e E B EAA

E @@ EEB QDA

[= T D - - N -

P BB B B 88

g 82 B ODBEBEEGBE QB E BB

Weighted Pushdown Systems
and Weighted Transducers

Akash Lal
Tayssir Touili
Nicholas Kidd
Thomas Reps

Technical Report #1581

September 2006

UNIVERSITY OF

Weighted Pushdown Systems and Weighted
Transducers

Akash Lal', Tayssir Touili?, Nicholas Kidd!, and Thomas Reps!

! University of Wisconsin, Madison, Wisconsin, USA. {akash, kidd, reps}@cs.wisc.edu
? LIAFA, CNRS & University of Paris 7, Paris, France. touili@liafa.jussieu fr

Abstract. Pushdown Systems (PDSs) are an important formalism for modeling
programs. Reachability analysis on PDSs has been used extensively for program
verification. A key result, which made PDSs popular in the model-checking com-
munity was that the set of reachable stack configurations starting from a regular
set of configurations is also regular. A more general result was given by Caucal [7]
who showed that a PDS’s reachability relation, which maps stack configurations
to their reachable set of stack configurations, can be encoded using a finite-state
transducer. In this paper, we generalize the result to weighted pushdown systems,
which have proven to be very useful for model checking as well as dataflow analysis.
The same algorithm provides an efficient construction of transducers for ordinary
(unweighted) PDSs. We also give a direct saturation algorithm for constructing
transducers for single-state PDSs.

1 Introduction

Pushdown Systems (PDSs) are an important formalism for modeling programs
[26,25,19,16,11,1]. They are a generalization of finite-graph control models of
programs because of their ability to simulate a program’s control stack. The
stack allows a PDS to describe faithfully paths with matched procedure calls and
returns. Because a program stack can be of unbounded size, the PDS represents
an infinite graph in which the nodes correspond to stack configurations of the
PDS and the edges are valid transitions between configurations, as defined by
the rules of the PDS.

In program verification, it is common to reduce safety-property verification
to a problem of reachability in a graph (i.e., a program model); the program vio-
lates a particular property if a node t (target) is reachable from node s (source)
in the graph. If there are multiple such source and target pairs, it may be better
to precompute and summarize reachability information in the graph, rather than
performing a separate reachability query for each pair. For finite-graph models,
such a summarization can be performed by taking a transitive closure of the
graph. Source-target reachability can then be answered in constant time. It is
natural, therefore, to ask if such a summmarization can also be done for the set of
infinite graphs definable using PDSs. In 1992, Caucal [7] answered this question
by showing that the reachability relation of the infinite graph defined by a PDS
can be encoded using a finite-state transducer, such that a node (stack configu-
ration) s can reach a node ¢ if and only if the pair (s,t) is in the input-output
relation of the transducer.

In this paper, we extend the above result to weighted pushdown systems
(WPDSs). While PDSs are able to encode an infinite control abstraction (using
the stack), they are not able to model an infinite data abstraction. (Unweighted

PDSs can only encode finite abstractions ol data, such as predicate abstraction
and Boolean programs [26].) WPDSs address this issue by associating a weight
with each PDS rule [25,5]. These weights can encode abstract transformers on
an infinite lattice (with some additional properties), and, consequently, WPDSs
can model a program more effectively than a PDS. Because of weights, our goal
is no longer to compute reachability; instead, we need to compute meet-over-all-
paths values over the PDS’s transition relation.® Path problems on WPDSs can
be solved by first creating a weighted transducer, and then applying a simple
transducer-automaton composition operation (§3.1).

There has been considerable work on forward and backward reachability
algorithms for PDSs and WPDSs [4, 26, 25, 17].# These algorithms are based on
saturation procedures that add more transitions (possibly with weights) to an
automaton (that represents a set of configurations) until a fixpoint is reached,
at which point the resulting automaton represents the desired answer. When we
started working on constructing transducers, our first attempt was to generalize
these algorithms to work with transducers instead of automata. However, we
only succeeded in extending the algorithm to single-state PDSs. That algorithm,
given in §2.2, does not work with general PDSs or with WPDSs. Even though
it is not a general algorithm, it highlights the difficulties in extending existing
algorithms to work with transducers.

To obtain a general transducer construction for PDSs and WPDSs, we use a
different principle that uses multiple calls (actually only 2) to existing saturation
procedures to construct parts of the transducer, which are then combined to
obtain the desired transducer. This algorithm is presented for WPDSs in §3.1.
The techniques that we use in the algorithm resemble the ones used by Caucal [7]
(see §4); however, we make use of recent developments in WPDS technology and
also provide bounds on the complexity of our construction. The algorithm, when
specialized to PDSs, provides an efficient construction of transducers for PDSs.
We also show that single-source, single-target path problems on WPDSs (st-path
problemns for short) can be solved more efficiently using these transducers (after
they are constructed) rather than using existing algorithms based on saturation.

The contributions of this paper can be summarized as follows:

— We present an algorithm for constructing a transducer that represents the
reachability relation of a given PDS or WPDS. While an algorithm for con-
structing transducers for (unweighted) PDSs has been given before [7], no
such transducer construction has been attempted before for WPDSs.

— We show how transducers can be used to solve st-path problems on WPDSs
more efficiently than existing algorithms.

— Similar to current saturation algorithms for forward and backward reacha-
bility on PDSs, which deal with finite-state automata, we give a (direct) sat-
uration procedure for constructing transducers for single-state PDSs. While
this construction does not work for general PDSs or WPDSs, it illustrates
the difficulty in extending existing algorithms to produce a transducer.

3 Similarly, in finite weighted graphs, transitive closure generalizes to such problems
as the all-pairs shortest-path problem and the meet-over-all-paths problem [15].
4 See [3] for a summary of the history of reachability algorithms for PDSs.

The rest of the paper is organized as follows. In §2, we discuss PDSs. We give
some background on how they can be used for modeling programs, and show how
transducers can be used for solving reachability problems on PDSs. We also give
a direct saturation-based algorithm for constructing a transducer for single-state
PDSs. In §3, we discuss WPDSs. We give the weighted-transducer construction,
and show how they can be used for efficiently solving si-path problems. §4 dis-
cusses related work. Short proofs of non-trivial lemmas and theorems are given
in Appendix A.

2 Pushdown Systems

Definition 1. A pushdown system is a triple P = (P, I, A), where P is
the set of states or control locations, I' is the set of stack symbols, and A C
P xI'x PxI™ is the set of pushdown rules. A configuration of P is a pair
(p,u) where p € P and w € I'*. A rule r € A is written as (p,v) — (', u),
where p,p’ € P, v € I' and uw € I'*. These rules define a transition relation =
on configurations of P as follows: If r = (p,v) — (p',u) then (p,yu') = (p’, uv’)
for all v’ € I'*. The reflexive transitive closure of = is denoted by =*. For a
set of configurations C, we define pre*(C) = {¢' | 3c € C : ¢ =* ¢} and
post*(C) = {c | 3c € C : ¢ =* '}, which are just backward and forward
reachability under the transition relation =>.

We restrict the pushdown rules to have at most two stack symbols on the
right-hand side. This restriction does not decrease the power of pushdown sys-
tems because by increasing the number of stack symbols by a constant factor,
an arbitrary pushdown system can be converted into one that satisfies this re-
striction [12,27,26].

The standard approach for modeling program control flow with a pushdown
system is as follows: P contains a single state {p}, I corresponds to program
locations, and A corresponds to transitions in the interprocedural control-flow
graph (ICFG) (see Fig. 1). The state space P can be expanded to encode a finite
abstraction of the global state, and the stack space can be expanded to encode
local variables [26].

[Rule |Control flow modeled |

(p,u) — (p,v) Intraprocedural CFG edge u — v
{p,) = (D, Genter T)|Call to g at ¢ that returns to 7
(P, gexit) = (p,€) |Return from procedure g

Fig. 1. The encoding of ICFG edges as PDS rules.

Because the number of configurations of a pushdown system is unbounded,
it is useful to use finite automata to describe regular sets of configurations.

Definition 2. If P = (P, I, A) is a pushdown systemn then a P-automaton
is a finite automaton (Q,I,—, P, F), where @ 2 P is a finite set of states,
—C @ x I' x @ is the transition relation, P is the set of initial states, and
F is the set of final states. We say that a configuration (p,u) is accepted by a
P-automaton if the automaton can accept u when it is started in the state p
(written as p ——* q, where ¢ € F). A set of configurations is called regular if

some P-automaton accepts it. Without loss of generality, we restrict P-automata
to mot have any transitions leading to an initial state.

An important result is that for a regular set of configurations C, both post*(C)
and pre*(C) are also regular sets of configurations [3, 26, 4, 9, 10}. The algorithms
for computing post* and pre*, called poststar and prestar, respectively, take a
P-automaton A as input, and if C is the set of configurations accepted by A,
they produce P-automata Apys- and Apree that accept the set of configura-
tions post*(C) and pre*(C'). The algorithms prestar and poststar are often called
saturation procedures because they involve adding additional transitions to the
automaton for C' as long as certain criteria are met.

2.1 Transducers for Expressing Reachability in Pushdown Systems

In this section, we define the st-reachability problem for PDSs and show how it
can be solved using transducers. For this section, fix P = (P, I, A) as a PDS.

Definition 3. Given two configurations s,t € Px I'*, the st-reachability prob-
lem 1s to determine if s =* t.

This problem can be solved using prestar and poststar by checking if ¢t €
post*({s}) or s € pre*({t}). We show next that this problem can also be solved
using transducers.

Definition 4. A finite-state transducer 7 is a tuple (Q, X;, Xp, A\, I, F'), where
@ is a finite set of states, X; and X, are input and output alphabets, A C
Q x (Z; U {e}) x (Fo U {e}) x Q is the transition relation, I C Q is the set
of initial states, and F C @Q 1s the set of final states. If (q1,a,b,q2) € X, written
a/b .
as q1 —— go, we say that the transducer can go from state q1 to ga on input a,
and outputs the symbol b. Given a state g € I, we say that the transducer can
accept a string ¢; € X with output ¢, € X if there is a path from state g to a
final state that takes input ¢; and outputs c,. The language of the transducer
L(7) is defined as the following subset of X} x 5% : {(c;,¢0) | the transducer can
output string c, when the input is ¢; }.

Given a PDS P, we want to construct a transducer 7p = (Q,"U P, " U
P, A\ I, F), with a single initial state ¢; € I, such that 7p accepts input (p1 u1)
with output (p; up) if and only if (p1,u1) =* (p2,u2). The transducer 7p, in
effect, captures =*, the transitive closure of the PDS transition relation. For now,
we assume that there exists a method for constructing 7p from P. The actual
algorithin is given later in §3.1 for WPDSs. Because WPDSs are a generalization
of PDSs, that algorithm applies to PDSs as well. We can derive the following
theorem from Thm. 3 given in §3.1.

Theorem 1. Given a PDS P, a transducer 7p can be constructed such that it
accepts input (p1 w1) and outputs (p2 uz) if and only if (p1,w1) =* (pa, uz).
Moreover, this transducer can be constructed in time O(|P||A|(|P||I"] + |4]))
and has at most |P|?|T"| + | P||4| states.

The st-reachability problem reduces to a membership query in the language
of the transducer 7p. The general reachability problems solved by prestar and
poststar can also be solved using this transducer. First, we need to define the
application of a transducer to an automaton. To simplify the discussion, and
without loss of generality, we assume here that the input and output alphabets
of the transducer are the same.

Definition 5. Given a transducer 7 that defines the language L(7) C X* x ¥,
and an automaton A that accepts the language L(A) C X*, the transducer-

automaton application 7(A) is defined as an automaton that accepts the image
of L{A) under L(r), i.e., the language {u | Tu' € L(A), (v/,u) € L(r)}.

This application can be computed in a manner similar to automaton inter-
section: For each transition p &b, g in 7 and transition p’ % ¢ in A, add
the transition (p,p’) b, {(g,¢') to 7(A). Thus, the application can be computed
with at most a quadratic explosion in the state space. Let 7~1 be the same
transducer as r but with input and output labels on transitions swapped. The
following corollary follows from the above definition and Thm. 1.

Corollary 1. For a PDS P, let mp be the transducer as in Thm. 1. Then, given

a configuration set C represented by an automaton A, post*(C) = L(7(A)) and
pre*(C) = L(r7(A)).

Corollary 1 gives us a way of computing forward and backward reachable
sets using just transducer-automaton applications.’ This may not lead to faster
algorithms than the previous saturation-based algorithms, but it provides a dif-
ferent approach to solving the same problem, and it may be possible to combine
it with recent advances in automata-theoretic algorithms such as regular model
checking [13, 28,6, 2].

In the next section, we give a construction of a transducer for a single-state
PDS. The construction is a direct saturation algorithm that applies to a trans-
ducer, unlike the construction given later for WPDSs, which uses two saturation
steps to compute a transducer. The construction does not generalize to multiple-
state PDSs (which are strictly more powerful than single-state PDSs [8]) or to
WPDSs.

2.2 A transducer construction for single-state PDSs

Let P be a PDS with a single state p, i.e.,, P = {p}. Because we are restricting
ourselves to single-state PDSs, the transducers we consider in this section do not
include P in their input or output alphabet, i.e., they just describe relations on
stacks.

Let 7 = (Q, I, I\, I, F) be a transducer such that @ = {p} U@y, F C @y,
I = {p}, and all transitions in A have the form (¢1,7/7,¢2), 1,02 € Q,v € I'.

5 A needs to be a slightly modified P-automaton. Its alphabet is extended to be states
as well as stack symbols of the PDS, and it accepts a PDS state as its first symbol
to initialize its starting state (as required by a P-automaton). This is a very minor
change in representation and we do not mention it explicitly in the rest of the paper.

(Such a transducer represents a subset of the identity relation.) Starting with
T, we create a transducer 7’ such that (c1,¢) € L(7') iff (c1,¢2) € L(7) and
co =>* ¢ in the transition relation of P. If 7 represents the identity relation on
configurations, i.e., £(r) = {(c,¢) | ¢ € I'*}, then 7' will capture the reachability
relation of P (same as 7p in the preceding section).

The idea behind the algorithm below is to consider 7’ as having two parts: a
first part where only transitions of the form v/e are allowed, and a second part
where such transitions are not allowed. The transducer is constructed so that it
can move from the first part to the second part, but not in the other direction
(hence, ~/e-transitions appear only in the beginning of an accepting run of 7).

Intuitively, the first part can be obtained by making a “kind of a copy” of the
second part that rewrites letters into “¢” (when possible and when allowed by
the rules of the PDS). To do so, for every state ¢ in ¢}1, we introduce a new state
g’ that is intended to satisfy the following condition: (p,~v/e,¢’) is a transition
in 7 iff (p, v/, q) is a transition in 7 and (p,) =* (p,€).

We create the transducer " = (Q, I, I, N, I’, F') from 7 as follows:

—F=FandI'=1.
— Let Q2 = {S(QY'\/,‘Y') [qge U {p},’\/, v € F,} Then Q@ = QU Q2U{¢ |

g € Q1 UQ2}. The states in Q2 correspond to the extra states added by the

poststar saturation algorithm.

— X is defined as follows, where ¢ A g; denotes ¢ —E/—E>q~ B /a N ; or
i j j q
CI,S-“IL%
{c1) AT N

(o) for every g € Q1 UQ2, (¢',e/e,9) € N

(e3) for every rule {p,v) — (p,e), if \' contains a transition of the form
{(»,v1/7, q), then add (p,v1/e,q’) to N'. Moreover, if X' has a path of the
following form:

p vi/e 4 v2/€ i vafe, | _Jile d Vi /Y it
i i

then add the transition (g, vi+1/€,4{,1) to A

(ag) for every rule (p,v) — (p,7'), if X' contains a transition of the form
(p,v1/7 q), then add (p,v1/7,q) to X'. Moreover, if X' has a path of the
following form:

p DL gy e, g IE, L I, Y g,
then add the transition (g}, vi+1/7's @it1) t0 .

(as) for every rule (p,7v) < (p,¥'¥"), if A contains a transition of the form

(P, 11/7:9), then add (p, 71/, S(p,y1,v)) and (8(p, v, ,y):€/7", @) to N'.
Moreover, if) has a path of the following form:

vi/e d ve/e 4 ysfe vile q Yigr/y Gisn
then add (g, Yi41/7, (i vier,7)) @04 (S(gs yi41,v) €/ Qi) to X

The rules above are extensions for the standard saturation procedures for

PDSs to transducers. For example, if p wq in A/, then we should also

have the path p nvn/e, g in)’ when there is a PDS rule {p,v) < (p,¢). This

is ensured by rules (o) and (az).

The definition of)\ is inductive and can be computed as the limit of a finite
sequence of increasing sets of transitions A\ C M, C ... C AL, where each
A, contains at most two transitions more than A]. Termination is guaranteed
because there is a bounded number of states in 7/, hence A’ can only have a
bounded number of transitions. Proofs of the following lemmas are given in

Appendix A.

Lemma 1. Let (p,v) be a configuration such that p v—/-:)A q for some final state

q € F. If {p,v) =* (p,w), thenpvﬂu,\/ q.

Lemma 2. Let p v—/—l>v,\: q, where q € 1, then p v—/f,\ g, and (p,v) =* (p,w).

Theorem 2. Given a transducer T whose language is the identity relation on
I', and a single-state PDS P, the transducer rp can be constructed using the
steps given above, such that L(7p) = {(c1,¢2) | c1 =* c2}. Moreover, 7p has at
most |Q||T|? states and |Q||I'|® transitions, where Q is the set of states of 7.
The running time of this construction is O(|Q||I"|%).

The construction of transducers for WPDSs, given in the next section, when
specialized to (multiple-state) PDSs gives a more efficient algorithm than the
one presented above. However, the above algorithm shows that it is non-trivial
to extend existing saturation algorithms to transducers. The key difficulty is that
each of the saturation rules (s — as) need to look at paths in the transducer,
unlike saturation algorithms on automata that just look at one or two transi-
tions leaving from an initial state. This arises due to the fact that e-closure on
automata can be performed easily, but e-closure on transducers (i.e., removing
transitions of the form (v/¢) or (¢/)) may not be possible at all [20].

The next section uses a different principle to construct transducers for
WPDSs. It calls two saturation-based procedures to construct different parts
of the transducer.

3 Weighted Pushdown Systems

A weighted pushdown system is obtained by augmenting a pushdown system
with a weight domain that is a bounded idempotent semiring [24, 5]. Such semir-
ings are powerful enough to encode finite-state data abstractions such as the one
required for Boolean program verification, as well as infinite-state data abstrac-
tions, such as copy-constant propagation and affine-relation analysis [23,19]. A
small survey of safety-property and Boolean program verification using PDSs
and their respective encoding as a WPDS is given in [18]. The basic idea is
to use weights to encode the effect that each rule has on the data state of the
program.

Definition 6. A bounded idempotent semiring is a quintuple (D, ®, ®,0,1),
where D is a set whose elements are called weights, 0 and 1 are elements of D,
and & (the combine operation) and ® (the extend operation) are binary operators
on D such that

1. (D, ®) is a commutative monoid with O as its neutral element, and where &
is idempotent. (D, ®) is a monoid with the neutral element 1.
2. ® distributes over @, i.e., for all a,b,c € D we have
a®(b®c)=(a®b)d(a®c) and (adb)@c=(a@c) D (b&).
3. 0 is an annihilator with respect to ®, i.e., foralla€ D, a®0=0=0®a.
4. In the partial order T defined by Va, b€ D, a T b iff a® b = a, there are no
infinite descending chains.

The height of a weight domain is defined to be the length of the longest
descending chain in the domain.

Definition 7. A weighted pushdown system is a triple W = (P, S, f) where
P = (P, T, A) is a pushdown system, S = (D,®,®,0,1) 1s a bounded idempotent
semiring and [: A — D is a map that assigns a weight to each rule of P.

Let 0 € A* be a sequence of rules. Using f, we can associate a value to o,
ie., if o = [r1,..., 7], then we define v(o) = f(r1) ® ... ® f(ri). Moreover, for
any two configurations ¢ and ¢’ of P, we use path(c,c’) to denote the set of all
rule sequences that transform ¢ into ¢'. If ¢ € path(e,¢'), then we say ¢ =7 ¢'.
Reachability problems on PDSs are generalized to WPDSs as follows:

Definition 8. Let W = (P, S, f) be a weighted pushdown system, where P =
(P, I, A), and let S,T C PxI'™ be regular sets of configurations. Then the meet-
over-all-paths value MOP(S,T) is defined as P{v(c) | s =7 t,s € S,t € T'}.

A PDS is simply a WPDS with the Boolean weight domain ({0,1},®,®,0,1)
and weight assignment f(r) = 1 for all rules r € A. In this case, MOP(S,T) =1
iff there is a path from a configuration in S to a configuration in T

An important weight domain for WPDSs is the set of all binary relations
on a finite set. If G is a finite set of atoms, then (26%% U, 0,0,4d) is a valid
weight domain: weights are binary relations on G, combine is union (of sets
of pairs), extend is relational composition, 0 is the empty relation, and 1 is
the identity relation on G. This weight domain is useful for encoding Boolean
programs (programs with only Boolean variables) as WPDSs. The set G can be
instantiated to be the set of all valuations of Boolean variables, and the weight
associated with a PDS rule is the effect of executing the corresponding ICFG edge
on the program variables. Such a weight domain is used in the tool MOPED [26,
14] (it includes local variables as well). Assertion checking in Boolean programs
can then be performed by checking if a configuration set T" (of all assertions) is
reachable with non-0 weight, i.e., MOP(S,T) # 0, where S is the starting set
of configurations for the program. More details on the uses of PDSs for model
checking, and their encoding as WPDSs can be found in [25, 18].

A WPDS with a weight domain that has a finite number of weights, such as
the one described above, can be encoded as a PDS. However, WPDSs can also
deal with infinite weight domains, such as the one for affine-relation analysis [23,
19]. Moreover, even for finite weight domains, it is often useful to use weights
because they can be symbolically encoded. The tool MOPED is able scale to a

large number of variables because it uses BDDs to encode the binary relations
represented by weights.

There are two algorithms for solving for MOP values, called prestar and
poststar (by analogy with the reachability algorithms for PDSs). They take as
input an automaton that accepts the set of initial configurations. As output,
they produce a weighted automaton defined as follows.

Definition 9. Given o weighted pushdouwn system W = (P,S,f), o W-
automaton A is a P-automaton, where each transition in the automaton is
labeled with a weight. The weight of a path in the autommaton is obtained by tak-
ing an extend of the weights on the transitions in the path in either a forward
or backward direction, depending on the context in which the automaton is used.
The automaton is said to accept a configuration ¢ = (p,u) with weight w = A(c)
if w 1s the combine of weights of all accepting paths for u starting from state p in
A. We call the automaton a backward W-automaton if the weight of a path
15 read backwards, and a forward W-automaton otherwise.

Let A be an unweighted automaton and L£(A) be the set of configurations
accepted by it. Then, prestar(A) produces a forward weighted automaton A,-
as output such that Apre-(c) = MOP({c}, L(A)), whereas poststar(A) pro-
duces a backward weighted automaton Aps; as output such that Apyg-(c) =
MOP(L(A), {c}) [25]. Using standard automata-theoretic techniques, we can
also compute A, (C) for (forward or backward) weighted automaton A,, and a
regular set of configurations C, where 4, (C) = {Ay(c) | ¢ € C}. This allows
one to solve for the meet-over-all-paths value MOP(S,T) for counfiguration sets
S and T, using either poststar or prestar.

The following lemma states the complexity for solving poststar by the algo-
rithm of Reps et al. [25], which we use later for comparison against algorithms
presented in this paper. We use the notation O;(g) to denote the time bound
O(gS:), where S; is an upper bound on the time taken by a semiring operation.

Lemma 3. [25] Given a WPDS with PDS P = (P, I,4), if A = (Q, I, —
, P, F) is the P-automaton accepting an input set of configuration, poststar pro-
duces a backward weighted automaton with at most |Q| + |4| states in time
Os(|P)|A|(|1Qo] + |ADNH + |P||Ao|H), where Qo = Q\P, Mg C— 1s the set of all
transitions leading from states in Qq, and H is the height of the weight domain.

For the rest of this section, we fix P = (P, I', A) to be a PDS, W = (P, S, f)
to be a WPDS, and H to be the height of S.

3.1 Transducers for Solving Path Problems in WPDSs

For WPDSs, we want to create a weighted transducer that will accept input
(p1 u1) and output (pa ug) with weight w if and only if w is the combine of
values of all paths in the WPDS that take s = (p1,u1) to t = (po,ua), Le,
w = MOP({s}, {t}). We defer the definition of a weighted transducer to a little
later in this section (Defn. 10).

To set about solving st-path problems, we first make an observation about
paths in a PDS’s transition relation. Suppose that (p,y17v2---vn) is a configu-
ration of a PDS P. Then any path in the transition relation described by P,

starting from this configuration, can be written as shown in Fig. 2. The figure
shows that the path starts initially by popping off some stack symbols (k sym-
bols in the figure) in possibly multiple steps, after which it does not touch the
rest of the stack (yii2 - V), except for the top symbol (vyg41). Note that it is
also possible for the path to merely pop off all stack symbols (k = n) and stop
because no PDS rule can fire on an empty stack.
Pz m) =7 (P72)

=" <p21’YS T PYn)

=%

=" (D) Vo417 Vn)

=" (Ph1, UYk2 ")

Fig. 2. A path in the PDS’s transition relation. Here, k+ 2 <n andu e I'".

To make this observation more formal, we decompose a path into phases as
follows:

1. Pop-phase. The path pops off the top stack symbol without looking at the
rest of the stack, i.e., it follows a sequence of rules that takes the configura-
tion (p,yu) to (p',u), for any v € I'*.

2. Growth~phase. The path only looks at the top of the stack, and possibly
rewrites it, but does not pop it off, i.e., it follows a sequence of rules that
takes a configuration (p,yu) to (p/,v'u) with v’ € I'*, for any v € I'*.
Each path in the PDS’s transition relation has zero or more pop-phases fol-

lowed by a single growth-phase. We construct the transducer for st-reachability
by essentially pre-computing each of these phases. Let W be a WPDS as defined
in Defn. 8. First, we define two procedures:

1. pop: P x I' x P — D is defined as follows:
pop(p,v,p') = B{v(o) | (p,7) =7 (v, &)}
2. grow: P x I' — ((P x ['*) — D) is defined as follows:
grow(p, 7)(p',u) = B{v(o) | {p,7) =7 (v, u)}
A simple but inefficient way of computing this function is to solve
poststar({p,y)) to produce a weighted automaton that represents the func-
tion on the right-hand side.

The following Lemmas give efficient algorithms for computing the above pro-
cedures. Proofs are given in Appendix A.

Lemma 4. Let A= (P, 0, P, P) be a P-automaton thal represents the set of
configurations C = {(p,e) | p € P}. Let Apop be the forward weighted-automaton
obtained by running prestar on A. Then pop(p,~,p’) is the weight on the transi-
tion (p,v,p") in Apop.- We can generate Apop in time Os(|P|?|A|H), and it has
at most | P| states.

Lemma 5. Let Ap = (Q, I, —, P, F) be a P-automaton, where Q@ = P U{gp,y |
p€ Pyerl}andp -5 qpy for eachp € P,y € I'. Then Ayq, .} Tepresents
the configuration (p,~). Let A be this automaton where we leave the set of final
states undefined. Let Agroy be the backward weighted-automaton obtained from

10

running poststar on A. If we resirict the final stales in Agroy to be just gy
(and remove all states that do mot have an accepting path to the final state),
we obtain a backward weighted-automaton that represents grow(p, <), i.e., when
this automaton is started in state p' and accepts input w with weight w, then
w = grow(p,v)(p',u). We call this automaton A, . We can compute Agrow in
time O4(|P||A|(|P||T"| + |A)H), and it has at most |P||I"| + |A| states.

The advantage of the construction presented in Lemma 5 is that it just
requires a single poststar query to compute all the A, ,, instead of one query for
each p € P and v € I'. Because the standard poststar automaton construction
builds an automaton that is larger than the input automaton (Lemma 3), Agrow
has many fewer states than those in all the A, , put together.

Fig. 3 shows these automata for a simple WPDS constructed over the minpath
semiring. This semiring is defined as (NU{co}, min, +, 00, 0). If all rules are given
the weight 1 (different from the semiring weight 1, which is the numeric value 0),
then the MOP weight between two configurations is the length of the shortest
path between them.

Fig. 3. (a) A simple WPDS with the minpath semiring. (b) The Aps, automaton. Edges
are labeled with their stack symbol and weight. (¢) The Agrow automaton. (d) The Ay,
automaton obtained from Agow. (€¢) The Ap, automaton obtained from Agrow. The
unnamed state in (c) and (d) is an extra state added by the post™ algorithm used in
Lemma 5.

The idea behind our approach is to use Apgp to simulate the first phase where
the PDS pops off stack symbols. When the transducer (non-deterministically)
decides to switch over to the growth phase, and is in state p in Apop with v being
the next symbol in the input, it passes control to A,y to start generating the
output. Then it moves into an accept phase where it copies the untouched part
of the input stack to the output.

11

We use Agrow t0 avoid introducing a separate copy of A, , for each v. Let
A, be the same as Agroy, but with final states restricted to {gp | v € I'},
and unreachable states appropriately pruned. In essence, the transducer will
non-deterministically guess the stack symbol v, pass control to A, and then
verify that the guess was correct when it reaches the final state ¢, 4 in Ap. As a
result, we just need |P| copies of Agroy. Note that Ap,, is a forward weighted-
automaton, whereas Agrow is a backward weighted-automaton. Therefore, when
we mix them together in the same transducer, we allow the transducer to switch
directions for computing the weight of a path. This is necessary, because going
back to Fig. 2, a PDS rule sequence consumes the input configuration from left
to right (in the pop phase), but produces the output stack configuration v from
right to left (as it pushes symbols on the stack). Because we want the transducer
to produce output from left to right, we need to switch directions for computing
the weight of a path. For this, we define partitioned transducers.

Definition 10. A partitioned weighted finite-state transducer 7 is a tuple
(Q,{Qi}1, S, Zi, o, M I, F) where Q is a finite set of states, {Q;}}; s o
partition of Q, S = (D, ®,®,0,1) is a bounded idempotent semiring, %; and X,
are input and output alphabets, X C Q x D x (Z;U{e}) x (T, U {e}) x Q is the
transition relation, I C Q1 is the set of initial states, and F C @, is the set
of final states. We impose the following restriction on the transition relation: if
(gr,w,a,b,q) € A and g, € Qi and q € Q then eitherl =k orl =k +1 and
w = 1. Given a state ¢ € Q1, we say that the transducer can accept a string
o; € IF with output o, € X% if there is a path from state q to a final state that
takes input o; and outputs o,.

Computing the weight of a path requires more care. For a path n that goes
through states qi,- -+ ,Gm, such that the weight of the ith transition s wi, and
all states g; are in Q; for some j, then the weight of this path v(n) is w1 ® w2 ®
@ W if 718 odd and Wy @ W1 @ -~ @ wy if § s even, i.e., the state-
space partition determines the direction in which we perform extend. For a path
n that crosses multiple partitions, i.e., 1 = n;Miy1 - Mm Such that each n; is a
path entirely inside Q;, then v(n) = v(N;) ®V(Nig1) ® - - @ v(nm). We restrict a
weighted finile-slale lransducer lo have final stales only in the last partition set
Qn and initial states only in partition set Q1.

In this paper, we refer to partitioned weighted transducers as weighted trans-
ducers, or simply transducers when there is no possibility of confusion. Note that
when the extend operator is commutative, as in the case of the Boolean semiring
used for encoding PDSs as WPDSs, the partitioning is unnecessary.

Let St(.A) denote the set of states of an automaton .A. Because each of Ay,
and A, have P as a subset of their set of states, we distinguish them by referring
to a state g € St(Apop) bY gpop and g € St(A,) by gp.

Given a WPDS W, we construct a weighted transducer 1 using the steps
given below. Ty has states {gi, g7} U St(Apop) U (Upep St(Ap)), input alphabet
PUT, output alphabet PU I, weight domain D, initial state g;, and final state
gy. Given a pair of configurations (c1, c2), Tw operates on them as shown in Fig. 4
(for simplicity, only the stack of the configurations is shown): it first consumes

12

a prefix = of ¢; (using Apop; Step 2 below), then produces a prefix y of ¢y (using
Agrow; Steps 3 to 6 below), and then copies the suffix z of ¢1 over to the output
(Step 7 below).

1.
2.

3.

Ut

For each state p € P, add the transition (g;, p/€, Ppop) With weight 1 to .
For each transition (pl,,, v, p2,,) With weight w in Apop add the transition
(ppop, (v/e), ppop) with the same weight to 7y, i.e., copy over Apgp.

For each transition (gp,v', qp) in each automaton A, add the transition
(gp, (€/7), q) with the same weight to Ty, i.e., copy over each of the A,.

. For each p,p’ € P, add the transition (ppop, (e/p’), Pp) with weight T to .

This transition permits a switch from the pop phase to the growth phase.
At this point, we just know that the growth phase begins in state p and ends
in state p’. We guess the stack symbol from which the growth phase starts.
The next step verifies that our guess was correct.

. For each final state ¢,y € St(Ap), add the transition (gp,y, (v/€), ¢r) with

weight T to mw. This transition verifies that v was on the input tape, and
we just computed the growth phase starting from .

. For each p, ¢ € P, add the transition (gp, (¢/€), ¢) with weight T to 7. This

transition allows us to skip the growth phase (Ap).

. For each v € I', add the transition (qf, (7/7), ¢r) with weight T to my. This

part of the transducer copies over the untouched part of the input tape to
the output tape.

The state-partition of TW is Q1 = {g;} U St(Agop) and

Q2 = {grru(lJ P St(Ap)). The transducer for the WPDS
given in Fig. 3(a) is Shown in Fig. 5. 7 13

Theorem 3. When the transducer Tw, as consiructed

above, is given input (p w), p € Pu € I'*, then the

combine over the values of all paths in Ty that output V byz
the string (p' ') is precisely MOP({{p,u)}, {{p',v}}).

Moreover, this transducer can be constructed in time

Os(|PIAI(IPIIT] + |ADH), has at most |P*|T'| + |P||A] Fig.4. The three
states and at most |P|?|AJ? transitions. phases of operation

of 7w when given

Usually the WPDSs derived from programs have |[P| = j;put-output pair

1 and |I'| < |A]. In that case, constructing a transducer (zz,yz).
has similar complexity and size as running a single poststar
query. A short proof of Thm. 3 is given in Appendix A.

After constructing the transducer, forward and backward reachability can be

solved using transducer-automaton application as was done in the unweighted
case. The difference is that weight labels need to be preserved while perform-
ing the application. This gives us weighted automata that are partitioned, like
the transducer. However, these can still be used for computing MOP values as
required.

Given an (unweighted) automaton .4 that represents a set of configura-

tions, we can compute poststar(A) by computing mw(A), which requires time
O(|P|%| A% A]), where |A| is the number of transitions in 4. Note that this does

13

. py/e

Fig. 5. The weighted transducer for the WPDS shown in Fig. 3(a). The boxes represent
“copies” of Apop, Ap, and Ap, as required by steps 2 and 3. The transducer paths that
accept input {p1 a) and output (p2 b™), for n > 2, with weight n are highlighted in
bold.

not require any semiring operations, and is independent of H. This, along with
the fact that a transducer-automaton application is a very simple algorithm,
might imply that poststar can be solved faster using transducers. However, the
disadvantage of this approach is that the weighted automaton obtained as a
result of the transducer-automaton application can be larger than the one ob-
tained from previous saturation algorithms. Consequently, using the transducer
in applications may not be advantageous. We leave this study as future work.
The next section shows that the transducer can be used to efficiently solve st-
path problems, which are restricted to have a single source and a single target
configuration.

3.2 Solving st-path problems

Let s and ¢ be two configurations of W. In this section, we show that
MOP({s}, {t}) can be solved efficiently using the transducer Ty constructed
in the previous section. Using Thm. 3, we know that all we need to do is to
compute the combine over the values of all paths in 7y that take s as input and
produce t as output (call this weight mw(s,t)). This is carried out in much the
same way as weights are read from weighted automaton (which is based on a
standard NFA simulation algorithm).

Let s = (ps,us) and ¢ = (pg, uy). First, we look back at the intuition given
in Fig. 2. Let u be a common suffix of u, and u;, such that us = u; v u and
u; = us u. Then all paths from s to ¢ will either be of length 0 (if s = ¢) or
be of the form (ps,u; v u) =* (p,y u) =* (p,uz u), where the first part is

14

composed of rules o3 such that (ps,u;) = (p,e) (pop-phase) and the second
part is composed of rules oo such that (p,v) =72 (ps, ug) (growth-phase). For
each u as above, define the weights:

zb, = @fv(o1) | {ps,u1) = (p,e)} and y§ = D{v(o2) | (p,7) = (pr,u2)}
and wy, = @pep(h ® yh). Let we=y be 1if s = ¢ and 0 otherwise. Then
wis, t) = @{wy | v is a common suffix of u, and us} B Weey.

For example, if 5 = (p;1, abbbbb) and t = (py, bbb) with the WPDS given in
Fig. 3(a), and we choose suffix u = b, then v = b and z}' = o0, 2> =5, yJ* = o0,
and yfz = 00. Thus, wy = co. When we choose suffix u = bbb, we get wppp = 4,
which is the length of the shortest path from s to ¢.

Again, let us = uy v u and uy = ug u. Let Ay = Apop and Ay = Ay
with final states restricted to {gp | p € P}. Then 2%, is the meet-over-all-paths
weight on state p when A; is started in state p; with input u;. This requires
time O, (|P]?|s]) to compute for all u;, where |s| is the length of u,. The weight

P is the meet-over-all-paths weight on state g, , when A, is started in state p;
and given input uy. This requires time Os((|P| + |A[)2|¢]) to compute for all ua,
where [t] is the length of u,. Putting these results together, we can calculate the
combine of weights of all paths from s to ¢ in time O,(|P|?|s| + (|P| + |A])?]t]).
This is much faster than using existing prestar or poststar algorithms because it
is independent of the height of the weight domain. This can be a big improvement
because the height of weight domains used for Boolean programs (described at
the beginning of §3) or predicate abstraction can be exponential in the number
of Boolean variables or predicates, respectively.

Simulating 7 on (ps u; 7, pr ug) will also give the weight w,, with the same
time complexity as above, because ny, without the last part that accepts the
untouched part of the stack (i.e., u) is simply a copy of Ao, followed by some
copies of Agrou-

4 Related Work

As mentioned in the introduction, a transducer construction for solving reach-
ability in PDSs was given earlier by Caucal {7]. However, the construction was
given for prefix-rewriting systems in general and is not accompanied by a com-
plexity result, except for the fact that it runs in polynomial time. Our con-
struction for PDSs, obtained as a special case of the construction given in §3, is
quite simple and efficient. The technique, however, seems to be related. Caucal
constructed the transducer by exploiting the fact that the language of the trans-
ducer is a union of the relations (pre*({p, 7)), post*({p,~v))) for all p € P and
~v € I', with an identity relation appended onto them to accept the untouched
part of the stack. This is similar to our decomposition of PDS paths (see Fig. 2).
The extension of the result to WPDSs also allows one to solve st-path problems
more efficiently than existing algorithms.

There is a large body of work on weighted automata and weighted trans-
ducers in the speech-recognition community [21,22]. However, the weights in
their applications usually satisfy many more properties than those of a semiring,
including the existence of an inverse and commutativity of extend. We refrain

15

from making such assumptions because the weight domains used for dataflow
analysis do not have these properties.

References

1.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

G. Balakrishnan, T. Reps, N. Kidd, A. Lal, J. Lim, D. Melski, R. Gruian,
S. Yong, C.-H. Chen, and T. Teitelbaum. Model checking x86 executables with
CodeSurfer/x86 and WPDS++. In CAV, 2005.

A. Bouajjani. Languages, rewriting systems, and verification of infinte-state sys-
tems. In ICALP, 2001.

A. Bouajjani, J. Esparza, A. Finkel, O. Maler, P. Rossmanith, B. Willems, and
P. Wolper. An eflicient automata approach to some problems on context-free
grammars. Inf. Proc. Let., 74(5-6):221-227, 2000.

A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model checking. In CONCUR, 1997.

A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis
of concurrent programs with procedures. In POPL, 2003.

A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In
CAV, 2000.

D. Caucal. On the regular structure of prefix rewriting. 7'CS, 106(1):61-86, 1992.
D. Caucal and R. Monfort. On the transition graphs of automata and grammars.
In Graph-Theoretic Concepts in Computer Science, pages 311-337, 1990.

J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In CAV, 2000.

A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. Electronic Notes in Theoretical Computer Science, 9,
1997.

GrammaTech, Inc. CodeSurfer Path Inspector, 2005.
http://www.grammatech.com/products/codesurfer/overview_pi.html.

S. Jha and T. Reps. Analysis of SPKI/SDSI certificates using model checking. In
CSFW, 2002,

Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model
checking with rich assertional languages. T°CS, 256:93-112, 2001.

S. Kiefer, S. Schwoon, and D. Suwimonteerabuth. Moped, 2005.
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/nmoped/.

G. A. Kildall. A unified approach to global program optimization. In POPL, 1973.
A. Lal, J. Lim, M. Polishchuk, and B. Liblit. Path optimization in programs and
its application to debugging. In ESOP, 2006.

A. Lal and T. Reps. Improving pushdown system model checking. In CAV, pages
343-357, 2006.

A.Laland T. Reps. Improving pushdown system model checking. Technical Report
1552, University of Wisconsin-Madison, Jan. 2006.

A. Lal, T. Reps, and G. Balakrishnan. Extended weighted pushdown systems. In
CAV, 2005.

M. Mohri. Finite-state transducers in language and speech processing. Computa-
tional Linguistics, 23(2), 1997.

M. Mohri, F. C. N. Pereira, and M. Riley. Weighted automata in text and speech
processing. In ECAI 1996.

M. Mohri, F. C. N. Pereira, and M. Riley. The design principles of a weighted
finite-state transducer library. In T'CS, 2000.

16

23.

24.

25.

26.

27.

28.

A

M. Miiller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-
bra. In POPL, 2004.

T. Reps, S. Schwoon, and S. Jha. Weighted pushdown systems and their application
to interprocedural dataflow analysis. In SAS, 2003.

T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and
their application to interprocedural dataflow analysis. In SCP, 2005.

S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technical Univ. of
Munich, Munich, Germany, July 2002.

S. Schwoon, S. Jha, T. Reps, and S. Stubblebine. On generalized authorization
problems. In CSFW, 2003.

P. Wolper and B. Boigelot. Verifying systems with infinite but regular state spaces.
In CAV, 1998.

Proofs

Lemma 1. Let X be the transition system of 7, and p n/ps » ¢ mean that there
is a sequence of transitions in A that go from state p to state ¢ on input v; and

k
output ve. Let (p,v) =>* (p,w) denote that (p,w) is derived from (p,v) in k
steps. We proceed by induction on k:

— k = 0. Then v = w, and the property holds since p oy 2 Q.
— k> 0. Let (p,u) be a configuration such that

{p,v) 5 (p,u) = (p, w)

1
By induction, it follows that p U-QL » q. Because (p,u) =* (p,w), there are
v, u1,wy such that

u = yui,w = wiui, and (p,7) — (p,wi1)

There are three cases, depending on the length of w;. Let us consider the
case where w; = 7'v”, the other ones being similar. Let v = vjvy - vp.
There are 2 cases:

1. The derivation p ul » ¢ is of the form:

where v/ = vy - - vy, In this case, rule (as) implies that

’ " ’
vi/y e/ v /ug

P = Sy @ 4
2. The derivation p v/ » ¢ is of the form:

_wvife , wfe vife ; vigr/Y v’ fuy
p—=gqr Gy g Y il g

where v" = v;1 9 - v,. In this case also, rule (as) implies that

uife 4 vefe vife ; vigr/Y e/y" v fuq
P q Ty g 7 S{guiay) T Qi T4

17

Therefore, in both cases, we have that p v-/jiu q.
Lemma 2. Let ¢ € Q1. We proceed by induction on the number j of occurrences
of states of the form ¢, for ¢ € @1 U @2, that appear in the derivation p oy Mg

— 4 = 0. The proof of this case follows the lines of the proof of Schwoon that
shows that the saturation procedure poststar computes an automaton that
recognizes post* [26).

— j > 0. The derivation p pig » g is then of the following form,:

yi/e . 4 vale . 1 vale Ym-1/€ 4 Ym/€ ; Ymai/Y va /wz
4 an Ine1—qm > dmy1—(

where v = vy vy such that v1 = v1 -+ Y1, and w = yws. Then, let {p,v') —
(p,e) be a rule such that the transition (g,_;,¥m/€,q),) is added to X

;o am/Y
because q),,..; > Gm.

There are two cases, depending on the form of the derivation ¢, T/ Q1

e This derivation is of the form ¢/ e, Qm Jman/7, gm+1- Then, the fol-
m

lowing derivation holds:

/e 1 va/e. 1 7va/e Ym-1/€ 4
5] a2 e Gm—1 and
/ Ym /Y Ym41/Y va /wa
-1 ™ Gm gm+1

This derivation contains j — 1 occurrences of states of the form ¢, for ¢ €

@1 U Q2. By induction, it follows that p ul;;)‘ g and {p,v) =* (p, vy ywa).
Because (p,7') — (p,€) is a rule of the PDS, it follows that (p,v) =*
{p,ywsa) = (p,w). Therefore, the property holds in this case.

Y1 /'Y

o This derivation is of the form ¢/, Qm+1- This transition is added
to A’ because there is a sequence of PDS rules (p,n1) — (p,7), (p, n2) —
{p,n1), -, and (p,n;) < (p,my—1) such that A’ initially contains the

derivation ¢, =2 gm Tmar/m gm+1, and then the following transitions

were added to X"
* the transition (g, Ym+1/T1-1,m+1), because (p,ny) — (p, 1) is
a rule of the PDS.
* then, the transition (gl,,Ym+1/Mi—-2,Gm+1), because (p,my_1) —
(p,ny—2) is a rule of the PDS.
etc., until the transition (g¢l,, Ym+1/7,¢m+1), because (p,ni) <
{p,7) is a rule of the PDS.
Then, the following derivation holds in \":

P n/e d v2/e d, vsfe, . dm-r/e ¢, ; and
g Ym/E " /e I Ymt1/m Gt va /ws

We can show as before that p wx q and (p,v) =* (p,nywa). Then,
because (p,n;) =* (p,7), it follows that (p,v) =* (p,vwz) = (p,w).
Therefore, the property holds in this case.

Lemma 4. A formal proof for this lemma would follow from a characterization
of the rule sequences that each automaton transition represents, based on the
abstract grammar formulation of prestar [25]. We give a slightly informal, but
intuitive, proof here. We use the fact that the saturation-based implementation
of prestar is correct [25].

The lemma runs prestar on the empty automaton (which represents the con-
figuration set C' = {(p,e) | p € P}). Let 8 be a stack symbol not in I, and
.A% be an automaton with two states {p,¢}, ¢ ¢ P and a single transition
(p, B,q). Let g be the final state of this automaton. Because § ¢ I', running
prestar on A’[’, will return the same automaton as the one returned by running
prestar on the empty automaton, except for the extra transition (p, 8,q) (be-
cause no rule can match §). A} represents the configuration set {(p, 5)}, and
therefore, A’ﬂ’((p’ .7 B)) = pop(p',~y,p) according to the definition of pop. How-
ever, Af;((p’ .7 B)) is exactly the weight on the transition (p’, <, p) because the
only path in A’[’, that accepts (v B) starting in state p’ is the one that follows
transitions (p’, v, p) and (p, B, q). The results follows by repeating the argument
for all p € P.

Lemma 5. The proof is similar to the one given for Lemma 4. Let § & I" be a new
stack symbol. Let AZ” be the automaton A with an extra state gy and an extra
transition (gp,y, 0, qs). Let g be the final state of this automaton. A%" repre-
sents the configuration set {(p,7 6)}. The automaton returned by poststar(Aj”)
would then represent the configuration set grow(p,v) with 3 appended at the
end of the stack. The proof follows from the fact that running poststar on AZ"’
is the same as running it on A (for all p and v) with the exception of the extra
[-transition.

Theoremn 8. The proof is based on the observation made in Fig. 2. Sup-
pose we have a path in the PDS transition relation from (p,viva---vn)
t0 (Pk41, UYk+2 < - ¥n) that can be broken down as shown in Fig. 6. Then

Loz) =T P, Y2) wi
=" (p2,Y3-+ Tn) wa
:>* .

=" (P, Yokl) Wk

=" (D1, UVk42 - Tn) Whal
Fig. 6. A path in the PDS’s transition relation with corresponding weights of each
step.
in the transducer, we can take the path starting at ¢; that first takes
the transition (g:, (p/€), Ppop) (Step 1 of the construction) and moves into
state p of Apep. Then it successively takes the transitions (pi,(y2/€),p2),
(p2, (v3/€),p3), -+, (Pk—1, (Y&/€), D) (Step 2), all the time staying inside Apop.

19

If the weight of the it guch transition is wi, then w* T w; (where a T b iff
a®b = a). This follows from Lemma 4. Next, the transducer can take transition
(Pks (€/Pk+1), Pr+1) (Step 4) and move into Ap,. Then it can take a path that
outputs u and move into state ¢, y,.,,. There is one such path because A,,
can accept u starting in state py41 (representing the configuration (pgi1,u))
when the final state is gp,, v,,, (Lemma 5). Moreover, the combine of weights of
all such paths in the transducer is T wg41. After this, the transducer can take
transition (gp, .y, vis1» (Ve4+1/€),) (Step 5) and copy the stack (Yi42--yn) on
to the output tape in the final state g5 (Step 7). The path we just described
took input (p viv2- - vn) and output (pgt1 uyk+2- - vn) as required, and the
combine of weights of all such paths is T the weight of the path shown in Fig. 6
(w1 ®W2® - ®@wg+1). Note that there is a corresponding path in the transducer
(that uses transitions inserted in Step 6) when the path shown in Fig. 6 has no
growth phase.

To argue the other direction, the reasoning is similar. A path in the transducer
must start in state ¢;, then move into Apep, then into A, (for some p € P) and
then move to state g5. Keeping track of the input and output required for this
path, we can build the WPDS path as in Fig. 6. Using Lemmas 4 and 5, the
weight of such a path in the transducer would be J the combine of weights of
all paths between the configurations in the PDS’s transition relation.

20

