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Abstract

Understanding and managing complex computer systems
is quickly becoming intractable for an unaided adminis-
trator. Questions about how to provision server and dis-
tributed systems or how workload changes will affect sys-
tem performance are often hampered by the lack of a
clear understanding of how a workload behaves under var-
ious system configurations. In this paper we describe and
evaluate MemRx, an operating system extension designed
to allow an administrator or other systems management
agent to answer what-if questions about a workload’s run-
time when one important system parameter, main mem-
ory size, is increased. Qur evaluation of a prototype im-
plementation of MemRx in the Linux kernel shows that
it can consistently predict the runtime of a suite of mi-
crobenchmark and application workloads to within 10%
of their actual value as memory size increases. The run-
time overhead imposed by MemRx is small enough (less
that 6% in a worst case scenario) to allow the extension to
run continuously.

1 Introduction

Computer systems are complex, interacting collections of
hardware, system software, and applications. It is not un-
common for a single hardware platform to host many dis-
tinct services, each of which supports hundreds or thou-
sands of local and remote clients. A typical enterprise
consists of many such communicating and interdependent
systems. In the future, the trend of increasing complexity
can be expected to continue.

System complexity makes it difficult to intelligently
provision new systems or adapt existing systems to chang-
ing workloads. 1t is difficult to predict how a new, differ-
ently configured system will perform on an existing work-
load because so many factors contribute to workload per-
formance.

It is also difficult to make workload management deci-
sions. For example, how should jobs or services be as-
signed to hosts in a distributed system? Once assigned,
how should jobs or services be migrated for balanced load
and good performance?

This paper focuses on developing and evaluating tech-
niques to answer what-if [3, 19] questions about the per-
formance effect of changing one important system param-
eter, namely the size of physical memory. The amount
of system memory has a huge impact, both on workload
performance and on system cost. Hence, sizing memory
properly is crucial. Too little memory leads to unaccept-
able performance, while too much memory leaves expen-
sive resources underutilized and wastes money.

Existing techniques {21, 23], can be used to determine
when memory is being underutilized, that is when the sum
of demand does not exceed the total physical memory
size. Determining how much additional memory a system
can profitably exploit when all currently installed memory
is in active use, in other words, when memory is oversub-
scribed, is still an open question. This paper develops
techniques to fill that void.

In addition to knowing how much memory a workload
can profitably use, it is also useful to quantify the perfor-
mance effect of additional memory, for example, to know
the marginal reduction in workload runtime given each
feasible memory increment. This additional information
allows an administrator or resource manager to quantita-
tively judge the value of assigning additional memory to a
workload based on the concrete, real-world metric of run-
time. Existing working set measurement and miss-ratio
curve research does not provide this ability for the impor-
tant case when memory is scarce.

MemRx is an extension to the operating system’s page
cache that uses measurement and a model of runtime com-
ponents to predict the marginal performance benefit that a
workload would experience if memory were added to the
system. MemRx enables an administrator or management
software to answer what-if questions about how the run-
time of a workload changes as memory size increases.

MemRx does this by carefully tracking I/O requests re-
lated to capacity misses in the page cache. MemRx has
two key components: a performance prediction module
(PPM) and a virtual extended cache (VEC). The PPM
dynamically measures the performance impact of each
capacity miss, a critical feature that allows MemRx to
predict runtime under different memory configurations.
The VEC uses a ghost-buffering technique [16] to pro-



duce miss-ratio curves, allowing it to associate the penal-
ties produced by the PPM with a memory increment.
The PPM and VEC allow MemRx to predict performance
across a range of memory configurations.

MemRx can be applied to resource management prob-
lems in multiple domains. For example, a systems ad-
ministrator can use the output of MemRx to quantitatively
evaluate the trade-off between the cost of installing addi-
tional memory and the benefit of improved performance
leading to more intelligent procurement and configura-
tion decisions. A MemRx-like component could also be
deployed in batch-computing environments [12], some-
times referred to as “computational grids” [7] or “utility
computing centers” [22]. In these environments, non-
interactive, computationally intensive jobs are executed
on a large collection of clustered hosts. Such systems at-
tempt to avoid workload thrashing using resource hints
provided by users. Unfortunately, these hints are often
wrong or omitted altogether. Using MemRx, a batch
scheduler can independently detect a poorly performing
job and estimate how much additional memory is needed
by the job. If the benefit of additional memory predicted
by MemRx outweighs the cost of migration, the sched-
uler can then intelligently migrate [6, 11, 15, 17] the job
to another machine with adequate memory.

We have built a MemRx prototype within the Linux
kernel that is consistently able to predict the performance
of a suite of microbenchmark and application workloads
to within 10% of their actual values as memory size
increases. In the common case when the system is
not thrashing, MemRx induces no perceivable overhead.
When the system is thrashing, (and hence already per-
forming poorly), MemRx incurs a small, but measurable
overhead of roughly 6%.

In the process of designing and implementing MemRx
we were able to make two observations that have impor-
tant implications on the design of introspective systems.
The first is that detailed categorical or “end-to-end” [19]
information that describes how and why events have oc-
curred in the system is critical for an introspective service
like MemRx. The second observation is that in some cases
simple changes can be made to a system to make it more
predictable, which significantly increases the ability of a
system to support accurate what-if queries. Our experi-
ence shows that these changes do not necessarily have to
hurt performance, but can enhance it by reducing the ef-
fects of difficult to predict pathological behaviors.

The rest of this paper is structured as follows. We first
place MemRx in context with related work in Section 2.
Then we discuss the design of MemRx in Section 3, fol-
lowed by its implementation details in Section 4. Sec-
tion 5 evaluates the accuracy and overhead of MemRx for
a variety of synthetic and application workloads. We dis-
cuss related work in Section 2 and conclude in Section 6.

2 Related Work

Working set estimation has been a part of computer sys-
tems for many years [4, 5]. As Denning said in his classic
paper on the topic, “the operating system must determine
on its own the behavior of the programs it runs” [4]. Oper-
ating systems researchers have long understood this, and
have developed algorithms to quantify the memory behav-
ior of programs that fit within main memory.

An excellent recent example of such a technique
is found in Zhou et al’s paper on miss ratio curves
(MRC) [23]. In that work, the authors show how to es-
timate the working set size of a process so as to per-
form more effective memory allocation among compet-
ing processes, and also for the novel application of shut-
ting off unused memory to conserve power. MemRx ex-
tends this work by focusing on a domain it does not ad-
dress, namely systems for which the aggregate memory
demand is greater than available physical memory. In ad-
dition, MemRx supplies performance predictions in terms
of workload runtime rather than the more abstract miss-
ratio curve, easing its interpretation and application.

The techniques used by one component of MemRx, the
VEC, have been used in other research. For example, Pat-
terson et al. use a similar technique to estimate the cache
hit ratio for various filesystem buffer cache sizes [16].
This estimate is used as part of a larger framework to
evaluate the trade-off between using memory for aggres-
sive, hint-guided pre-fetching and LRU caching of re-
cently used memory. The technique has not, however,
been used to estimate the runtime benefits of adding phys-
ical memory. Further, the authors of that study do not
dynamically measure actual miss costs as the PPM does,
instead choosing a single value that is obtained by running
various workloads and finding a suitable “average” value.
MemRx shows that accurate miss cost estimates are the
key to producing accurate performance predictions.

MemRx can be seen as part of a larger on-going
effort in the community towards creating introspective
and self-managing or “autonomic” [10] computing sys-
tems. Such research seeks to reduce the total cost of
ownership through automated management. The Self-*
project [8, 19], for instance, is working towards an archi-
tecture for large scale, self-managing storage infrastruc-
tures. Their work endorses pervasive, end-to-end instru-
mentation and a multi-layer management architecture that
allows their system to answer what-if performance and
availability questions based on well-defined system poli-
cies. MemRx contributes an implemented and evaluated
example of a system introspection technique that could be
incorporated into such a self-managing architecture.



3 The Design of MemRx

The goal of MemRx is to enable a systems management
agent like an administrator or management software plat-
form like a grid-computing job scheduler, to pose and an-
swer what-if questions about the runtime of a workload
under various hypothetical, larger memory sizes. Given
the workload’s current runtime, this task can be accom-
plished by calculating the runtime benefit of additional
memory.

3.1 Benefits of Additional Memory

Additional memory can act as a larger cache for previ-
ously accessed data and can therefore reduce the number
of capacity misses experienced by a workload. A capac-
ity miss occurs when data is accessed that was in physical
memory at some time in the past, but was evicted due to
memory pressure. A capacity miss causes the referenced
data to be reloaded from disk back into physical memory.
In this paper we use the term reload interchangeably with
capacity miss. While reloaded data is being retrieved, the
workload often stalls, leading to longer runtimes. Hence,
the primary benefit of avoiding capacity misses is elimi-
nating unnecessary wait time.

A workload can benefit from additional memory in
other ways as well, for example by allowing more aggres-
sive prefetching to avoid compulsory misses, but MemRx
does not track these benefits. MemRx focuses only on
benefits gained by avoiding capacity misses. The rea-
son is that all workloads can benefit from reducing capac-
ity misses without modification while running on exist-
ing systems. Other benefits of additional memory require
application modifications, such as application hinting to
enable aggressive prefetching [16], or require an applica-
tion to monitor available free memory and adapt, a feature
most applications lack. Limiting MemRx in this way sim-
plifies its design and reduces its overhead without unduly
limiting its potential application.

Our treatment of the design of MemRx is broken into
a discussion of its two major components. We first de-
scribe how to measure the runtime penalty of capacity
misses. This task is accomplished by the PPM. Then we
explore how to associate individual capacity misses with
a particular memory size increment, which is the task
of the VEC. The information produced by the PPM and
the VEC, when combined, allows MemRx to achieve it’s
goal. =

3.2 The Performance Prediction Model

The PPM measures the runtime impact of capacity misses
experienced by a workload. This information is then used
by MemRx to predict runtime when some or all of these
misses are eliminated due to additional available memory.

The Runtime of a workload can be decomposed into sev-
eral components.

o (C = The semantically required computation

e W = The semantically required /O wait time (in-
cluding compulsory misses)

o Ciniss = The unnecessary computation imposed by
capacity misses in the page cache (e.g., additional
page faults and management of the page cache)

e Winiss = The unnecessary I/0 wait time imposed by
capacity misses

MemRx models workload runtime using the simple ad-
ditive model Runtime = C + W + Chiss + Winiss.

MemRx calculates what the performance of a workload
would be if some or all capacity misses were avoided
(due to a larger memory configuration) by subtracting
Winiss from the total Runtime to yield a predicted run-
time experienced under a more liberal memory configu-
ration. Ciniss 18 ignored since the unnecessary I/0O wait
time, Wniss, typically dominates the computational over-
head of capacity misses.

To isolate Winis5, MemRx must do two things; 1) iden-
tify each reload, and 2) measure each reload’s impact on
the progress of the workload.

Identifying reloads is straightforward. The operating
system is aware of each page evicted from the page cache
due to memory pressure and where the evicted data re-
sides on disk. MemRx keeps a registry of all evicted pages
along with their on-disk location. By referring to the reg-
istry on each disk block read, the PPM can identify reads
of previously evicted data.

The PPM characterizes the performance impact of
each capacity miss experienced by a system. Other re-
search [16], has typically accomplished this by employ-
ing an average miss cost based on storage system speci-
fications or calibration measurements, Early versions of
MemRx used this approach as well, but we found that it is
not suitable for performance prediction for two important
reasons.

The first reason is that the distribution of service times
for data access is very broad, ranging from microseconds
to seconds depending on the cache state of the system and
device load. Because MemRx associates individual penal-
ties with memory increments using the VEC, it is impor-
tant to characterize the penalty induced by each miss as
accurately as possible. Even breaking service times into
rough categories like “sequential” and “random” with ap-
propriate measured average service times results in poor
performance predictions. For this reason, MemRx mea-
sures actual, individual miss penalties experienced by a
workload.
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Figure 1: Penalty Assignment, The diagram shows how idle
times are accumulated and assigned as runtime penalties to ca-
pacity misses.

The second complicating factor is the ability of multi-
threaded workloads to hide some or all of the latency
of I/O requests by overlapping those requests with use-
ful computation, Using an average or even measuring the
time between /O request submission and completion for
each reload overestimates the true penalty by not account-
ing for I/O overlapped by computation. The PPM must
instead determine the amount of time a workload is pre-
vented from making progress because it is waiting for a
reload to complete.

The PPM does this by keeping a counter,
reload.count, of outstanding reload I/O requests.
When a system is idle and reload.count > 0, the system
could make progress if it were not for the blocked reload
I/O requests. The PPM records the length of each idle
period for which reload.count > 0. The sum of all such
idle times represents the total time spent unproductively
waiting for reloads to complete by the workload. The
PPM computes the runtime penalty for an individual
capacity miss by accumulating idle time between reload
I/O completions. A reload is assigned a penalty consist-
ing of all capacity-miss induced idle time experienced
by the system between the last reload completion and
its own completion. Figure 1 depicts the assignment of
idle times to capacity misses. At the left of the figure,
capacity misses C(0) and C(1) are outstanding. C(0)
then completes, resetting the cumulative idle time to zero.
Between the completion of C(0) and the completion of
C(1) the system experiences two idle times. The sum
of these two idle periods is the miss penalty assigned to
miss C(1).

In addition to handling multi-threaded I/O, the tech-
niques used by the PPM also naturally take filesystem
prefetching into account. The PPM only increments the
reload counter for an explicit capacity miss that will cause
a thread to block. Prefetch I/O is asynchronous with re-
spect to the foreground thread and does not cause the fore-
ground thread to block. If, however, a prefetch I/O is sub-
mitted and is not complete by the time an explicit syn-
chronous request for that block is made, the PPM does
count this towards the reload penalty. The PPM model
implicitly assumes that prefetch behavior does not depend

on the amount of available memory.

Because the PPM measures the actual wait time im-
posed by capacity misses, device utilization is also nat-
urally accounted for without complicating the simple ad-
ditive model. Ifthe device servicing capacity-miss I/O has
a high utilization this will increase the service times for all
[/0O and will be included in the measured penalty.

3.3 The Virtual Extended Cache

We now turn our attention to the second component of
MemRx, the VEC. Its job is to associate a capacity miss
to a particular memory size. This allows MemRx to as-
sociate a runtime penalty (calculated by the PPM) with
a particular memory increment. The memory size with
which a capacity miss is associated is the smallest amount
of memory that would have prevented it from occurring,
(i.e., the memory increment that would have prevented the
relevant data from being evicted from memory in the first
place).

The VEC does this by modeling the page cache behav-
ior of the operating system as if more memory were avail-
able, To do this the VEC monitors page cache evictions
and promotions. When a page is evicted, a reference to
the page’s location on disk is inserted at the head of a
queue maintained in LRU order by the VEC. Subsequent
evictions push previous references deeper in the queue.

When a previously evicted page is read from disk, i.e.,
promoted into the page cache, the reference to that page
is removed from the queue and its distance (D) from the
head of the queue is computed. The distance is approxi-
mately equal to the number of evictions that have taken
place between that page’s eviction and its subsequent
reload. MemRx then uses (D) to compute the amount
of memory that would have been required to prevent the
original evictions from taking place as sizepgge X (D+1).

For example, if a page is evicted and immediately
reloaded before any other pages are evicted, MemRx
would record that the eviction could have been prevented
by one additional page of physical memory. If a page’s
eviction is followed by 1024 evictions of 4 KB pages,
MemRx would report that (1024 + 1) x 4 K B (roughly
4 MB) of additional memory would be required to pre-
vent the original eviction.

Our general strategy, which is similar to Patterson er
al’s ghost buffering scheme [16], relies upon certain
properties of the operating system cache replacement
policy to function correctly. Specifically, the algorithm
used must (roughly) preserve the inclusion or stack prop-
erty [14].

The key aspect of the stack property is that a cache of
a size N + 1 has the same contents as a cache of size N,
plus the one additional buffer which has some other block
within it. LRU and LFU obey this property; FIFO does



not [2]. By assuming the stack property holds, the VEC
can efficiently simulate the contents of larger caches, safe
in the knowledge that the buffers of the main page cache
would be comprised of the same contents even if more
memory were available.

Neither Linux, nor most other operating systems, em-
ploy a page replacement strategy that perfectly maintains
the stack property. Our evaluation in Section 5, however,
demonstrates that MemRx is quite robust to these devia-
tions under Linux for many useful cases.

3.4 Combining the PPM and VEC

The information from the PPM and the VEC are combined
to allow MemRx to predict the runtime of a workload un-
der various amounts of additional memory.

For each reload [L;, the PPM calculates the miss
penalty. The VEC associates this penalty with a mem-
ory increment by consulting its page cache model for
/0 request L;. The penalties associated with each sim-
ulated memory increment are tallied resulting in an array
Penalty indexed by memory increment size. The run-
time of a workload executed under a configuration with
X MB of additional memory is calculated using the fol-
lowing equation.

Runtime x = Runtimecyrrent — }:l\n__éuﬁ g Penaltyli]

That is, the runtime of the system, when X MB of
memory is added is the total measured runtime minus the
cumulative penalty that would be prevented by the addi-
tional X MB of memory.

3.5 Limitations

One potential limitation of MemRx is that it does not pro-
vide information about workloads that have the maximum
amount of memory they could ever use. Such information
is useful and other researchers [21, 23] have developed
techniques to measure working set size and behavior when
memory is not scarce, MemRx is specifically designed to
address the other important performance regime of work-
loads forced to execute with less memory than they can
profitably use.

A second concern is that our approach assumes that an
LRU-like replacement algorithm is used by the operating
system to manage the page cache. While most modern op-
erating system replacement algorithms are based on LRU,
virtually none are pure LRU. Therefore, one question we
implicitly address in Section 5 by evaluating the perfor-
mance of MemRx on one such system, Linux, is whether
the lack of a strict LRU-managed page cache affects re-
sults. The evaluation bolsters our confidence that the as-
sumption that the page cache is managed in an LRU-like

manner is a reasonable one; indeed, most replacement al-
gorithms strive to approximate LRU in most cases, diverg-
ing only to avoid worst-case LRU behavior under looping
sequential access patterns [9, 18].

4 The Implementation of MemRx

We now describe our prototype MemRx implementation
within the Linux 2.4 kernel. Qur first and most important
goal in implementing MemRx was to ensure low over-
head. Overhead for MemRx has two axes: space and time.
Excessive time or space overhead will make MemRx im-
practical to deploy in real systems, hence both types of
overhead should be low enough to enable MemRx to run
at all times in even modestly-configured systems.

4.1 PPM Implementation

The PPM requires notification of both evictions (i.e.,
blocks that are thrown out of the page cache due to
memory pressure), and reloads (i.e., disk read operations
that retrieve previously evicted blocks back into the page
cache). A few key locations in the Linux memory man-
agement system and generic block device handling code
are instrumented to collect this information.

4.1.1 Tracking Eviction

Linux version 2.4 uses a unified page cache for cached
file blocks as well as virtual memory pages. This im-
plies that all evictions, whether of cached disk pages
or anonymous virtual memory pages, are eventually
handled by a single code path. The task of de-
tecting evictions in Linux is therefore straightforward.
All page cache evictions are handled by the routine
shrink_cache in mm/vmscan.c. At eviction time
the disk location of each evicted data page is known.
For pages residing in a filesystem file, the location
is represented as the triple (device_.identifier,
inode number, page.offset). For virtual mem-
ory pages destined for a swap area, the disk location is
encoded into a 32-bit swap location that identifies one of
the potential swap areas and the offset of the swap page in
that area. The PPM uses this disk location information as
a lookup key to uniquely identify evicted data and match
it against later attempts to reload the same data block from
disk.

4.1.2 Tracking Reloads

Initiation of a reload is detected by instrumenting the
code paths by which data may enter memory from
disk. For swap area blocks, the instrumentation
point occurs in the routine do_swap._page in the file



mm/memory.c. For file system pages, the routines
do.generic_file.read, and filemap.nopage in
mm/ filemap.c, suffice to capture all explicit read op-
erations required by the PPM. Implicit reads that occur as
a result of readahead are ignored. These references do not
cause the system to block. The specified routines use the
same disk location information as that stored by the PPM
on eviction and so can be used to search for matches to
previously evicted data.

The PPM additionally
completion routines that
vice subsystem invokes
ted /O completes. These routines include
endbuffer.io_sync, end buffer_io_async,
and endbuffer_.iokiobuf in fs/buffer.c,
journal _end buffer_io.sync in
fs/jbd/commit .c, and finally bounce_end.io in
mm/highmem.c. By monitoring these routines, the
PPM is aware when each reload [/O completes.

The PPM must also measure the time a system spends
idle because it is blocked by the I/O from at least one
reload. To do this it instruments the function schedule
in the file kernel/sched. c to detect when the system
becomes idle or wakes from idle.

Finally, the PPM maintains a set of accumulators,
one per VEC sub-queue, to track the runtime penalty of
reloads associated with each of the memory segments
simulated by the VEC (discussed in Section 4.2). Each
time a miss occurs in the current memory configuration,
the PPM adds the measured I/O wait-penalty to the accu-
mulator associated with the memory increment that would
have turned the miss into a hit in a larger cache.

instruments the /O
the Linux block de-
whenever a  submit-

4.2 VEC Implementation

The LRU queue is the heart of the VEC. It is functionally
equivalent to that described in Section 3, but is structured
to make common operations fast. For example, since the
queue is searched on every disk operation, each entry is
entered into a hash table when it is added to the queue.
The depth of an entry in the queue is efficiently ap-
proximated by organizing the queue proper into a set of
sub-queues as shown in Figure 2. Each sub-queue rep-
resents an increment of memory that equals the size of a
page multiplied by the number of entries in the sub-queue.
For our prototype implementation, all sub-queues repre-
sent 32 MB memory increments. Each queue entry keeps
track of the sub-queue in which it currently appears, mak-
ing its depth in the queue (up to the granularity provided
by the queue length) immediately available. Hence, in our
prototype, a penalty can be associated with each 32 MB
memory increment and performance prediction occurs on
these configuration boundaries. This sub-queue approach
avoids a costly walk of the queue on reload to determine
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Figure 2: The VEC in Operation. A) When a page is evicted
by the system, an entry is added to the head of a series of VEC
queues. B) If necessary, queue entries ripple from the tail of one
queue to the head of the next. C) Upon reload, the associated
queue entry is removed and the array entry associated with that
queue is incremented by the I/0 wait-penalty calculated by the
PPM.

the depth of an entry.

When a sub-queue exceeds its maximum length, the
tail entry is moved to the head of the next deeper sub-
queue. This action can ripple the entire length of the
queue. When the last sub-queue overflows, that queue en-
try is discarded and subsequent reloads of that page will
not be detected. Hence, the size of the VEC determines
what the largest emulated memory configuration is. The
implementation of the VEC used to evaluate MemRx in
Section 5 models 1 GB of additional memory.

4.3 Categorical Information

While designing and implementing MemRx it became
clear that, in addition to counts, interval measurements,
and event notifications, an introspective OS service re-
quires categorical information about the activities it ob-
serves. This point agrees with very recent qualitative work
by Thereska er al. [19] which advocates “end-to-end” OS
instrumentation.

For example, MemRx must be able to distinguish
reloads from normal I/O requests. It is also important to
be able to differentiate explicit, synchronous I/O requests
from prefetch requests. This kind of categorical informa-
tion is available at the higher layers of the operating sys-
tem, but is typically discarded as a request is passed down-
ward through the software stack because it is not strictly
necessary to fulfill the request. At the level where interval
measurements are made by MemRXx, (e.g., in the generic
block submission and completion routines), there is no re-
maining indication of the reason for or the type of the I/O
request being issued. MemRx works around this limita-
tion by changing the system to annotate 1/O requests with



additional information, by keeping additional data struc-
tures, or by inferring the type of request from its context.
One practical outcome of the MemRx implementation ef-
fort is evidence that designers of future, introspective sys-
tems should consider annotating requests that cross sys-
tem layer boundaries with categorical or end-to-end in-
formation to enhance the ability of services like MemRx
to understand and properly process the event streams they
observe.

5 [Evaluation

In this section we empirically evaluate our MemRx pro-
totype. All experiments reported here were run using a
PC configured with a 2.4 GHz Intel Pentium IV proces-
sor, 512 MB of physical memory, and a Western Digital
WD1200BB 120 GB ATA disk drive. The base operating
system kernel is Linux version 2.4.30 with small modifi-
cations to support MemRx as described in Section 4.

In cases where we wish to artificially limit the amount
of memory available to the OS, (e.g., to induce thrashing
with reasonably sized workloads), we utilize a simple in-
kernel balloon [21] that allocates the appropriate amount
of memory to reduce the available memory to the desired
level. This technique was compared to the behavior pro-
duced by limiting available memory using the Linux ker-
nel command line option mem=<gize> and the results
are comparable.

In the following sections, we first evaluate the accuracy
with which MemRx can predict runtime for several mi-
crobenchmarks and application workloads. We then ex-
amine the time and space overheads incurred by MemRx.

5.1 Accuracy

To evaluate the prediction accuracy of MemRx for a given
workload, we execute the workload under the MemRx-
enhanced kernel. MemRx can then predict the runtime of
the workload under larger memory sizes in increments of
the VEC sub-queue size, (in this case 32 MB). To judge
the accuracy of the predictions, we re-run the workload
at each of the memory increments for which performance
was predicted by MemRx and compare predicted to actual
runtime at each memory size configuration.

5.1.1 Microbenchmark Workloads

We use a variety of microbenchmarks and application
workloads to evaluate MemRx. The purpose of the mi-
crobenchmarks is to evaluate the performance of MemRx
in an environment where the behavior of the program un-
der test is somewhat predictable. Table 1 lists each of the
microbenchmarks and the actions they perform.
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Figure 4: Thread Awareness in the PPM. The figure compares
prediction error incurred by two versions of the PPM. The first,
labeled “naive” does not take multi-threading into account, the
other version is thread aware. The graph shows how runtime
prediction error increases with the number of worker threads for
the naive PPM, where the error remains constant for the thread-
aware version.

Each benchmark is initially executed with 128 MB of
available memory. The workloads are configured to re-
quire a working set of approximately 256 MB. For exam-
ple, FS Sequential sequentially reads 256 MB of a 1 GB
file 10 times. FS Random randomly reads 512 MB from
the same 256 MB section of a I GB file. The workload
size for the VM workloads is the same as for the FS work-
loads. The VM workloads write each page they touch to
force page allocation.

MemRx predicts the runtime of a workload for each
32 MB memory increment from 128 MB up to 512 MB.
Each workload is subsequently executed with the same
amount of available memory as the increments predicted
by MemRx. The predicted vs. actual miss-ratio curve and
runtime of the microbenchmarks is shown in Figure 3. A
miss-ratio curve depicts the fraction of the total misses
observed that would still be misses given the correspond-
ing memory configuration. Miss-ratio curves are included
to isolate the accuracy of the VEC from the PPM. This
aides in understanding and evaluating each component as
a source of error.

The graphs show that MemRx can track the impor-
tant performance features of these workloads accurately.
For example, in all cases, the memory configuration after
which additional memory produces diminishing returns,
the so-called “optimal operating point”, is clearly visible.
The optimal operating point answers the important pro-
curement question of how to get the most “bang for the
buck”. In all cases, the total performance change between
128 MB and 512 MB is predicted by MemRx to within
10%, a margin that is useful in making workload migra-
tion decisions.
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Figure 3: MemRx Microbenchmark Results. The figures show the predicted vs. actual miss-ratio (lefi) and runtime (right) for
the four microbenchmarks described in Table 1.
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Benchmark | Activity

FS Sequential
VM Sequential
FS Random
VM Random

Sequentially scan a fixed size section of a filesystem file repeatedly

Sequentially scan a fixed size section of allocated virtual memory repeatedly

Randomly read page-sized blocks from a fixed-size filesystem file repeatedly

Randomly touch virtual memory pages from a fixed-size virtual memory allocation repeatedly

FS Sequential-MT | A multi-threaded version of FS Sequential

Table 1: Microbenchmarks The table describes each of the microbenchmarks used to evaluate MemRx.

Figure 4 shows the importance of accounting for multi-
threading when predicting runtime. It depicts the run-
time prediction error incurred by two different versions
of the PPM. The first, labeled “Naive” simply measures
the total time required to service each capacity miss, (i.e.,
it does not account for multi-threading). The second is
the multi-thread aware PPM used in the remainder of the
evaluations. In the experiment, a synthetic workload, (FS
Sequential-MT), that repeatedly does a fixed-size linear
scan using a specified number of worker threads is exe-
cuted, The scan size exceeds available memory resulting
in the workload thrashing. The naive PPM incurs increas-
ingly large prediction errors for larger numbers of threads,
whereas the thread-aware PPM does not.

The predictions made by MemRx are good, but not per-
fect. In the following sections we analyze the errors ob-
served while evaluating MemRx.

5.1.2 PPM Error

The PPM calculates the miss penalty for each reload I/O.
It does this using a simple model of program runtime in
which only capacity miss I/O wait time is accounted for.
The model is usually reasonable because most avoidable
runtime is due to waiting for synchronous paging 1/O to
complete, but sometimes this simple model fails to cap-
ture behavior that affects performance. In some cases
such behavior is complex and counter-intuitive even for
extremely simple workloads. In this section we describe
several instances of PPM error we observed while evalu-
ating MemRx and their behavioral causes.

When most of the avoidable 1/O tracked by MemRx is
sequential, the workload runtime components ignored by
the PPM model become more noticeable. The reason is
that sequential 1/Os complete far more quickly than ran-
dom I/Os and therefore make up a smaller fraction of to-
tal execution time than random 1/Os do. An example of
this type of error is visible in the FS Sequential workload.
Nearly all of the avoidable I/O experienced by this work-
load is sequential. MemRx therefore noticeably underes-
timates the penalty experienced by FS Sequential, so the
predicted runtimes are slightly too high.

In most cases, MemRx underestimates the benefits of

additional memory resulting in runtime predictions that
are slightly too high. This is intuitive since the MemRx
model excludes the purely computational components of
thrashing that would serve to reduce the predicted run-
time further. In one of the microbenchmark experiments,
however, the opposite is true. For FS Random, a random
filesystem workload, MemRx predicts a runtime that is
slightly too low, violating our intuition. The reason is
that under this workload, the effects of filesystem reada-
head change with the amount of memory available. This
difference is not accounted for by MemRx, leading to a
slight discrepancy. More specifically, when this workload
is thrashing, readahead is more effective than when it is
not thrashing. When the workload no longer thrashes, the
beneficial readahead effect diminishes, but MemRx does
not take variable readahead effects into account, which
leads to error.

To support this claim we perform an additional exper-
iment that shows the results of eliminating readahead as
a complicating factor. Linux was modified to disable
readahead for all I/O. The FS Random experiment from
Figure 3 was then repeated. A comparison of predicted
vs. actual runtimes is shown for the original and the no-
readahead version of the experiment in Figure 5. When
readahead is eliminated, the predicted and actual runtimes
for FS Random match very closely indicating that a vari-
able readahead effect is the primary source of this type of
€ITOT.

Finally, we consider the error incurred by VM Sequen-
tial. This is an extremely simple workload. It allocates
a fixed amount of anonymous memory, then sequentially
writes to each page. In the instance of the experiment
shown in Figure 3, 256 MB were allocated and accessed
10 times in a loop. The actual performance of this work-
load gradually improves under larger memory conditions
until the allocation completely fits in available memory
at which point runtime drops to nearly zero because the
disk is no longer being accessed. The predictions made
by MemRx miss the gradual change in behavior between
the 128 MB and 288 MB configurations.

Initially, we thought this was an instance of VEC error.
The nearly exact correspondence between predicted and
actual miss-ratio curves contradicts this theory however.
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Figure 5: Effect of readahead on FS Random. The graph compares the predicted vs. actual performance for the FS Random
microbenchmark when readahead is enabled (left) and disabled (right).

Available Read/write
memory | distance (pages)
128 MB 29843
192 MB 31846
256 MB 18079

Table 2: VM Sequential seek distances The table shows the
average seck distance between overlapping clusters of reads and
writes for an instance of VM Sequential that accesses 256 MB
Jor three iterations.

The true reason is more subtle and serves to illustrate the
kind of complex system behaviors a truly accurate perfor-
mance predictor would need to model.

When the VM Sequential workload thrashes, it causes
overlapping reads and writes in the swap file. Pages are
written to the swap file because the workload dirties each
page as it accesses it. Depending on how much memory is
initially available, the seek distance between overlapping
reads and writes changes. The PPM does not take this
effect into account leading to the error observed in the
128-288 MB range.

To support this claim, we gathered detailed swap device
traces for several additional instances of VM Sequential.
Each instance of the workload was run under the same se-
ries of memory configurations between 128 and 512 MB
as used throughout the evaluation and the average seek
distance between overlapping read and write clusters was
computed. In each of these instances, the performance
experienced by the workload follows the trend predicted
by the seek distance. We highlight one case where VM
Sequential was configured to allocate 264 MB of mem-
ory and then accesses it three times sequentially. Table 2
shows the computed seek distance for three representative
memory configurations. The values imply that runtime
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Figure 6: A pathological instance of VM Sequential. The
graph shows the non-intuitive runtime of an instance of VM Se-
quential and confirms the prediction of Table 2.

should be worse when 192 MB is available than when
128 MB is available and then substantially improve un-
der a 256 MB configuration. The runtime graph for this
workload shown in Figure 6 confirms that this is true.

As this case shows, real systems exhibit complex, non-
intuitive performance behaviors for even simple work-
loads. It is unrealistic for an online predictive model to
capture this type of pathological behavior. An attractive
solution is to design systems to avoid these behaviors and
thereby enhance their own predictability. In the next sec-
tion we show one case of how this is possible by improv-
ing the predictability of VM Sequential under Linux.

5.1.3 Designing for Predictability

The root cause of the unintuitive behavior exhibited by
VM Sequential under Linux is the variable effect of ini-
tial conditions on the profile of seeks within the pag-
ing file. The effect of variable seeks can be reduced
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Figure 7: A more predictable VM Sequential. The graph
shows how the predictability and performance of VM Sequen-
tial increase with a simple configuration change.

by amortizing seek costs across larger runs of sequential
reads. In a memory-starved workload like VM Sequen-
tial, this means having adequate memory available to re-
ceive paged-in data. One accomplishes this by aggres-
sively writing dirty pages to disk so that the pool of free
or clean pages is always plentiful. Linux can be modi-
fied to exhibit this behavior by increasing the value of the
compile-time parameter SWAP_CLUSTER.MAX.

Figure 7 compares the predicted vs. actual runtime
curve for VM Sequential under a default Linux configura-
tion to Linux with a large value of SWAP_CLUSTER MAX.
The performance of the modified Linux is both more pre-
dictable and has improved substantially over the default
configuration. It is unlikely that this change improves per-
formance for all workloads, but MemRx-like introspec-
tion can also be used to inform dynamic adaptation of
system parameters to improve both performance and pre-
dictability for varying workloads.

5.1.4 VEC Error

The function of the VEC is to associate capacity misses
with the memory increment that would have prevented
the relevant data from being evicted. The VEC may as-
sign an /O to the wrong memory increment leading to
incorrect performance predictions in the range of memory
configurations where the workload can still use additional
memory. VEC errors result from a mismatch between the
LRU replacement policy used by the VEC and the true
replacement policy employed by the OS. None of the mi-
crobenchmarks exhibit this type of error as evidenced by
the close correspondence of predicted and actual miss-
ratio curves in Figure 3. The behavior of the Linux page
replacement policy is close to LRU for these workloads.
An example of VEC error will be seen when we examine
application workloads in the next section.
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Runtime | Runtime
Thrashing | MemRx Linux % Diff
NO 18.93 18.93 0.0%
YES i 20.18 l 21.33 ’ 5.7%

Table 4: MemRx Run-time Overhead. For the test system con-
Sfigured with 128 MB of memory, the table lists run-times for a
thrashing and a non-thrashing instance of VM Sequential.

5.1.5 Application Workloads

We have also evaluated MemRx using application work-
loads that have complex behaviors. The names and a brief
description of the applications used in the evaluation are
listed in Table 3. Mogrify was used to scale a large bitmap
image. Dbench was invoked using its standard file access
patterns and configured to simulate 20 remote, concurrent
clients. Simplescalar was used to simulate 10 million in-
structions from the gzip portion of the SPEC micropro-
cessor benchmarks. Each of these workloads was initially
executed on our test system configured with 128 MB of
free memory and observed by MemRx. The working set
of each application exceeds 128 MB. As with the mi-
crobenchmark experiments, the applications were then ex-
ecuted at each larger 32 MB interval up to 512 MB and
their true runtime was recorded. The predicted vs. actual
runtime graphs are shown in Figure 8.

In the case of Mogrify, MemRx clearly identifies the
workload’s optimal operating point at 288 MB, but under-
estimates the capacity miss penalty by about 2 seconds.
Nevertheless, it accounts for approximately 87% of the
total runtime difference between a 128 MB configuration
and the 512 MB configuration. For Dbench, MemRXx falls
prey to VEC error in the range 160 MB through 224 MB.
Under this workload, entries in the VEC are pushed too
deep in the queue prior to reload. As a result, MemRx re-
ports an optimal operating point of 224 MB rather than
the true 160 MB. The fact that this error is due to the
VEC is clearly demonstrated by similar deviations in the
corresponding miss-ratio curve. MemRx does, however,
predict the minimum runtime of Dbench very accurately,
accounting for 99% of the total runtime difference. Sim-
plescalar is an interesting case because, although its work-
ing set exceeds 128 MB, the application is CPU-bound
and its runtime benefits very little from additional mem-
ory. MemRx captures this fact nicely.

5.2 Time Overhead

There are two performance regimes for which we wish to
evaluate the runtime overhead incurred by MemRx. One
is when system memory is severely underprovisioned, the
other is when a system’s working set fits in main memory.



Application | Activity

Mogrify [13] Image processing application used to scale a large bitmap image

DBench [20] Network file server benchmark, simulates network file I/O from many clients
Simplescalar {1] | Architecture simulator for the Alpha microprocessor

Table 3: Evaluation Applications The table describes each of the applications used to evaluate MemRx.
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Figure 8: MemRx Application Results. The figures show the predicted vs. actual miss-ratio (left) and runtime (right) for the three
applications described in Table 3.



Real Simulated | MemRx Percent
Memory | Memory | Allocation | Overhead
(MB) (MB) (MB) (o)
128 512 4 3.1%
128 1024 8 6.3%
128 4096 32 25%
512 4096 32 6.2%

Table 5: MemRx Memory Overhead. The memory allocated
by MemRx for selected configurations is presented. The first
column shows the size of physical memory, the second column
the size of the total simulated memory, and the third column
the amount of memory used by MemRx. Finally, the last col-
umn shows the percent of real memory used by the MemRx data
structures.

To answer these questions we employ VM Sequential,
which allocates and sequentially accesses anonymous vir-
tual memory. To test overhead while thrashing we config-
ure the test system with 128 MB of memory and configure
VM Sequential to access 256 MB of memory for two it-
erations. To test a non-thrashing configuration we use the
same machine configuration, but configure VM Sequen-
tial to access 64 MB of memory 10,000 times. We per-
form and time these experiments five times with MemRx
enabled, and five times using a stock Linux kernel. The
resulting times were averaged and appear in Table 4. The
variance of the timing samples was negligible.

In the case of a thrashing system, MemRx imposes an
approximately 6% runtime overhead. Since runtime is
already poor when a system is thrashing, such a small
overhead is certainly acceptable. When a system is not
thrashing, MemRx imposes no noticeable overhead. This
is not surprising because when a system is not thrashing,
MemRx is nearly dormant.

53

MemRx requires a variety of data structures to track the
disposition of each evicted memory page. In our current
prototype implementation, each simulated memory page
requires 32 bytes of storage. For our test configuration,
which simulates the presence of an additional 1024 MB
of memory, this results in an allocation of approximately
& MB, a small and quite reasonable overhead. Table 5
shows the memory overhead for various other configu-
rations. On low-memory systems where one would like
to simulate a large amount of additional memory (e.g.,
the third configuration in the table), this overhead could
quickly become a burden.

In its current form, MemRx is thus likely limited in the
size of memories it can simulate by space overhead. In
many installations, the small overhead is likely worth the

Space Overhead

benefit. However, on machines with little memory, the
cost of simulating a large amount of additional memory
may be unacceptable. Therefore, we believe it would be
useful to investigate space-saving, engineering solutions.
For example, a sampling-based approach could track evic-
tions and reloads probabilistically, or the memory re-
quired by MemRx could be allocated just-in-time, instead
of the fixed, ahead-of-time allocation strategy used by our
prototype.

6 Conclusions

“Is it live ... or is it Memorex?”
Memorex commercial

Memory configuration is one of the most important as-
pects of running workloads effectively, and yet few tools
assist users or management software to quantitatively de-
termine how a workload could benefit from additional
physical memory. In this paper, we have designed, im-
plemented, and evaluated MemRx, an operating system
extension that provides concrete performance prediction
estimates for a workload under larger memory configura-
tions.

MemRx is comprised of two key components: a per-
formance prediction module, which measures the run-
time penalty for each capacity miss, and a virtual ex-
tended cache, which associates penalties with memory
size increments by tracking hits and misses in larger, sim-
ulated memory configurations. This combination allows
MemRx to accurately predict workload runtime for larger
memory configurations using a simple model of workload
runtime. Through microbenchmark and application work-
loads, we have evaluated MemRx and found that it is ac-
curate and has moderate space overhead and small time
overheads making it practical to run continuously within
a system.

MemRx observes and measures system events like
page table updates and disk I/O requests. Often, use-
ful, categorical information describing the source and type
of those events is discarded as they cross system layer
boundaries. This hampers the implementation of services
like MemRx. Designers of future introspective systems
should consider how this kind of categorical information
about requests and events can be efficiently maintained
and distributed across system layers.

As systems and workloads become more complex,
there is a need for more intelligent components to moni-
tor activity and provide assistance to higher level systems
or administrators in their management decision making.
MemRx is one such tool. When supplied with informa-
tion about the benefits of additional physical memory, an
administrator or higher-level system can make more in-
formed and reliable procurement and configuration deci-



sions. MemRx helps transform memory configuration and
workload scheduling from art to engineering.
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