

An Operational Semantics for LogTM

Ben Liblit
Department of Computer Sciences, University of Wisconsin–Madison

liblit@cs.wisc.edu

Version 1.0, August 10, 2006

Abstract

We present a formal operational semantics for LogTM, a hardware-based nested transac-
tional memory system. We define the proper execution of programs written in a small assembly
language that includes memory accesses, nested closed and open transactions, partial rollback,
commit and abort handlers, thread spawning, and escape actions. This is a working docu-
ment, intended to reflect and codify the current best understanding of LogTM’s operation in
both common and corner cases. This formal semantics serves as a reference companion to
other published discussions of LogTM, and specifically corresponds to the system described
in “Supporting Nested Transactional Memory in LogTM” by Moravan et al.

1 Purpose and Status of This Document

This document presents a formal operational semantics for the LogTM hardware transactional
memory system. We define a small assembly language of memory accesses and transaction opera-
tions, and state the required behavior of any LogTM implementation when executing programs in
this language. Some implementation-specific behavior is identified but intentionally left unspeci-
fied. Additionally, this semantics models a forward log whereas current LogTM implementations
use backward logs. This intentional deviation forces the semantics to be less dependent on the
particulars of any given implementation.

This document is dense in mathematical notation with only a minimum of explanatory prose.
It is not intended to be read alone, but rather should be treated as a reference companion to other
published descriptions of the LogTM architecture and implementation [2, 3]. Specifically, we de-
scribe the behavior of the nested LogTM system of Moravan et al. [3]. We hope that this document
will be particularly useful for documenting LogTM’s behavior in complex corner cases that other
treatments may hint at but not codify in detail.

A formal semantics of this nature is of similar complexity to program code, and furthermore has
not been mechanically tested or verified. Revisions may be required to correct errors or to reflect
future changes to LogTM. The reader is strongly urged to visit <http://www.cs.wisc.edu/
multifacet/papers/>, where corrected or updated semantics will be posted as they become

1

mailto:liblit@cs.wisc.edu
http://www.cs.wisc.edu/multifacet/papers/
http://www.cs.wisc.edu/multifacet/papers/

available. Additionally, any citations to this document should identify the version number of the
semantics used (currently Version 1.0) to avoid confusion with respect to later changes.

2 Definitions

2.1 Fundamentals

Let ~s = 〈s1,s2, . . . ,sn〉 represent a possibly empty vector with ordered elements s1,s2, . . . ,sn. The
empty vector is written as 〈〉. Let “·” be the right-associative single-element prepending operator
such that s1 · 〈s2, . . . ,sn〉 = 〈s1,s2, . . . ,sn〉. Let “::” be the vector concatenation operator such that
〈s1, . . . ,s j〉 :: 〈s j+1, . . . ,sn〉= 〈s1, . . . ,s j,s j+1, . . . ,sn〉.

By convention, numeric subscripts (si) are used to index vector elements while prime (s′) and
double prime (s′′) marks identify successively updated versions of some initial value (s) as execu-
tion proceeds forward through time. This convention is informal and may be violated in certain
awkward cases.

For any set S, let ~S represent the set of all vectors of elements of S.
For any function f , let domain(f) be the domain of f .
For any function f and set D, let restrict(f ,D) be the domain restriction of f to D. That is,

restrict(f ,D)(z) = f (z) when z ∈ D, but is undefined otherwise.
For any pair of functions f ,g let “ f ;g” represent the cascading union of f and g defined as

(f ;g)(x) =

{
f (x) if x ∈ domain(f)
g(x) otherwise

(1)

For any function f and values p,q, let f [p 7→ q] represent the function that maps p to q but is
otherwise identical to f .

Let “_” represent a fresh, unnamed variable of appropriate type in context but otherwise un-
constrained.

2.2 Instructions

Let Addresses be the set of addressable memory locations in a program’s address space, with
elements a,ai,a′, etc.

Let Values be the set of values that may be stored in addressable memory locations, with ele-
ments v,vi,v′, etc.

Let EscapeStates = {escaped,unescaped} be the set of possible escape states, with elements
e,ei,e′, etc.

Let Instructions be the set of possible machine instructions as seen by the LogTM system,
with elements x,xi,x′,y,yi,y′,z,zi,z′, etc. Informally we use x to represent regular execution, y to
represent commit handlers, and z to represent abort handlers. Instructions is given by the following
recursive grammar:

2

Instructions ::= read a (2)
| write a v (3)
| begin (4)
| commitClosed (5)
| commitOpen~y~z (6)
| escape (7)
| unescape~y~z (8)
| abort (9)
| setState e~t (10)
| spawn~x (11)

for all a ∈ Addresses, e ∈ EscapeStates,~t ∈ −−−−−−−→TransStates, v ∈ Values, and~x,~y,~z ∈ −−−−−−−→Instructions. See
subsection 2.5 below for the definition of TransStates.

The setState “instruction” is a special operation used to manage the environments in which
abort handlers run. It should never appear in any actual program.

2.3 Memory

Addresses and values should be defined at the granularity of logging for any given implementation.
For example, if 32-bit values are logged, then Values represents 32-bit values and Addresses are
32-bit-aligned locations that can hold these values. Even if a program only wants a single byte, it
must read a complete 32-bit value first.

Let ReadSets = 2Addresses be the set of possible read sets with elements r,ri,r′, etc.
Let ValueMaps = Addresses→ Values be the set of possible value maps with elements w,wi,w′,

etc.
Let MemoryMaps = Addresses → Values be the set of possible main memory maps with ele-

ments m,mi,m′, etc.
Although ValueMaps and MemoryMaps have the same types, by convention (and by construc-

tion) all elements of MemoryMaps are complete functions while ValueMaps includes partial func-
tions.

2.4 Address Blocks

LogTM implementations may log memory operations at a larger granularity than that of individual
addresses. For example, current implementations log 64-byte blocks while memory accesses may
be 4- or even 1-byte aligned. Conditions O1, X1, X2, and X3, defined and used below, apply at the
coarser granularity of the LogTM log. We must therefore model the distinction between addresses
and address blocks.

3

Let Blocks be some fixed set of address blocks. Let addressBlock : Addresses → Blocks be a
complete function that maps each address to its corresponding address block. This mapping is
implementation-defined, but must remain fixed for the duration of any program.

Let addressBlocks : 2Addresses → 2Blocks be the element-wise extension of addressBlock across
sets. That is, for any set of addresses A ⊆ Addresses, addressBlocks(A) =

⋃
a∈A addressBlock(a).

2.5 Transaction State

Let TransStates = ReadSets×ValueMaps×−−−−−−−→Instructions×−−−−−−−→Instructions be the set of possible trans-
action states with elements t, ti, t ′, etc. Informally, one transaction state records

• the set of addresses read during this transaction

• the map from addresses to corresponding values written during this transaction

• the current sequence of commit handlers

• the current sequence of abort handlers

2.6 Thread States

Let ThreadIds be the set of possible thread IDs, with elements d,di,d′, etc.
Let ThreadStates = EscapeStates×−−−−−−−→

TransStates×−−−−−−−→
Instructions represent the set of possible

thread states. A thread consists of an escape bit, a stack of transaction states, and an ordered
vector of instructions to execute.

Let Π = ThreadIds→ ThreadStates be the set of possible program states with elements π,πi,π
′,

etc. A program consists of a collection of named threads.

2.7 System State

Let Σ = MemoryMaps×Π be the set of possible system states with elements σ ,σi,σ
′, etc. A

system consists of main memory and a running program.
Let Initial be the subset of initial system states, defined as the set of states (m,π)∈ Σ for which

all of the following conditions hold:

domain(m) = Addresses (12)
π = /0[_ 7→ (unescaped,〈〉,_)] (13)

Note that we require that m be complete without specifying its value for any given address.
Every address must hold some initial but arbitrary value. The pool of active threads initially con-
sists of a single thread in the base non-transactional state with some arbitrary sequence of pending
instructions.

4

3 Semantics

3.1 Judgments

A judgment σ ⇓ m is read “starting in an initial system state σ , evaluation of all threads’ instruc-
tions terminates with the main memory of the system in final state m.”

A judgment σ ⇒∗ σ ′ is read “starting in system state σ , running for zero or more steps leaves
the system in sate σ ′.”

A judgment σ ⇒ σ ′ is read “starting in system state σ , running for a single step leaves the
system in state σ ′.”

A judgment σ ` d ⇒ σ ′ is read “starting in system state σ , running thread d for a single step
leaves the system in state σ ′.”

A judgment σ ` d,x ⇒ σ ′ is read “starting in system state σ , evaluation of instruction x by
thread d leaves the system in state σ ′.”

3.2 Sequential Execution, Thread Management, and Termination

The system begins in an initial state and runs until all threads have been reaped.

HALT MEM
σ ∈ Initial σ ⇒∗ (m, /0)

σ ⇓ m

Running multiple steps is the obvious transitive closure of running zero or more single steps.

NO STEP
σ ⇒∗ σ

MULTI STEP
σ ⇒ σ ′ σ ′⇒∗ σ ′′

σ ⇒∗ σ ′′

A thread may be reaped when it has no instructions left to execute and is in the base non-
transactional state. Note that if multiple threads can be reaped, the order in which they are reaped
is arbitrary. Similarly, single steps involving thread execution may be interleaved arbitrarily with
single steps of thread reaping.

REAP

σ = (m,π) π(d) = (unescaped,〈〉,〈〉)
σ ′ = (m,restrict(π,ThreadIds−{d}))

σ ⇒ σ ′

5

A single step of the system consists of selecting one thread and allowing that thread to take a
single step. Note that selection of the next thread to execute is non-deterministic. We do not model
the thread scheduler in this semantics.

SYSTEM STEP
σ = (_,π) d ∈ domain(π) σ ` d ⇒ σ ′

σ ⇒ σ ′

A single step of a thread consists of removing and evaluating the next pending instruction for
that thread.

FETCH

σ = (m,π) π(d) = (e,~t,x0 ·~x)
σ ′ = (m,π[d 7→ (e,~t,~x)])

σ ′ ` d,x0 ⇒ σ ′′

σ ` d ⇒ σ ′′

A new thread may be spawned during an escape action. The newly spawned thread begins in
the base, non-transactional state.

SPAWN

σ = (m,π) π(d) = (escaped,_,_)
d′ /∈ domain(π)

σ ′ = (m,π[d′ 7→ (unescaped,〈〉,~x)])
σ ` d,spawn~x ⇒ σ ′

3.3 Conflicting Memory Operations

3.3.1 Conflict Detection

Let allRead :
−−−−−−−→
TransStates → 2Addresses be the set of all addresses read by any transaction in the

given transaction stack, defined as follows:

allRead(〈〉) = /0 (14)
allRead((r,_,_,_) ·~t) = r∪allRead(~t) (15)

Let allWritten :
−−−−−−−→
TransStates → 2Addresses be the set of all addresses written by any transaction

in the given transaction stack, defined as follows:

allWritten(〈〉) = /0 (16)
allWritten((_,w,_,_) ·~t) = domain(w)∪allWritten(~t) (17)

6

Let allAccessed :
−−−−−−−→
TransStates → 2Addresses be the set of all addresses read or written by any

transaction in the given transaction stack, defined as follows:

allAccessed(~t) = allRead(~t)∪allWritten(~t) (18)

Let conflict ⊆ Addresses×Addresses be the address conflict relation. This relation is inten-
tionally left unspecified here. Address conflicts are implementation-defined and may even be non-
deterministic. However, we require that conflict be reflexive: every address always conflicts with
itself.

Let writeConflict ⊆ Π×ThreadIds×Addresses be the write conflict relation, defined as fol-
lows:

CHECK WRITE

d′ 6= d π(d′) = (_,~t,_)
a′ ∈ allWritten(~t) conflict(a,a′)

writeConflict(π,d,a)

Let accessConflict ⊆ Π× ThreadIds× Addresses be the access conflict relation, defined as
follows:

CHECK READ

d′ 6= d π(d′) = (_,~t,_)
a′ ∈ allAccessed(~t) conflict(a,a′)

accessConflict(π,d,a)

3.3.2 Conflict Resolution

A read conflicts if some other thread has an uncommitted transactional write to a conflicting ad-
dress. Conflicting reads abort.

READ CONF

σ = (_,π) writeConflict(π,d,a)
π(d) = (unescaped,_ ·_,_)

σ ` d,abort⇒ σ ′

σ ` d,read a ⇒ σ ′

A write conflicts if some other thread has an uncommitted transactional write to a conflicting
address or an uncommitted transactional read from a conflicting address. Conflicting writes abort.

WRITE CONF

σ = (_,π) accessConflict(π,d,a)
π(d) = (unescaped,_ ·_,_)

σ ` d,abort⇒ σ ′

σ ` d,write a v ⇒ σ ′

7

Note that we provide no semantic rules for execution of conflicting reads or writes in the base,
non-transactional state. The implied requirement is that these instructions stall until such time as
they are non-conflicting. Thus, LogTM provides strong atomicity as defined by Blundell et al. [1].

3.4 Non-Conflicting Memory Operations

3.4.1 Escape

Let obeyX3 ⊆ Π×ThreadIds×Addresses be the Condition X3 compliance relation for a potential
read, defined as follows:

obeyX3(π,d,a)⇐⇒∀d′ 6= d.π(d′) = (_,~t,_)
⇒ addressBlock(a) /∈ addressBlocks(allWritten(~t)) (19)

We intentionally do not state the semantics of escaped reads that violate Condition X3. How-
ever, any given implementation may choose to extend these semantics by defining the behavior of
such reads.

An X3-compliant escaped read fetches a value from the current thread’s nested transaction
stack. Transactional state is not modified.

ESCAPED READ

σ = (m,π) π(d) = (escaped,~t,_)
obeyX3(π,d,a)
v = get(a,m,~t)

σ ` d,read a ⇒ σ

Let get : Addresses×MemoryMaps×−−−−−−−→TransStates→ Values be the transactional value fetching
function. Getting a value from a nested transaction stack requires finding the innermost value map
with a mapping for the desired address.

GET TOP
~t = (_,w,_,_) ·_ v = w(a)

get(a,m,~t) = v

GET DEEP

~t = (_,w,_,_) ·~t ′ a /∈ domain(w)
get(a,m,~t ′) = v

get(a,m,~t) = v

If no such value map is found, the value from main memory is provided as a last resort.

8

GET MEM
v = m(a)

get(a,m,〈〉) = v

Let obeyX1⊆−−−−−−−→
TransStates×Addresses be the Condition X1 compliance relation for a potential

write, defined as follows:

obeyX1(〈〉,a) (20)
obeyX1(_ ·~t,a)⇐⇒ addressBlock(a) /∈ addressBlocks(allWritten(~t)) (21)

Let obeyX2 ⊆ Π×ThreadIds×Addresses be the Condition X2 compliance relation for a po-
tential write, defined as follows:

obeyX2(π,d,a)⇐⇒∀d′ 6= d.π(d′) = (_,~t,_)
⇒ addressBlock(a) /∈ addressBlocks(allAccessed(~t)) (22)

We intentionally do not state the semantics of escaped writes that violate Conditions X2 or
X3. However, any given implementation may choose to extend these semantics by defining the
behavior of such writes.

An X1- and X2-compliant escaped write directly updates main memory without changing any
transactional state.

ESCAPED WRITE MEM

σ = (m,π) π(d) = (escaped,~t,_)
obeyX1(~t,a) obeyX2(π,d,a)

σ ′ = (m[a 7→ v],π)
σ ` d,write a v ⇒ σ ′

3.4.2 Non-Transactional

Even when no transaction is active, reads and writes may only proceed when they do not conflict
with transactional activity in other threads. As noted earlier, this means that LogTM is strongly
atomic as defined by Blundell et al. [1].

A non-conflicting read in the base, non-transactional state yields a value from main memory.

READ BASE

σ = (m,π) ¬writeConflict(π,d,a)
π(d) = (unescaped,〈〉,_)

v = m(a)
σ ` d,read a ⇒ σ

9

A non-conflicting write in the base, non-transactional state updates a value in main memory.

WRITE BASE

σ = (m,π) ¬accessConflict(π,d,a)
π(d) = (unescaped,〈〉,_)

σ ′ = (m[a 7→ v],π)
σ ` d,write a v ⇒ σ ′

3.4.3 Transactional

A non-conflicting read within a transaction gets a value from the nested transaction stack for the
current thread. The thread’s read set is updated accordingly.

READ TRANS

σ = (m,π) ¬writeConflict(π,d,a)
π(d) = (unescaped,(r,w,~y,~z) ·~t,~x)

σ ′ = (m,π[d 7→ (unescaped,(r∪{a},w,~y,~z),~x)])
v = get(a,m,~t)

σ ` d,read a ⇒ σ ′

A non-conflicting write within a transaction stores or updates the value in the running transac-
tion’s value map.

WRITE TRANS

σ = (m,π) ¬accessConflict(π,d,a)
π(d) = (unescaped,(r,w,~y,~z) ·~t,~x)

σ ′ = (m,π[d 7→ (unescaped,(r,w[a 7→ v],~y,~z) ·~t,~x)])
σ ` d,write a v ⇒ σ ′

3.5 Handler Registration

Unescapes and open commits may specify commit and/or abort handlers to run; these must be
merged with those specified by sibling operations. Let addHandler :

−−−−−−−→
Instructions× Instructions×−−−−−−−→

Instructions× Instructions×−−−−−−−→
Instructions →−−−−−−−→

Instructions be the handler combining function. In-
formally, the arguments to addHandler represent:

1. an existing instruction stream to run before the new handler

2. a handler prologue

3. a handler body

4. a handler epilogue

10

5. an existing instruction stream to run after the new handler

The result is a new instruction stream with all argument instructions sequenced in argument
order. However, if the handler body is empty, then the prologue and epilogue are ignored as well
and the first and last arguments are simply concatenated.

ADD HANDLER EMPTY
addHandler(~x1,_,〈〉,_,~x5) =~x1 ::~x5

ADD HANDLER NONEMPTY
~x3 = _ ·_

addHandler(~x1,x2,~x3,x4,~x5) =~x1 :: 〈x2〉 ::~x3 :: 〈x4〉 ::~x5

LogTM commit handlers run in FIFO order; we therefore use addHandler with~x5 = 〈〉 so that
a new commit handler~x3 is appended after any existing commit handlers~x1. Conversely, LogTM
abort handlers run in LIFO order; we therefore use addHandler with~x1 = 〈〉 so that a new commit
handler~x3 is prepended before any existing abort handlers~x5.

3.6 Transactions

The special setState _ _ instruction replaces the current thread’s escaped state and transaction
stack. This instruction is used to restore earlier configurations before running abort handlers.

SET STATE

σ = (m,π) π(d) = (_,_,~x)
σ ′ = (m,π[d 7→ (e,~t,~x)])

σ ` d,setState e~t ⇒ σ ′

Beginning a transaction materializes a new, empty read set and value map and pushes these
onto the current thread’s nested transaction stack. The commit handler is empty. The abort handler
restores the thread state at the time of the begin and then restarts at that begin point. However,
these are initial values only: both handlers can change during execution. Notice that we don’t care
whether the transaction is to be closed or open at this point. That only matters when we commit.

BEGIN

σ = (m,π) π(d) = (unescaped,~t,~x)
t = (/0, /0,〈〉,setState unescaped~t ·begin ·~x)

σ ′ = (m,π[d 7→ (unescaped, t ·~t,~x)])
σ ` d,begin⇒ σ ′

11

Upon an abort, all instructions that would have followed in the normal execution sequence
are discarded. Instead, the aborting transaction is popped and discarded. The normal instruction
stream for the running thread is likewise discarded. Instead, execution continues with the aborting
transaction’s abort handler.

ABORT

σ = (m,π) π(d) = (unescaped,(_,_,_,~z) ·~t,_)
σ ′ = (m,π[d 7→ (unescaped,~t,~z)])

σ ` d,abort⇒ σ ′

Observe that transaction rollback for aborts is atomic with respect to activity in all other threads.
This is a substantial deviation from the LogTM implementation, in which rollback can be inter-
leaved with execution by other threads. We claim, but have not proved, that no X3-compliant
program can distinguish between atomic and non-atomic rollback. Informally, a program can only
tell the difference if a different thread observes the aborting thread’s uncommitted writes while
they are being rolled back. However, Condition X3 forbids this sort of “peeking” by escaped
reads, while normal read/write conflict detection forbids peeking by unescaped reads.

A closed commit with no enclosing transaction applies its stored writes to main memory. The
committing transaction is then popped and discarded. Execution continues with the committing
transaction’s commit handler followed by the rest of the thread’s normal instruction stream. Notice
that this means that commit handlers execute after dropping isolation: while commit handlers are
running, both they and other threads can observe stores performed by the committed transaction.

COMMIT TOP CLOSED

σ = (m,π) π(d) = (unescaped,〈(_,w,~y,_)〉,~x)
σ ′ = ((w;m),π[d 7→ (unescaped,〈〉,~y ::~x)])

σ ` d,commitClosed⇒ σ ′

An open commit with no enclosing transaction is similar, except that the instruction-provided
commit handler is run as an open transaction after the transaction’s accumulated commit handlers
but before continuing the rest of the thread’s normal instruction stream.

COMMIT TOP OPEN

σ = (m,π) π(d) = (unescaped,〈(r,w,~y′,_)〉,~x)
~y′′ = addHandler(〈〉,begin,~y,commitOpen 〈〉 〈〉,〈〉)

σ ′ = ((w;m),π[d 7→ (unescaped,〈〉,~y′ ::~y′′ ::~x)])
σ ` d,commitOpen~y _ ⇒ σ ′

For a nested closed commit, the innermost read set, value map, commit handler, and abort
handler are merged into those of the parent transaction. The committing transaction is then popped
and discarded.

12

COMMIT DEEP CLOSED

σ = (m,π) π(d) = (unescaped,~t,~x)
~t = t1 · t2 ·~t ′ t1 = (r1,w1,~y1,~z1) t2 = (r2,w2,~y2,~z2)

t ′2 = (r1∪ r2,(w1;w2),~y1 ::~y2,~z1 ::~z2)
σ ′ = (m,π[d 7→ (unescaped, t ′2 ·~t ′,~x)])

σ ` d,commitClosed⇒ σ ′

Let obeyO1⊆−−−−−−−→
TransStates×Addresses be the Condition O1 compliance relation for a potential

write, defined as follows:

obeyO1(〈〉,a) (23)
obeyO1(_ ·~t,a)⇐⇒ addressBlock(a) /∈ addressBlocks(allWritten(~t)) (24)

Note that obeyO1 and obeyX1 are identical, though they are used in different contexts.
For a nested open commit, writes held by the innermost value map are applied directly to main

memory; all such writes must be O1-compliant. The committing transaction is then popped and
discarded. Commit and abort handlers given in the commit instruction are registered with the
parent transaction. If subsequently needed, these handlers will be run as open transactions. For the
abort handler (but not the commit handler) we will restore the state of the thread to that it had just
before this commit. Following the commit instruction we first execute any accumulated commit
handlers and then proceed with the normal instruction stream.

COMMIT DEEP OPEN

σ = (m,π) π(d) = (unescaped,~t,~x)
~t = t1 · t2 ·~t ′ t1 = (_,w1,~y1,_) t2 = (r2,w2,~y2,~z2)

~y′2 = addHandler(~y2,begin,~y,commitOpen 〈〉 〈〉,〈〉)
~z′2 = addHandler(〈〉,setState unescaped~t,~z,commitOpen 〈〉 〈〉,~z2)

t ′2 = (r2,w2,~y′2,~z
′
2)

∀a ∈ domain(w1).obeyO1(~t,a)
σ ′ = ((w1;m),π[d 7→ (unescaped, t ′2 ·~t ′,~y1 ::~x)])

σ ` d,commitOpen~y~z ⇒ σ ′

If transactions were marked as open or closed when begun, then O1-compliance could be
checked as each write instruction was performed. In the model used by this semantics, a transaction
is only designated as open or closed at commit time. Therefore, O1-compliance checking must be
postponed until open commit.

We intentionally do not state the semantics of open writes that violate Condition O1. However,
any given implementation may choose to extend these semantics by defining the behavior of such
writes.

13

3.7 Escape Actions

The hardware is not responsible for counting nested escape actions. To emphasize this, we leave
the semantics of a double escape or double unescape undefined.

ESCAPE

σ = (m,π) π(d) = (unescaped,~t,~x)
σ ′ = (m,π[d 7→ (escaped,~t,~x)])

σ ` d,escape⇒ σ ′

Unescaping may require additional processing of commit and/or abort handlers. When un-
escaping inside a transaction, handlers are queued up to be used later depending on the outcome of
that transaction.

UNESCAPE TRANS

σ = (m,π) π(d) = (escaped,~t,~x)
~t = t1 ·~t ′ t1 = (r1,w1,~y1,~z1) t ′1 = (r1,w1,~y′1,~z

′
1)

~y′1 = addHandler(~y1,escape,~y,unescape 〈〉 〈〉,〈〉)
~z′1 = addHandler(〈〉,setState escaped~t,~z,unescape 〈〉 〈〉,~z1)

σ ′ = (m,π[d 7→ (escaped, t ′1 ·~t ′,~x)])
σ ` d,unescape~y~z

When unescaping in the base, non-transactional state, the abort handler is discarded and the
commit handler is run immediately.

UNESCAPE BASE

σ = (m,π) π(d) = (escaped,〈〉,~x)
~y′ = addHandler(〈〉,escape,~y,unescape 〈〉 〈〉,〈〉)

σ ′ = (m,π[d 7→ (escaped,〈〉,~y′ ::~x)])
σ ` d,unescape~y _

4 Acknowledgment

This document is the result of intensive discussion with Jayaram Bobba, Mark D. Hill, Kevin E.
Moore, Michelle J. Moravan, Cindy Rubio Gonzalez, Michael M. Swift, David A. Wood, and Luke
Yen of the University of Wisconsin–Madison.

14

References

[1] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Deconstructing transactional
semantics: The subtleties of atomicity. In Proceedings of the Fourth Workshop on Duplicating,
Deconstructing, and Debunking, June 2005.

[2] Keven E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A. Wood.
LogTM: Log-based transactional memory. In Proceedings of the 12th Annual International
Symposium on High Performance Computer Architecture, Austin, Texas, February 11–15
2006. Institute of Electrical and Electronics Engineers.

[3] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen, Mark D. Hill, Ben Liblit,
Michael M. Swift, and David A. Wood. Supporting nested transactional memory in LogTM. In
Proceedings of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, California, October 21–25 2006. Association for
Computing Machinery.

15

Index

⇒, 5
⇒∗, 5
⇓, 5
Π, 4
Σ, 4
〈〉, 2
7→, 2
::, 2
·, 2

~, 2
;, 2
_, 2

abort, 11
ABORT, 12
accessConflict, 7
ADD HANDLER EMPTY, 11
ADD HANDLER NONEMPTY, 11
addHandler, 10
addressBlock, 3
addressBlocks, 4
Addresses, 2
allAccessed, 7
allRead, 6
allWritten, 6

begin, 11
BEGIN, 11
Blocks, 3

CHECK READ, 7
CHECK WRITE, 7
COMMIT DEEP CLOSED, 12
COMMIT DEEP OPEN, 13
COMMIT TOP CLOSED, 12
COMMIT TOP OPEN, 12
commitClosed, 12
commitOpen, 12, 13
conflict, 7

domain, 2

escape, 14
ESCAPE, 14
escaped, 2
ESCAPED READ, 8
ESCAPED WRITE MEM, 9
EscapeStates, 2

FETCH, 6

get, 8
GET DEEP, 8
GET MEM, 9
GET TOP, 8

HALT MEM, 5

Initial, 4
Instructions, 2

MemoryMaps, 3
MULTI STEP, 5

NO STEP, 5

obeyO1, 13
obeyX1, 9
obeyX2, 9
obeyX3, 8

read, 7–10
READ BASE, 9
READ CONF, 7
READ TRANS, 10
ReadSets, 3
REAP, 5
restrict, 2

SET STATE, 11
setState, 11
spawn, 6
SPAWN, 6
SYSTEM STEP, 6

16

ThreadIds, 4
ThreadStates, 4
TransStates, 4

unescape, 14
UNESCAPE BASE, 14
UNESCAPE TRANS, 14
unescaped, 2

ValueMaps, 3
Values, 2

write, 7, 9, 10
WRITE BASE, 10
WRITE CONF, 7
WRITE TRANS, 10
writeConflict, 7

17

	Purpose and Status of This Document
	Definitions
	Fundamentals
	Instructions
	Memory
	Address Blocks
	Transaction State
	Thread States
	System State

	Semantics
	Judgments
	Sequential Execution, Thread Management, and Termination
	Conflicting Memory Operations
	Conflict Detection
	Conflict Resolution

	Non-Conflicting Memory Operations
	Escape
	Non-Transactional
	Transactional

	Handler Registration
	Transactions
	Escape Actions

	Acknowledgment

