown in Tab. 7.1.

Quotient and Remainder Updates. The generation of numeric statements that maintain the sym-

bolic quotients and remainders relies on the functionIntOp. First, the setIntOp(NodeD(I, op1))

is checked: if the set is empty, no code needs to be generated.Otherwise, for each divisor

k ∈ IntOp(NodeD(I, op1)), consistent updates for the auxiliary variablesquotk andremk need

to be generated. Ifk ∈ IntOp(NodeU(I, op1)), then the quotient and the remainder associated with

the use of the operand are used to compute the new values for the quotient and remainder associ-

ated with the definition of the operand (note that the numericcode must account for the possibility

of wrap-around in the remainder value). Otherwise, conservative assumptions are made for the

values of the quotient and remainder. The generation process is illustrated in Tab. 7.2.

188

for all k ∈
IntOp(NodeD(I, op1))

Generated Statements

k ∈
IntOp(NodeU(I, op1))

σ(NodeD(I, op1)).quotk ← σ(NodeU(I, op1)).quotk;

σ(NodeD(I, op1)).remk ← σ(NodeU(I, op1)).remk + 1;

if(σ(NodeD(I, op1)).remk == k){
σ(NodeD(I, op1)).remk ← 0;

σ(NodeD(I, op1)).quotk ← σ(NodeU(I, op1)).quotk + 1;

}

k 6∈
IntOp(NodeU(I, op1))

σ(NodeD(I, op1)).quotk ←?;

σ(NodeD(I, op1)).remk ←?;

assume(0 ≤ σ(NodeD(I, op1)).remk ≤ k − 1);

assume(σ(NodeD(I, op1)) ==

(k−1)×σ(NodeD(I, op1)).quotk+σ(NodeD(I, op1)).remk);

Table 7.2 The generation of updates for the quotient and remainder auxiliary variables.

7.4 Numeric Analysis and Summary Generation

Our numeric analyzer is based on the Parma Polyhedral Library (PPL) and the WPDS++ li-

brary for weighted pushdown systems (WPDSs), and supports programs with multiple procedures,

recursion, global and local variables, and parameter passing. The analysis of a WPDS yields, for

each program point, aweight, or abstract state transformer, that describes how the program state is

transformed on all the paths from the entry of the program to that program point. Linear-relation

analysis [32] is encoded using weights that maintain two sets of variables: thedomaindescribes

the program state at the entry point; therangedescribes the program state at the destination point.

The relationships between the variables are captured with linear inequalities. Given a weight com-

puted for some program point, its projection onto the range variables approximates the set of states

189

that are reachable at that program point. Similarly, its projection onto the set of domain variables

approximates the precondition for reaching that program state.

7.4.1 Variable Packing

Function summaries are generated from the numeric-analysis results. In principle, summary

transformers are constructed from the weights computed forthe program points corresponding to

procedure returns. Error triggers are constructed by back-projecting weights computed for the set

of error program points. However, the poor scalability of polyhedral analysis is a major challenge:

in practice, for most reasonable library functions, it willnot be possible to analyze the generated

numeric program in its entirety. We address this issue by breaking a large analysis problem into a

set of smaller ones: we perform multiple analysis runs, eachrun still analyzes the entire program,

but models only small subset of program variables. This technique is calledvariable packing

(or, sometimes,variable clustering) [14, 87]. There is one difference in the way we use variable

packing: the standard approach is to propagate all variablepacks simultaneously, whereas we

perform a separate analysis run for each pack. Note that, on the one hand, simultaneous pack

propagation yields better analysis precision; but on the other hand, it puts much larger pressure on

memory and is not parallelizable.

The main question that needs to be answered is how to identifyvariables that should go into the

same pack. If we include too many variables, the analysis will not be efficient; if we include too

few, the analysis will be imprecise. We generate packs with the use of the value-dependence graph:

for each pack we identify a set ofgenerators—that is, a set of variables (or rather, VDG nodes) that

are of primary concern to us—and include into the pack all thenodes that are reachable from the

generators by a backward traversal through VDG (all classes of dependence edges are used). One

particular challenge that we face is that VDG graph containsonly a single node per global or local

variable. This approach worked well for identifying variables that must have auxiliary variables

associated with them. However, in pack generation, this approach causes extra variables, which

are of no use for the analysis, to be added to a pack. Intuitively, this happens because the treatment

of variables in the VDG is control-flow insensitive: thus, some dependence chains in the VDG are

190

not realizable in the actual program. We try to curb the propagation through the VDG with the use

of heuristics: e.g., the backward traversal does not followconditional edges out of the nodes that

correspond to global variables. However, the heuristics are not yet mature enough to be reported.

In the next two sections, we describe pack generation for error triggers and summary trans-

formers in more detail.

7.4.2 Error Triggers

A single pack is constructed for each safety-checked memoryaccess; that is, the analysis run

performed with this pack generates both the buffer-overflowtrigger and the buffer-underflow trig-

ger for the memory access. The set of generators for a memory-access pack contains the VDG

nodes that are used directly in the memory-address computation. For the memory accesses per-

formed by x86 instructions that execute hardware-supported loops, the node that indicates the

number of loop iterations (i.e., the node that represents the use of registerecx at the corresponding

instruction) is added to the set of generators.

For example, for the instructionI: mov eax, [esi + 4 × ecx + 4], the set of generators

containsNodeU(I, esi) andNodeU(I, ecx). For the instructionJ : rep movsd, the following set is

used:

{ NodeU(J, esi), NodeU(J, edi), NodeU(J, ecx) }

Splitting error-trigger formulas. The error triggers produced by our technique are represented

by polyhedra. It may be of practical interest to decompose the error trigger into two parts:

• Path component:a polyhedron that corresponds to the precondition for reaching the mem-

ory access.

• Error component: a polyhedron that encompasses the general condition that has to be

violated to cause an error.

The meet (or, in logical terms, conjunction) of the path component and the error component is

equivalent to the original trigger.

191

For example, consider a buffer-overflow trigger from§7.3.5:

len ≥ 4 ∧ 1 ≤ ptr.rem4 ≤ 3 ∧ ptr.allocf ≤ 4− ptr.rem4.

This trigger can be decomposed into a path component:len ≥ 4 ∧ 1 ≤ ptr.rem4 ≤ 3, which

indicates that for the memory access to be reachable, the parameterlen must have a value that is

greater than4, and the parameterptr must not be aligned on a 4-byte word boundary; and an error

componentptr.allocf ≤ 4 − ptr.rem4, which indicates that for the buffer overflow to happen at

that memory location, the forward allocation bound must be less than the distance fromptr to the

next 4-byte-aligned word.

We have a technique for automatically splitting error triggers into a path component and an

error component. The technique operates as follows: the path component is trivially obtained

by computing the precondition for the memory-access point.Observe that, because error points

(to which control is diverted in the case of a memory error) are unique, each error trigger (i.e.,

a precondition for reaching an error point) is a subset of thecorresponding path component. To

obtain the error component, we need to find the most general polyhedron that, when intersected

with the path component, yields the error trigger.

To compute error components, we defined a general operation on polyhedra: the operation

takes two polyhedraP1 andP2, such thatP1 ⊆ P2, and produces the most general polyhedronP ,

such thatP2 ∩ P = P1. The operation can be implemented by selecting only those constraints of

the smaller polyhedronP1 that are not satisfied by the larger polyhedronP2. Interestingly enough,

this operation is very close in spirit to the widening operator: in principle, the result of widening is

constructed by selecting those constraints of the smaller polyhedron that are satisfied by the larger

polyhedron7.

7In practice, the implementation of widening is much trickier. See Chapter 2 for details. This may indicate that
the implementation of the operation that we sketched above is not ideal, and can be improved by using ideas from the
design of widening operators.

192

7.4.3 Summary Transformers

Generating summary transformers is somewhat harder than generating error triggers. First,

as we said before, it is infeasible to generate a summary transformer with a single analysis run.

Thus, we generate the summary transformer for eachtarget variableof the library function. Target

variables include the registereax at each return point, and the set of global variables that are

updated within the function. For a particular target variable, the pack generator is a singleton set

that contains that variable.

The summary transformer for a particular target variable isgenerated as follows: the weight

computed for the return program point is transformed to forget the values of all “after” variables,

except for the target variable. Also, information about local variables (if present) is dropped.

Intuitively, the resulting polyhedron expresses the “after” value of the target variable solely in

terms of “before” values of function parameters and global variables. To form the overall summary

transformer, the transformers for the individual target variables are conjoined.

Note that this approach loses some precision: namely, the analysis does not capture numeric

relationships among multiple target variables. That is, consider a function that on exit establishes

the relationshipx + y = 5, for some global variablesx andy. Our technique will not be able to

generate a summary transformer that captures this behavior, unless eitherx or y is preserved by

the function (i.e., eitherx′ = x or y′ = y).

Disjunctive Partitioning. Another challenge posed by generating summary transformers is due

to non-distributivity of the polyhedral abstract domain. Library functions (as well as many non-

library functions) typically have two kinds of paths: shorter “error” paths, which skip directly to

the return statement if the corresponding error check evaluates to true, and longer “work” paths,

which actually perform the function’s job. The majority of global-variable updates happen on the

“work” paths, but not on the “error” paths. At the return point, the weights for the two kinds

of paths are combined, which often causes precision to be lost: in relational polyhedral analysis,

combining an identity transformation with any other transformation tends to lose precision. For

instance, consider combining (i.e., joining) a polyhedron{x′ = x} with the polyhedron{x′ = 5}.
The resulting polyhedron includes the entire(x, x′)-plane, i.e., all constraints onx andx′ are lost.

193

To retain some precision, we resort to disjunctive partitioning: that is, we prevent certain

weights from being combined. More precisely, we prevent theanalysis from combining the weights

from the paths on which the target variable is modified with the weight from the paths on which

the target variable is preserved. (Recall, that due to packing, there is only one target variable per

analysis run.) As a result, a pair of weights is computed for each program point, and thus a pair

of summary transformers is generated for each target variable: the first transformer is typically an

identity—the only interesting case is when this transformer is an annihilator (zero), which indi-

cates that the target variable is updated on all paths through the function; the second transformer

approximates all updates to the target variable that the function performs.

The above partitioning scheme is similar to the disjunctivepartitioning performed by ESP [34]:

that technique propagates functions that map states of an FSM (which is referred to asproperty

automaton) to the elements of some abstract domain. At join points, only the elements that cor-

respond to the same FSM state are joined together. Our technique uses a very simple “property”

automaton that only has two states—the state “target variable preserved” and the state “target vari-

able updated”—and a single transition that goes from “preserved” to “updated”. The automaton

starts in “preserved”, and makes a transition to “updated” whenever a numeric assignment state-

ment that updates the corresponding target variable is encountered by the analysis.

7.5 Experimental Evaluation

To experimentally evaluate the techniques presented in this chapter, we generated summaries

for a number of functions in the standard C library. The particular library that we used in our

experiments is the version of standard C library that is bundled with Microsoft Visual Studio 6.0:

we used the version of the library for theReleasebuild configuration (that is, the library code was

optimized by the compiler).

We conducted two case studies. In the first study, we generated function summaries for the

memory-manipulation library functions:memset, memcmp, andmemchr.8 The implementations

8Currently, we cannot handle the callmemcpybecause we cannot recover an accurate intermediate representation
for it.

194

Library x86 NP Memory Times (s) Error Triggers
Call Instr. Variables Accesses IR recovery NP Generation Analysis Overrun Underrun

memset 48 24 3 103 0.05 1.7 3/3 3/3
memchr 84 23 4 109 0.08 2.6 4/4 4/4
memcmp 86 36 12 100 0.16 13.4 8/12 12/12

Table 7.3 Analysis results for memory-manipulation library functions: the number of x86 instruc-
tions, the number of variables in the generated numeric program, and the number of safety-checked
memory accesses are shown; times are given for IR recovery, numeric-program generation, and nu-
meric analysis; the precision is reported as the number of triggers that are sufficiently precise to
prevent the client analysis from generating spurious errorreports.

of these library functions are relatively small: each consists of a single procedure; the number of

x86 instructions ranges between50 and100. On the other hand, these library calls have fairly

complex numeric behaviors: pointer arithmetic is used extensively, including checking for pointer

alignment; the x86 instructions that execute hardware-supported loops and bitwise logical instruc-

tions are employed routinely. The goal of this study was to check whether our techniques provide

sufficient precision to generate meaningful summaries for these library functions. We report the

results of this study in§7.5.1.

The second study focused on stream library functions, such as fclose, fopen, fflush, etc. The

implementations of these library calls are larger than the implementations of memory-manipulation

calls: each implementation consists of several hundred instructions and multiple procedures. Also,

internal library data structures (e.g., tables that store file information) are accessed and manipulated

extensively. However, in contrast to the memory-manipulation functions, the numeric behavior of

stream functions is quite simple. The goal of this study was to check the overall applicability and

scalability of our techniques. The results of this study arereported in§7.5.2.

The experiments were conducted on two machines: the IR-recovery and numeric-program

generation was done on a 1.83GHz Intel Core Duo T2400 with 1.5Gb of memory. The numeric

analysis was done on a 2.4GHz Intel Pentium 4 with 4Gb of memory.

195

Run Initial-state constraints Analysis time (s)

1 num ≤ 3 8.8
2 num ≥ 4, ptr %4 = 0 8.6
3 num ≥ 4, ptr %4 6= 0, ptr %4 + num %4 ≤ 3 12.1
4 num ≥ 4, ptr %4 6= 0, ptr %4 + num %4 = 4 10.8
5 num ≥ 4, ptr %4 6= 0, ptr %4 + num %4 ≥ 5 10.5

Table 7.4 Pointer-alignment study formemset: five analysis runs were performed to generate error
triggers that capture pointer alignment precisely; the initial-state constraints and the analysis time
are shown for each run.

7.5.1 Case Study: Memory Functions

Tab. 7.3 shows the result of the application of our techniqueto the set of memory-manipulation

library functions. For this set of experiments we used theminimal constructionmethod for dealing

with pointer-alignment checks (see§7.3.5). For each library function, intermediate-representation

recovery took roughly a minute and a half, numeric-program generation was almost instantaneous,

and numeric analysis took several seconds. We inspected theproduced error triggers by hand:

except for the four buffer-overrun triggers formemcmp, all the of the generated error triggers were

sufficiently precise: they corresponded to the error triggers one would derive from the specification

for those library calls. Implementation details, such as the fact that different paths are taken through

the code depending on the alignment of the pointer arguments, were abstracted from the triggers.

The four triggers that were not captured precisely are due tothe following loop inmemcmp(we

show a numeric-program excerpt, rather than the original x86 code):

if(odd(eax)) eax← eax−1;

while(eax 6= 0){
. . .

eax← eax− 2;

}
The if statement above makes sure that the value stored in registereax is even. The while loop

decrements the value ofeax by two on each iteration and uses a non-equality constraint to exit the

loop: that is, this loop only terminates if the value ineax before the loop is even. The polyhedral

196

abstract domain cannot represent the parity of a variable. Thus, the analysis presumes that there is

no lower bound on the value ofeax, which causes the error-triggers to be imprecise.

However, the technique that we introduced in§7.3.5 is able to deal with parity: if we introduce

the auxiliary variables that symbolically represent “eax% 2” and “eax / 2”, and add the corre-

sponding update statements for these variables to the numeric program, the analysis will obtain a

precise bound for the value in registereax (to do that, the analysis must also track the parity of

the parameter that specifies the length of the two buffers that memcmpcompares). We manually

instrumented the numeric program and checked that the triggers generated from that program are

indeed precise. However, we have not yet implemented an automatic way for detecting these cases

and adding necessary instrumentation to the program.

To experimentally evaluate themaximal constructionmethod from§7.3.5, we applied it to the

memsetlibrary call. The generated numeric program had an increased number of variables com-

pared to the minimal construction method (31 instead of 24).Also, numeric analysis applied di-

rectly to the problem took several hours and yielded imprecise results. We traced the problem to the

non-distributivity of the polyhedral abstract domain: therelationships between symbolic remain-

ders and quotients are generally non-convex—approximating those relationships caused complex

polyhedra (i.e., polyhedra with large numbers of vertices and constraints) to arise in the course

of the analysis. Complex polyhedra, in turn, caused the analysis to be slow and imprecise. To

prevent the joins of “incompatible” polyhedra, we manuallypartitioned the paths that the analysis

explores. The paths were partitioned by imposing a set of constraints on the program states at

the entry of the library call and performing multiple analysis runs to cover the entire set of initial

states. Tab. 7.4 shows the results we obtained: 5 analysis runs were required, each run took on the

order of 10 seconds, and the triggers that were generated gave the most precise error conditions

that can be inferred for this implementation ofmemset. However, the question of automating such

paths partitioning remains to be addressed in the future.

197

Library x86 Proc. Numeric Program Variables Memory IR Recovery NP Generation
Call Instr. Count global local (max) local (avg) Accesses Time (s) Time (s)

fclose 843 12 336 37 14 115 52.9 2.8
fflush 443 8 156 30 11 38 43.4 1.2
fgets 469 7 216 30 14 75 45.0 1.2
fopen 1419 18 258 35 15 107 69.5 4.0
fputs 784 13 266 40 15 98 59.5 2.7
fread 524 7 230 30 15 81 49.2 1.6
fseek 514 7 192 30 15 59 46.6 1.3
ftell 249 4 138 27 13 30 40.7 0.6
fwrite 600 9 238 40 16 75 57.2 2.1

Table 7.5 Numeric-program generation for stream library functions; the number of x86 instruc-
tions and the number of procedures in the implementation of each library function is shown; for
the numeric program, the number of global variables, and themaximum and the average number
of local variables are shown. Last two columns give the timesspent on recovering intermediate
representations and on generating numeric programs for each library function.

7.5.2 Case Study: Stream Functions

Tab. 7.5 shows the stream library functions for which we generated summary functions. Of

particular interest is the number of variables in the numeric program that our technique generates.

The maximum number of variables that the numeric analyzer must track at any point throughout

the analysis is given by the sum of the global variables and the maximum number of local variables

among all of the procedures in the generated program.9 In the end, the overall number of variables

that the analysis needs to track measures in the hundreds, and exceeds the number that polyhedral

analysis is able to handle in practice. In fact, if we feed anyof these numeric programs to the

numeric analyzer, the analyzer runs out of memory while constructing the pushdown system—that

is, even before the iterative computation begins. To analyze these numeric programs, we rely on

the variable-packing technique, which we described in§7.4.1.

Tab. 7.5 also reports the time spent for recovering intermediate representations and for genera-

tion of numeric programs. The IR-recovery phase took approximately one minute for each library

function. We believe that this can be improved by better engineering of the tool—something that

we have not yet addressed. For instance, we can use a single CodeSurfer run to recover IRs for

9In fact, in addition to these, a few extra variables may be required to support parameter passing.

198

Library Pack Variables/Pack Analysis Precision Analysis Time
Call Count Maximum Average Both One None Total (min) Average/Pack (s)

fclose 115 63 23 64 7 44 79.0 41.2
fflush 38 35 21 22 2 14 10.0 15.8
fgets 75 31 12 67 7 1 5.5 4.4
fopen 107 37 17 68 2 37 46.5 26.1
fputs 98 69 13 78 3 17 24.5 15.0
fread 81 46 14 70 0 11 13.8 10.2
fseek 59 30 15 56 1 2 7.8 7.9
ftell 30 29 18 30 0 0 2.3 4.5
fwrite 75 69 16 69 0 6 20.0 16.0

Table 7.6 Error-trigger generation for stream library functions; thepack countindicates the number
of analysis runs performed: each analysis run generates a buffer-overflow trigger and a buffer-un-
derflow trigger;Variable count:the number of variables that the analysis needs to model simulta-
neously (i.e., globals + locals), themaximumnumber across all packs and theaveragenumber per
pack is shown;Analysis Precision:measured as the number of packs for whichboth, one, or none
of the generated triggers are meaningful.

all library functions, as opposed to performing a single CodeSurfer run foreachlibrary function

as is done now. Numeric-program generation takes only a few seconds per library function; thus,

its performance is not of immediate concern. However, we believe that the efficiency of numeric-

program generation can also be improved.

Error Triggers. To generate error triggers, we used variable-packing approach presented in

§7.4.2: that is, a separate variable pack was generated for each memory access that is checked

for safety, and a separate analysis run was performed for each pack. Tab. 7.6 shows the results

obtained. Note that the number of variables in each pack is much more manageable compared to

the entire program, and on average, is rather small (under 25variables). On average, an analysis

run (for a single variable-pack) takes under a minute. The overall analysis takes on the order of

few dozen minutes per library function.

An interesting question is how to judge the quality of the error triggers obtained. If we had

an implementation of memory-safety analysis that could usethe produced triggers, we could have

measured the effectiveness of our technique by reduction/increase in the number of false positives

reported by the analysis. However, currently, there is no client analysis that can use the summaries

199

fclose fflush fgets fopen fputs fread fseek ftell fwrite AVG
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Both triggers
One trigger
None

Figure 7.4 Error triggers for stream library calls: the percentages of memory accesses for which
both generated triggers are meaningful, one of the generated triggers is meaningful, and none of
the generated triggers are meaningful, are shown.

that we produce. Also, the number of error triggers generated by our technique is sufficiently large

to prevent us from inspecting each trigger manually.

We used the following automatic technique to assess the quality of the produced triggers: each

trigger is split into two parts—the path component and the error component—as described in

§7.4.2. By construction, error components may only contain constraints that are relevant to the

error. Therefore, our automatic trigger-assessment technique is based on inspecting the error com-

ponents of the generated triggers.

We declare an error trigger to bemeaningfulif its error component isnot⊤ (or true, in logical

terms). The error trigger⊤ indicates that the corresponding error may happen during the invocation

of the library call regardless of the program state in which the call was invoked. Generally, we do

not expect library functions to behave in this way; thus,⊤ most likely indicates that the analysis

has lost precision.

200

We eliminated the path component of the trigger from consideration because the path compo-

nent may contain some constraints that are not relevant to the error (e.g., some program invariant),

thus making the overall trigger non-⊤.

Fig. 7.4 shows the results of our error-trigger-quality assessment. For each library function,

we report the percentages of memory accesses for which both generated triggers (i.e., the buffer-

overrun trigger and buffer-underrun trigger) are meaningful; only one of the generated triggers

(i.e., either the buffer-overrun trigger or buffer-underrun trigger) is meaningful; and neither of the

two generated triggers is meaningful. As the rightmost column indicates, our technique is able to

generate meaningful error triggers for about 80% of memory accesses.

The callfcloseseems to provide the biggest challenge for our technique: the numeric analysis

takes the longest onfclose(79 minutes) and yields the poorest precision (for only 56% of memory

accesses are both generated error triggers meaningful). Wetook a detailed look at the 15 longest

analysis runs forfclose(out of 115): the cumulative time for those analysis runs accounted for

more than 50% of the overall analysis time (40 out of 79 minutes); also, meaningful triggers were

generated by only 3 of those analysis runs (out of 15). Similar situations occur for other library

calls too: a small number of analysis runs takes an increasingly long time and produces poor

results, whereas the remaining analysis runs are fast and yield good precision. Our experience

indicates that the likely cause for this behavior is the failure of our current techniques for variable-

pack identification to produce reasonable variable packs for the corresponding memory accesses.

One future direction for this work is to improve the pack-identification techniques: we believe that

better variable-pack identification will significantly improve both the precision and the efficiency

of the analysis.

Summary Transformers. Initially, we focused on the generation of error triggers because they

are somewhat easier to generate and their quality is easier to assess. Recently, we switched our

attention to the generation of summary transformers. Our initial approach was to apply directly the

techniques that we designed for error-trigger generation;the only exception was the technique for

variable-pack identification—we use the technique described§7.4.3 to identify variable packs for

201

Library Pack Variables/Pack Transformer Precision Analysis Time
Call Count Maximum Average Full Partial Bad Total (min) Average/Pack (s)

fclose 43 67 26 8 1 34 115.5 161.2
fflush 28 30 14 6 0 22 16.1 34.5
fgets 21 35 11 10 8 3 20.9 59.6
fopen 22 40 25 6 0 15 64.5 176.0
fputs 36 73 10 14 8 14 57.3 95.5
fread 23 50 14 2 1 20 414.9 1082.3
fseek 11 22 9 5 4 2 0.8 4.1
ftell 4 46 16 1 1 2 1.3 18.8
fwrite 25 73 13 12 11 2 49.1 117.9

Table 7.7 Summary-transformer generation for stream library functions; thepack countindicates
the number of analysis runs performed: each analysis run generates a transformer for a single target
variable;Variable count:the number of variables that the analysis needs to model simultaneously
(i.e., globals + locals)—themaximumnumber across all packs and theaveragenumber per pack
are shown;Analysis Precision:the numbers of target variables for whichfull transformers,partial
transformers, andbadtransformers are obtained (for definitions, see§7.5.2).

generating summary transformers. The initial results werevery poor: the technique was not able

to produce any meaningful summary transformers.

The primary reason for the failure of the analysis, as we discussed in§7.4.3, was the precision

loss due to non-distributivity of the polyhedral abstract domain: the combination of the weights

computed for the paths on which the target variable was updated with the weights for the paths on

which the target variable was preserved cannot be represented precisely with a single polyhedron.

To overcome this problem, we modified the analysis to computetwo weights: one represents the

program-state transformation for the paths that modify thetarget variable, the other represents

the program-state transformation for the paths that preserve the target variable. This modification

allowed the analysis to produce much more meaningful summary transformers.

Tab. 7.7 shows the results that we obtained. First, note thatthe variable packs are somewhat

larger than the ones identified for error-trigger generation. Also, the analysis takes significantly

longer to complete. To estimate the precision of the generated summary transformers, we manually

classified the resulting transformers into three categories. The target variables are the variables that

are updated by the library call: they include the return value of the call, the global variables that

are explicitly assigned to, and symbolic memory constants that model unresolved memory writes.

202

The latter account for the majority of target variables. Twoparticular things that are of interest

in a summary transformer for a particular target variable are (i) what value is assigned to the

target variable, and (ii) whether we can precisely identifywhat memory location the target variable

represents. Item (ii) above is only of relevance for the symbolic memory constants. We recognize

the following categories of summary transformers:

• Full Transformers: These transformers capture both the resulting value and theaddress

(or, possibly, the range of addresses) for the corresponding target variable. The addresses

of target variables are of more concern to us because we have to link symbolic memory

constants to the corresponding memory locations. Our treatment of the resulting values is

less strict: that is, we declare the value to be “captured” ifany constraints on the value were

inferred.

• Partial Transformers: These transformers capture the address (or the range of addresses)

for the target variable, but lose the information about the resulting value; that is, these trans-

formers represent definite or conditional kills of the corresponding target variable. Only the

transformers for symbolic memory constants are classified as partial—partial transformers

for global variables are not very interesting; that is, there are much less expensive ways

of obtaining information about potential modifications of global variables, such as GMOD

analysis [25].

• Bad Transformers: These transformers do not capture either the value or the address of

the target variable. If the target variable is a return valueor a global variable, a bad trans-

former corresponds to a kill (definite or conditional) of that variable; if the target variable

is a symbolic memory constant, a bad transformer indicates that any memory location could

have potentially been updated—this is the worst possible scenario for the client analysis.

The chart in Fig. 7.5 shows the percentages of target variables for which full, partial, and bad

transformers were inferred. On average, full transformersare inferred for about 30% of target vari-

ables; partial transformers are inferred for another 15%, leaving more than half of target variables

with bad transformers. These results, however, are preliminary, and are included in this thesis

203

fclose fflush fgets fopen fputs fread fseek ftell fwrite AVG
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Full transformers
Partial transformers
Bad transformers

Figure 7.5 Summary transformers for stream library calls: the percentages of target variables for
which full transformers,partial transformers, andbad transformers are obtained (for definitions,
see§7.5.2).

primarily for the sake of completeness. In the generation oferror triggers, the main cause of the

analysis imprecision was poor variable-pack identification. The above results may indicate that

the variable-pack-identification techniques that worked satisfactorily for error-trigger generation,

do not work that well for the generation of summary transformers. Thus, in the future, better

identification techniques that are tuned to summary-transformer generation need to be designed.

7.6 Related Work

Summary functions have a long history, which goes back to theseminal work by Cousot and

Halbwachs on linear-relation analysis [32] and the papers on interprocedural analysis of Cousot

and Cousot [30] and Sharir and Pnueli [106]. Other work on analyses based on summary functions

includes [11, 71, 94], as well as methods for pushdown systems [16, 17, 41, 97], where summary

functions arise as one by-product of an analysis.

204

A substantial amount of work has been done to create summary functions for alias analysis

or points-to analysis [22, 58, 77, 98, 115], or for other simple analyses, such as lock state [116].

Those algorithms are specialized for particular problems;more comprehensive approaches include

the work on analysis of program fragments [99], componential set-based analysis [42], and use of

SAT procedures [116].

The relevant-context-inference algorithm of Chatterjee et al. [22] determines points-to infor-

mation for a subset of C++. It works bottom-up over the call graph, analyzing each method using

unknown initial values for parameters and globals. The goalis to obtain a summary function

together with conditions on the unknown initial values.

The work on points-to and side-effect analyses for programsbuilt with precompiled libraries

[98] concerned flow-insensitive and context-insensitive analyses. Such analyses ignore the order

among program points in procedures and merge the information obtained for different calling con-

texts.

Some of the work cited above explicitly mentions separatelycompiled libraries as one of the

motivations for the work. Although the techniques described in the afore-mentioned papers are

language-independent, all of the implementations described are for source-code analysis.

Guo et al. [55] developed a system for performing pointer analysis on a low-level intermediate

representation. The algorithm is only partially flow-sensitive: it tracks registers in a flow-sensitive

manner, but treats memory locations in a flow-insensitive manner. The algorithm uses partial trans-

fer functions [115] to achieve context-sensitivity, wherethe transfer functions are parameterized

by “unknown initial values”.

Kruegel et al. [72] developed a system for automating mimicry attacks. (i.e., attacks that evade

detection by intrusion detection systems that monitor sequences of system calls). Their tool uses

symbolic-execution techniques on x86 binaries to discoverattacks that can give up and regain

execution control by modifying the contents of the data, heap, or stack so that the application is

forced to return control to injected attack code at some point after a system call has been performed.

Cova et al. [33] used this platform to apply static analysis to the problem of detecting security

vulnerabilities in x86 executables. In both of these systems, alias information is not available.

205

In our work, we make use of a-locs (variable proxies), alias information, and other IRs that

have been recovered by the algorithms used in CodeSurfer/x86 [8, 9]. The recovered IRs are used

as a platform on which we implemented a relational analysis that synthesizes summary functions

for procedures.

206

Chapter 8

Conclusions and Future Work

In this thesis, we presented a collection of techniques for enhancing the precision and appli-

cability of numeric program analysis. The proposed techniques are orthogonal to each other and

can be (and, in fact, should be) combined and used together inthe implementations of numeric-

program-analysis tools. The techniques are not specific to any particular numeric abstraction or

any particular iterative-computation-based analysis engine: rather, certain minimal requirements

are placed (in the form of an interface) on these components.For the numeric abstractions, the

techniques adhere to the interface imposed by the abstract-interpretation framework: i.e., abstrac-

tions are viewed as domains (partially-ordered sets) that provide certain operations; e.g., meet, join,

widening, etc. As a result, our techniques can be instantiated with any existing numeric abstraction

or with any numeric abstractions to be introduced in the future, as long as those abstraction adhere

to the required interface.

For program analyzers, the guided-static-analysis technique from Chapter 5 imposes a gen-

eral interface that is inspired by model checking and by transition systems: the only assumption

that is placed on the analyzer is that it soundly approximates a set of program states that can be

reached by some execution of a program from a specified set of initial states. This interface is suf-

ficiently generic to allow guided static analysis to be easily integrated into a wide range of existing

analyzers. We integrated guided static analysis into the existing library for weighted pushdown

systems, WPDS++ [69] with minimal effort: no changes were required to the implementation of

the fix-point-computation engine of the library.

In the following, we briefly summarize each of the proposed numeric-program-analysis tech-

niques, and indicate directions for future work.

207

Summarizing Abstractions. Chapter 3 addressed the question of how to represent numeric

states of the systems where the number of numeric objects that the analysis must keep track of

varies from state to state and is, in general, unbounded. Thechapter shows how to systematically

construct summarizing abstract domains, which are capableof representing universal properties

of unbounded collections objects, from existing abstract domains. Summarizing abstract domains

can be used in conjunction with some form of a summarizing abstraction to represent numeric

states for systems that manipulate unbounded numbers of objects (e.g., for programs that perform

dynamic-memory allocation). The requirements that are placed on the summarizing abstraction

are minimal: summarization can be as simple as collapsing together all memory locations created

at the same allocation site, or as complex as canonical, which is abstraction used in state-of-the-art

shape-analysis tools [78, 100].

The key difference between summarizing abstraction and other techniques that are used to

represent universal properties for unbounded numbers of objects is that summarizing abstractions

model all objects in the system as first-class citizens: thatis, the properties of summarized objects

are synthesized and represented in the same way as the properties of non-summarized objects.

Other techniques, typically, rely on special representations for the universal properties, such as

parametrizedpredicates [110] andrangepredicates [67]; such approaches require the design of

special techniques and heuristics to reflect the effect of program statements on such predicates.

In contrast, Chapter 3 showed how to create sound transformers uniformly for all summarizing

abstractions.

Future Directions. There are a number of interesting future directions for thiswork:

• Predicate abstraction.Predicate abstraction is a very popular technique in software verifi-

cation: it is a main ingredient inparsimoniousabstractions, which are viewed as one of the

keys to future scalability of software verification. Predicate abstraction is, in fact, an abstract

domain that can (i) capture correlations between numeric and Boolean values, and (ii) cap-

ture disjunctions (and, consequently, implications) of numeric properties. Item (ii) above is

of particular interest for summarizing abstractions because it would significantly extend the

class of properties that can be automatically captured (see§3.5).

208

The summarizing extension for predicate abstraction can betrivially constructed based on the

material in Chapter 3. An interesting feature of such an extension is that the predicates that

are used to instantiate it are implicitly universally quantified. However, note that the tech-

niques in§3.4 allow to transform the values of such predicates with theuse of decision pro-

cedures that do not support quantification. On the other hand, existing iterative-refinement

techniques cannot be used directly to derive such universally-quantified predicates. An inter-

esting research direction is to investigate the use of summarizing abstractions in the context

of predicate abstraction.

• Aggregation functions.The first two steps of summarizing abstraction (referred to aspartial

abstraction in Chapter 3)aggregatethe values associated with the objects that are summa-

rized together. The particular aggregation that we explored is collecting the values into a

set. However, one can imagine other aggregation functions that could have been used: e.g.,

selecting a minimal or a maximal value, computing the sum or the average of the values, etc.

An interesting research question is whether the techniquesin Chapter 3 can be generalized to

be applicable to arbitrary aggregation functions. Also, would be interesting to see if there are

any applications in the area of program analysis that may require such aggregation functions.

Analysis of Array Operations. Chapter 4 presented a framework for analyzing code that manip-

ulates arrays, e.g., sorting routines, initialization loops, etc. In particular, the target of the analysis

was to infer universal properties of array elements. The framework combines two techniques:

canonical abstraction from the realm of shape analysis, andthe summarizing numeric abstractions

presented in Chapter 3. Canonical abstraction was used to summarize together contiguous seg-

ments of array elements, at the same time leaving the elements that are indexed by loop-induction

variables as non-summary elements (to facilitate strong updates in the body of the loop). Summa-

rizing abstractions were used to keep track of values and indices of the array elements. We used a

prototype implementation of the analysis to successfully analyze a number of array-manipulation

routines, including partial array initialization and an implementation of an insertion-sort routine.

209

Future Directions. In its current state, the array-analysis technique is suitable for analyzing small,

single-procedure programs that encompass the essence of array operations. Many issues must still

be addressed before the technique can be applied to “real-world” programs. In particular, the array-

partitioning has to be confined to small regions of the program where it is absolutely necessary,

otherwise the analysis will not scale. Techniques that automatically identify those regions would

have to be developed. Also, for the cases where summarizing abstractions fall short, automatic

techniques for inferring necessary auxiliary predicates must be designed.

Guided Static Analysis. Chapter 5 presented the framework of guided static analysis, a tech-

nique for controlling the exploration performed by an analysis of the space of program states. The

exploration of the state space is guided by deriving a sequence of program restrictions: each re-

striction is a modified version of the original program that only contains a subset of behaviors of

the original program; standard analysis techniques are used to analyze the individual restrictions

in the sequence.

The instantiations of guided-static-analysis framework were used to improve the precision of

widening. Widening precision is essential to the overall precision of numeric analysis. A number

of ad-hoc techniques for improving widening precision has been proposed since the introduction

of widening in the 1970s. We believe that the techniques proposed in§5.4 and§5.6 are among the

most systematic techniques for improving widening precision to date.

Of particular interest is thelookahead-wideningtechnique (§5.6). Lookahead widening can be

easily integrated into existing analysis tools: all it takes is a simple extension to the abstraction

that is currently used by an analyzer; no changes to the analysis engine are required. We integrated

lookahead widening into two numeric analyzers: (i) a small intra-procedural analyzer constructed

according to the principles of Chapter 2, and (ii) an analyzer based on an of-the-shelf WPDS

library. In both cases, the integration required minimal effort, and the precision of both analyzers

was substantially improved (see§5.7).

Future directions.In this thesis, we investigated the use of guided static analysis only in the context

of improving widening precision. Also, the construction ofprogram restrictions by the proposed

210

instantiations of the framework was done by completely removing certain edges from the control-

flow graph of the program. Note, however, that the framework allows for more fine-grained ways

to restrict program behaviors: in particular, it allows to strengthen the transformers associated

with the edges of a CFG. An interesting research direction would be to find other applications for

guided static analysis that may exercise the capabilities of the framework to a greater degree. As

an example, consider a program that performs a weak update:1 a restriction for that program can be

derived by replacing the weak update either by the corresponding strong update, or by an identity

transformation. However, it is not clear whether this approach will result in any precision gain.

Numeric Analysis and Weighted Pushdown Systems.Chapter 6 investigated the use weighted-

pushdown-system machinery as an engine for numeric analysis. Our main numeric-analysis tool,

which we used to conduct the experiments described in Chapters 5 and 7, is built on top of an

off-the-shelf weighted-pushdown-system library, WPDS++[69]. In essence, the tool implements

a version of relational polyhedral analysis [30, 32, 66] in the framework of weighted pushdown

systems. The key advantage of a pushdown-system-based implementation of the analysis is the

ability to answer stack-qualified queries: that is, the ability to determine the properties that arise at

a program point in a specified set of calling contexts.

Future Directions.The precision of relational polyhedral analysis is severely affected by the non-

distributivity of the polyhedral abstract domain. As we pointed out in§7.5, in some cases, com-

bining “incompatible” weights significantly slows down theanalysis, and, simultaneously, leads

to a loss of precision. Currently, most research in the area of weighted pushdown systems relies

on the assumption that the weights are distributive. In the future, the issue of improving precision

for non-distributive weight domains will have to be addressed, possibly by leveraging some of the

existing techniques for disjunctive partitioning [5, 34, 83, 102].

Library Analysis and Summarization. Chapter 7 addressed the question of automatic generation

of summaries for library functions from the low-level implementation of the library (i.e., from the

library’s binary). Currently, library functions (for which source code is rarely available), pose

a major stumbling block for source-level program-analysistools. Typically, models for library

1Weak updates were discussed in Chapters 3 and 4.

211

functions are manually constructed by either hardcoding them into the analyzer, or by providing

a collection of hand-written function stubs that emulate certain aspects of the library. Automatic

construction of function summaries eliminates the lengthyand error-prone manual construction

of models for library-functions. Additionally, because summaries are generated directly from the

library implementation, the resulting summaries automatically account for the deviations of that

particular implementation of the library from the library’s general specification.

In Chapter 7, we took the first steps towards automatic construction of summaries for library

functions. We selected one particular client analysis—memory safety analysis, which was known

to be reducible to numeric program analysis [37, 38]—and used our expertise, as well as some

of the numeric-program-analysis techniques described in this thesis, to build a tool for the auto-

matic construction of function summaries suitable for memory-safety analysis. The results in§7.5

indicate that the approach we have taken—that is, translating x86 code into a numeric program

and analyzing the resulting numeric program with relational polyhedral analysis—is feasible in

practice. However, in its current state, our tool is still far from being useful in practice.

Future Directions.Aside from immediate needs that have to be addressed, such asthe design of

better variable-pack-identification techniques, and getting a better grip on disjunctive partitioning,

there are two issues that pose interesting research questions:

• Better memory modeling.As we suggested in§7.3.6, the use of symbolic memory constants

may compromise the soundness of the analysis. However, the analysis captures (numeri-

cally) the addresses of the memory locations that the symbolic memory constants represent:

a post-processing step may inspect the possible values ofaddr variables to detect possible

aliasing among symbolic memory constants, and discard function summaries that are af-

fected by such aliasing. A interesting research question ishow to design a better scheme for

modeling unresolved memory. Ideally, such a scheme would integrate well into the WPDS

paradigm. One possibility is to incrementally refine the memory model, i.e., use the val-

ues ofaddr variables, and possibly the values of some new auxiliary variables, to refine the

memory model (e.g., replace all symbolic memory constants that refer to the same location

by a single global variable), and then rerun the analysis.

212

• Consolidation of error triggers.The current implementation of the tool generates an error

trigger for each memory access. Furthermore, due to variable packing, correlations between

individual triggers are typically lost. As a result, the error conditions that the tool produces

are largely redundant, whereas in principle they could be reduced to a small number of fairly

general error conditions. Techniques that are able to perform such consolidation would be

desirable.

213

Bibliography

[1] X. Allamigeon, W. Godard, and C. Hymans. Static analysisof string manipulations in

critical embedded C programs. InStatic Analysis Symp., pages 31–51, 2006.

[2] A. Armando, M. Benerecetti, and J. Mantovani. Abstracting linear programs with arrays

into linear programs. Tech. rep., AI Lab. Univ. of Genova, April 2005.

[3] A. Armando, M. Benerecetti, and J. Mantovani. Model checking linear programs with

arrays.Electr. Notes Theor. Comput. Sci., 144(3):79–94, 2006.

[4] A. Armando, M. Benerecetti, and J. Mantovani. Abstraction refinement of linear programs

with arrays. InTools and Algorithms for the Construction and Analysis of Systems, pages

373–388, 2007.

[5] R. Bagnara, P. Hill, and E. Zaffanella. Widening operators for powerset domains. InVerifi-

cation, Model Checking, and Abstract Interpretation, pages 135–148, 2004.

[6] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex

polyhedra. InStatic Analysis Symp., volume 2694, pages 337–354, 2003.

[7] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra

and the Parma Polyhedra Library. InStatic Analysis Symp., volume 2477, pages 213–229,

2002.

[8] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. InInt. Conf.

on Comp. Construct., pages 5–23. Springer-Verlag, March 2004.

214

[9] G. Balakrishnan and T. Reps. DIVINE: DIscovering Variables IN Executables. InVerifica-

tion, Model Checking, and Abstract Interpretation, 2007.

[10] G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum.WYSINWYX: What You See Is

Not What You eXecute. InProc. IFIP Working Conference on Verified Software: Theories,

Tools, Experiments, October 2005.

[11] T. Ball and S.K. Rajamani. Bebop: A path-sensitive interprocedural dataflow engine. In

Workshop on Program Analysis For Software Tools and Engineering, pages 97–103, 2001.

[12] C. Bartzis and T. Bultan. Efficient symbolic representations for arithmetic constraints in

verification.Found. of Comput. Sci., 14(4):605–624, 2003.

[13] C. Bartzis and T. Bultan. Widening arithmetic automata. In Int. Conf. on Computer Aided

Verification, pages 321–333, 2004.

[14] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.

Rival. Design and implementation of a special-purpose static program analyzer for safety-

critical real-time embedded software. InThe Essence of Computation: Complexity, Analysis,

Transformation., pages 85–108. Springer-Verlag, 2002.

[15] I. Bogudlov, T. Lev-Ami, T. Reps, and M. Sagiv. Revamping TVLA: Making parametric

shape analysis competitive. InInt. Conf. on Computer Aided Verification, 2007.

[16] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Ap-

plication to model checking. InInt. Conf. on Concurrency Theory, pages 135–150, 1997.

[17] A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of concur-

rent programs with procedures. InSymp. on Princ. of Prog. Lang., pages 62–73, 2003.

[18] F. Bourdoncle. Efficient chaotic iteration strategieswith widenings. InInt. Conf. on Formal

Methods in Prog. and their Appl., pages 128–141, 1993.

215

[19] D. Brumley, T. Chiueh, R. Johnson, H. Lin, and D. Song. RICH: Automatically protecting

against integer-based vulnerabilities. InSymp. on Network and Distributed Systems Security,

2007.

[20] T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with unbounded

integer variables: symbolic representations, approximations, and experimental results.ACM

Transactions on Programming Languages and Systems, 21(4):747–789, 1999.

[21] S. Chaki, E. Clarke, N. Kidd, T. Reps, and T. Touili. Verifying concurrent message-passing

C programs with recursive calls. InTools and Algorithms for the Construction and Analysis

of Systems, pages 334–349, 2006.

[22] R. Chatterjee, B.G. Ryder, and W. Landi. Relevant context inference. InSymp. on Princ. of

Prog. Lang., pages 133–146, 1999.

[23] R. Clarisó and J. Cortadella. The octahedron abstractdomain. InStatic Analysis Symp.,

pages 312–327, 2004.

[24] R. Clarisó and J. Cortadella. The octahedron abstractdomain. Sci. of Comput. Program.,

64(1):115–139, 2007.

[25] K. Cooper and K. Kennedy. Fast interprocedural alias analysis. InSymp. on Princ. of Prog.

Lang., pages 49–59, 1989.

[26] A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. A policy iteration algorithm

for computing fixed points in static analysis of programs. InInt. Conf. on Computer Aided

Verification, pages 462–475, 2005.

[27] P. Cousot. Verification by abstract interpretation. InN. Dershowitz, editor,Proc. Int. Symp.

on Verification – Theory & Practice – Honoring Zohar Manna’s 64th Birthday, pages 243–

268, Taormina, Italy, 2003.

[28] P. Cousot and R. Cousot. Static determination of dynamic properties of programs. InProc.

2nd. Int. Symp on Programming, Paris, April 1976.

216

[29] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis

of programs by construction of approximation of fixed points. In Symp. on Princ. of Prog.

Lang., pages 238–252, 1977.

[30] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive proce-

dures. InFormal Descriptions of Programming Concepts. North-Holland, 1978.

[31] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. InSymp. on

Princ. of Prog. Lang., pages 269–282, 1979.

[32] P. Cousot and N. Halbwachs. Automatic discovery of linear constraints among variables of

a program. InSymp. on Princ. of Prog. Lang., 1978.

[33] M. Cova, V. Felmetsger, G. Banks, and G. Vigna. Static detection of vulnerabilities in x86

executables. InAnnual Computer Security Appl. Conf., 2006.

[34] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in polynomial

time. InConf. on Prog. Lang. Design and Impl., pages 57–68, 2002.

[35] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. InConf.

on Prog. Lang. Design and Impl., pages 230–241, 1994.

[36] A. DiGiorgio. The smart ship is not the answer.Naval Institute Proceedings Magazine,

June 1998.

[37] N. Dor, M. Rodeh, and S. Sagiv. Cleanness checking of string manipulations in C programs

via integer analysis. InStatic Analysis Symp., pages 194–212, 2001.

[38] N. Dor, M. Rodeh, and S. Sagiv. CSSV: Towards a realistictool for statically detecting all

buffer overflows in C. InConf. on Prog. Lang. Design and Impl., pages 155–167, 2003.

[39] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model

checking pushdown systems. InInt. Conf. on Computer Aided Verification, pages 232–247,

2000.

217

[40] J. L. Lions et al. ARIANE 5, Flight 501 failure, Report bythe inquiry board. Available at

http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html, 1996.

[41] A. Finkel, B.Willems, and P. Wolper. A direct symbolic approach to model checking push-

down systems.Electr. Notes Theor. Comput. Sci., 9, 1997.

[42] C. Flanagan and M. Felleisen. Componential set-based analysis. InConf. on Prog. Lang.

Design and Impl., pages 235–248, 1997.

[43] C. Flanagan and S. Qadeer. Predicate abstraction for software verification. InSymp. on

Princ. of Prog. Lang., pages 191–202, 2002.

[44] S. Gaubert, E. Goubault, A. Taly, and S. Zennou. Static analysis by policy interation on

relational domains. InEuropean Symp. on Programming, 2007.

[45] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing. InConf.

on Prog. Lang. Design and Impl., pages 213–223, 2005.

[46] L. Gonnord and N. Halbwachs. Combining widening and acceleration in linear relation

analysis. InStatic Analysis Symp., pages 144–160, 2006.

[47] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with summarized

dimensions. InTools and Algorithms for the Construction and Analysis of Systems, pages

512–529, 2004.

[48] D. Gopan and T. Reps. Lookahead widening. InInt. Conf. on Computer Aided Verification,

pages 452–466, 2006.

[49] D. Gopan and T. Reps. Guided static analysis. InStatic Analysis Symp., 2007. To appear.

[50] D. Gopan and T. Reps. Low-level library analysis and summarization. InInt. Conf. on

Computer Aided Verification, pages 68–81, 2007.

[51] D. Gopan, T. Reps, and M. Sagiv. A framework for numeric analysis of array operations. In

Symp. on Princ. of Prog. Lang., pages 338–350, 2005.

218

[52] P. Granger.Analyses Semantiques de Congruence. PhD thesis, Ecole Polytechnique, 1991.

[53] P. Granger. Static analyses of congruence properties on rational numbers. InStatic Analysis

Symp., pages 278–292, 1997.

[54] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided underapproximation-

widening for multi-process systems. InSymp. on Princ. of Prog. Lang., pages 122–131,

2005.

[55] B. Guo, M.J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and D.I. August. Practical and

accurate low-level pointer analysis. InInt. Symp. on Code Generation and Optimization,

pages 291–302, 2005.

[56] N. Halbwachs. On the design of widening operators. Invited tutorial for Verification, Model

Checking, and Abstract Interpretation, January 2006.

[57] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear

relation analysis.Formal Methods in System Design, 11(2):157–185, 1997.

[58] M.J. Harrold and G. Rothermel. Separate computation ofalias information for reuse.Trans.

on Software Engineering, 22(7), 1996.

[59] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. InSymp. on Princ. of

Prog. Lang., pages 58–70, 2002.

[60] CERT: Computer Emergency Readiness Team. http://www.cert.org/.

[61] IDAPro disassembler, http://www.datarescue.com/idabase/.

[62] H. Jain, F. Ivancic, A. Gupta, I. Shlyakhter, and C. Wang. Using statically computed invari-

ants inside the predicate abstraction and refinement loop. In Int. Conf. on Computer Aided

Verification, pages 137–151, 2006.

[63] B. Jeannet. The convex polyhedra library New Polka. Available online at http://pop-

art.inrialpes.fr/people/bjeannet/newpolka/.

219

[64] B. Jeannet, D. Gopan, and T. Reps. A relational abstraction for functions. InInt. Workshop

on Numerical and Symbolic Abstract Domains., 2005.

[65] B. Jeannet, D. Gopan, and T. Reps. A relational abstraction for functions. InStatic Analysis

Symp., pages 186–202, 2005.

[66] B. Jeannet and W. Serwe. Abstracting call-stacks for interprocedural verification of imper-

ative programs. InInt. Conf. on Algebraic Methodology and Software Technology, pages

258–273, 2004.

[67] R. Jhala and K. McMillan. Array abstractions from proofs. In Int. Conf. on Computer Aided

Verification, 2007.

[68] M. Karr. Affine relationships among variables of a program. Acta Inf., 6:133–151, 1976.

[69] N. Kidd, T. Reps, D. Melski, and A. Lal. WPDS++: A C++ library for weighted pushdown

systems, 2004. http://www.cs.wisc.edu/wpis/wpds++/.

[70] G. Kildall. A unified approach to global program optimization. InSymp. on Princ. of Prog.

Lang., pages 194–206, 1973.

[71] J. Knoop and B. Steffen. The interprocedural coincidence theorem. InInt. Conf. on Comp.

Construct., pages 125–140, 1992.

[72] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Automating mimicry attacks

using static binary analysis. InUSENIX Security Symp., 2005.

[73] S. K. Lahiri and R. E. Bryant. Indexed predicate discovery for unbounded system verifica-

tion. In Int. Conf. on Computer Aided Verification, pages 135–147, 2004.

[74] A. Lal and T. Reps. Improving pushdown system model checking. In Int. Conf. on Computer

Aided Verification, pages 343–357, 2006.

[75] A. Lal, T. Reps, and G. Balakrishnan. Extended weightedpushdown systems. InInt. Conf.

on Computer Aided Verification, pages 434–448, 2005.

220

[76] L. Lamport. A new approach to proving the correctness ofmultiprocess programs.ACM

Transactions on Programming Languages and Systems, 1(1):84–97, July 1979.

[77] W. Landi and B.G. Ryder. A safe approximate algorithm for interprocedural pointer aliasing.

In Conf. on Prog. Lang. Design and Impl., pages 235–248, 1992.

[78] T. Lev-Ami and M. Sagiv. TVLA: A system for implementingstatic analyses. InStatic

Analysis Symp., pages 280–301, 2000.

[79] A. Loginov. Refinement-based program verification via three-valued-logic analysis. PhD

thesis, Comp. Sci. Dept. Univ. of Wisconsin, 2006.

[80] F. Masdupuy. Array abstractions using semantic analysis of trapezoid congruences. InInt.

Conf. on Supercomputing, pages 226–235, 1992.

[81] F. Masdupuy.Array Indices Relational Semantic Analysis using RationalCosets and Trape-

zoids. PhD thesis, Ecole Polytechnique, 1993.

[82] F. Masdupuy. Semantic analysis of interval congruences. In Int. Conf. on Formal Methods

in Prog. and their Appl., pages 142–155, 1993.

[83] L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based static ana-

lyzers. InEuropean Symp. on Programming, pages 5–20, 2005.

[84] A. Miné. A new numerical abstract domain based on difference-bound matrices. InProg.

as Data Objects, pages 155–172, 2001.

[85] A. Mine. The octagon abstract domain. InProc. Eighth Working Conf. on Rev. Eng., pages

310–322, 2001.

[86] A. Mine. A few graph-based relational numerical abstract domains. InStatic Analysis

Symp., pages 117–132, 2002.

[87] A. Mine. Weakly Relational Numerical Abstract Domains. PhD thesis,École Normale

Supérieure, 2004.

221

[88] E. Myers. A precise interprocedural data flow algorithm. In Symp. on Princ. of Prog. Lang.,

pages 219–230, 1981.

[89] J. Obdrzalek. Model checking java using pushdown systems. In Workshop on Formal

Techniques for Java-like Programs, 2002.

[90] G. Peterson. Myths about the mutual exclusion problem.Information Processing Letters,

12(3):115–116, June 1981.

[91] S. Qadeer and J. Rehof. Context-bounded model checkingof concurrent software. InTools

and Algorithms for the Construction and Analysis of Systems, pages 93–107, 2005.

[92] R.Alur and D. Dill. A theory of timed automata.Theor. Comput. Sci., 126(2):183–235,

1994.

[93] G. Ramalingam, J. Field, and F. Tip. Aggregate structure identification and its application

to program analysis. InSymp. on Princ. of Prog. Lang., pages 119–132, 1999.

[94] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph

reachability. InSymp. on Princ. of Prog. Lang., pages 49–61, 1995.

[95] T. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical formulas for static analysis.

In European Symp. on Programming, pages 380–398, 2003.

[96] T. Reps, M. Sagiv, and G. Yorsh. Symbolic implementation of the best transformer. In

Verification, Model Checking, and Abstract Interpretation, pages 252–266, 2004.

[97] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their ap-

plication to interprocedural dataflow analysis.Sci. of Comput. Program., 58(1-2):206–263,

2005.

[98] A. Rountev and B.G. Ryder. Points-to and side-effect analyses for programs built with

precompiled libraries. InInt. Conf. on Comp. Construct., pages 20–36, 2001.

222

[99] A. Rountev, B.G. Ryder, and W. Landi. Data-flow analysisof program fragments. InInt.

Symp. on Foundations of Software Engineering, pages 235–252, 1999.

[100] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.ACM

Transactions on Programming Languages and Systems, 24(3):217–298, 2002.

[101] S. Sankaranarayanan, M. Colón, H. Sipma, and Z. Manna. Efficient strongly relational

polyhedral analysis. InVerification, Model Checking, and Abstract Interpretation, pages

111–125, 2006.

[102] S. Sankaranarayanan, F. Ivancic, I. Shlyakhter, and A. Gupta. Static analysis in disjunctive

numerical domains. InStatic Analysis Symp., pages 3–17, 2006.

[103] S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalableanalysis of linear systems using

mathematical programming. InVerification, Model Checking, and Abstract Interpretation,

pages 25–41, 2005.

[104] S. Schwoon.Model-Checking Pushdown Systems. PhD thesis, Technical Univ. of Munich,

Munich, Germany, July 2002.

[105] M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to analysis. InSymp.

on Princ. of Prog. Lang., pages 1–14, 1997.

[106] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. InProgram

Flow Analysis: Theory and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[107] A. Simon and A. King. Analyzing string buffers in C. InInt. Conf. on Algebraic Methodol-

ogy and Software Technology, pages 365–379, 2002.

[108] A. Simon and A. King. Widening polyhedra with landmarks. InAsian Symp. on Prog. Lang.

and Syst., pages 166–182, 2006.

[109] A. Simon, A. King, and J. Howe. Two variables per linearinequality as an abstract domain.

In Logic-Based Program Synthesis and Tranformation, pages 71–89, 2002.

223

[110] P.Černý. Verification by abstract interpretation of parametrized predicates, 2003. Available

at “http://www.cis.upenn.edu/ cernyp/”.

[111] P.Černý. Vérification par interprétation abstraite de pr´edicats paramétriques. D.E.A. Report,

Univ. Paris VII & École normale supérieure, September 2003.

[112] A. Venet. Nonuniform alias analysis of recursive datastructures and arrays. InStatic Anal-

ysis Symp., pages 36–51, 2002.

[113] A. Venet. A scalable nonuniform pointer analysis for embedded programs. InStatic Analysis

Symp., pages 149–164, 2004.

[114] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards automated detection

of buffer overrun vulnerabilities. InSymp. on Network and Distributed Systems Security,

February 2000.

[115] R.P. Wilson and M.S. Lam. Efficient context-sensitivepointer analysis for C programs. In

Conf. on Prog. Lang. Design and Impl., 1995.

[116] Y. Xie and A. Aiken. Scalable error detection using Boolean satisfiability. InSymp. on

Princ. of Prog. Lang., pages 351–363, 2005.

[117] T. Yavuz-Kahveci and T. Bultan. Automated verification of concurrent linked lists with

counters. InStatic Analysis Symp., pages 69–84, 2002.

[118] G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract operations

for shape analysis. InTools and Algorithms for the Construction and Analysis of Systems,

pages 530–545, 2004.

224

APPENDIX
Proofs of Several Lemmas and Theorems

Lemma 3.6 Let S♭ ∈ ℘(U ♯ → V) be a partial abstract state. And letφ ∈ Φ be an arbitrary

expression. Then,

∀f ∈ S♭
[

ValuesS♭,φ(f) = [[ValuesS♭,φ]]
♭(f)

]

.

Proof.

Pick an arbitrary functionf ∈ S♭.
(Soundness). First, let’s show thatValuesS♭,φ(f) ⊆ [[ValuesS♭,φ]]

♭(f). Let’s pick a valuea ∈
ValuesS♭,φ(f). From Eqn. (3.3), it follows that there is a concrete stateS ∈ (γ1 ◦ γ2)(S

♭), such that

f ∈ (α2 ◦ α1)(S) anda = [[φ]]ND(S(σS(w1)), . . . , S(σS(wk))). Recall our assumption that firstk̂

of wi are mapped tosummaryobjects. Let’s construct a functionf ′ : U ♯
φ → V as follows:

f ′(u♯i) =







f(u♯i) if 1 ≤ i ≤ m

S(σS(wi−m)) if m+ 1 ≤ i ≤ m+ k̂

Two things are of interest aboutf ′. First, trivially,∀u♯ ∈ U ♯
[

f ′(u♯) = f(u♯)
]

. Second,

[[φ]]ND(f ′(σ♯φ(w1)), . . . , f
′(σ♯φ(wk))) = a

To see this, recall the definition ofσ♯φ:

• for i ∈ [1, k̂], σ♯φ(wi) = u♯m+i, thusf ′(σ♯φ(wi)) = f ′(u♯m+i) = S(σS(wi));

• for i ∈ [k̂ + 1, k], σ♯φ(wi) = σ♯(wi) ∈
{

u♯1, . . . u
♯
m

}

; however, abstract objectσ♯(wi) is

non-summary; thus the following relationship holds:

f ′(σ♯φ(wi)) = f ′(σ♯(wi)) = f(σ♯(wi)) = f(πS(σS(wi))) = S(σS(wi)).

225

This holds, because the first abstraction step maps eachnon-summaryabstract objectu♯ to

thesingletonset{S(u)} (whereπS(u) = u♯), and the second abstraction step creates a set

of functions, each of which mapsu♯ to S(u).

Thus,[[φ]]ND(f ′(σ♯φ(w1)), . . . , f
′(σ♯φ(wk))) = [[φ]]ND(S(σS(w1)), . . . , S(σS(wk))) = a.

In the next step of the proof, we will show thatf ′ ∈ [[expandφ]](S
♭). We will show this by in-

duction on the free-variable subscripti (that is, we will consider the sequence of expanded function

sets constructed by each consecutive application of theexpandoperation in the definitionexpandφ,

and, on each stepi, we will show that there is a functionfi in the resulting set that agrees withf ′

on objectsu♯0 to u♯m+i).

Base case:i = 1. Let u♯ = σ♯(w1). The objectu♯ is summary. Also, letu = σS(w1) be

the concrete object to which variablew1 is bound in the concrete stateS (clearly,πS(u) = u♯).

Consider the set(α2 ◦ α1)(S). Clearly,f ∈ (α2 ◦ α1)(S). The second abstraction step generates

all possible mappings of abstract objects to the values of the concrete objects they represent. Thus,

trivially, there must be a functiong ∈ (α2 ◦ α1)(S
♭), such that

g(t♯) =







S(u) if t♯ = u♯

f(t♯) otherwise

That is, in functiong, all abstract objects are mapped to the values of the same concrete objects

as in functionf with the exception ofu♯, which is mapped to the value of the concrete objectu

(technically,g could equalf). Since(α2 ◦ α1)(S) ⊆ S♭, it follows thatg ∈ S♭.
Let S♭1 = [[expand

σ♯(w1),u
♯
m+1

]](S♭). It follows directly from the definition ofexpand, that there

is a functionf1 ∈ S♭1 (constructed from functionsf andg), such that

f1(u
♯
m+1) = g(u♯) = S(u) = S(σS(w1)) and ∀t♯ ∈ U ♯

[

f1(t
♯) = f(t♯)

]

Thus, the functionf1 ∈ [[expand
σ♯(w1),u♯m+1

]](S♭) agrees with the functionf ′ on abstract objectsu♯1

throughu♯m+1.

Inductive case. Assume that there is a functionfi ∈ [[expandφ,i]](S
♭), where the operation

expandφ,i denotes the composition of the firsti expandoperations in the definition ofexpandφ.

226

Also, assume thatfi agrees withf ′ on the abstract objectsu♯1 throughu♯m+i. We need to show that

there is a functionfi+1 ∈ [[expandφ,i+1]](S
♭) that agrees withf ′ on the abstract objectsu♯1 through

u♯m+i+1.

The reasoning in this case is very similar to the reasoning inthe base case. Letu♯ = σ♯(wi+1).

The objectu♯ is summary. Also, letu = σS(wi+1) be the concrete object that is assigned to

variablewi in the concrete stateS. By the same reasoning as in the base case, there must be a

functiong ∈ (α2 ◦ α1)(S
♭), such that

g(t♯) =







S(u) if t♯ = u♯

f(t♯) otherwise

Furthermore, due to the symmetries of the expand operation and the abstraction, there must be a

functiongi ∈ [[expandφ,i]](S
♭), such that for allt♯ ∈ {u♯1, . . . , u♯m+i}, the following holds:

gi(t
♯) =







S(u) if t♯ = u♯

fi(t
♯) otherwise

Intuitively, this function is the result ofg’s participation in the same “function pairings” (in the

definition ofexpand) that constructed the functionfi from the functionf . The combination of the

functionsfi andgi by theexpandoperation yields the functionfi+1, such that

fi+1(u
♯
m+i+1) = g(u♯) = S(u) = S(σS(wi)) and ∀t♯ ∈ {u♯1, . . . , u♯m+i}

[

fi+1(t
♯) = fi(t

♯)
]

.

Note thatfi+1 agrees with the functionf ′ on abstract objectsu♯1 throughu♯m+i. Thus, afterk̂

induction steps, the functionfk̂ ∈ [[expandφ]](S
♭) is constructed, such thatf ′ = fk̂.

We have shown that there existsf ′ ∈ [[expandφ]](S
♭), such that

[[φ]]ND(f ′(σ♯φ(w1)), . . . , f
′(σ♯φ(wk))) = a and ∀u♯ ∈ U ♯

[

f ′(u♯) = f(u♯)
]

.

From the definition of[[ValuesS♭,φ]]
♭, it follows that a ∈ [[ValuesS♭,φ]]

♭. Thus, we conclude that

ValuesS♭,φ(f) ⊆ [[ValuesS♭,φ]]
♭(f) for anyf ∈ S♭.

(Completeness).Next, we need to show that[[ValuesS♭,φ]]
♭(f) ⊆ ValuesS♭,φ(f). Lets pick a value

b ∈ [[ValuesS♭,φ]]
♭(f). According to the definition of[[ValuesS♭,φ]]

♭(f), there exists a functionf ′ ∈

227

[[expandφ]](S
♭), such that

[[φ]]ND(f ′(σ♯φ(w1)), . . . , f
′(σ♯φ(wk))) = b and ∀u♯ ∈ U ♯

[

f ′(u♯) = f(u♯)
]

.

We will usef ′ to manufacture a concrete stateS ∈ (γ1 ◦ γ2)(S
♭), such that

[[φ]]ND(S(σS(w1)), . . . , S(σS(wk))) = b and f ∈ (α2 ◦ α1)(S). (A.1)

Let the concrete universe of stateS beUS =
{

u1, ..., um+k̂

}

. We will define the stateS as follows:

S(ui) =







f(u♯i) if i ∈ [1, m]

f ′(σ♯φ(wi−m)) if i ∈ [m+ 1, m+ k̂]

Let πS be defined as follows:

πS(ui) =







u♯i if i ∈ [1, m]

σ♯(wi−m) if i ∈ [m+ 1, m+ k̂]

Finally, letσS be defined as follows

σS(wi) =







um+i if i ∈ [1, k̂]

σ♯(wi) if i ∈ [k̂ + 1, k]

Note that the two conditions in Eqn. (A.1) hold by construction. Showing thatS ∈ (γ1 ◦ γ2)(S
♭)

is more complicated. We will show this, by showing that(α2 ◦ α1)(S) ⊆ S♭.

Pick a functiong ∈ (α2 ◦ α1)(S). Note that functionsg andf agree on objectsu♯ ∈ U ♯, such

thatu♯ 6= σ♯(wi) for all i ∈ [1, k̂]. This follows from the abstraction: all such objectsu♯ are non-

summary with respect toS andπS, and the corresponding objectsu ∈ US that they represent are

mapped tof(u♯) (by the construction of S). For objectsu♯ ∈ U ♯, such thatu♯ = σ♯(wi) for some

i ∈ [1, k̂], g(u♯) is equal to eitherf(u♯) or some value in the set{f ′(u♯m+j) | σ♯(wj) = u♯}). Note,

also, that all suchu♯ are summary objects with respect toS♭ (because of the assumption that the

first k̂ of variableswi are mapped to summary objects). Thus, the functionsf andg may disagree

on at most̂k objects inU ♯.

We proceed as follows: for each number of disagreementsr between the functionsf andg,

starting with zero, we show that there must be a functiongr ∈ S♭, such thatg = gr. Below, we will

228

detail the first three cases, other cases up tor = k̂ use the same reasoning. After the caser = k̂ is

considered, we will have covered all possibilities for function g, and thus,g must be inS♭.

Caser = 0. This case is trivial: the functionsg andf agree on all objects inU ♯. Thus,g = f , and

consequentlyg ∈ S♭.
Caser = 1. The functionsf andg disagree on the mapping of one object. We will denote that

objectu♯. Without loss of generality, let us assume thatg maps the objectu♯ to the value of the

concrete objectum+i ∈ US, such thatπS(um+i) = u♯. That is,g(u♯) = S(um+i). The following

facts follow from the construction of the stateS:

(i) S(um+i) = f ′(σ♯φ(wi)) = f ′(u♯m+i) and σ♯(wi) = u♯.

The first equality follows directly from the definition ofS and from the definition ofσ♯φ; the second

equality follows from the definition ofπS.

Next, forf ′(u♯m+i) to equalS(um+i), it must have been put there by the application of thei-th

expandoperation in the definition of[[expandφ]]. That is, there must be two functionsfi−1, gi−1

in the setS♭i−1 = [[expandφ,i−1]](S
♭), such thatfi−1 agrees withf ′ on all objects in the set

{u♯1, . . . , u♯m+i−1}, and the functiongi−1 agrees with the functionfi−1 on all objects, except for

the objectσ♯(wi) = u♯. Moreover,gi−1(u
♯) equalsS(um+i). But the functiongi−1 could have only

been produced (by theexpandsequence) from the functiong1 ∈ S♭, such thatg1 andgi−1 agree on

all objects inU ♯. Thus, it follows that, for allt♯ ∈ U ♯,

g1(t
♯) =







g1(u
♯) = S(um+i) = g(u♯) if t♯ = u♯

g1(t
♯) = gi−1(t

♯) = fi−1(t
♯) = f ′(t♯) = f(t♯) = g(t♯) otherwise

Thus,g = g1 ∈ S♭.

Caser = 2. The functionsf andg disagree on the mapping of two objects,u♯ andv♯. Without

loss of generality, let us assume thatg maps the objectsu♯ andv♯ to the values of concrete objects

um+i andum+j in US, respectively; furthermore, leti < j. Similarly to the previous case we have:

(i) S(um+i) = f ′(σ♯φ(wi)) = f ′(u♯m+i) and σ♯(wi) = u♯;

(ii) S(um+j) = f ′(σ♯φ(wj)) = f ′(u♯m+j) and σ♯(wj) = v♯.

229

For f ′(u♯m+j) to equalS(um+j), it must have been put there by the application of thej-th

expandoperation in the definition of[[expandφ]]. That is, there must be two functionsfj−1, gj−1

in the setS♭j−1 = [[expandφ,j−1]](S
♭), such thatfj−1 agrees withf ′ on all objects in the set

{u♯1, . . . , u♯m+j−1}, and the functiongj−1 agrees with the functionfj−1 on all objects, except for

the objectσ♯(wj) = v♯. Moreover,gj−1(v
♯) equalsS(um+j).

Next, recall our assumption thati < j. Thus,fj−1(u
♯
m+i) = gj−1(u

♯
m+i) = S(um+i). For

gj−1(u
♯
m+i) to be equal toS(um+i), it must have been put there by the application of thei-th

expandoperation in the definition of[[expandφ]]. That is, there must be two functionsgi−1, hi−1

in the setS♭i−1 = [[expandφ,i−1]](S
♭), such thatgi−1 agrees withgj−1 on all objects in the set

{u♯1, . . . , u♯m+i−1} (most importantly, both functions map objectv♯ to S(um+j)), and the function

hi−1 agrees with the functiongi−1 on all objects, except for the objectσ♯(wi) = u♯: that is,hi−1(u
♯)

equalsS(um+i), andhi−1(v
♯) equalsS(um+j).

But the functionhi−1 could have only been produced (by theexpandsequence) from the func-

tion h2 ∈ S♭, such thath2 andhi−1 agree on all objects inU ♯. Thus, it follows that, for allt♯ ∈ U ♯,

h2(t
♯) =



















h2(u
♯) = S(um+i) = g(u♯) if t♯ = u♯

h2(v
♯) = S(um+j) = g(v♯) if t♯ = u♯

h2(t
♯) = hi−1(t

♯) = gi−1(t
♯) = gj−1(t

♯) = fj−1(t
♯) = f ′(t♯) = f(t♯) = g(t♯) otherwise

Thus,g = h2 ∈ S♭.

Casesr = 3..k̂. The remaining cases follow the same reasoning at the first three cases, Note that

the number of functions that must be considered to show that functiong is in the setS♭ increases

with every step. After the caser = k̂ is considered, all the possibilities for the functiong are

covered. Thus, all functionsg ∈ (α2 ◦ α1)(S) are also inS♭, and therefore,S ∈ (γ1 ◦ γ2)(S
♭).

We have shown thatS ∈ (γ1 ◦ γ2)(S
♭). The two conditions in Eqn. (A.1) hold by construc-

tion. Thus, by the definition ofValuesS♭,φ, we can conclude thatb ∈ ValuesS♭,φ(f). Therefore,

[[ValuesS♭,φ]]
♭(f) ⊆ ValuesS♭,φ(f).

�

230

Theorem 3.7 The abstract transformer[[x← φ]]♭ is sound. That is, for an arbitrary partial abstract

stateS♭,

(γ1 ◦ γ2)([[x← φ]]♭(S♭)) ⊇ [[x← φ]]((γ1 ◦ γ2)(S
♭)).

Proof. LetS♭ be a partial abstract state, and letS♭1 be the result of applying the abstract transformer

for the assignment transition toS♭, that isS♭1 = [[x← φ]]♭(S♭). LetS denote an arbitrary concrete

state represented byS♭, that is,S ∈ (γ1 ◦ γ2)(S
♭). Let S1 denote the concrete state obtained by

applying the assignment transition to the stateS, i.e.,S1 = [[x ← φ]](S). We need to show that

S1 ∈ (γ1 ◦ γ2)(S
♭
1).

Let [[φ]]ND(S(σS(w1)), . . . , S(σS(wk))) = a, wherea is some value inV. The stateS1 has the

same universe asS, that isUS1
= US. Furthermore, for allu ∈ US, S1(u) is equal toS(u), except

for the objectv = σS(x) (i.e., the object that is updated by the assignment):S1(v) = a.

Recall that each function in the partial abstraction of a concrete stateS is obtained by mapping

each abstract objectu♯ to the value of a non-deterministically chosen concrete object inπ−1
S (u♯).

Let us consider functionsf andf1 in the abstractions ofS andS1, respectively, that are constructed

by choosing the same mapping inS andS1 for each abstract object inU ♯. Obviously,f andf1

map all objects inU ♯ to the same values, except for the objectπS(v) = σ♯(x), which is mapped to

S(v) by f , and toa by f1.

Clearly,f ∈ S♭ becauseS ∈ (γ1 ◦ γ2)(S
♭). Also, a ∈ ValuesS♭,φ(f) by Eqn. (3.3). Thus, by

the definition of[[x← φ]]♭ in Eqn. (3.5), there must be a functionf ′ ∈ S♭1, such thatf ′(σ♯(x)) = a

and for all other objectsu♯ ∈ U ♯, f ′(u♯) = f(u♯). But f ′ = f1. Thusf1 ∈ S♭1. Therefore,

(α2 ◦ α1)(S1) ⊆ S♭1, and consequently,S1 ∈ (γ1 ◦ γ2)(S
♭
1), which concludes the proof.

�

Lemma 3.8 Let S♭ ∈ ℘(U ♯ → V) be a partial abstract state. And letψ ∈ Ψ be an arbitrary

expression. Then,

∀f ∈ S♭
[

ValuesS♭,ψ(f) = [[ValuesS♭,ψ]]
♭(f)

]

.

Proof.

The proof follows exactly the same argument as the proof for Lem. 3.6, with the only exception

231

that the valuesa andb selected fromValuesS♭,ψ(f) and[[ValuesS♭,ψ]]
♭(f), respectively, are Boolean

values, rather than values fromV.

�

Theorem 3.9 The abstract transformer[[assume(ψ)]]♭ is sound. That is, for an arbitrary partial

abstract stateS♭,

(γ1 ◦ γ2)([[assume(ψ)]]♭(S♭)) ⊇ [[assume(ψ)]]((γ1 ◦ γ2)(S
♭)).

Proof. LetS♭ be a partial abstract state, and letS♭1 be the result of applying the abstract transformer

for the assume transition toS♭, that is,S♭1 = [[assume(ψ)]]♭(S♭). LetS denote an arbitrary concrete

state represented byS♭ (that is,S ∈ (γ1 ◦ γ2)(S
♭)), such thatS satisfies the conditionψ, i.e.,

[[assume(ψ)]](S) = true. We need to show thatS ∈ (γ1 ◦ γ2)(S
♭
1).

Consider an arbitrary functionf in the abstraction ofS: that is,f ∈ (α2 ◦ α1)(S). Because

S satisfies the conditionψ (i.e., [[assume(ψ)]](S) = true), the following holds by the definition in

Eqn. (3.6):true∈ ValuesS♭,ψ(f). Thus, by the definition of the abstract transformer in Eqn. (3.7),

f ∈ S♭1. Therefore, we can conclude that(α2 ◦ α1)(S) ⊆ S♭1, and consequently, thatS ∈ (γ1 ◦
γ2)(S

♭
1). This concludes the proof of soundness.

�

