Computer
Sciences
Department

WHATSAT: Dynamic Heap Type Inference for Program
Understanding and Debugging

Marina Polishchuk

Ben Liblit

Chloé W. Schulze
Technical Report #1583

December 2006

UNIVERSITY OF

M A DI S O N

WHATSAT: Dynamic Heap Type Inference
for Program Understanding and Debugging

Marina Polishchuk Ben Liblit
Microsoft Corporatiod University of Wisconsin—Madison
marinapo@microsoft.com liblit@cs.wisc.edu

Chloé W. Schulze
Oracle Corporatioh
chloe.schulze@oracle.com

December 2006

Abstract serve values of the variable at various points during

execution, either by setting a watchpoint in the de-
C programs can be difficult to debug due to lalsugger or by inserting print statements. However,
type enforcement and low-level access to memokyoth of these techniques may be inadequate. Debug-
We present a dynamic analysis for C that checkgr watchpoints can be prohibitively slow. Adding
heap snapshots for consistency with program typ@sint statements may be ineffective in cases of mem-
Our approach builds on ideas from physical subtypry corruption, as the affected data structure may
ing and conservative garbage collection. We inferhave no apparent relation to the code that corrupts it.
program-defined type for each allocated storage [Bhe programmer may also run a static pointer anal-
cation or identify “untypable” blocks that reveal heapsis to check for erroneous memory accesses. How-
corruption or type safety violations. The analysis exver, typical analyse$ |1, 24] do not model depen-
ploits symbolic debug information if present, but redencies between neighboring memory blocks. In C,
quires no annotation or recompilation beyond a lishany bugs are caused by buffer overruns and pointer
of defined program types and allocated heap blocksismanagement, so physical proximity of memory
We have integrated our analysis into the GNU Délocks is an important factor.

bugger (gdb), and describe our initial experience US-\\/e have designed and implemented an automated
ing this tool with several small to medium-sized prag) ¢ help programmers understand and debug pro-

grams. gram behavior at the physical memory level. Our

tool offers the programmer a low-level, but typed,

. view of memory. Each allocated chunk is presented

1 Introduction either according to its inferred overall data type or as

. . “untypable” if no defined program type is compati-

Suppose that a programmer notices an incorrect Vagfs with its imposed constraints. A common scenario

able value during the execution of a C programyhere this view is useful is in the case of a buffer
While debugging, the programmer may try 10 OBsyerrun; rather than attempt to deduce what data
“Supported in part by NSF under grant CCR-0305387. structure lies near the corrupted location from raw
This work performed while at the University of Wisconsin-M€mory values or printed variables, the programmer
Madison. uses our tool to discover that a nearby memory block

mailto:marinapo@microsoft.com
mailto:liblit@cs.wisc.edu
mailto:chloe.schulze@oracle.com

is being used as an array of a particular type. Thasic terms i Sectior] £. Secfioh 3 defines a subtyp-
mere presence of an array makes “buffer overrun’irag relation on types used for individual byt¢s. $ec-

good hypothesis, and the array’s type helps the pfi@n 4 specifies the constraints that must be satisfied
grammer identify relevant code to examine for po$er a set of typed memory locations to be considered

sible array bounds violations. consistent, and Sectiof 5 gives an algorithm to find a
When memory has been corrupted, our tool mapnsistent typing for the entire hegp. Sectidn 6 dis-

detect that values stored in one or more heap bloakssses visualization and presents several case stud-
do not match any feasible type for the block. In ordées using our tool.[Section 7 places our system in
to reason about the cause of the corruption, the pesntext with related work_Secfion 8 outlines future
grammer may want to know exactly when the hedjirections for our technique and concludes.

first became corrupted. For this task, we support a bi-

nary search debugging strategy often used to find ill- o .

behaving code: set a breakpoint at the location whefe Preliminaries

a variable was last known to be correct, and another

where it has the wrong value, then iteratively narrotdere, we describe the scenario under which we solve
the interval until the bad assignment is exposed. Otine problem of finding a consistent typing for the
tool gives the programmer the ability to treat the effteap, outline our solution, and provide key defini-
tire heap as a memory value that is either in a goodt@ns and notation used throughout the paper.

bad state, and search for the time at which the heap

was first corrupted using her usual dynamic debug- o
ging techniques, such as the binary search descril%& Definitions

above. A typingis a mapT : Store— Typesfrom each stor-
This paper makes the following contributions: age locationgddr € Stors to its corresponding type

i i i) (T € Types. Types are all those defined or used by

» We introduce the idea of eonsistent typindor - the program, including structures, unions, pointers,

the heap at any given point during executionyrays and functions. Storage locations include:
Each block of allocated storage is assigned a

type from among those used in the program. e a fixed set of addresses holding global variables
The type assignment satisfies a set of constraints

imposed by the values stored in memory, the e the set of locations that hold all local variables

size of each allocated block, and a type confor- and function arguments on the stack at the cur-
mance relation €) based on physical subtyp- rent program point, or on multiple stacks for

ing. Additional constraints may be imposed by multithreaded programs

declared program variables when debugging in- _ .
formation is available. e all memory blocks dynamically allocated since

the start of the program, which we refer to as

¢ We give an algorithm that finds a consistent typ- heap storage

ing for a snapshot of the heap. When no consis- ,
tent typing exists, we report the locations and Globals, locals, and function arguments may have
causes of conflicts to the user. associated type information if symbolic debug infor-

mation is present. However, memory blocks from

e We present a memory visualization that focusé§ap storage never have associated dynamic type in-
on physical layout and provides a lucid reprdormation. Unions are also untagged per standard C.
sentation of how typed data is stored. In the manner of conservative garbage collectors

[3], we define avalid pointeras a block of memory

The remainder of this paper is organized as folvhose value is irStore(i.e., is a storage location).

lows. We give an overview of our system and defing valid pointer may also point immediately after the

end of a block of storage; this is a common programvhen considering memory values and symbolic de-

ming idiom that is explicitly allowed by the C stan-bug information if present, then we have found spe-

dard [14]. cific instances of pointer or declared variable usage
A type constraintestricts the types that may rethat do not adhere to our notion of consistency (as

side at a given storage location. Our analysis irdetailed in Section]4). Such conflicts are reported

poses constraints on the types of individual bytes tf the user, and blocks containing them are marked

memory, termedyte types Informally, a byte type as “untypable” and omitted during whole-block type

indicates that a byte holds the start of some prograasignment.

type or any subtype thereof. Byte types may also in-

dicate that a byte is part of the interior of a multi byt(z3 Notation

value that starts at an earlier location.

establishes a concise notation for C types,
derived from that used by Si#t al. [22]. An array
of n elements of typer is written z[n], while 7 ptr
After establishing theStoreand Types our analy- is @ pointer tor. A tuple of the forms(my,...,my)
sis proceeds as follows. First we assign byte typggnotes &truct , while u{m,...,mc} denotes an
to all storage locations that hold valid pointers, ariédntagged union. Eactn; is a triple (z,1,i) giving
also to their corresponding pointed-to locations. Offiee type, name, and starting offset of one field within
of the key problems that our tool tries to address @structure or union. Structure fields are ordered by
the fact that C programs often manipulate memogﬁset, withmy starting at offset zero. Union fields
values in a way that disregards their declared typ&e unordered and all start at offset zero.
which complicates debugging. Hence, our analy- Our subtyping relation is given by and its re-
sis treats the values that arise in the program adlexive closure<. We use type notatioaddr: 7 in
foremost source of byte type constraints. Next, fflace of the subtyping constraififaddr) < 7 when
symbolic debug information is available, byte typeiie type mapping is evident from context.
may also be transitively propagated from variables In the discussion that follows, byte offsets within
declared in the program, for which the exact type & memory block are represented in terms of addi-
known. However, even in the presence of this ifion: if block is the start address of some block
formation, many bytes may remain wholly or partlpf storage,block+i denotes the address of tifé
unconstrained. After all available constraints are esyte ofblock, starting from zero. We abbreviate the
tablished on individual bytes, we systematically comddressblock+ 0 as simplyblock The predicate
sider possible overall types for each block until thealidPointefaddr) asserts thaaddr holds the start
typing map is fully defined, or all typing alterna-of a valid, non-null pointer value.
tives for the memory blocks are exhausted. An over-
all type is assigned to a block when it is consistent
with the individual byte types at each offset withild ~ Byte Type Lattice
the block as well as the constraints imposed by con-
nections (via pointers) to or from other blocks. 1®©ur analysis may yield multiple distinct types for the
some cases, constraints suffice to determine a unigaene memory location. In some cases this reveals a
consistent typing. Otherwise, when several consienflict and likely misused memory. In other cases
tent typings are possible, we use a search orderthg types may, in fact, be compatible. This section
heuristic to choose the most descriptive type for eaekplains how we construct a lattice from the set of
heap block. C program types to model type compatibility in our

Whenever our algorithm applies a byte type to analysis.

location, the new type may conflict with an existing The data types in Figuré 2 form a running example
byte type at the same address. If a conflict arisggsoughout the paper; hereafter, we omit the explicit

2.2 Overview

T =

atomic /I no internal substructure
| [n] Il array of typer of sizen

| s(m,...,m) /I struct

| u{my,...,mc} /I untaggedinion

| (t1,...,7%) — 7o // function returningrp

m = (t,l,i)
Il field labeled of type T at offseti

atomic ::=

e(id,...,idy) /I enum

| ptr /I pointer tot
| char | int | double | ...

Figure 1: Concise C type grammar

struct Point {
double x;
double v;

I3

struct Shape {
char *name;
FILE =« fptr;
h

struct Part {
struct Point center;
struct Shape * shape;

struct Assembly * OWner;
%
struct PartNode {

struct Part * part;

struct PartNode * next;
2
struct Assembly {

struct Point center;

struct PartNode * nodes;

struct Assembly * OWner;

h

Figure 2: Example data types for assembly-building

program

Par t Node

Figure 3: Byte type lattice corresponding to the data
types ir{Figure

“struct " keyword. Given these types, the remain-
der of this section defines the subtyping relation used
to construct the byte type lattice showr{in Figute 3.
For clarity, we omitL in and from the sub-
typing definitions below. 1. should be assumed as
the meetof any two lattice elements for which no
other lower bound is defined; it denotes that the cor-
responding two types may not be consistently stored
at the same address.

3.1 Structures

A structure and its initial (offset 0) field have the
same physical address but distinct types. Therefore
the immediate supertype of a structure is the type of
its initial field:

S<(’L’1,|1,0),...,I’T]<> <T

For example, the relationshipart < Point <
double are read as “If an address holds ti{etyte
of aPart , then it also holds the'®byte of aPoint
and the &' byte of adouble ” By contrast, a struc-
ture containing threelouble s would not be con-
sidered a subtype dfoint , even though they have
similar layouts.
This definition is stricter than the physical sub-
typing of Chandra and Repsl[5], in which a struc-
tures(my,...,my) is a subtype of any of its prefixes

s(my,...,m),i < k. Our design allows only thoseform of subtyping to describe its heap must neces-
pointer aliases that may arise in a program that dagarily have used casts or other measures to violate
not use casts to evade the type system. This is mergige safety.

a policy choice. More permissive alternatives could

be used with no change to the rest of the analysis, and

may be desired for use with certain programming i®-3 Arrays

10mS. We define the immediate supertype of an array type

as the type of its elements:
3.2 Special and Atomic Types -
tn <7
The four diamond-shaped nodes at the tof of|Fig-
are always present.denotes an unconstrained ¢[n] may be viewed as(m, ..., m,), where allm

memory address that may hold any typeefer- hayve typer, so the reasoning for this relation is anal-
ent describes all types that can be the referent ofogous to that for structures.

pointer, whileinterior describes the non-initial bytes
of multi-byte atomic values. Pointer targets must be
referent subtypes and can never imgerior . Forex- 3.4 Unions
ample, ifv holds an eight-bytelouble , then byte) .)
v-+0 has typedouble but bytesv+ 1 throughv + 7 Untagged unions require special trgatm_ent, because
all have typeinterior and may not be pointed to di-2 Union may be used as any of its fields, but a
rectly. Bitfields are also typed asterior , for their CONSiStent typing requires that every address be as-
addresses cannot be taken. signed a unique type. For each untagged union type
pointer indicates that a storage location holds tH& M- --Mk}, we extend the type grammar to in-
0 byte of a valid pointer, and thus is potentially conC-IUde one tagged cas@m{ml, .M} for each
sistent with any pointer type. Pointers to pointers a S k'. Unions and thelr.tagged cases adhere to
allowed, sopointer < referent. pointer is not the the following subtyping relations:
same asg/oid *; the former represents all pointers,
while the latter is a specific program type. u{my, ..., mc} < referent
The oval nodes in the lattice correspond to actual U@(%,Ir, 0){mu, ..., m¢ < u{my,....,mc}
types that may be used in a C program. Notice that u@(z,l;,0){my,...,mc} <7
the primitive atomic types are all sibling immedi-
ate subtypes aofeferent. This stipulates that two or These relations forbid aliased pointers to differently-
more atomic types may not be simultaneously storgged union fields. Each union must be used in a sin-
at the same address. gle consistent manner at any given point during exe-
As a special case, we treatid as a zero-length cution. For example, a tagged union stoririant
type that is identical taeferent. Although no byte can be the target of pointers to the untagged union as
should ever have typeoid in the final result, this well as pointers td?oint anddouble , but could
convention allows transparent handling of aliases bast be the target of a pointer ®art . When two
tweenvoid * and more fully typed pointers: point-or more fields of a union have a common supertype,
ers tot andvoid may refer to the same address iadditional cases can be introduced that represent a
our system as thougloid were a zero-length prefixsubset of possible tagged cases rather than a single
of everyreferent subtype. case. This preserves uniqueness of the lattieet
The subtyping relation is not extended acrosgeration.
pointers. That isg1 < 72 % 11 ptr < 72 ptr. This Note that only tagged unions andhave multiple
is the standard restriction for subtyping with updatmmediate supertypes. The byte type lattice without
able references, and any program that requires tthiese becomes a tree.

3.5 Functions void main() {

Every function may be pointed to: carAssm = create_assembly();
(11,...,7) — To < referent }

No other proper subtyping relations exist among, Asiesrsnggbly* Cie:iﬁ]asjemb'yo {
function types. We allow neither return type co- malloc(sizeof(Assembly)):
variance nor argument type contravariance, as these ~ PartNode *node =
are not part of standard C. Calling a function with malloc(sizeof(PartNode));

too many arguments, while safe in many C imple- node->part = malloc(sizeof(Part);
mentations, is also not endorsed by the standard and node->next = node;

therefore not admitted here. This is merely a policys assm->nodes = node;

choice. More permissive alternatives could be used

. : I/ build part's sh d set
with no change to the rest of the analysis. Wid pars Shape and se' name

6 init_part(node->part, "door", assm);

7 return assm;

3.6 Finite Type Space }

The byte type lattice contains an unbounded num-
ber of types, including arrays of arbitrary length and rigyre 4: Program that builds a simple assembly
pointers of arbitrarily deep nesting. In practice, we
consider only the following finite subset of types that
are likely to be meaningful and useful for a givethe original program. For example, a block of 32
program: bytes may be typed ast[8] if int is a known 4-
) byte type. We do not considamt[2][4] unless
° progrz_im-declared structures, unions, and engx corresponding element typet(4]) appeared
merations in the original program.

e tagged variants of unions or types containing

tnions 4 Consistency Constraints
e arrays used by the program, eigt[3][5]

if and only if at least one field or variable hadn this section, we specify four kinds of constraints

exactly this type on storage locations that restrict the possible types

] . for heap blocks. We then show how these constraints

* pointers used by the program, e.;t *=* are combined to derive a consistent heap typing at

if and only if at least one field or variable hag)ne point in an example program. For simplicity, we

exactly this type assume a 32-bit architecture with 4-byte pointers and
g8-bytedouble s. Our ideas generalize to 64-bit or
other architectures as well.

The program excerpt 4 creates a part for

The number of tagged variants of unions aralsimple assembly and initializes it with its shape and
union-containing types is potentially exponential. Iowner assembly] Figurg 5 shows the heap after the
our experience, multi-union structures and nestedll toinit_part() on line 6 of Figure §. Blocks
unions are unusual, and therefore the number are labeledA—E arbitrarily, with the line number of
tagged variants is typically linear. each block’s allocation given next to its label. Valid

Additional array types are synthesized as needpdinter values are shown in a C-style syntax, and the
during the analysis to satisfy size constraifits (Semst of memory is assumed to be set to zero when re-
fion 4.2), but only using element types appearing tarned bymalloc() . Bracketed numbers indicate

e pointers to known types up to two more level
of indirection

A, line 6 E, line 6

[0 3]: &E » [0]: 'd"
B, line 3 [4-7]: O [1]: ‘o
[0 15]: 0 2] o
[16-19]: &A C, line 1 [3]: T
[20-23]: &C » [0-15]: O [41: "0’
[16-19]: &D
[20-23]: O
D, line 2

[0-3]: &B
[4-7]: &D >

Figure 5: Allocated blocks and values afteit_-

part() callin[Figure 4

byte ranges within each block.

4.1 Value Constraints

Value constraintarise from concrete data values in
memory at the instant the analysis is applied. They
reflect the fact that some data types have limited do-
mains that are much smaller than the set of all pos-
sible values that can fit in the allotted memory. The
following generic value constraints are useful across
a wide variety of C programs:

¢ valid pointer constraint

validPointeraddr) = T (addr) < pointer

basic type information from values alone. How-
ever, this rule can be used as a filter, to reject in-
ferred or hypothesized types that are definitely
inconsistent with observed values.

function pointer constraint

In the presence of shared libraries without de-
bug information, not all functions’ start ad-
dresses are known. Therefore we treat a func-
tion pointer type as consistent if its value is
any word-aligned address that may contain ex-
ecutable code. The mechanism for identifying
code pages is platform specific. Due to the diffi-
culty of reliably distinguishing code from data,
function pointer constraints are best used as fil-
ters in the manner of enumeration constraints.

character constraint

In a program that manipulates ASCII text, if
a block is otherwise unconstrained and ASCII
character values are stored at every offset in
the block, then the block should be typed as
char or char[n] rather than any other con-
sistent primitive or primitive array type (e.g.
double[n/8] orshort] n/2]). Character
constraints are used to change the type search
order rather than to infer or reject types. When
this constraint is not applied, character arrays
are considered as a last resort after arrays of
other primitive types have been rejectgd (ec-

fion 5.3.3)

Valid pointer constraints are used to infer ba- Programmers may wish to define additional value
sic type information: if a value looks like aconstraints to reflect application-specific types and
valid pointer, we require that it be typed as Hvariants. Our heap typing algorithm can accom-
pointer 1). This assumes that no nofflodate arbitrary predjcates tha_lt approve or reject the
pointer ever takes on a valid pointer value bfyPe proposed for a given location and value. For ex-
chance, a strategy widely employed by consedmple, the data structure consistency specifications

vative garbage collectors][3]. of Demskyet al. [6] could be applied as additional
value constraints for selected types.
enumeration constraint shows valid pointer value constraints for

A byte of typeenum is consistent only if the thﬁ heaphsngpslrlwot 5 a_m: thte p_;)hssmlitypes
value starting at that byte is equal to one of thiNOSe physical layouts are consistent with €ach con-

defined constants for the enumerated type Ersfraint. An important detail is that, while locations

_meratlon constants are not uniquely |dent|fy|ng 1Similar constraints can be used in other, non-ASCII locales
in general, so this rule cannot be used to inf@ihen the character repertoire is known in advance.

Block Valid Pointers Value-Consistent Types 4.3 Type Constraints

A A+0 PartNode , Shape Type constraints relate multiple locations, either be-
B B+16,B+20 Part , Assembly tween blocks (for pointers) or within a single block
c C+16 Part , Assembly (for multi-byte structures):

D D+0,D+4 PartNode , Shape

(i) If T(addr) < pointer and xaddr is within an
Table 1: Valid pointer value and possible value- allocated block (not one past the end), then
consistent types for heap|in Figure 5 T (xaddr) < referent.

(it) If T(addr) =< 7 for any atomic typer as de-

fined in[Figure L, thef (addr+i) = interior

Block Size Size-Consistent Types

A 8 PartNode , Shape, char[8] ... for all 1 <i < sizeofr). Combined witH rule
B 24 Part , Assembly , Shape[3] , [N and the incompatibility ofnterior andref-

PartNode[3] ,float[6] ... erent, this forbids pointers into the interior of

C 24 Part , Assembly , Shape[3] |, atomic values

PartNode[3] , float[6])
D 8 PartNode , Shape, int[2] ... (iii) For any currently allocated block starting at
E 5 chars] block T (block) < referent. While similar to

this rule also affects leaked blocks to

Table 2: Size constraints and possible size-consistent | - nothing points.

types for heap if Figure 5
(iv) If T(addr) < 7 ptr thenT (xaddr) < 7. Pointers

and pointed-to types must be compatible mod-
holding zero are unconstrained, zero is consistent ylo subtyping.

with either a pointer type or most primitive types. . .
In this example, bottPartNode and Shape are (V) If T(addn) =< s((71,11,i1), ..., (% |k, 1)), then

value-consistent with bloch if the value atA + 4 T(addr+in) = 7 forall 1 <n <k. Structure

is viewed as a null pointer. fields must be compatible with the structure as
awhole.

4.2 Size Constraints (vi) If T(addr) = z[n], then T(addr + i x

_ sizeofr)) = 7 for all 1 <i < n. Array
The overall type for a block must fill exactly the elements must be compatible with the array as
number of bytes allocated for that block. For any ad- g whole.

dressblockwhich is the start of an allocated block,
Implied constraints may imply additional con-

T(block) =t = sizeofblock) = sizeof 1) straints. A consistent heap typing must satisfy all
transitively implied type constraints.
In C, dynamically allocated arrays tile multiple Untagged unions induce no additional type con-
copies of the element type one after the other. $raints. Any tagged union type@(z,l,0){...} is
block holding a dynamic array with elements of also a subtype of and will pick up any appropriate

type t must satisfy constraints per the above rules.
sizeofblock) = n x sizeof(7) 4.4 Debug Constraints
for some whole number of array elements If symbolic debug information is available for in-

[Table 2 shows size constraints and a few illustraeope variables and function arguments, then this in-
tive size-compatible types for blocks in the exampfermation may be added to the type map in the ob-
heap snapshot. vious manner. Equality constraints are appropriate

A: Shape E:char[5]

and size constraints on blodR. Lastly, blockD

[0-3]: char* > [0]: i .
B:bart P - A must have typd®artNode due to the pointer field
[0-15]: Point [2]: char atC+16.
[16 19]: Shape* C:Assembly [3]: cha L .
A PRE—— - . When there are few initial constraints or many
16 19]: Partioder identically-structured types, a consistent typing is
[20-23]; Assenbly* not necessarily unique. For example, if all bytes in

block D were zero, then the following would also be
y Dpartiod a consistent heap typing:

[0-3]: Part* >
[4-7]: PartNode*

A :char *[2] D : char[8]
Figure 6: Fully constrained heap and derived typing B : char * [6 E - charls
for heap i Figure |5 C:char *[6[]] : char[5]

here: ifx is known to be an integer variable, then

its type must bént , not someint subtype. Our

main algorithm [(Section]5) does not require debug Heap Typing Algorithm
information to find consistent typings, but takes de-

bug constraints into account if present.
In this section, we present an algorithm for assigning

. types to all storage locations, if a consistent typing is
4.5 Example Solution possible. Inputs to the algorithm consist of a snap-

We now combine value, size, and type constraints$80t of all values in the program’s memory; the start
informally derive the consistent heap typing Show@,ddre;sses and sizes of all aIIocateq heap block_s; alist
in [Figure 6. [Section]5 presents a systematic algef-defined program types; and optional symbolic de-
rithm for finding consistent typings automaticallyoug information giving the locations, sizes, and types
For clarity, we consider user-defined types befofd in-scope variables. The output is a typihggiv-
other possible matches (such as arrays of primitivel§}g consistent byte types for all allocated bytes. The
Assume that debug constraints are unavailable. PYte type for the B byte of an allocated block gives
From valid pointer value and size constraint§!e overall type for that block. In some (but not all)
block A must have typeShape or PartNode . If Cases when no glopally consistent typing exists, the
Shape is considered first, we propagatecaar algorithm can identify, describe, and eliminate unty-

constraint to blockE via[rule (v}l pable blocks while still producing a partial typing for
Value and size constraints require that bldek the remaining blocks.
have typechar[5] . Becausechar[5] = char , The algorithm begins by assigning types to indi-

block E can have typehar[5] and still be consis- vidual bytes of storage, using the values that arise in
tent with thechar pointer from blockA. If we had the program (e.g., valid pointers and their pointed-
tried A : PartNode first, then a conflict would haveto locations) as a foremost source of byte type con-
arisen; we discuss conflicts in detai[in Secfi¢n 5. straints[{Section 5]1). Next we transitively propagate

From size and value constraints, bloBkmust byte types from variables declared in the program
have typeAssembly or Part . If we try B : (for which exact types are known), reporting any
Assembly , thenB + 16 : PartNode = via[rule {/)] type constraint violations to the usér (Section| 5.2).
and soA : PartNode via[rule ({v)} but this con- Finally, we systematically consider possible overall
flicts with A : Shape established earlier. Choosingypes for each memory block until the typing map is
B : Part is consistent withA : Shape, and also re- fully defined or all typing alternatives for the blocks
quiresC : Assembly . This is consistent with valueare exhausted (Section b.3).

5.1 Pointer Constraint Gathering leave as future work, would be to discard only a min-

. imal subset of problematic debug constraints while
First we establish valid pointer value constraints %eping the remainder

Icnodrll\gt?;iilt ?&faﬁigﬂzgiﬁéﬁame Barring conflicts, at the conclusion of this phase,
= the global typing includes program types for memory

where appropriate. Conflicts betwessferent and " :

. .) . . addresses that are (transitively) reached from point-
interior may arise during this stage. For examplgrs in program variables. However, these types are
if blocks X andY hold valid pointers, buy¥ points prog : ' P

. ly latti . F I i
0 byteX + 2, thenX + 2 cannot simuttaneously beg 45 FUEE PO PR B TR, 2 PO
the referent of the pointer iV and the interior of y yp y

the pointer inX. In this situation, it is difficult to or to a structure with an initiathar field. Some
poInt L ' . bytes within reachable blocks, and all bytes within
know which block is truly erroneous. We describe . .
. tnreachable blocks, still carry only tipeinter, ref-
the conflict to the user, then mark both blocks as UD-ont andinterior constraints added previous
typable and disregard them for the remainder of the ™ P Y-
algorithm.
After this phase, the typing constrains some byt€&s3 Completing the Heap Typing
to be subtypes gbointer, interior , or referent, but o))

gram types yet appear. an overall type to every heap block. Fully enforced
size constraints ensure that the size of a block’s over-
. . all type is equal to the block size, so all allocated
5.2 Debug Constraint Gathering bytes are constrained when the typing is completed
If symbolic debug information is available, debugnd the 8" byte of each block determines the block’s
constraints are applied next, then propagated traryerall type.
tively across pointers and into compound types using
type constraint ruleS\)H(vi)} Value and size con-53.1 Typing Feasibility Check
straints are checked where appropriate. Note, how-
ever, that size constraints are only partially enforceflyping completion begins by verifying that every
a block must be at least large enough to contain theap block may be assigned at least one program
expected type, but may be larger. For example, th&pe, given the initial constraints. A block that can-
target of adouble * must be at least eight bytediot be assigned any known type may be corrupt or
long, but may be longer if it is part of a larger strucnay have been allocated in a library whose internal
ture, union, or array. types are unavailable. We describe the problematic
During this stage, conflicts may arise among dé&lock to the user, then mark it as untypable and dis-
bug constraints (e.gint andfloat in the same regard itin the type search phase that follows.
location); between debug and size constraints (e.g.
int in :_Jltwo-byte block); between dgbug and valu€ 3 5 gearch Algorithm
constraints; or between debug apdinter, refer-
ent, or interior constraints derived in the previousThe main search phase considers the possible types
stage. If any such conflict occurs, we assume tHat each block, backtracking in the event of conflicts.
execution has deviated from type safety and that tiiéhen a type is verified as consistent with all current
static type system therefore cannot be trusted to pwalue, size, type, and (optional) debug constraints
dict run-time types. We report the problem to then a particular block, we update the byte types for
user and then back out all debug constraints. The ed+ bytes in this block to reflect the overall type,
mainder of the algorithm will operate using observeaks well as propagate constraints one level forward
memory values only, without considering declareakcross pointers in the block, and proceed to the next
variable types. A more selective approach, which vidock. If no consistent type is found for some block,

10

Induced Constraints

Block Type Considered Outcome on Other Blocks
C FILE size conflict: sizeoft) < sizeoffILE)

C Part a D+0: Shape

D Shape type conflict atD + 0: mee{Shape ,FILE) = L

C Assembly O D +0: PartNode

D PartNode O B+0:Part

A PartNode size conflict: sizeoff) < sizeoffartNode)

A Shape ad E+0:char

E char[5] O

Table 3: Heap typing algorithm execution trace

we backtrack to the last block that still has remain- Ties in the above ordering are broken arbitrarily.
ing type alternatives, and resume the search from tiNate that untagged unions are omitted from the or-
point. The algorithm terminates either when the lader. We treat untagged unions as akin to abstract base
considered block is assigned a consistent type, tgpes in object oriented languages. No block ever
when all possible types for all blocks have failed, ihas an untagged union as its actual type; only spe-
which case no consistent typing exists. cific tagged cases of a union may be “instantiated”
Naively implemented, this search is geometric @s allocated blocks.

the number of blocks and exponential in the numberIntuitively, if a block can have a program-defined
of types. However, since an entire block’s type mustpe, then showing that type rather than an array of
be a subtype of its'Obyte’s type, the search can b@rimitives may be more informative. The size or-
restricted to the sublattice below this bound. Thigering addresses the same issue: we try to assign a
optimization is especially effective with debug contarge struct type to a block before considering an ar-
straints enabled, as most pointers refer to the initiay of small structures. We place primitives before

byte of an allocated block. pointers because we find that an unconstrained block
containing all zeroes is presented more naturally as
5.3.3 Heuristic Type Ordering an array of primitives than an array of null point-

ers. Recursive sorting of pointer types places type-
As discussed i Section 4.5, a heap may have seveyigdcific pointers liként * before generizoid *,
consistent typings. We prefer a typing that is moghd shallowly nested pointers likeoid * before
informative for the user, so we consider the possi%emy nested pointers likeid #++ .
types for each block in a particular order: The order is designed to heuristically direct our so-
lution toward more useful typings. We do not guar-

1. struct s, large to small antee that the final heap typing is globally minimal

2. taggedunion s, large to small or optimal with respect to this order, but we find that
3. atomic types, large to small it yields good results in practice.

— nonenums beforeenums of the

same size 5.4 Example: Computing the Solution

4. arrays, recursively sorted by element \ye nou illustrate the algorithm as applied to our run-

type ning example, again considering the heap snapshot
5. pointers, recursively sorted by refer- after theinit_part() call on line 6 of Figure 4.

ent type To illustrate conflict handling, we modify the val-

11

ues shown if Figure] 5 as follows: assume that bytesFor the remaining four orderings, the order of con-
B + 16...B+ 19 have been corrupted, and no longetraint propagation does not directly correspond to
hold a valid pointer value. All other value constraintslock order. Consider the orderii, S, R). The
remain as shown 1. algorithm advances to a new block only if all pre-
During debug constraint collection, an inconsisdous ones have been consistently typed, so consis-
tency arises when B : Part constraint is propa- tency betweeiX andSis guaranteed wheR is con-
gated from variabl@ode , becausdart requires a sidered. At this time, two cases arise when assigning
valid pointer or null at byte8 + 16...B+19. Since an overall type tdR. If the type assignment requires
a conflict is found, debug constraints are discardegdodifying xg, then the type is rejected, since after
The search continues using only value constraings overall type forX is determined, all of its byte
Block B does not pass the typing feasibility checkypes are “frozen” to henceforth reflect the overall
so it is omitted from the search._Table 3 summarizége. Otherwise, the overall type f is consistent
steps taken during the backtracking search for comith R, but, sinceX andS are already consistent, this
plete types. The remaining blocks are consideredviolates our initial assumption th& andS conflict.
their allocation order, and the types are ordered aldhe argument for the three remaining orderings (
cording to our sorting heuristic. The algorithm iR, S), (S, X, R), (R, S, X)) is similar.
able to recover the types of the four remaining blocks An alternative scenario to consider is two discon-
using value and size constraints only, backtrackimgcted blocks) andJ, that both refer to the same
several times throughout the search. The final hetiyird block, Q. Here, the constraints imposed By
typing for the four remaining blocks is as shown imnQ will never invalidate the consistency bandQ,
[Figure . because if induces a constraii@ +i : 7, andJ later
modifies this constraint without conflict @i : 7/,

. thent’ < 1. O
5.5 Propagation Correctness ent =t

After assigning a type to a block, we update con-]
straints for the block itself and also propagate 8 Evaluation
pointer constraints forward across one dereference.
We claim that this is sufficient to ensure that no inA/e have implemented the above algorithm within the
consistency between typed blocks is overlooked. GNU Debugger (gdb), a popular symbolic debugger
for C [11]. When the program is stopped at a break-
Proof. Without loss of generality, assume there is gwint, the user may typewhatsat <expr> " to
inconsistency between block® and S, which are perform heap type inference and then display type-
two levels of pointer indirection apart. L&t be the annotated memory beginning at the address com-
intermediate block, and le& (resp.by) denote the puted by<expr> .
the byte ofX (resp.S) that is constrained bR (resp. Implementing thevalidPointer predicate requires
X). To prove the claim, it is enough to show thathat the debugger probe the debuggee’s current heap
the inconsistency betwedéhandS is detected with- allocation state. We modify the debuggee’s memory
out crossing pointers twice, regardless of the orderrmanagement routines to maintain a list of currently
which our algorithm considers the blocks. allocated blocks in a reserved global location known
If blocks are orderedR, X, S) or (S, R, X), then to the debugger; the debugger reads this list directly
the constraint orxg is taken into account wheX is from the debuggee’s address space as needed. We
assigned an overall type, and is propagated directBcord the start address and size of each block, plus
to S at that time. In both orderings, our algorithnthe address of the instruction that allocated the block.
will be unable to assign a consistent type to the laghatsat uses the latter in diagnostic messages to
block, and will eventually backtrack to consider aeport the source file, line number, and function at
different type forR. which each untypable block was allocated.

12

This extra allocation tracking uses standard hooks ~ Code Category
exposed by the GNUibc implementation [[10]
and is contained within a shared library that may

heap, allocated and typed

|
be preloaded into any program one wishes to debug N heap, allocated but untypable
i . A . X heap, freed
without recompilation or relinking. Our allocation N heap. never allocated
hooks also zero-initialize newly allocated blocks. S stacFI)<’
This is done to avoid spurious typing errors due to D static data
random data values in uninitialized heap memory. P static code

However, it can be useful to disable this feature in
order to verify that the program under study fully
initializes all of its own heap storage under normal

running conditions[(Section §.5).

static miscellaneous

Table 4: Memory category codes

bug, and temporarily disable debug constraints. Run-
ning schedule on one of its test input8 (6
Following heap type inferenceyhatsat displays inputs/lul2) leads to a crash at:

memory contents augmented with derived type in-) :

formation. Visualization begins at any address of! (Prio_queuefil->mem_count > 0)

6.1 Visualization of Typed Memory

the user’s choosing (e.gwhatsat 0x9275008 ? prio_queue is a global array oList point-
or “whatsat &foo[3] ") and continues forward g5 thei 'th element of which has become null. A
through raw memory under user control. heap consistency check usiwatsat finds no un-

shows part of a type-annotated heap f@iyaple blocks, suggesting that outright heap cor-
t_he assembly-bun_dln_g program us_ed earlier. Ea btion is unlikely. By rerunning the program in
line shows a capitalized hexadecimal memory aghe debugger, we backtrack to the last point where
dress (e.g.0X9275008:), up to one word of raw prio_queueli] had a non-null valuevhatsat
memory content at that addres®X00000000 "), finds types for all blocks, and in particular infers
and an interpretation of that memory typed accprdi@gat prio_queueli] points to a block of type
to our algorithm (x = (double) 0 7). Multi- Eje Yetprio_queue should be an array dfist
word atomic types, such asouble , extend over nointers, notEle pointers. We continue rerunning
multiple lines in the memory visualization. Indentag,e program, stopping at earlier and earlier points.
tion and field labels § =") reflect nesting and com- g5ch time we usehatsat to test whetheprio_-
pound types[Figure] 7 shows five distinct but proXqueye[i] has become &le pointer instead of a
imate memory blocks containing four structures aﬂﬂoperList pointer. This brings us to the buggy
one character array. call, where anEle pointer argument and hist

The | " and “?” labels to the left of each addresgypinter argument were passed in the wrong order.
mark locations that are currently allocated and hag&e compiler’s type checker failed to catch the swap
never been allocated, respectivgly. TaBle 4 shows to inadequate function prototyping, an unfortu-

complete list of memory category codes. nate but not uncommon problem.) Execution actu-
ally continues well beyond the bad call, in part be-
6.2 Schedule cause the physical layouts Bfe andList are suf-

ficiently similar that code intended for one can (in-
Schedule is small C application from the Siemem®rrectly but non-fatally) manipulate the other. Heap
buggy program suitel [13]. Given a list of jobgsype inference, however, can distinguish the two and
and their priorities as input, the application concorrectly determines thadrio_queueli] is not
putes and prints a schedule for running the jobshat it seems. Eactvhatsat query ran in under
We seeded schedule with an argument-transpositi@@3 seconds.

13

0X9275008:
0X927500C:
0X9275010:
0X9275014:
0X9275018:
0X927501C:

0X9275030:
0X9275034:
0X9275038:

WUV VDY) N——————

| 0X9275040:
| 0X9275044:
? 0X9275048:

? 0X927504C:

? 0X9275050:
? 0X9275054:
? 0X9275058:

? 0X927505C:

? 0X9275060:
? 0X9275064:

| 0X9275068:

| 0X927506C:
| 0X9275070:

| 0X9275074:

| 0X9275078:

| 0X927507C:
2 0X9275080:
2 0X9275084:
2 0X9275088:
2 0X927508C:
2 0X9275090:
2 0X9275094:
2 0X9275098:
2 0X927509C:

| 0X92750A0:
| 0X92750A4:
0X92750A8:

-~

0X92750B0:
0X92750B4:
0X92750B8:

0X92750CO0:
0X92750C4:

ESEENEESEUSEENEENEEN)

| 0X92750C8:
| 0X92750C9:
| 0X92750CA:
| 0X92750CB:
| 0X92750CC:

0X9275020:
0X9275024:
0X9275028:
0X927502C:

0X927503C:

0X92750AC:

0X92750BC:

0x00000000
0x00000000
0x00000000
0x00000000
0x09275040
0x00000000
0x00000000
0x00000019
0x09275008
0x00000018
0x0074922e
0x00000000
0x00000000
0x00000011

0x09275068

0x09275040
0x00000000
0x00000019
0x09275040
0x00000008
0x08048757
0x09275028
0x00000000
0x00000021

0x00000000
0x00000000
0x00000000
0x00000000
0x092750a0
0x09275008
0x00000000
0x00000019
0x09275068
0x00000018
0x080486f7
0x09275050
0x00000000
0x00000011

0x092750c8
0x00000000
0x00000000
0x00000019
0x092750a0
0x00000008
0x08048709
0x09275088
0x00000000
0x00000011

0x 64
0x 6f
Ox 6f
0x 72
0x 00

(struct Assembly)
center = (struct Point)
X = (double) O

y = (double) 0

nodes = (struct PartNode
owner = (struct Assembly

(struct PartNode)
part = (struct Part
next = (struct PartNode

(struct Part)
center = (struct Point)
X = (double) O

y = (double) 0

shape = (struct Shape
owner = (struct Assembly

(struct Shape)
name = (char
file = (struct _IO_FILE

(char [5])
[0] = 100 'd’
[1] = 111 ©
[2] = 111 o
[38] = 114 ¢
[4 = 0\O

*) 0x9275040
*) 0x0

*) 0x9275068
*) 0x9275040

*) 0x92750a0
*) 0x9275008

*) 0x92750c8 "door"

*) Ox0

Figure 7: Type-annotated heap excerpt for assembly-building program

14

? 0X804ABB8: 0x00000000
0X804ABBC: 0x00000000

~

(struct queue [4])
[0] = (struct queue)

D 0X804ABCO: 0x00000001 length = (int) 1
D 0X804ABC4: 0x0804b0d0 head = (struct process *) 0x804b0d0
[1] = (struct queue)
D 0X804ABCS: 0x00000001 length = (int) 1
D 0X804ABCC: 0x0804b0a8 head = (struct process *) 0x804b0a8
[2] = (struct queue)
D 0X804ABDO: 0x00000000 length = (int) O
D 0X804ABD4: 0x00000000 head = (struct process *) 0x0
[3] = (struct queue)
D 0X804ABD8: 0x00000000 length = (int) O
D 0X804ABDC: 0x00000000 head = (struct process *) 0x0
? 0X804ABEO: 0x00000002
D OX804ABE4: 0x0804b008 (void *(*)(size_t, const void *)) 0x804b008
D OX804ABES8: 0x00000000 (void (*)(void *, const void *)) O
D O0X804ABEC: 0x00749380 (void *(*)(void *, size_t, const void *)) 0x749380 <realloc_hook_ini>
D 0X804ABFO: 0x007493d0 (void *(*)(size_t, size_t, const void *)) 0x7493d0 <memalign_hook_ini>
? 0X804ABF4: 0x0804b018
? 0X804ABF8: 0x00000000

Figure 8: Schedule2 global variables visualization

The preceding analysis was conducted without de-__malloc_hook is assigned fromold_-
bug constraints, and therefore withowhatsat malloc_hook , which holds the same bad
having prior knowledge thatrio_queue should process pointer instead of a function pointer.
contain onlyList pointers. If debug constraints ardJsing whatsat to explore the physical memory
included, then the known type pfio_queue re- neighborhood aroundold_malloc_hook re-
quires that all pointed-to elements have typst . veals that a four-element structure array precedes
For the badprio_queueli] pointer, this is in- old_malloc_hook . [Figure 8 showsvhatsat ’s
compatible with theEle type required by value andvisualization of this area. old_malloc_hook
size constraintswhatsat detects and reports theappears at addre6X804ABE4; the preceding array
conflict. Thus, debug constraints can be especiaity clearly visible starting at addre€X804ABCO.
useful when pointer misuse has broken type corre@bserve thatold_malloc_hook is perfectly
ness without trashing the heap in the manner ofpasitioned to receive an erraptocess pointer
wild pointer bug or buffer overrun. should the neighboring array overrun its bounds.
Thus informed, we identify the array, the code that
writes to it, and the missing bounds check that
constitutes the true bug. Althatsat queries used
'Bw this case study completed within 0.03 seconds.

6.3 Schedule2

Schedule2 is a different implementation of a jo
scheduler, also part of the Siemens suite [13]. Ver-

sion 8 of schedule2 contains a bug that causes the

program to crash insidmalloc() . A stack trace While a hardware watchpoint might also have
reveals that the crash is due to a bad pointer derbéen used to trap the bad writedtn_malloc_-
erence: a function pointer, malloc_hook , does hook, this would require rerunning the program and
not point to a functionwhatsat confirms that the reproducing the bug. Many memory corruption bugs
claimed type for__malloc_hook is inconsistent are difficult to reproduce on demand; not all bugs are
with its value, and therefore that debug constraindsnenable to the sort of iterative backtracking used
are not satisfiable. After debug constraints are dis{Section 6.P. We see here thahatsat can also
cardedwhatsat infers that this block actually con-provide useful postmortem information on the first
tains aprocess structure. instance of a bug.

15

6.4 Space exif-content.c:110 . The code in question
erforms a reallocation to grow an array of pointers

Space is an interpreter for an antenna array defi “entry blocks:

tion language (ADL) written for the European Space
Agency [21,026]. As distributed by the Galileo optries = realloc(entries,
Subject Infrastructure Repository| [7] it consists of sizeof(ExifEntry) x (count + 1));
a correct version in 9,564 lines of C code along
with buggy variants and an extensive test suite. WeThe size calculation is incorrect. It reserves
ran the correct version on one of its test inputpace for an array ofEXIfEntry structures,
(inputs/gr120) with a debugger breakpoint sebut entries s actually an array opointers to
at the very end ofain() . Atthis point, 174 mem- ExifEntry structures. Because eagRifEntry
ory blocks are allocated in the heap. whatsat s larger than a pointer, the program does not overrun
query completes in 0.8 seconds and finds that tigs buffer. However, the extra space at the end of the
“correct” variant of space contains an untypablgrray is wasted and, because it contains uninitialized
block: random data that may not look like valid pointers,
whatsat determines that arrays allocated here are
untypable.

We initially identified this previously unreported
bug in release 0.6.9 and 0.6.10 of the exif driver

Just after this block is allocatedhatsat finds and library. We have confirmed that it persists in
no problems and types the blockEkem. An infor- the latest development snapshot as of April 15, 2006
mal binary search as suggesteq in Section 1 revel8,410 lines of C code). Exif developers have since
that the block is later corrupted by an assignment efnfirmed the bug and applied our suggested fix.
an uninitialized local variable into one of its fields. After whatsat identifies these untypable blocks,
The field is anint but the uninitialized value it re- it ignores them for the remainder of the analysis.
ceives happens to be a valid pointer left behind drhat analysis, however, does not find a valid heap
the stack by earlier calls. No other type looks like ayping for exif in a timely manner. It is possible
Elem with a pointer in place of thist field, so the that no valid typing exists even though all individual
block is untypable. This “correct” version of spacelocks match at least one known type. It is also pos-
runs correctly only because this improperly initialsible that a valid typing exists, but is pathologically
ized field is not actually used by any other code. Thgismatched with our heuristic search order. Improv-
bug described here was previously unknown to gy the diagnostic capabilities of our analysis when
and, to our knowledge, not previously reported in anyhresolvable conflicts arise late in the search is an
published literature concerning the space test suitémportant area for future study.

untypable block of 168 bytes
at 0x805c088, allocated in
elemdef() at space.c:1880

6.5 Exi 7 Related Work

Exif is an open source utility for manipulating JPEG

image metadata [9]. It consists of 10,375 lineShandra and Reps][5] and Skt al. [22] intro-

of C code split into a shared library and a maiduce an alternate type system for C that allows sub-
driver program. We ran exif with a breakpoint seyping based on the physical layouts of data struc-
afterexif_loader_get_data() , which builds tures. They describe static type checking and infer-
an in-memory representation of a JPEG input filence rules that test program conformance with this
We disabled zero-initialization of heap blocks to testternate type system. In contrast, our approach is
whether exif performs its own initializations propdynamic: we examine a frozen snapshot of a running
erly. whatsat identifies two untypable blocksprogram’s heap, rather than the space of all possi-
allocated inexif_content_add_entry() at ble program heaps. This allows us to use concrete

16

memory values and allocated block sizes to refine azonsistency. Zimmermann and Zeller comment that
analysis. As is typical for dynamic analyses, we fdWhile such heuristics mostly make good guesses,
cus on specific bugs triggered during a run withoittis safer to provide explicit disambiguation rules—
guaranteeing that all possible bugs will be detectee@ither hand-crafted or inferred from the program.”

The subtyping relation induced by our byte typPynamic heap type inference generalizes and im-
lattice is more restrictive than the Chandra/Siff phygroves upon these heuristics by defining a notion of
ical subtyping relation. Both allow subtyping beglobal heap typing that considers not just local val-
tween a structure and its first field, but we disalloies Within isolated blocks, but also the relationships
more general structure prefixing or the usecbér ~ between interlinked blocks. This letshatsat
arrays as storage placeholders. These are mefélgl globally consistent heap typings and reduces or
policy choices. Our approach can use permissigéminates the need for hand-crafted disambiguation
Chandra/Siff subtyping or a variety of other relatules. We also note that the visualization of Zimmer-
tions with no changes to constraint collection or tH&ann and Zeller abstracts away physical block loca-
core heap typmg a|gorithm_ However, not all Squ.OﬂS in favor of box-and-arrow diagrams, whereas
typing relations are sensible in this context. For eXthatsat 's visualization focuses on physical layout
ample, Cardelli’s structural record subtyping relatioand proximity. Both representations may be of inter-
[4], disregards field order and is therefore needles§t, depending on the debugging task at hand.
permissive for our scenario, where field orders are

fixed. .) e .
cast abuse is longstanding, and has inspired solutions

As a dynamlc_ _heap_-walkmg tool, our systerp nging from static analysi§|[8, 19] to run-time in-
shares some qualities with a garbage collector or le mentation [12, 16, 17, 18,120,125] and the design

detector, and a list of unreachable (leaked) mMemoxy cater language dialects| [2.115] 23]. Our approach

blocks could easily be extracted from our analystiferforms programmer-directed heap validity checks

Traditional garbage collectors require data struct [N interactive debugging context, and does not at-

layout information for the root set and possibly fof?mpt to prevent or trap errors as they occur. This

aIIocateq blocks as well. C onservative garb_age CAMows us to be significantly less invasive: we require
lectors [‘%] relax Fh's reqwrem_ent by assuming th?lto changes to the C language; no recompilation or
any location holding a valid pomter value is indeed urce annotation beyond a compiler-provided list of
pointer. Our approach moves flexibly between theB ogram types; no run-time instrumentation beyond

extremes. We use type information for global an list of allocated blocks; and no dynamic type tag-

stack storage if available, but can operate witho an or other changes to data structure layouts. Ad-

it by making pointer/value assumptions in the ma itionally, our analysis depends only on the instanta-

?er oft.a conservative Qollgcrt]or. ﬂ:J Itm,:?t?ly' tk:je Nheous state of the program heap at a given moment in
ormation we recover is richer than that produc&fi,q. oer than maintaining a list of currently allo-

by garbage cqllectors: we find not only the size ar?:%ted blocks, we do not record any trace information
embedded pointers of each allocated block, but a ile the program runs

complete program types that are globally consistent

both within and between all blocks. In this sensavhatsat can be seen as an experi-
Zimmermann and Zeller present strategies for ement in minimalism. Rather than monitor every po-
tracting C heaps and displaying them to highlighéntially interesting action, we ask how much infor-
key relationships[[27]. Their system depends anation can be recovered with only the bare mini-
debugger-provided type information augmented withum imposition at run-time. We believe that both
a few C-specific heuristics also used Whatsat , highly invasive and minimally invasive approaches
such as pointer validity testing and dynamic arradyave benefits. Exploring the extremes helps illumi-
size computation. These heuristics consider only isgate potential strategies to improve debugging tools
lated blocks, though, and have no notion of globall along the instrumentation and analysis spectrum.

The problem of heap corruption due to pointer and

17

8 Future Work and Conclusion References

Extensions to our work are possible both for im-{1]
proved efficiency as well as enhanced user expe-
rience. Backtracking can be reduced by treating

Lars Ole AndersenProgram Analysis and Special-
ization for the C Programming Languag®hD the-
sis, DIKU, University of Copenhagen, May 1994.

blocks and pointers as graph nodes and edges, apgl Todd M. Austin, Scott E. Breach, and Gurindar S.

traversing strongly connected components of the
heap graph in topological order. Richer error report-
ing could include a detailed trace of the constraint
conflicts surrounding untypable blocks; we expect
this would be a valuable diagnostic aid. Static pro-
gram information, such as the types of casts thgs]
immediately follow mostmalloc() calls, can be
treated as an additional source of constraints or as
an independent “second opinion” with which dynam-[4]
ically observed types should (but may not) agree.
The general algorithm can accommodate a variety
of subtyping policy choices and application-specific
consistency constraints; provisions for end-user cus-
tomization and extension of the analysis should al
low the tool to be more helpful for a wider variety of
programs and programming styles.

Low-level programming languages sometimes re-
quire low-level debugging. However, one nee 6
not completely abandon the type system even when
working with non-type-safe languages. A low-level
but type-annotated view of the heap can help in de-
bugging and more general program understanding
tasks. We have presented an algorithm that infers
program-defined types for memory locations. So-
lution consistency is defined in terms of constraintgz)
that use a novel blend of ideas from physical sub-
typing and conservative garbage collection. When
no consistent typing exists due to heap corruption
or pointer abuse, we offer focused diagnostic infor-
mation to help identify the cause. Our implementasg)
tion works for general C programs and requires no
source annotation, no recompilation, no run-time in-
strumentation beyond heap allocation tracking, and
no changes to physical data structure layouts. Expe-
riences with the tool, while limited in scope, suggesig]
that dynamic heap type inference may be a useful ad-
dition to the programmer’s toolkit. [10]

(11]

18

Sohi. Efficient detection of all pointer and array ac-
cess errors. IPLDI '94: Proceedings of the ACM
SIGPLAN 1994 conference on Programming lan-
guage design and implementatjopages 290-301,
New York, NY, USA, 1994. ACM Press.

Hans-Juergen Boehm and Mark Weiser. Garbage col-
lection in an uncooperative environmersoftware:
Practice & Experiencgl8(9):807-820, 1988.

Luca Cardelli. Structural subtyping and the notion
of power type. InPOPL '88: Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languaggsages 70-79, New
York, NY, USA, 1988. ACM Press.

] Satish Chandra and Thomas W. Reps. Physical type

checking for C. InWorkshop on Program Analysis
For Software Tools and Engineeringages 66-75,
1999.

] Brian Demsky, Michael D. Ernst, Philip J. Guo,

Stephen McCamant, Jeff H. Perkins, and Martin Ri-
nard. Inference and enforcement of data structure
consistency specifications. IBSTA 2006, Proceed-
ings of the 2006 International Symposium on Soft-
ware Testing and Analysi®ortland, ME, USA, July
18-20 2006.

Hyunsook Do, Sebastian G. Elbaum, and Gregg
Rothermel. Supporting controlled experimentation
with testing techniques: An infrastructure and its po-
tential impact. Empirical Software Engineering: An
International Journal 10(4):405-435, 2005.

David Evans. Static detection of dynamic memory
errors. InPLDI '96: Proceedings of the ACM SIG-
PLAN 1996 conference on Programming language
design and implementatippages 44-53, New York,
NY, USA, 1996. ACM Press.

EXIF tag parsing libraryhttp://libexif.sf.
net/ |

Free Software Foundation, Inc., Boston, MA, USA.
The GNU C Library0.10 edition, July 6 2001.

John Gilmore and Stan Shel@3DB Internals Febru-
ary 2004.

http://libexif.sf.net/
http://libexif.sf.net/

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

Reed Hastings and Bob Joyce. Purify: Fast detection
of memory leaks and access errorsPhoceedings of

the USENIX Winter Conferencpages 125-138, San
Francisco, CA, USA, 1992. USENIX Association. [20]

Monica Hutchins, Herb Foster, Tarak Goradia, and
Thomas Ostrand. Experiments on the effectiveness of
dataflow- and control-flow-based test adequacy CritFZl]
ria. In Proceedings of the 16th International Confer-
ence on Software Engineeringages 191-200. IEEE
Computer Society Press, May 1994.

International Organization for Standardizatid8O/ [22]
IEC 9899:1999: Programming Languages —
C. International Organization for Standardization,
Geneva, Switzerland, December 1999.

Trevor Jim, J. Greg Morrisett, Dan Grossman,
Michael W. Hicks, James Cheney, and Yanling Wang.
Cyclone: A safe dialect of C. IfProceedings of [23]
the General Track: 2002 USENIX Annual Techni-
cal Conferencgpages 275-288, Berkeley, CA, USA,
2002. USENIX Association. [24]

Richard W. M. Jones and Paul H. J. Kelly.
Backwards-compatible bounds checking for arrays
and pointers in C programs. WADEBUG pages [25]
13-26, 1997.

Stephen Kaufer, Russell Lopez, and Sesha Pratap.
Saber-C: An interpreter-based programming enviroP2-6]
ment for the C language. IRroceedings of the
USENIX Summer Conferencpages 161-171, San
Francisco, CA, USA, June 1988. USENIX Associa-
tion.

Alexey Loginov, Suan Hsi Yong, Susan Horwitz,
and Thomas W. Reps. Debugging via run-time type
checking. INFASE '01: Proceedings of the 4th Inter-[27]
national Conference on Fundamental Approaches to
Software Engineeringpages 217-232, London, UK,
2001. Springer-Verlag.

George C. Necula, Jeremy Condit, Matthew Harren,
Scott McPeak, and Westley Weimer. CCured: Type-

19

safe retrofitting of legacy software.ACM Trans-
actions on Programming Languages and Systems
27(3):477-526, 2005.

Nicholas Nethercote and Julian Seward. Valgrind: A
program supervision frameworElectronic Notes in
Theoretical Computer Scienc®9(2), 2003.

Gregg Rothermel, Roland J. Untch, and Chengyun
Chu. Prioritizing test cases for regression test-
ing. IEEE Transactions on Software Engineering
27(10):929-948, 2001.

Michael Siff, Satish Chandra, Thomas Ball, Krishna
Kunchithapadam, and Thomas W. Reps. Coping with
type casts in C. In Oscar Nierstrasz and M. Lemoine,
editors,ESEC / SIGSOFT FSEolume 1687 ot.ec-
ture Notes in Computer Scienceages 180-198.
Springer, 1999.

Geoffrey Smith and Dennis Volpano. A sound poly-
morphic type system for a dialect of CScience of
Computer Programming32(1-3):49-72, 1998.

Bjarne Steensgaard. Points-to analysis in almost lin-
ear time. InSymposium on Principles of Program-
ming Languagegages 3241, 1996.

Joseph L. Steffen. Adding run-time checking to the
portable C compiler.Software: Practice & Experi-
ence 22(4):305-316, 1992.

Filippos I. Vokolos and Phyllis G. Frankl. Empiri-
cal evaluation of the textual differencing regression
testing technique. IHCSM '98: Proceedings of the
International Conference on Software Maintenance
page 44, Washington, DC, USA, 1998. IEEE Com-
puter Society.

Thomas Zimmermann and Andreas Zeller. Visual-
izing memory graphs. I®8oftware Visualization, In-
ternational Seminar Dagstuhl Castle, Germany, May
20-25, 2001, Revised Lectuye@slume 2269 ot ec-
ture Notes in Computer Scienceages 191-204.
Springer, May 2001.

	Introduction
	Preliminaries
	Definitions
	Overview
	Notation

	Byte Type Lattice
	Structures
	Special and Atomic Types
	Arrays
	Unions
	Functions
	Finite Type Space

	Consistency Constraints
	Value Constraints
	Size Constraints
	Type Constraints
	Debug Constraints
	Example Solution

	Heap Typing Algorithm
	Pointer Constraint Gathering
	Debug Constraint Gathering
	Completing the Heap Typing
	Typing Feasibility Check
	Search Algorithm
	Heuristic Type Ordering

	Example: Computing the Solution
	Propagation Correctness

	Evaluation
	Visualization of Typed Memory
	Schedule
	Schedule2
	Space
	Exif

	Related Work
	Future Work and Conclusion

