

Abstract Error Projection

Akash Lal1, Nicholas Kidd1, Thomas Reps1, and Tayssir Touili2

1 University of Wisconsin, Madison, Wisconsin, USA. {akash,kidd,reps}@cs.wisc.edu
2 LIAFA, CNRS & University of Paris 7, Paris, France. touili@liafa.jussieu.fr

Abstract. To improve the reporting of results from model checking and program-
analysis systems, we introduce the notion of an error projection and annotated
error projection. An error projection is a set of program nodes N such that for each
node n ∈ N there exists an (abstract) error path from the program entry s through
n to a specified target node t. An annotated error projection associates with each
node n in the error projection an (abstract) counterexample that validates the
error along with an abstract store, whose presence at n induces the error. We
present novel algorithms for computing (annotated) error projections and discuss
additional applications for these algorithms. Our experiments show that error
projections can be computed efficiently.

1 Introduction

Model checking is a popular technique for program verification. From 10,000
feet, a model checker 1) extracts a program model using a finite abstraction; 2)
performs reachability on the model; and 3) reports back the results to the user,
usually in the form of a counterexample on a failed run. This technique has been
shown useful both for finding program errors and for verifying certain properties
of programs. It has been implemented in a number of model checkers including
SLAM [1], BLAST [9], and MAGIC [4]. Our goal is to extend the capabilities of
model checkers to return all (or at least more) of the relevant information found
during the reachability check.

We accomplish this by reporting error projections. An error projection is a
set of original program nodes N such that for each node n ∈ N , there exists
an abstract error path in the program model from an entry point that passes
through an abstract node corresponding to n. An error projection is sound with
respect to the program’s abstract model. This is an important feature of error
projections. That is, an error projection describes all of the nodes that are mem-
bers of paths that lead to a specified error point in the model. This allows an
automated program-analysis tool or human debugger to focus their efforts on
only the nodes in the error projection: every node not in the error projection
is correct (with respect to the property being verified). One can view an error
projection as dividing the program into two parts, one correct and one incorrect
with respect to the verification property.

Annotated error projections are an extension to error projections. An anno-
tated error projection adds to each node n in the error projection two annota-
tions: 1) A counterexample that passes through n; 2) a set of abstract stores
that describes the conditions necessary at n for the program to fail. The goal is
to give back to the user—either an automated tool or human debugger—more
of the information discovered during the model-checking process.

Note that we are not saying counterexamples are useless for (abstract)
debugging—merely that, in some cases, the user might need more information

than can be provided by a few counterexamples. For example, if a programmer
is trying to debug a large piece of software, most of which is unfamiliar code, a
few counterexamples may not be enough to indicate the parts of the code that
need to be considered when fixing the bug. The algorithms that we present pro-
vide a programmer the ability to ask for a counterexample that passes through a
specific program node (using annotated error projections), rather than be forced
to consider the counterexamples chosen (arbitrarily) by the tool.

From a theoretical standpoint, an error projection solves a combination of for-
ward and backward analyses. The forward analysis computes the set of program
nodes and program states that are reachable from program entry; the backward
analysis computes the set of program nodes and states that can reach an er-
ror at certain pre-specified nodes. The error projection is an intersection of sets
computed by these analyses. In this paper, we give an algorithm for computing
interprocedural error projections using a novel automata-theoretic construction.
The algorithm is based on weighted pushdown systems (WPDSs) [3, 21].

The contributions of this paper can be summarized as follows:
• We define the notions of error projection and annotated error projection.

We prove they are sound with respect to the program abstraction used for
model checking.

• We give a novel combination of forward and backward analyses for multi-
procedural programs and use it for computing error projections.

• We show that our algorithm is applicable in other settings—specifically, for
model checking concurrent programs under certain restricted, but useful con-
ditions.

• Our experiments show that we can efficiently compute error projections.
The remainder of the paper is organized as follows: §2 motivates the diffi-

culty in computing (annotated) error projections. §3 presents the definitions of
weighted pushdown systems and weighted automata. §4 and §5 give the algo-
rithms for computing error projections and annotated error projections, respec-
tively. §6 presents our initial experiments. §7 covers other applications of our
algorithms. §8 discusses related work.

2 The Correlation Problem

We motivate our work with a discussion of the correlation problem. In Fig. 1,
the nodes labeled s and t are the source and target nodes, respectively. The set
of nodes labeled Cn represents the reachable configurations (defined in §3) of
program node (a.k.a. program counter) n from s and to t. The labeled edges
represent the abstract transformers that summarize the paths s ⇒∗ n and n ⇒∗

t. We assume that the program abstraction can rule out (some) invalid paths due
to correlated branches that cause the path to be non-executable. For the purpose
of this discussion, let us assume that τ4 ◦ τ2 = ⊥ = τ3 ◦ τ1. Therefore, n should
not be included in the error projection because neither of the two configurations
in Cn lie on an executable path from s to t.

A naive approach for computing an error projection is to compute the join-
over-all-paths (JOP) from s to n (τ1 t τ2) composed with JOP from n to t
(τ3 t τ4). Using this approach on Fig. 1 would yield (τ3 t τ4) ◦ (τ1 t τ2) =

2

(a) Counterexample (b) Error Projection (c) Program Slice

int foo(int i) {
assert(i > 0);

i = complex(i);
return i;}

int bar(int len,int* arr) {
int r = 0;
switch(f(len,arr)) {
case 3: r += foo(arr[2]);

case 2: r += foo(arr[1]);
case 1: r += foo(arr[0]);
return r; }

int main() {
. . .;bar(3,{1,-1,-2}); }

int foo(int i) {
assert(i > 0);

i = complex(i);
return i;}

int bar(int len,int* arr) {
int r = 0;
switch(f(len,arr)) {
case 3: r += foo(arr[2]);
case 2: r += foo(arr[1]);

case 1: r += foo(arr[0]);
return r; }

int main() {
. . .;bar(3,{1,-1,-2}); }

int foo(int i) {
assert(i > 0);
i = complex(i);
return i;}

int bar(int len,int* arr) {
int r = 0;
switch(f(len,arr)) {
case 3: r += foo(arr[2]);
case 2: r += foo(arr[1]);
case 1: r += foo(arr[0]);
return r; }

int main() {
. . .;bar(3,{1,-1,-2}); }

Table 1. bar is called with an abstract array {+,−,−}. Column (a) highlights a pos-
sible counterexample returned from a model checker. Column (b) highlights the error
projection. Column (c) highlights the program statements obtained from a backward
slice from the assert statement. (Error projection is compared with program slicing
in §8.)

(τ3 ◦ τ1)t (τ3 ◦ τ2)t (τ4 ◦ τ1)t (τ4 ◦ τ2), which includes the “cross terms” τ4 ◦ τ1

and τ3 ◦ τ2. If (in the abstract domain) either of these is not ⊥, then this ap-
proach erroneously concludes that n should be in the error projection. A precise
solution to the correlation problem does not allow for these over-approximate
transformers. That is, it computes exactly the transformers from s to t that pass
through a program node n.

In the intraprocedural case, there is no correlation problem because program
node n only has a single configuration. However, in the interprocedural case,
the number of configurations may be infinite. Therefore, enumeration does not
provide a solution; solving the correlation problem requires the use of symbolic
techniques.

Cns t

ττττ

ττττ

ττττ

ττττ

Fig. 1. The correlation
problem

The key technical contribution of our work is a
symbolic approach that solves the correlation prob-
lem. We use standard techniques as our starting point:
the program’s control flow is modeled via a pushdown
system, and certain possibly-infinite sets of configura-
tions are represented using finite automata. We incor-
porate dataflow information by augmenting the push-
down system with a weight domain, and hence the
automata that we use are weighted. The desired result
is a kind of intersection of two weighted automata, which represent the forward
and backward reachability relations from s and t, respectively. To our knowledge,

3

there was no previously known algorithm for solving this problem.3 We solve this
problem in §4, using a novel construction of an appropriate automaton.

3 Preliminary Definitions

We compute error projections using weighted pushdown systems (WPDSs). This
section presents background material on WPDSs.

3.1 Pushdown Systems

Definition 1. A pushdown system (PDS) is a triple P = (P, Γ, ∆) where P
is a finite set of states, Γ a finite stack alphabet, and ∆ ⊆ P × Γ × P × Γ ∗ a
finite set of rules. A configuration c is a pair 〈p, u〉 where p ∈ P and u ∈ Γ ∗.
The pushdown rules define a transition relation ⇒ on configurations as follows:
If r = 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆, then 〈p, γu〉 ⇒ 〈p′, γ′u〉 for all u ∈ Γ ∗. The reflexive
transitive closure of ⇒ is denoted by ⇒∗. For a set of configurations C, we define
pre∗(C) = {c′ | ∃c ∈ C : c′ ⇒∗ c} and post∗(C) = {c′ | ∃c ∈ C : c ⇒∗ c′}.

Without loss of generality, we restrict PDS rules to have at most two stack
symbols on the right-hand side.

A PDS is capable of encoding control flow in a program with procedures.
The stack of the PDS simulates the run-time stack of the program, which stores
return addresses of unfinished procedure calls, with the current program location
on the top of the stack. A procedure call is modeled by a PDS rule with two
stack symbols on the right-hand side: it pushes the return address on the stack
before giving control to the called procedure. Procedure return is modeled by a
PDS rule with no stack symbols on the right-hand side: it pops off the top of
the stack and returns control to the address on the top of the stack. With such
a PDS, the transition relation ⇒∗ captures paths in the program with matched
calls and returns. More details on encoding programs as PDSs can be found in
[21, 22].

Because the number of configurations of a PDS is unbounded, it is useful to
use finite automata to describe certain infinite sets of configurations.

Definition 2. If P = (P, Γ, ∆) is a pushdown system then a P-automaton
is a finite automaton (Q,Γ,→, P, F) where Q ⊇ P is a finite set of states,
→⊆ Q × Γ × Q is the transition relation, P is the set of initial states, and F
is the set of final states of the automaton. We say that a configuration 〈p, u〉 is
accepted by a P-automaton if the automaton can accept u when it is started in
the state p (written as p u−→∗ q, where q ∈ F). A set of configurations is regular
if some P-automaton accepts it.

An important result is that for a regular set of configurations C, both post∗(C)
and pre∗(C) are also regular sets of configurations [8, 2, 22]. The algorithms for
computing post∗ and pre∗ take a P-automaton A as input, and if C is the set

3 Existing literature on weighted automata [17, 18] assumes that the extend operation
(composition) is commutative. This restriction is not satisfied by most program
abstractions.

4

of configurations accepted by A, they produce automata Apost∗ and Apre∗ that
accept the set of configurations post∗(C) and pre∗(C), respectively. In the rest
of this paper, all configuration sets will be regular.

3.2 Weighted Pushdown Systems
A weighted pushdown system (WPDS) is a PDS augmented with a weight do-
main that is a bounded idempotent semiring [3, 21]. The weight domain describes
an abstraction with certain algebraic properties.

Definition 3. A bounded idempotent semiring is a quintuple (D,⊕,⊗, 0, 1),
where D is a set whose elements are called weights, 0 and 1 are elements of D,
and ⊕ (the combine operator) and ⊗ (the extend operator) are binary operators
on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and where ⊕
is idempotent. (D,⊗) is a monoid with the neutral element 1.

2. ⊗ distributes of ⊕, i.e. for all a, b, c ∈ D we have a⊗(b⊕c) = (a⊗b)⊕(a⊗c)
and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c).

3. 0 is an annihilator with respect to ⊗, i.e. for all a ∈ D, a⊗ 0 = 0 = 0⊗ a.
4. In the partial order v defined by ∀a, b ∈ D, a v b ⇐⇒ a⊕ b = b, there are

no infinite ascending chains.

In abstract-interpretation terminology, weights can be thought of as abstract
transformers, ⊗ as transformer composition, and ⊕ as join. A WPDS is a pro-
gram (PDS) augmented with an abstraction (weights) and can be thought of as
an abstract model of a program.

Definition 4. A weighted pushdown system is a triple W = (P,S, f) where
P = (P, Γ, ∆) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a bounded idempotent
semiring and f : ∆ → D is a map that assigns a weight to each pushdown rule.

Let σ ∈ ∆∗ be a sequence of rules. Using f , we can associate a value to σ,
i.e. if σ = [r1, . . . , rk], then pval(σ) = f(r1)⊗ . . .⊗ f(rk). Moreover, for any two
configurations c and c′, if σ is a rule sequence that transitions c to c′ then we say
c ⇒σ c′. Reachability problems on PDSs are generalized to WPDSs as follows:

Definition 5. Let W = (P,S, f) be a WPDS, where P = (P, Γ, ∆), and let
S, T ⊆ P × Γ ∗ be regular sets of configurations. Then the join-over-all-paths
value JOP(S, T) is defined as

⊕
{pval(σ) | s ⇒σ t, s ∈ S, t ∈ T}.

A PDS is a WPDS with the Boolean weight domain ({1, 0},⊕,⊗, 0, 1) and
f(r) = 1 for all rules r ∈ ∆. (JOP(S, T) = 1 iff a configuration in S can reach a
configuration in T .) An important weight domain that we use in §5 is the set of
all binary relations on a finite set:

Definition 6. Let V be a finite set. A relational weight domain on V is
defined as the semiring (D,⊕,⊗, 0, 1) where D = P(V × V) is the set of all
binary relations on V , ⊕ is union, ⊗ is relational composition, 0 is the empty
set, and 1 is the identity relation on V .

5

Such domains are useful for describing finite abstractions, e.g., predicate
abstraction, abstraction of Boolean programs, and finite-state safety properties
(a short discussion can be found in [15]). In predicate abstraction, v ∈ V would
be a fixed valuation of the predicates, which in turn represents all memory
configurations in which that valuation holds. Weights are transformations on
these states that represent the abstract effect of executing a program statement.
As some readers might already be aware, WPDSs with such a weight domain
can also be represented using PDSs by expanding the PDS state space with
elements from V . However, the advantage of using WPDSs is that weights can
symbolically encode transition relations. Consider predicate abstraction with 50
predicates. The set V would then have 250 elements, and it would be impractical
to use explicit PDS rules to specify transitions (i.e., relations) over these sets.
However, they can usually be represented succinctly using BDDs to represent
weights on rules. (This is the essence of Schwoon’s Moped system [22].)

3.3 Solving for the JOP value in WPDSs

There are two algorithms for finding the JOP value, called poststar and prestar,
based on forward and backward reachability, respectively [21]. These algorithms
operate on weighted automata defined as follows.

Definition 7. Given a weighted pushdown system W = (P,S, f), a W-
automaton A is a P-automaton, where each transition in the automaton is
labeled with a weight. The weight of a path in the automaton is obtained by tak-
ing an extend of the weights on the transitions in the path in either a forward
or backward direction, depending on the context in which the automaton is used.
The automaton is said to accept a configuration c = 〈p, u〉 with weight w, written
as A(c), if w is the combine of weights of all accepting paths for u starting from
state p in the automaton. We call the automaton a backward W-automaton
if the weight of the path is read backwards and a forward W-automaton oth-
erwise.

For simplicity, we call a W-automaton a weighted automaton. The post-
star algorithm takes a backward weighted automaton A as input and pro-
duces another backward weighted automaton Apost∗ , such that Apost∗(c) =⊕
{A(c′) ⊗ pval(σ) | c′ ⇒σ c}. Similarly, the prestar algorithm takes a for-

ward weighted automaton A as input and produces Apre∗ such that Apre∗(c) =⊕
{pval(σ)⊗A(c′) | c ⇒σ c′}.4
An important algorithm for reading out weights from weighted automata

is called path summary defined as follows: path summary(A) = ⊕{A(c) | c ∈
P × Γ ∗}. We briefly outline this algorithm for a forward weighted automaton.
It is based on a standard fixpoint-finding algorithm. It associates a weight l(q)
to each state q of A: Initialize the weight of each non-initial state in A to 0
and each initial state to 1; add each initial state to a worklist. Next, repeatedly

4 The prestar and poststar algorithms, as originally defined, only took unweighted
automata as input, i.e., A(c) = 1 for each configuration c accepted by A. However,
the same algorithms work with weighted automata as defined here.

6

remove a state, say q, from the worklist and propagate its weight forwards: i.e.,
if there is a transition (q, γ, q′) with weight w, then update the weight of state
q′ as l(q′) := l(q′) ⊕ (l(q) ⊗ w); if the weight on q′ changes, then add it to the
worklist. This is repeated until the worklist is empty. Then path summary(A) is
the combine of l(q) for each final state q.

Using path summary , we can calculate A(C) =
⊕
{A(c) | c ∈ C} as fol-

lows: Let AC be an (unweighted) automaton that accepts C. Intersect A and
AC to obtain a weighted automaton A′.5 Then it is easy to see that A(C) =
path summary(A′). Using this, we can solve for JOP. Let AS and AT be (un-
weighted) automata that accept the sets S and T , respectively. Then JOP(S, T) =
poststar(AS)(T) = prestar(AT)(S).

4 Computing an Error Projection

Let us now define an error projection using WPDSs as our model of programs.
Usually, a WPDS created from a program has a single PDS state. Even when
this is not the case, the states can be pushed inside the weights to get a single-
state WPDS. We use this to simplify the discussion: PDS configurations are just
represented as stacks (Γ ∗).

Also, we concern ourselves with assertion checking. We assume that we are
given a target set of control configurations T such that the program model
exhibits an error only if it can reach a configuration in that set. One way
of accomplishing this is to convert every assertion of the form “assert(E)”
into a condition “if(!E) then goto error ” (assuming !E is expressible un-
der the current abstraction), and instantiate T to be the set of configurations
(error Γ ∗) = {error c | c ∈ Γ ∗}. We also assume that the weight abstraction has
been constructed such that a path σ in the PDS is infeasible if and only if its
weight pval(σ) is 0. Therefore, under this model, the program has an error only
when it can reach a configuration in T with a path of non-0 weight. We can now
formally define an error projection.

Definition 8. Given S, the set of starting configurations of the program, and a
target set of configurations T , a program node γ ∈ Γ is in the error projection
EP(S, T) if and only if there exists a path σ = σ1σ2 such that pval(σ) 6= 0 and
s ⇒σ1 c ⇒σ2 t for some s ∈ S, c ∈ (γ Γ ∗), t ∈ T .

We calculate the error projection by computing a constrained form of the
join-over-all-paths value, which we call a weighted chopping query.

Definition 9. Given regular sets of configurations S (source), T (target), and
C (chop); a weighted chopping query is to compute the following weight:

WC(S, C, T) =
⊕
{v(σ1σ2) | s ⇒σ1 c ⇒σ2 t, s ∈ S, c ∈ C, t ∈ T}

It is easy to see that γ ∈ EP(S, T) if and only if WC(S, γ Γ ∗, T) 6= 0. For
short, we call a weighted chopping query simply a chopping query. We now show
how to solve these queries.
5 Intersection of a weighted automaton with an unweighted one is carried out the

same way as for two unweighted automata, except that the weights of the weighted
automaton are copied over to the resultant automaton.

7

First, note that WC(S, C, T) 6= JOP(S, C)⊗JOP(C, T) because of the corre-
lation problem. A first attempt at solving weighted chopping is to use the identity
WC(S, C, T) =

⊕
{JOP(S, c) ⊗ JOP(c, T) | c ∈ C}. However, this only works

when C is a finite set of configurations, which is not the case if we want to com-
pute an error projection. We can solve this problem using the automata-theoretic
constructions described in the previous section. Let AS be an unweighted au-
tomaton that represents the set S, and similarly for AC and AT . The following
two algorithms, given in different columns, are valid ways of solving a weighted
chopping query.

1. A1 = poststar(AS)
2. A2 = (A1 ∩ AC)
3. A3 = poststar(A2)
4. A4 = A3 ∩ AT

5. WC(S, C, T) = path summary(A4)

1. A1 = prestar(AT)
2. A2 = (A1 ∩ AC)
3. A3 = prestar(A2)
4. A4 = A3 ∩ AS

5. WC(S, C, T) = path summary(A4)

The running time is only proportional to the size of AC , not the size of the
set represented by it. A proof of correctness is given in the appendix.

An error projection is computed by asking a separate weighted chopping
query for each node γ in the program. This means that the source set S and the
target set T remain fixed, but the chop set C keeps changing. Unfortunately,
the two algorithms given above have a major shortcoming: only their respective
first steps can be carried over from one chopping query to the next; the rest of
the steps have to be recomputed for each node γ. As shown in §6, this approach
is very slow, and the algorithm discussed next is about 3 orders of magnitude
faster.

To derive a better algorithm for weighted chopping that is more suited for
computing error projections, let us first look at the unweighted case (i.e., the
weighted case where the weight domain just contains the weights 0 and 1). Then
WC(S, C, T) = 1 if and only if (post∗(S) ∩ pre∗(T)) ∩ C 6= ∅. This procedure
just requires a single intersection operation for different chop sets. Computation
of both post∗(S) and pre∗(T) have to be done just once. The main difficulty in
extending this approach to the case of general weights is that there is no known
algorithm for intersecting weighted automata.

To address this issue, we now introduce the key theoretical contribution of
this paper. First, we need to define what we mean by intersecting weighted
automata. Let A1 and A2 be two weighted automata. Define their intersection
A1 �A2 to be a function from configurations to weights, which we later compute
in the form of a weighted automaton, such that (A1 �A2)(c) = A1(c)⊗A2(c).6

Define (A1 �A2)(C) =
⊕
{(A1 �A2)(c) | c ∈ C}, as before. Based on this defi-

nition, if Apost∗ = poststar(AS) and Apre∗ = prestar(AT), then WC(S, C, T) =
(Apost∗ �Apre∗)(C).

Let us give some intuition into why intersecting weighted automata is hard.
For A1 and A2 as above, the intersection is defined to read off the weight from

6 Note that the operator � is not commutative is general, but we still call it intersection
because the construction of A1 �A2 resembles the one for intersection of unweighted
automata.

8

A1 first and then extend it with the weight from A2. A naive approach would be
to construct a weighted automaton A12 as the concatenation of A1 and A2 (with
epsilon transitions from the final states of A1 to the initial states of A2) and let
(A1 �A2)(c) = A12(c c). However, computing (A1 �A2)(C) for a regular set C
requires computing join-over-all-paths in A12 over the set of paths that accept
the language {(c c) | c ∈ C} because the same path (i.e., c) must be followed in
both A1 and A2. This language is neither regular nor context-free, and we do not
know of any method that computes join-over-all-paths over a non-context-free
set of paths.

The trick here is to recognize that weighted automata have a direction in
which weights are read off. We need to intersect Apost∗ with Apre∗ , where Apost∗

is a backward automaton and Apre∗ is a forward automaton. If we concatenate
these together but reverse the second one (reverse all transitions and switch
initial and final states), then we get a purely backward weighted automaton and
we only need to solve for join-over-all-paths over the language {(c cR) | c ∈ C}
where cR is c written in the reverse order. This language can be defined using a
context-free grammar with production rules of the form “X → γY γ” where X
and Y are non-terminals. The following section uses this intuition to derive an
algorithm for intersecting two weighted automata.

Intersecting Weighted Automata

Let Ab = (Qb, Γ,→b, P, Fb) be a backward weighted automaton and Af =
(Qf , Γ,→f , P, Ff) be a forward weighted automaton. We proceed with the stan-
dard automaton-intersection algorithm: Construct a new automaton Abf =
(Qb × Qf , Γ,→, P, Fb × Ff), where we identify the state (p, p), p ∈ P with p,
i.e., the P -states of Abf are states of the form (p, p), p ∈ P . The transitions of
this automaton are computed by matching on stack symbols. If tb = (q1, γ, q2) is
a transition in Ab with weight wb and tf = (q3, γ, q4) is a transition in Af with
weight wf , then add transition tbf = ((q1, q3), γ, (q2, q4)) to Abf with weight
λz.(wb ⊗ z ⊗ wf). We call these type of weights functional weights and will use
the capital letter W (possibly subscripted) to distinguish them from normal
weights. Functional weights are special functions on weights: given a weight w
and a functional weight W = λz.(w1 ⊗ z ⊗ w2), W (w) = (w1 ⊗ w ⊗ w2). The
automaton Abf is called a functional automaton.

We define extend on functional weights as reversed function composition.
That is, if W1 = λz.(w1 ⊗ z ⊗ w2) and W2 = λz.(w3 ⊗ z ⊗ w4), then W1 ⊗
W2 = W2 ◦ W1 = λz.((w3 ⊗ w1) ⊗ z ⊗ (w2 ⊗ w4)), and is therefore also a
functional weight. However, the natural combine operator, defined as W1⊕W2 =
λz.(W1(z) ⊕ W2(z)), does not preserve the form of functional weights. Hence,
functional weights do not form a semiring. We show next that this is not a
handicap, and we can still compute Ab �Af as required.

Because Abf is a product automaton, every path in it of the form (q1, q2)
c−→∗

(q3, q4) is in one-to-one correspondence with paths q1
c−→∗ q3 in Ab and q2

c−→∗ q4

in Af . Using this, it is easy to see that the weight of a path in Abf will be
a function of the form λz.(wb ⊗ z ⊗ wf), where wb and wf are the weights
of the corresponding paths in Ab and Af , respectively. In this sense, Abf is

9

constructed based on the intuition given in the previous section: the functional
weights resemble grammar productions “X → γY γ” for the language {(c cR)}
with weights replacing the two occurrences of γ, and their composition resembles
the derivation of a string in the language. (Note that in “X → γY γ”, the first γ
is a letter in c, whereas the second γ is a letter in cR. In general, the letters will
be given different weights in Ab and Af .)

Formally, for a configuration c and a weighted automaton A, define the pred-
icate accpath(A, c, w) to be true if there is an accepting path in A for c that
has weight w, and false otherwise (note that we only need the extend opera-
tion to compute the weight of a path). Similarly, accpath(A, C, w) is true iff
accpath(A, c, w) is true for some c ∈ C. Then we have:

(Ab �Af)(c) = Ab(c)⊗Af (c)
=

⊕
{wb ⊗ wf | accpath(Ab, c, wb), accpath(Af , c, wf)}

=
⊕
{wb ⊗ wf | accpath(Abf , c, λz.(wb ⊗ z ⊗ wf))}

=
⊕
{λz.(wb ⊗ z ⊗ wf)(1) | accpath(Abf , c, λz.(wb ⊗ z ⊗ wf))}

=
⊕
{W (1) | accpath(Abf , c, W)}

Similarly, we have (Ab � Af)(C) =
⊕
{W (1) | accpath(Abf , C, W)} =⊕

{W (1) | accpath(Abf ∩ AC , Γ ∗,W)}, where AC is an unweighted automa-
ton that accepts the set C, and this can be obtained using a procedure similar
to path summary . The advantage of the way we have defined Abf is that we can
intersect it with AC (via ordinary intersection) and then run path summary over
it, as we show next.

Functional weights distribute over (ordinary) weights, i.e., W (w1 ⊕ w2) =
W (w1)⊕W (w2). Thus, path summary(Abf) can be obtained merely by solving an
intraprocedural join-over-all-paths over distributive transformers starting with
the weight 1, which is completely standard: Initialize l(q) = 1 for initial states,
and set l(q) = 0 for other states. Then, until a fixpoint is reached, for a transition
(q, γ, q′) with weight W , update the weight on state q′ by l(q′) := l(q′)⊕W (l(q)).
Then path summary(Abf) is the combine of weight on final states. Termination
is guaranteed because we still have weights associated with states, and functional
weights are monotonic. Because of the properties satisfied by Abf , we use Abf

as a representation for the function (Ab �Af).
This allows us to solve WC(S, C, T) = (Apost∗ � Apre∗)(C). That is, after

a preparation step to create (Apost∗ � Apre∗), one can solve WC(S, C, T) for
different chop sets C just using intersection with AC followed by path summary ,
as shown above.

It should be noted that this technique applies only to the intersection of a
forward weighted automaton with a backward one, because in this case we are
able to get around the problem of computing join-over-all-paths over a non-
context-free set of paths. We are not aware of any algorithms for intersecting
two forward or two backward automata; those problems remain open.

5 Computing an Annotated Error Projection

An annotated error projection adds more information to an error projection by
associating each node in the error projection with (i) at least one counterexample

10

that goes through that node and (ii) the set of abstract stores (or memory de-
scriptors) that may arise on a path doomed to fail in the future. To be consistent
with WPDS terminology, we use the term witness as a synonym for counterex-
ample. Finding witnesses also helps in accelerating the computation of an error
projection.

5.1 Computing witnesses

Given source set S and target set T , previous work on WPDSs allows the com-
putation of a finite set of paths, called witnesses, {σi | 1 ≤ i ≤ n} such that
⊕i{pval(σi)} = JOP(S, T) [21]. The same result holds for path summary on
weighted as well as functional automata: we can find a finite set of paths in the
automaton that justifies the weight returned by path summary (we say that a
set of paths justifies a weight w if the combine of their weights is equal to w).
We make use of this technology in this section.

While calculating the error projection, if we find that γ is in the error pro-
jection, then we know WC(S, C, T) = w 6= 0, where C = γΓ ∗. If AC is the
unweighted automaton that represents C, and A∩ = (Apost∗ � Apre∗) ∩ AC ,
then path summary(A∩) = w. Using witness generation, we can find at least
one path in A∩ whose weight is not 0. A path in this automaton corresponds
to a configuration c with A∩(c) 6= 0. This, in turn, implies that c ∈ C and
there is a path in the WPDS from S to T through c with non-0 weight. Again,
using standard witness generation, we can find a set of witness {σi}1≤i≤n for
JOP(S, c) and a set of witnesses {ρj}1≤j≤m for JOP(c, T). The concatenation
of these witnesses {σiρj}1≤j≤m

1≤i≤n justifies JOP(S, c) ⊗ JOP(c, T) = w 6= 0. (The
concatenation is a constant-time operation because a witness set is represented
using a DAG.) Therefore, one of these witnesses is a path with non-0 weight and
serves as the desired witness for node γ. The same procedure can be repeated
for each node in the error projection. Finding witnesses is not a very expensive
operation, but it adds a fair amount of overhead to the execution of poststar and
prestar (although their worst-case running times do not change).

One optimization that witnesses allow is that if we obtain σ as a witness for
a node γ in the error projection, then for every node γ′ such that a configuration
c ∈ γ′Γ ∗ occurs in σ, γ′ must also be in the error projection. Therefore, while
computing an error projection, if we find γ to be in the error projection, then we
can find a witness for it and immediately include in the error projection every
such γ′.

5.2 Computing abstract stores

For defining and computing the abstract stores for nodes in an error projection,
we restrict ourselves to relational abstractions over a finite set. We can only
compute the precise set of abstract stores under this assumption. In other cases,
we can only approximate the desired set of abstract stores (the over- and under-
approximation algorithms given below work for any weight domain).

Let V be a finite set of abstract stores and (D,⊕,⊗, 0, 1) the relational
weight domain on V , as defined in Defn. 6. For weights w,w1, w2 ∈ D, define
Rng(w) to be the range of w, Dom(w) to be the domain of w and Com(w1, w2) =

11

Rng(w1) ∩ Dom(w2). If v ∈ Com(w1, w2) then there are some abstract stores vs

and vt such that v ∈ w1(vs) and vt ∈ w2(v). For a node γ ∈ EP(S, T), we want
to compute the following non-empty subset of V :

Vγ = {v ∈ Com(pval(σ1), pval(σ2)) | s ⇒σ1 c ⇒σ2 t, pval(σ1σ2) 6= 0, s ∈ S, c ∈
γΓ ∗, t ∈ T}

If v ∈ Vγ , then there must be a path in the program model that leads
to an error such that the abstract store v arises at node γ. In this section,
we give symbolic algorithms (i.e., based on weights) to over-approximate and
under-approximate the above set, and one for verifying membership in that set.
First, we show how to check if v ∈ Vγ . Conceptually, we place a bottleneck
at node γ, using a special weight, to see if there is a feasible path that can
pass through the bottleneck at γ with abstract store v, and then continue on
to the error configuration. Let wv = {(v, v)}. Note that v ∈ Com(w1, w2) iff
w1 ⊗ wv ⊗ w2 6= 0. Let Apost∗ = poststar(AS),Apre∗ = prestar(AT) and A� be
their intersection. Then v ∈ Vγ iff there is a configuration c ∈ γΓ ∗ such that
JOP(S, c)⊗wv ⊗ JOP(c, T) 6= 0 or, equivalently, Apost∗(c)⊗wv ⊗Apre∗(c) 6= 0.
To check this, we use the functional automaton A� again. It is not hard to check
that the following holds for any weight w:

Apost∗(c)⊗ w ⊗Apre∗(c) =
⊕
{W (w) | accpath(A�, c, W)}

Then v ∈ Vγ if
⊕
{W (wv) | accpath(A�, γΓ ∗,W)} 6= 0. This is, again, com-

putable using path summary , but we initialize the weight on initial states with
wv instead of 1.

This gives us an algorithm for computing Vγ , but its running time would be
proportional to |V |, which might be very large. To get around this, we compute
symbolic under- and over-approximations of Vγ . Also, we envision that the mem-
bership can be tested on-demand as a user asks for more information about a
particular abstract store occurring at a particular node in the error slice. More-
over, we can use this algorithm to check, for a set V ′ ⊆ V , whether V ′ ∩Vγ = ∅:
for this, we would use the weight wV ′ = {(v, v) | v ∈ V ′} as the bottleneck. This
would be useful (and fast), for example, to check if a predicate can hold at a
node in the error projection: choose V ′ to be all abstract stores in which that
predicate holds.

An under-approximation of Vγ can be obtained from the set of witnesses cal-
culated for the error projection. Suppose that σ is a witness for some node in the
error projection and passes through node γ; let σ1 be the prefix of σ up to node γ
and σ2 the suffix starting from γ. Then, by definition, Com(pval(σ1), pval(σ2)) ⊆
Vγ . This can be repeated for each witness and all nodes it passes through to get
an under-approximation of Vγ .

For an over-approximation of Vγ , we turn to the functional automaton
again and setup a different join-over-all-paths problem than the one solved by
path summary on functional automata. This time, each state in the automaton
will be associated with a triple of weights. The first component will be respon-
sible for computing the weight from S to some intermediate configuration c, the
second component will compute the weight from c to T , and the third weight
tracks the weight of a path from S to T that goes through c. In accordance with
the definition of Vγ , we drop the weight in the first two components (set them

12

to 0) if the third component becomes 0, i.e., the path from S to T being tracked
currently is infeasible.

To accomplish this, we replace each functional weight λz.(w1 ⊗ z⊗w2) with
g(w1, w2), defined as a transformer on a triple of weights as follows:

g(w1, w2) = λ(w3, w4, w5).SP(w1 ⊗ w3, w4 ⊗ w2, w1 ⊗ w5 ⊗ w2)

SP(w1, w2, w3) =
{

(w1, w2, w3) if w3 6= 0
(0, 0, 0) if w3 = 0

Combine on triples is defined component-wise. It is easy to verify that the
join-over-all-paths on this automaton intersected with AC , C = γΓ ∗, using
transformers as defined above gives us the value (w1, w2,WC(S, C, T)) such
that Vγ = Com(w1, w2). However, unlike functionals, the transformers above are
not distributive, i.e., g(w1, w2) does not distribute over triples of weights with
component-wise combine. They are still monotonic and the JOP value can be
safely over-approximated. Termination is guaranteed because triples of weights
have bounded height under component-wise combine.

6 Experiments

We test our algorithm for computing an error projection on Moped [22], a
program-analysis tool that encodes Boolean programs as WPDSs and answers
reachability queries on them for checking assertions in the program. The Boolean
programs may be obtained after performing predicate abstraction or from integer
programs with a limited number of bits to represent bounded integers. Although
it uses a finite abstraction, the use of weights to encode abstract transformers as
BDDs is crucial for its scalability. Because we can compute an error projection
using just extend and combine, we take full advantage of the BDD encoding.
Some additional experiments are given in App. B.

We measured the time needed to solve WC(S, nΓ ∗, T) for all program nodes
n using the algorithms from §4: one that uses functional automata and one based
on running two prestar queries (called the double-pre∗ method below). Although
we report the size of the error projection, we could not validate how useful it
was because only the model (and not the source code) was available to us.

The results are shown in Tab. 2. The table can be read as follows: the first
five columns give the program names, the number of nodes (or basic blocks) in
the program, error-projection size relative to program size, and times to compute
post∗(S) and pre∗(T), respectively. The next two columns give the running time
for solving WC(S, nΓ ∗, T) for all nodes n using functionals and using double-
pre∗, after the initial computation of post∗(S) and pre∗(T) was completed. Be-
cause the double-pre∗ method is so slow, we did not run these examples to
completion; instead, we report the time for solving the weighted chop query for
only 1% of the blocks and multiply the resulting number by 100. The last two
columns compare the running time for using functionals (column six) against the
time taken to compute post∗(S) + pre∗(T); and the time taken by the double-
pre∗ method. All running times are in seconds. The experiments were run on a
3GHz P4 machine with 2GB RAM.

As can be seen from the table, using functionals is about three orders of
magnitude faster than using the double-pre∗ method. Also, as shown by column

13

eight, computation of the error projection compares fairly well with running
a single forward or backward analysis (at least for the smaller programs). To
some extent, this implies that error-projection computation can be incorporated
into model checkers without adding significant overhead. We wish to investigate
further optimizations, such as using witnesses, as future work.

WC(S, nΓ ∗, T) Functional vs.

Prog Nodes Error Proj. post∗(S) pre∗(T) Functional Double pre∗ Reach Double pre∗

iscsiprt16 4884 0% 79 1.8 3.5 5800 0.04 1657
pnpmem2 4813 0% 7 4.1 8.8 16000 0.79 1818
iscsiprt10 4824 46% 0.28 0.36 1.6 1200 2.5 750
pnpmem1 4804 65% 7.2 4.5 9.2 17000 0.79 1848
iscsi1 6358 84% 53 110 140 750000 0.88 5357
bugs5 36972 99% 13 2 170 85000 11.3 500

Table 2. Moped results: The programs are Boolean programs provided by S. Schwoon.
S is the entry point of the program, and T is the error configuration set obtained
as mentioned in the beginning of §4. An error projection of size 0% means that the
program is correct.

7 Additional Applications

7.1 Optimizing the CEGAR loop
The idea of CounterExample Guided Abstraction Refinement (CEGAR) [13, 5] is
(1) starting from an initial abstract model (2) perform the verification procedure
on the model. If the property is satisfied, conclude that it is also satisfied by the
real program. Otherwise, a counterexample is computed. (3) If the counterex-
ample does not correspond to an execution in the program, refine the model
to eliminate this spurious trace, and go back to step (2). (4) Otherwise, return
the counterexample. The refinement step is usually done by adding new pred-
icates. The CEGAR approach has been successfully applied in many program-
verification tools, including SLAM [1], BLAST [9], MAGIC [4], KISS [20] and
ZING [19].

Using our techniques, CEGAR loops can be optimized in two ways:
1. Our techniques allow the model checker to consider smaller models in step

(2). This is possible because the error projection is sound. That is, the error
projection includes all the nodes that occur in error paths. Therefore, we are
sure that no paths outside the error projection can violate the property being
checked. Hence, there is no need to re-check these paths after a refinement
step.

2. One might also be able to use an error projection during the refinement
step to eliminate not just a single counterexample as done in current tools,
but several ones. We speculate that this ability to focus the effort of the
model checker will work particularly well for programs that do not violate
the property of interest.

7.2 Applications to multi-threaded programs
KISS [20] is a system that can detect errors in concurrent programs that arise in
at most two context switches. The two-context-switch bound enables verification
using a sequential model checker. To convert a concurrent program into one

14

suitable for a sequential model checker, Qadeer and Wu add nondeterministic
function calls to the main method of process 2 after each statement of process
1. Likewise they add nondeterministic function returns after each statement of
process 2. They also ensure that a function call from process 1 to process 2 is only
performed once. This technique essentially results in a sequential program that
mimics the behavior of a concurrent program along paths of the form 1 2 1 .

Using our techniques, we can extend the KISS approach so that it will not
only return a counterexample, but also determine all of the nodes in process 1
where a context switch can occur that leads to an error later in process 1. One
way to do this is to use nondeterministic calls and returns as Qadeer and Wu do,
apply a model checker, and then compute the error projection. However, due to
the automata-theoretic techniques we employ, we can omit the additions. The
following algorithm shows how to do this:
1. Create A� = Apost∗ �Apre∗ for process 1
2. Let A2 be the result of a poststar query from main for process 2.
3. Let w = path summary(A2); w represents the state transformation caused

by the execution steps spent in process 2.
4. For each program node n of process 1, let An = A� ∩ AnΓ∗ and compute

wn = path summary(An, w) where path summary is augmented to assign
w to the initial states of An instead of 1, i.e., the weight w is used as the
bottleneck in An (see §5.2).

5. If wn 6= 0 then an error can occur in the program when the first context
switch occurs at node n in process 1.

Using this algorithm, we can determine all the nodes where a context switch
must occur for an error to (eventually) arise.

8 Related Work

The combination of forward and backward analysis has a long history in abstract
interpretation, going back to Cousot’s thesis [6]. It has been also been used in
model checking [16] and in interprocedural analysis [11]. In the present paper,
we show how forward and backward approaches can be combined in the con-
text of interprocedural analysis performed with WPDSs; we introduce a novel
automata-theoretic construction, and our experiments show that this approach
is significantly faster than a more straightforward one.

The goal of both program slicing [23] and our work on error projection is
to compute a set of nodes that exhibit some property. In our work, the prop-
erty of interest is membership in an error path, whereas in the case of program
slicing, the property of interest is membership in a path along data and control
dependences. Slicing and chopping have certain advantages—for instance, chop-
ping filters out statements that do not transmit effects from source s to target
t (cf. Tab. 1(b) and (c)). These techniques have been generalized by Hong et
al. [10], who show how to perform more precise versions of slicing and chop-
ping using predicate-abstraction and model checking. However, their methods
are intraprocedural, whereas our work addresses interprocedural analysis.

The goal of error projections is to extend the functionality of software model
checkers—particularly ones that verify safety properties using predicate abstrac-

15

tion. Examples include SLAM [1], BLAST [9], KISS [20], MAGIC [4], and ZING
[19]. With respect to BLAST and lazy abstraction, the soundness guarantee of
an error projection enables the model checker to focus its refinement step on only
the nodes in the error projection. This can be viewed as an alternative form of
lazy abstraction and appears to be a promising avenue for future work.

Kremenek et al. [12] use statistical analysis to rank counterexamples found
by the xgcc[7] compiler. Their goal is to present to the user an ordered list of
counterexamples sorted by their confidence rank.

Mohri et al. investigated the intersection of weighted automata in their work
on natural-language recognition [17, 18]. For their weight domains, the extend
operation must be commutative. We do not require this restriction.

References

1. T. Ball and S. Rajamani. Automatically validating temporal safety properties of
interfaces. In SPIN, 2001.

2. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model checking. In CONCUR. Springer-Verlag, 1997.

3. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis
of concurrent programs with procedures. In POPL, 2003.

4. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. In ICSE, 2003.

5. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV, 2000.

6. P. Cousot. Méthodes itératives de construction et d’approximation de point fixes
d’opérateurs monotones sur un treillis, analyse sémantique des programmes. Thèse
ès sciences mathématiques, Univ. of Grenoble, 1978.

7. D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using
system-specific, programmer-written compiler extensions. In OSDI, 2000.

8. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. Elec. Notes in Theoretical Comp. Sci., 9, 1997.

9. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL,
2002.

10. H. S. Hong, I. Lee, and O. Sokolsky. Abstract slicing: A new approach to program
slicing based on abstract interpretation and model checking. In SCAM, 2005.

11. B. Jeannet and W. Serwe. Abstracting call-stacks for interprocedural verification
of imperative programs. In AMAST, 2004.

12. T. Kremenek, K. Ashcraft, J. Yang, and D. R. Engler. Correlation exploitation in
error ranking. In SIGSOFT FSE, 2004.

13. R. P. Kurshan. Computer-aided verification of coordinating processes: the
automata-theoretic approach. Princeton University Press, 1994.

14. A. Lal, J. Lim, M. Polishchuk, and B. Liblit. Path optimization in programs and
its application to debugging. In ESOP, 2006.

15. A. Lal and T. Reps. Improving pushdown system model checking. Technical Report
1552, University of Wisconsin-Madison, Jan. 2006.

16. D. Massé. Combining forward and backward analyses of temporal properties. In
PADO, 2001.

17. M. Mohri, F. C. N. Pereira, and M. Riley. Weighted automata in text and speech
processing. In ECAI, 1996.

16

18. M. Mohri, F. C. N. Pereira, and M. Riley. The design principles of a weighted
finite-state transducer library. In Theoretical Computer Science, 2000.

19. S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing procedures in concurrent
programs. In POPL, 2004.

20. S. Qadeer and D. Wu. KISS: Keep it simple and sequential. In PLDI, 2004.
21. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and

their application to interprocedural dataflow analysis. SCP, 58, 2005.
22. S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technical Univ. of

Munich, July 2002.
23. M. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357, 1984.

17

A Proofs

Weighted Chopping. Here we prove the correctness of the following algorithm
for solving WC(S, C, T):

1. A1 = poststar(AS)
2. A2 = (A1 ∩ AC)
3. A3 = poststar(A2)
4. A4 = A3 ∩ AT

5. WC(S, C, T) = path summary(A4)
Proof. From the definition of poststar, we know that

A2(c) =
{

0 if c 6∈ C⊕
{pval(σ1) | s ⇒σ1 c, s ∈ S} if c ∈ C

⇒ A3(t) =
⊕
{A2(c)⊗ pval(σ2) | c ⇒σ2 t}

=
⊕
{
⊕
{pval(σ1)⊗ pval(σ2) | s ⇒σ1 c, s ∈ S} | c ∈ C, c ⇒σ2 t}

=
⊕
{pval(σ1)⊗ pval(σ2) | s ⇒σ1 c ⇒σ2 t, s ∈ S, c ∈ C}

=
⊕
{pval(σ1σ2) | s ⇒σ1 c ⇒σ2 t, s ∈ S, c ∈ C}

⇒ A3(T) =
⊕
{pval(σ1σ2) | s ⇒σ1 c ⇒σ2 t, s ∈ S, c ∈ C, t ∈ T}

= WC(S, C, T)

B Additional Experiments

The second application we used for experiments is Btrace, a program-debugging
tool [14]. It performs a search on program paths, using WPDSs, to find the short-
est one from program entry to the crash site that passes through a given set of
program nodes. We do not give the details of the weight domain that it uses,
but it should be noted that it is not a finite abstraction.

There is no notion of an “error” projection in this case, but we use Btrace
to benchmark the running time for computing multiple weighted chops. Results
are shown in Tab. 3. As with Moped, using functionals is much faster than
using double-pre∗ to solve multiple weighted chopping queries. However, unlike
with the Moped experiments, solving weighted-chop queries for all nodes is much
slower than the forward or backward analysis. Further optimizations might bring
down this overhead.

WC(S, nΓ ∗, T) Functional vs.

Prog #Blocks Error Proj. post∗(S) pre∗(T) Functional Double pre∗ Reach Double pre∗

uucp 4793 n/a 0.14 0.15 2.6 1400 9 538
wget 12047 n/a 0.14 0.35 14 12000 29 857
gawk 19704 n/a 0.86 0.69 210 37000 135 176
mc 33591 n/a 0.47 0.41 47 46000 53 979

Table 3. Btrace results: The programs are common Unix utilities.

18

