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Abstract

Maintenance costs and storage overheads in-
cwrred by indexes often limit the number of
indexes created per table in an RDBMS. For
sparse data, where a table may have hun-
dreds of attributes, indexing only a few at-
tributes means that a vanishingly small per-
centage of attributes will have indexes, which
unfortunately means that a table scan is the
only evaluation plan for almost all selection
queries on that table. This paper demon-
strates that sparsity of the data actually en-
ables index support for most, if not all, at-
tributes in the data. Owr approach leverages
“sparse indexes,” which are partial indexes
that store only non-null values. Sparse in-
dexes incur low maintenance costs and stor-
age overheads because most values in a sparse
table are null. Properties of the data lead us
to two other contributions toward index sup-
port for sparse data: we show that sparse in-
dexes benefit greatly fromn building all indexes
in one-pass of the data; and we identify that
multi-column sparse indexes are preferable as
covering indexes when attributes in the data
are correlated. We qualitatively evaluate our
approaches with synthetic and real-world data
to show that our suggestions significantly out-
perform traditional indexing approaches de-
signed for dense data.
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1 Introduction

“Sparse” data sets arise in applications that allow
objects to have values assigned to any subset of at-
tributes. These data sets there often have hundreds (or
thousands) of attributes, but each object has values as-
signed to only a handful of the total attributes. As ex-
amples, for e-commerce data sets where companies de-
fine idiosyncratic attributes for products, Agrawal [1]
cites a source with over 5,000 attributes, and we en-
countered a data set with over 2,000 attributes where
most of the objects have values assigned only to five
attributes. In another example, Pyle [9] describes a de-
mographic data set set with nearly 700 attributes, half
of which are null in 98% of the objects. Sparse data
is usually queried over as a single table in an RDBMS
because the objects often have values defined for sim-
ilar sets of attributes and the queries search over all
objects. Since the common wisdom is that it is ex-
pensive to build many indexes on a table, the large
number of attributes in the data gives the impression
that it is impossible to provide good index coverage
and efliciently support queries over the data.

In this paper we demonstrate that for sparse data
it is possible to index many more attributes than one
might think. The key observation that makes it pos-
sible falls directly from the definition of sparse data—
there are many more null values in the data than non-
null values. We leverage sparse indexes to show that
indexes can be built on many (if not all) sparse at-
tributes in a data set. Unlike a full index that maps
both non-null and null values to object identiflers
(ids), a spurse index maps only the non-null values
to ids. Sparse indexes are supported by at least one
commercial RDBMS, but to our knowledge their appli-
cation to sparse data has never been evaluated in the
published literature. We show that a sparse index over
a sparse attribute is much smaller than its full index
counterpart, while retaining most of the capabilities
of the full version. Sparse indexes incur a much lower
maintenance cost than full indexes, because any oper-
ation that changes data in a table, such as inserting,
deleting, and updating a tuple, will only affect indexes



on attributes that have non-null data.

The unique properties of sparse data enable us to
malke three other observations that aid in providing in-
dex support for this type of challenging data set. First,
we observe that sparse indexes are rather small and are
fast to build for sparse data. The traditional approach
to building indexes scans a table for each index. Multi-
ple scans, though not ideal for dense data, are usually
acceptable for dense data because they have few in-
dexes and the bulk of the time is spent in building the
index. Since sparse indexes are so small and sparse
data requires hundreds of indexes, multiple scans are
highly inefficient for building the indexes. Thus, we
demonstrate that minimizing passes while building in-
dexes is effective and essential when indexing sparse
data.

Second, the sparsity of the data allows better index-
ing support for queries over text data. We conjecture
that the “IS NOT NULL” predicate is particularly use-
ful when querying sparse data. This type of predicate
selects rows of a table that are non-null for an at-
tribute, regardless of the actual value for the attribute.
Such a query over a sparse data set will return only a
fraction of the total number of rows (usually less than
10%; the common rule of thumb for choosing an index
access path [11]). Inverted indexes are usually used to
index sparse text data and are not capable of efficiently
answering an ‘IS NOT NULL” predicate. Therefore, in
addition to an inverted index, we propose to create for
a text attribute an “is-defined” index, which records
the rows with non-null values for the attributes. It
complements an inverted index to provide support for
null-oviented queries over text attributes.

Owr third observation identifies that attributes
within sparse data can be related, and we extend
our study to multi-column indexes. Sparse data can
contain certain pairs of attributes that appear non-
null together in rows, and we call these pairs corre-
lated attributes. In contrast, uncorrelated attribute
pairs seldom appear non-null together within objects.
Our analysis compares the query performance of two-
column indexes with single-column indexes. Single-
colurnn index plans use set-based operations, such as
intersection, to evaluate complex predicates. Multi-
columnn indexes simply lookup the matching rows. The
set operations are more costly to execute than using a
composite index, regardless of correlation, but uncor-
related attributes result in larger multi-column indexes
and have higher evaluation costs in some cases. Cov-
ering indexes for correlated attributes are especially
effective for projection queries that match the index.

Finally, we experiment with our techniques using a
comimercial database. Qur experiments include results
from a synthetic data set and an analysis of a real-
world e-commerce data set, which validate our main
contributions that:

o 1t is feasible to index many, if not all, attributes

in a sparse data set.

e Sparse indexes over sparse data are simall and fast
to build, thus one-pass index construction has a
large benefit for creating many such indexes.

e “Is-defined” indexes are important for supporting
“IS NOT NULL” predicates over text attributes in
sparse data.

e Multi-column indexes have more benefit for at-
tributes that appear non-null together and are less
effective for attributes that seldom appear non-
null together.

‘We present a motivating example from e-commerce
in the next section and single-colurnn indexing tech-
niques in Section 3. Multi-column indexes and their
implications are presented in Section 4. We demon-
strate the viability of our techniques with synthetic
and real-world data in Section 5. We review related
work in Section 6 and conclude in Section 7.

2 Motivating Example

A typical example of a sparse data set is an e-
commerce product catalog. Such catalogs allow users
to search one source for product specifications from
many manufacturers. For example, the electronics cat-
alog CNET [6] has product information for categories
such as mp3 players, cell phones, computers, and so
forth. The product specification for an Apple iPod
lists the audio-formats as Mp8, ACC, Apple Lossless,
and so forth along with 55 other attributes with values.
Many e-commerce product catalogs, including CNET,
are sparse 3] because one schema is not appropriate
for all products. In fact, the data can be sparse even
within the same product category.

E-commerce product catalogs are difficult to man-
age, because products can have a non-null value for
any attribute. One might consider partitioning the at-
tributes into separate tables in order to get dense sub-
sets of the data. However, even when a set of products
has non-null values for a shared set of attributes, the
individual products may define non-null values for at-
tributes outside the shared set of attributes. Thus,
it is difficult to cleanly partition the attributes into
separate tables.

Figure 1 shows a product specification table that
we will use as an example throughout this paper. The
table has dense attributes appearing first followed by
the sparse ones. The rows are designated by product
type, which are contained in the category column. Our
study concerns the sparse data of the table.

Relational-style querying ol sparse attributes in cat-
alogs can be a powerful product discovery tool. Users
can search across vendors and categories to find a wide
variety of products. We consider the performance of
queries over the sparse attributes and, in doing so,
define the following types of queries that a database
should answer efficiently:
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Figure 1: An e-commerce electronics product table.

T1 Which products support the mp8 audio format?

T2 Which products support the mp3d sudio format and
have at least 4 hours of recharge time?

T3 Which products support the mpd audio format and
do not have a radio tuner (radio is null)?

3

We contend that it is feasible to build indexes on many
sparse attributes of a sparse data set. OQur proposal
may seern impractical at fivst thought because a sparse
table typically has hundreds or even thousands of at-
tributes. Indexing so many attributes in a single table
is largely frowned upon in practice for two main rea-
sons: the large storage overheads and the high mainte-
nance costs that indexes incur. Although these reasons
are valid for indexes over a dense data set, in this and
the following sections, we show that, for a sparse data
set, we can keep these overheads surprisingly low by
using sparse indexes.

In this paper, we assume that queries are over a data
stored in a horizontal schema. A horizontal schema is
by far the most familiar way to view and query data
and our example product table in Figure 1 is in this
format. Past research has explored the storage repre-
sentations for sparse data. Agrawal et al. [1] consid-
ered horizontal and vertical approaches and concluded,
among the alternatives available to them at the time,
that vertical storage was best. Since that paper was
written, improvements in null storage in commercial
RDBMSs have moved the tradeoff between horizon-
tal and vertical formats so that the vertical format is
no longer “uniformly” better than the horizontal for-
mat. This observation is especially true for queries
that project more than a handful of attributes, such
as our three query types outlined in the previous sec-
tion. Furthermore, with storage studied by Beckmann
et al. [4], the horizontal schema outperforms the ver-
tical approach for sparse data sets.

The rest of this section begins with a definition of
sparse indexes. Owr discussion classifies attributes into
text-based and non-text-based scalar attributes, and
focuses on the implications for sparse B-tree and in-
verted indexes.

Sparse Indexes

3.1 Definition

A sparse index over an attribute A, is an index that
includes only the non-null values in 4,. In compar-
ison, a full index covers both null and non-null val-
ues. Sparse indexes are important in owr discussion
because they have a small index size and low index
maintenance costs for sparse data. A full index would
include all rows of a table regardless of null or non-null
value. The null values in full indexes require the index
to be maintained for each tuple insert or delete. In
contrast, a sparse index only needs updated when the
attribute in the index is non-null.

A partial index [14] is an index that contains a
proper subset of table rows that satisfy a conditional
expression, called the predicate of the index. Partial
indexes can be used to avoid indexing common values
in a table and a sparse index can be defined as a partial
index. The partial index definition of a sparse index a
column An in a relation H is

CREATE INDEX An.sparse_index ON H(An)
WHERE An is not NULL

The index definition disallows any row that is null for
the attribute. One way to think about a sparse index
is that it takes a sparse column of the larger table and
creates an index over a logical projection view that
contains no nulls.

Although sparse indexes can be defined as partial
indexes, using generic partial indexes may not be the
most efficient implementation for a sparse index. A
partial index implementation requires a system to add
index maintenance and query optimization techniques
for arbitrary conditional expressions. For maintenance
tasks, such as a tuple insert, the system must evalu-
ate each expression to determine which indexes need
updates. If one has hundreds of partial indexes, then
there are hundreds of predicate evaluations. The query
optimizer must also match the conditional expressions
to arbitrary query predicates to choose an appropriate
access path.

Sparse indexes simplify the index maintenance pro-
cess of partial indexes, because they consider the spe-
cific predicate of whether an attribute is null or not. A
lookup of the non-null attributes of a tuple determines
which indexes need maintenance. Sparse indexes also
simplify the index selection tasks for optimizers, be-



cause the indexes apply to any predicate except the
IS NULL predicate.

3.2 Scalar Attributes

By scalar attributes, we mean non-text attributes
such as integers, doubles, dates, and possibly atomic
character strings. The Recharge-time, Radio, RAN,
Talk-time, and Provider attributes in the exam-
ple product catalog are scalar attributes. Scalar at-
tributes can either use hash-based or tree-based in-
dexes. Sparse indexes apply to both types of indexes,
but we address B-tree indexes only in this paper.

A sparse B-tree index retains most capabilities of a
full B-tree index. Both can be used as an access path
for a query with a non-null predicate over a column.
Consider the query

Q1: SELECT # FROM Products WHERE Recharge-time = 4
If the value 4 occurs with the Recharge-time at-
tribute, then the sparse index will contain the value
and a query plan can use the index to retrieve the
matching rows.

One difference between sparse indexes and full in-
dexes is thal sparse indexes cannot directly answer “is-
null” queries, which are queries that contain predicates
of the form “attr IS NULL.” For instance, query Q2
requests products that do not have a radio, but have
4 howrs of Recharge-time.

(2: SELECT * FROM Products
WHERE Recharge~time = 4 AND Radio is null

If there are indexes on each of these attributes, then an
index-only query plan will find the set of rows that con-
tain Recharge-time = 4 and use set difference to re-
move the rows that contain a non-null value for Radio.
The query demonstrates that systems need to support
index set difference and use it in query optimization.

3.3 Text Attributes

Text types may appear in sparse data sets in the form
of lists or short descriptions, such as a comment at-
tribute. The attribute Audio Formats in Figure 1is a
text attribute that lists the digital audio formats that
the product plays or records. Databases treat text as a
bag (multiset) of tokens and allow queries that search
for tokens in the text. Iuverted indexes help to support
fast vetrieval of rows that contain a query term. After
tokenizing the text data for an attribute, an inverted
index stores each token and the row ids where the to-
ken appears. Inverted indexes do not store null values
because a null value does not contain any tokens.

Oue limitation of inverted indexes for sparse data is
that the indexes can not answer is-null and is-not-null
queries efficiently. Consider the following query over a
text-attribute:

(3: SELECT * FROM Products
WHERE Audio-Format is not null

An inverted index over text does not support the
query. The execution engine, if forced to comply,

Algorithm 1 One-pass Index Build

INPUT: Table T with schema S{c1,...,¢n)
OUTPUT: Indexes C1;,4001 1 Crrindes
for all tuple (¢1,...,tn) in T do

if ¢; is not null then

INSERT (¢i, 1d) INTO ci, 4.,

end if
end for
for all index ¢; in S do

BUILD INDEX ¢i;, 400
end for

would have to scan the entire posting file in the index.
The reason is that to find all rows that are not null,
a system would scan the inverted list of each token in
the lexicon to discover all of the ids in the index.

Therefore, in addition to an inverted index, we pro-
pose to create for a text attribute an “is-defined” in-
dex, which records the ids of records that have non-
null values in the attribute. An is-defined index is
suitable for a sparse attribute because its size reflects
the small portion of defined data. It complements
an inverted index to provide support for null-oriented
queries over text attributes. A non-text attribute,
however, does not need an is-defined index because
a sparse B-tree index already captures the same infor-
mation.

3.4 Creation and Bulk-loading

Indexes can be built over a data set in two primary
ways: bulk-loading or individual multiple inserts. In
general, using individual inserts is an expensive opera-
tion that leads to inefficient storage. Therefore, many
database systems support bulk-loading, which creates
an index over the rows of a table in a single opera-
tion. A key question during bulk loading is whether
a database should create indexes on a table by scan-
ning the data set once for each index or use one scan
to create many indexes. In general, if a table requires
multiple non-clustered indexes, such as what we are
suggesting, a database system will scan the table once
for bulk-loading each non-clustered index [8]. This
approach clearly presents a problem to creating hun-
dreds of indexes on a table.

Scanning a table as few times as possible for bulk-
loading multiple sparse indexes provides much better
scalability. Algorithm 1 outlines a technique to create
multiple indexes in one pass of the base table. In the
one pass over the table, temporary tables store non-
null data entries for indexes. In a second pass over
the temporary tables, the algorithm builds the indexes
from the temporary tables. The single pass algorithm
is limited in the number of indexes it can build only
by the number of temporary output tables it can use.
Thus, the scalability of the algorithm depends on the
number of columns in the data and not the on the
number of rows in the data. The efficiency of the sec-
ond phase depends on the size of the ¢; index, as we
discuss in the next paragraph.



The one-pass algorithin greatly reduces the time
gpent on 10 during bulk-loading. Although this tech-
nique applies to both sparse and full indexes, the sav-
ing is especially significant for sparse indexes because
after scanning for the data entries, the cost of creating
a sparse index is much lower than that of a dense in-
dex. The reason is that the amount of time to build an
index is proportional to the number of data entries in
the index. A full index has the same number of entries
as the number of rows in the table, whereas a sparse
index has the same number of entries as the number
of non-null values, which is about 1% of the number of
rows. The cost of building a sparse index on a sparse
attribute is then roughly —1—%5 the cost of building a full
index. Asg a result, the saving by the one-pass algo-
rithm is a much larger fraction of the total indexing
time for a sparse index than it is for a full index.

4 Multi-column Sparse Indexes

Section 2 explains that sparse data cannot be neatly
partitioned into a set of dense tables. The reason is
that rows in the table can define a non-null value in
any attribute and grouping rows together increases the
number of attributes for the group. In the e-commerce
example in Figure 1, the cell phone products have com-
mon attributes Provider and Talk-time; however,
the rows also include special-case attributes Radio and
Audio-formats.

Although one cannot partition the data into a set
of tables that are dense, the attributes in the data
may have some correlation. In fact, the attributes in
the e-commerce example have some structure. The at-
tributes Provider and Talk-time are defined for all
cell phones, but not for any other product types. The
structure in sparse data possibly results from some-
one suggesting a schema for product type and most
products of that type following the suggestion. The
data becomes sparse and unstructured when a sug-
gested attribute is not appropriate for a product (a
Mp3 Player that uses disposable batteries does not
have a recharge time), or the schema needs an exten-
sion to handle unusual product features (a cell phone
that plays mp3s). Such ad hoc schemas vesults in at-
tributes that are strongly correlated with attributes of
the same kind of products, but those attributes ave
largely uncorrelated with the rest of the attributes in
the schema.

The relationships among sparse attributes suggest
that composite indexes may provide better perfor-
maice than single-column indexes while still allowing
reasonable maintenance costs. For instance, the fol-
lowing type of query would benefit from a composite
index over the attyibutes Provider and Talk-Time.
T4 What is the (non-null) talk time for the products

that use Verizon as a Provider?
A query plan for T4 uses the covering composite in-
dex to select products with Verizon and project the

Talk-time attribute. The same query using a single-
column index plan uses the Provider index to select
products with Verizon and joins the selected rows with
the index on Talk-Time. Although the index-join plan
might be more efficient than a table scan, the compos-
ite index will have the best performance for this query.

The benefits of composite indexes over single-
column indexes, however, depend largely on the distri-
bution of null values within the columns being indexed.
For example, a composite index over the attributes
Provider and RAM in Figure 1 provides very little ad-
vantage over single-column indexes because Provider
and RAM are never non-null together.

4.1 Definition

We extend the definition of a sparse index to include
multi-column indexes by using a partial index whose
predicate selects rows that have at least one non-null
value in any of the index keys. Note that composite
indexes are restricted to scalar attributes because text
attributes have multi-set semantics and composite
indexes with text attributes make little sense. The
partial index definition of a sparse index over the
scalar columns An, ., Am in a relation H is

CREATE INDEX sparse.index ON H(An, . ., Am)
WHERE NOT (An is null AND . AND Am is null)

The index predicate disallows any row that con-
tains null values for all attributes in the index key.
Similarly to single-column sparse indexes, a composite
sparse index has the functionality of its full index
counterpart for all queries except for those predicates
with IS NULL. Composite indexes are different from
single-column sparse indexes, in that null values may
appear in the index when a search key attribute is
non-null while another search key attribute is null.

The number of nulls in an index will depend on the
distribution of non-null values among the attributes in
the index key. By distribution we mean the location
of the non-null values in the rows of the relation. Con-
sider the attributes in the e-commerce product table
in Figure 1. A two-column composite index over any
two attributes will result in different null distributions
in the resulting index. For example, an index over
Provider and Talk-time attributes will not have any
nulls, whereas an index over Provider and RAM will
have three nulls—a null in all rows that are in the
index.

Different non-null distributions can result in four
basic patterns of nulls and non-nulls in a composite
sparse index. Figure 2 illustrates the patterns by in-
dicating non-null values in black and null values in
white. The first illustrations shows a containment pat-
tern, where the B attribute, when non-null, appears
with a non-null A value. In the e-commerce exam-
ple, the Audio-format and Recharge-Time attributes
have the containment property. The correlated pat-
tern is like the Provider and Talk-time attributes
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Figure 2: Four possible distributions in composite sparse indexes.

where whenever one attribute is non-null the other is
always also non-null. An uncorrelated pattern occurs
when one attribute is usually null with the other, but
sometimes is non-null (Provider and Radio). Finally,
the disjoint property happens when neither attribute
is non-null together, like Provider and RAM.

In real-world sparse data, the distributions of nulls
within indexes usually falls between the two extremes
of correlated and disjoint. The amount of correlation
between two attributes has an affect on the number
of rows in a composite index. Consider two attributes
that each have n number of non-null values. A truly
correlated distribution will index n rows and a fully
disjoint distribution will index 2n rows. An uncor-
related pair will fall between these two extremes. A
distribution that is more correlated will have fewer
indexed rows and, consequently, fewer index mainte-
nance tasks and faster scan performance if the index
is used as a covering index.

5 Experimental Evaluation

In this section, we report upon experiments we ran
on a cominercial database system. The database ran
on Windows 2003 Server with a 2.4 GHz Intel Pen-
tium processor, two physical disks and 1GB of physi-
cal memory. Data was stored on a raw disk partition.
Logs were stored on the other physical disk, with log-
ging set to minimal. The buffer pool size was set to
64MB and the maximum amount of memory allowed
during index creation was 1024KB. We ran our experi-
ments with both a hot and a cold buffer pool. In cases
where a warm buffer pool did not provide any addi-
tional insight, we only report on the cold buffer pool
performance. We report all experiments with a 95%
confidence interval over at least 5 runs of the opera-
tion.

5.1 Data Sets

Our experiments focus on index performance on syn-
thetic data. Simulated data helps us to isolate per-
formance to the issues of sparsity and control the se-
lectivity of query predicates. We model our synthetic
data on properties of a real world data set that we col-
lected from the Internet company, CNET. Throughout
our experiments, we discuss the practical implications
of our results in the context of our CNET data, which
we describe next.

5.1.1 Real Data

CNET Networks, Inc. is a company that provides a
comumercial e-commerce website with detailed prod-
uct information for software, computer systems, and
other technologies. With permission from CNET, we
collected all of the product specs from the catalog as of
March 2005 [6]. The catalog contains 233,304 products
and 142,567 have product specifications that define a
subset of 2854 attributes. A majority of the attributes
are very sparse and are undefined in more than 99% of
the products with specifications. The average number
of attributes in a product is eleven and the mode is
five. More details on the data collection and statistics
of the dataset can be found in [3].

5.1.2 Synthetic Data

We use synthetic data in two ways: the first is in ex-
periments with index maintenance and the other is in
experiments with selection predicates. Both evalua-
tions use an initial table with 136K rows and on av-
erage five non-null values distributed over 204 integer
attributes per row. The size of the table on disk is
118 MB.

For building and maintenance evaluation, synthetic
data needs to show: (1) how the number of sparse in-
dexes on a table scales to large numbers of indexes, and
(2) how the performance of inserts are affected by the
density of a row in the data. The first evaluation uses
this table in an experiment that builds indexes over the
table and in another experiment measures insert time
for rows with 5 non-null values per row. The second
evaluation considers insert performance into the table
for rows with various non-null density. The position
of the values in the row are random.

Our evaluation of selection predicates requires syn-
thetic data that has characteristics described in Sec-
tion 4. Twelve columns in the table have varying over-
lap between them. We created one attribute as the
primary attribute with 2000 non-null values that are
randomly distributed throughout the range of ids in
the table. The primary attribute has cardinality one.
The other 11 columns overlap with the ids of the pri-
mary attribute from 0% to 100% in increments of 10%.
Thus, the attribute with 0% overlap has a disjoint pat-
tern and the one with 100% overlap has a correlated
pattern. The cardinality of the overlapping columns is
five.



5.2 Implementation

The system that we use in our experiments stores null
values in its indexes. The advantage of using a sys-
tem that supports full indexes is that it provides a
fair evaluation of full indexes. One commercial system
all indexes are ‘sparse’ in that they do not store null
values, but using this system would require us to fake
full indexes with some “special” value designated as
null in the data. This approach, however favors sparse
indexes and may unfairly disadvantage the full index
approach, because systemns have special handling for
null values, such as ensuring the value sorts high in
the index.

Our approach emulates sparse indexes within the
system, as described in Section 5.2.1, and puts the
sparse index at a slight disadvantage to the full in-
dex. Since our conclusion is that sparse indexes are
superior to traditional indexes for our workloads, the
disadvantage only strengthens our conclusions.

5.2.1 Indirect Indexes

We stored a sparse data set in a wide table, which we
refer to as the “base table.” The schema for the inte-
ger data is

H(id INTEGER NOT NULL,

Al INTEGER,
A2 INTEGER,

A204  INTEGER,

PRIMARY KEY(id))
For the database that we used, the primary key con-
straint on id clusters the table in a B-tree organized
file sorted by id. Therefore, B-tree indexes on the
rest of the columns are non-clustered. A non-clustered
B-tree index over a column in H stores the values of
the column as (column value, primary key id) pairs.
A data lookup with this index finds the matching
(value, id) pairs in the index, extracts the ids, and
then retrieves the tuples by the ids with the primary
key clustered index on H.

We use an indirect method to create sparse indexes
and define an “index-table” for each attribute that we
want to index. An index-table acts as a sparse in-
dex by storing the projection on the non-null values of
a column along with the corresponding ids from the
base relation H. The index-tables have the schema

Al.Index(value INTEGER NOT NULL,
id INTEGER NOT NULL
PRIMARY KEY(value, id))

FEach index-table has a clustered B-tree index on
(value, id).

The database does not recognize index-tables as
sparse indexes. Therefore, we force the database to
use these tables as an access method to the base rela-
tion, by using the index-tables in the queries instead.
For instance, we would replace the query Q2 with the
following query

SELECT H.x
FROM ((SELECT id FROM Recharge-time.Index
WHERE value = 4)
EXCEPT
(SELECT id FROM Radio.Index
WHERE value is not null)) I, H
WHERE H.id = I.id

We use SQL set-based operators INTERSECT and
EXCEPT to construct index-based plans. For the query
above, an execution engine first differences the index-
tables to find the matching ids for the predicate. Next,
a join between the result of the intersection and the
base table fetches the matching tuples from the base
table. Note that for the query optimizer to use the
correct plan, we need to impose unique and foreign
key constraints on the id column of the index-tables
so that the index-tables refer back to the base table.

Our indirect approach of creating sparse indexes as
tables suffers some disadvantages in comparison to the
native implementation of full indexes. First, our indi-
rect implementation incurs a higher maintenance cost,
which includes the cost of maintaining the base ta-
ble and the cost of maintaining the index-tables sepa-
rately. Second, index lookups to the base table require
a join from the index-table to the base table. However,
as we discussed in the introduction to this section and
revisit in Section 5.4, even with these disadvantages,
our indirect implementation of sparse indexes often
performs the same or better than the native full B-
tree indexes on queries over sparse data.

In order to gauge the performance disadvantages
of the indirect approach, we also implemented full in-
dexes through the use of index-tables. The implemen-
tation of indirect full indexes is exactly the same as
sparse indexes described above, except that the index-
table stores all ids and allows nulls in the value col-
umn.

Finally, a fill factor for an index indicates the per-
centage of each page in the index that is reserved for
future data insertions [10]. The fll factor affects the
number of page splits that happen during inserts into
the index. All of the indexes in our experiments have
an 80% fill factor, which leaves 20% of each leaf-level
page for future insertions. This fill factor insures that
our experiments have minimal effects from index page
splits.

5.3 Creation and Maintenance

In this section, we consider the performance of creat-
ing many indexes on our synthetic data and the per-
formance of inserting tuples. We also ran experiments
for deleting tuples, but the result does not add any
insights beyond what we observe for tuple insert.

5.3.1 Bulk Load

Figure 3 compares the time the system takes to create
native full B-tree indexes, indirect full B-tree indexes,
and indirect sparse B-tree indexes, with multiple scans
over the base table (i.e., once for each index). The
graph varies the number of indexes on the table from
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Figure 4 Performance of bulk loading indexes
compared to the native implementation that
uses multiple passes.

10 to 204 columns. The graph shows that indirect in-
dexes take more time to create than the native indexes.
However, the error bars overlap for most of the graph,
s0 we can only conclude that the creation time with
multiple scans of the base table is about the same for
all index types. The reason is that scanning the table
for each index dominates the cost of the index creation
time.

Section 3.4 introduces a one-pass algorithm for cre-
ating all indexes over a table. Because we could not
modify the database to build indexes in one pass, we
implemented our algorithin in an external JDBC pro-
gram. The program scans the base table, creates 204
separate flat files in the file system for the 204 indexes,
then loads those files into the index-tables, and finally
builds the clustered index over the index-tables.

In Figure 4, we compare the costs of bulk-loading
the following: native [ull indexes in multiple passes,
indirect full indexes in one pass, and indirect sparse
indexes in one pass. Our results show that creat-
ing the indirect full indexes in one pass is about 1.5
times faster than creating native full indexes in mul-
tiple passes. Moreover, creating the indirect sparse
indexes is between 6 and 20 times faster than creating
the native full indexes in multiple passes. The results
show that even though our implementation for the one-
pass bulk-loading is crude, it is still much faster than
the native implementation of scanning the base table
once for each index (and would be even faster had the
system hnplemented the algorithm itself).

Comparing the time to create indirect full indexes
in one pass and the time to create indirect sparse in-
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Figure 5: Performance for inserting one tuple
with 5 non-null values into a table with various
number of indexes.

dexes in one pass, we see that a single scan over the
data does not impact the total cost of creating full in-
dexes as much. The reason is that, after scanning the
base table, the full indexes are still expensive to create
because the number of data entries in a full index is
the same as the number of rows in the data set. Dur-
ing the one-pass algorithm, the system spends 70% of
the time loading and building full indexes on average.
In contrast, sparse indexes are much smaller because
they have only as many data entries as non-null val-
ues. Excluding the time spent on scanning the base
table, the time to load and build all sparse indexes is
about 17 times less than the time to load and build
all full indexes on average. In conclusion, our one-pass
algorithm drastically cuts the cost of creating sparse
indexes, while providing only limited improvement on
creating full indexes.

5.3.2 Inserts

Figure 5 shows the average cost of inserting one tuple
into the integer data set with a varying number of in-
dexes on a cold buffer pool. The insert cost is higher
for the indirect full indexes than the native indexes
because the indirect approach requires a join between
the index-table and the base table, as discussed in Sec-
tion 5.2. The insert costs for both the indirect and the
native indexes are linear in the number of indexes on
the table. Indirect indexes have a slightly higher cost
because of the extra overhead of issuing SQL insert
statements for each index-table. For sparse indexes,
the insert cost per tuple depends more on the num-
ber of non-null values in an inserted row, than on the
number of indexes on the table.

The maintenance cost of having many indexes on a
table may vary depending on the density of a row in-
serted into the table. Figure 6 shows the cost to insert
values into the table with 204 indexes with a different
number of non-null values in the inserted tuple. The
graph shows that the {ull index approach is constant
as the number of values in the tuple increases. Sparse
indexes have linearly increasing cost as the number of
values in the tuple increases. When a row has 204
values, the cost to insert is the same as a full index.
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Figure 7: Performance of queries with one sim-
ple predicate.

{ Number Non-null in Row | Percentage of Tuples |

0toH 33%
6 to 10 38%
11 to 20 15%
21 to 96 14%

Table 1: The distribution for the number of non-
null values in a row for CNET.

5.3.3 Implications for Real World Data

In the CNET data, the distribution of the number of
non-null values in a row is skewed to a low number of
attributes. The average number of non-null attributes
in a row is eleven, but the mode is five. Table 1 lists
the distribution of the number of non-null values in
a row. The table indicates that 71% of all rows have
fewer than eleven non-null attributes and that only
14% have more than 21 attributes that are non-null in
a row.

5.4 One-attribute Queries

Figure 7 shows the behavior of our indirect indexes
compared to native indexes for a query that has one
sitnple predicate, such as QI, on a warm buffer pool.
The figure indicates that our indexing method has per-
formance similar to the native indexes, even though
we perform an explicit join with the base table. Also,
for the same queries with a cold buffer pool, the per-
formance between the full and the native indexes are
statistically insignificant (as confirmed by a two tailed
paired t-test). In the following, we concentrate on the
performance of sparse indexes alone on the data set
and do not consider full indexes any further.

5.5 Two-attribute Queries

In this section we evaluate the performance of the in-
dexes for queries over two attributes. In owr evalu-
ation, we use the eleven columns that have varying
overlap with a primary column, as discussed in Sec-
tion 5.1. The queries use P to denote the primary col-
umn and A.n to represent one of the other overlapping
columns. In Section 5.5.1, we present the performance
of using single-column indexes as an access path to the
underlying base table. Section 5.5.2 considers the per-
formance of single-column and multi-column queries
where the indexes cover the query, meaning that all
the columns that are necessary to the query are in the
one two-column index or in two separate single-column
indexes.

5.5.1 Single-Column Index Query Plans

In this section, we consider plans that use single-
column indexes to answer queries and show that
attribute correlation plays a roll in plan selection. We
use the following queries to evaluate index access path
plens:

Q4 (T2): SELECT * FROM H
WHERE P = 3 AND An = 3

Q5 (T3): SELECT * FROM H
WHERE P = 3 AND A.n is null

Consider these queries in the context of overlapping
attributes. For Q4, when the overlap is high, or the
attributes are correlated, the query returns many
results. Query Q5 is has the opposite relationship
as Q4, when the attributes are correlated there are
few results returned. It is important to remember
the relationship between the query result size and
attribute correlation because the result size also
affects performance.

Single-column indexes have two basic query plans
for each of the queries. The first plan type, which we
call index-fetch, evaluates the simple-predicate that se-
lects the fewest rows in the conjunction by using the
corresponding column index. Next, the plan fetches
the matching rows from the table and evaluates the
other simple-predicate. In our experiments, query Q4
uses the index on An because it returns the fewest
rows. Query Q5 uses the index on P, because the
sparse A index cannot be used. The second plan
type, index-sets, uses the indexes on both attributes
to select matching row ids for each simple-predicate.
The two sets of row ids are then intersected (for Q4)
or set-differenced (for Q5) to discover the matching
rows in the table. In the following analysis, we do not
consider plans that scan the underlying table, because
the time to scan is far greater than using an index
to lookup the tuples (it is a little under 25,000 ms to
scan).

Q4 Performance. Figure 8 shows the perfor-
mance for the two single-column index plans and
the one two-column plan for query Q4. The Index-
fetch plan remains constant across the graph be-
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cause it uses one index to fetch rows that match the
simple-predicate A.n = 3. The simple-predicate al-
ways fetches the same number of rows, thus the time
is relatively constant (it increases slightly because the
query returns morve results). The Index-set plan in-
creases in running time as the overlap increases be-
cause number of results increases. The Index-set plan
has better performance compared to the Index-fetch
plan until 60% overlap when the time to intersect the
indexes is higher than the time to fetch the rows.

Q5 Performance. Figure 9 shows the perfor-
mance for the two single-column index plans and the
one two-column plan for query Q5. Recall that the
Index-set query uses set difference over two single-
column indexes to evaluate the query. The figure
shows that the query has nearly opposite performance
as compared to query Q4, because the simple-predicate
is looking for null values for the second attribute. More
overlap between the two columns means fewer null val-
ues and fewer results. The conclusion from this ex-
periment is that set-difference is important for single-
column index queries that use an “IS NULL” predicate.
If the system does not support set-difference for index
plans, it will choose Index-fetch, which has far worse
performance for attributes that have high overlap.

The results show that there is a tradeoff in choosing
single-index plans for queries over sparse attributes.
For correlated attributes, index-fetch is better for
predicates over non-null values and set-difference is
better for “IS NULL” predicates. For uncorrelated at-
tributes, set-intersection is better for predicates over
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non-null values and index-fetch is better for “IS NULL”
predicates.

Finally, since our focus was on single-column perfor-
mance, we will note that two-column indexes can also
be used to answer the queries. Two-column perfor-
mance is always better than both single-column index
plans. The two-column indexes can evaluate the pred-
icate in one search of the index and identify the match-
ing rows quicker than an single-column set-based oper-
ations and it retrieves fewer rows (or the same number
of rows for 100% overlap) than the single-column fetch
plan. Single-column index plans are still important,
however, because it is infeasible to build indexes on all
combinations of columns.

5.5.2 Queries Covered by Indexes

A query is covered by indexes when one or more in-
dexes contain all of the attributes in the query. A
covering query plan can be more efficient compared to
plans that access the base table using an index fetch
or table scan. The reason that covering plans can be
faster is that indexes are usually smaller than tables,
so index scans usually require less memory and I/0.
Also, the indexes are sorted by attribute value and
queries that order the result set, use group by, or join
with another table can run without sorting.

Covering indexes have long been used to evaluate
projections covered by indexes. In dense data sets,
the performance gain over table scans arises because
the index omits some columns, hence the index is
smaller. In sparse data sets, the effect is even more
pronounced, because a sparse index omits rows (those
with all nulls in the covered attributes) in addition to
omitting columns.

We use the following query:

[#13] : SELECT P, A.n FROM H
WHERE P is not null OR An is not null

Query Q6 projects two columns whenever either col-
umn is non-null in a row. Notice that the query ex-
actly matches a two-column index over the attributes
P and A n. For two-column indexes, there are two pos-
sible orderings of columns to consider: the P attribute
can be first with A.n second, or the P attribute sec-
ond and An first. The performance of query Q6 does
not depend on the order of the attributes in the index.
Single-column indexes over the two separate attributes
also cover the query by using a query plan that joins
the indexes on id using a full outer join.

Q6 Performance. Figure 10 shows the perfor-
mance for query plans that answer query Q6. The
graph in in Figure 10(a) compares the performance of
the base table scan plan, the two-column covering in-
dex plan, and the single-column covering index plan.
The scan plan is extremely expensive because it scans
all of the data in the table to project out only two at-
tributes. The index plans are over 1300 times faster
than the scan plan.
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Figure 11: Two-column indexes for the real
world CNET data set.

Since scan plans are so expensive, we concentrate on
the performance of queries that use covering indexes.
Figure 10(b) takes a closer look at the index-based
plans.
than the single-index join plan, because the single-
column plan has to compute the join to return the
result and the two-column plan just has to scan the in-
dex. The figure shows that as the overlap between the
attributes increases and the attributes become corre-
lated, the running time of both index plans decreases.
The reason is that the size of the two-column index
depends on the correlation between the two single
columns.

Correlation influences the performance of the plans.
For disjoint attributes, the two-column index is 3.9
times faster than the single-column plan. For cor-
related attributes, the two-column index is 6.4 times
laster than the single-column plan. The two-column
plan benefits more from correlation, because the index
is smaller. The single-column plan cannot benefit as
much from correlation, because even though the cor-
relation affects the result size, the index join always
processes the same number of rows.

5.5.3 Implications for Real World Data

The CNET data has a little over four million possible
attribute pairs and 150,121 pairs have some overlap.
Less than 1.7% (2608) of the overlapping pairs have
overlap greater than 80% and only 0.3% (438) over-
lap completely and are entirely corvelated. Figure 11
shows two-column index patterns for four pairs of at-
tributes in the CNET data. The patterns are similay
to those presented in Section 4. It is much more likely
that attribute paivs in the CNET data are like the last
two distributions, disjoint or highly uncorrelated.

The two-column index plan is always faster .
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Multi-column indexes are promising for correlated
attributes because they can provide better query per-
formance compared to single-column indexes. The in-
dexes are very useful as covering indexes for queries
that operate on specific sets of attributes, but as Sec-
tion 5.5.2 shows, query plans that scan a covering in-
dex have the best performance when the attributes in
the index are correlated.

The number of attributes in a sparse data set, how-
ever, leads to many possible attribute combinations
for composite indexes. One challenge with real world
sparse data is determining the attributes to index with
multi-column indexes, and the order the attributes
should be included index. Certainly one would want
to choose attributes that are commonly queried to-
gether, but one also has to manage the tradeoff be-
tween adding attributes into the index and possibly
adding attributes that are uncorrelated and increasing
the null values in the index.

5.6 Text Performance

We also performed index creation, maintenance, and
query experiments for text data. All of our conclu-
sions and observations from experiments with scalar
integer data did not change for text data. Our experi-
ments confirmed that an “is-defined” index is essential
for good performance for “IS NOT NULL” queries over
text, because a table scan is the only option without
the index and scanning the base table is slow.

6 Related Work

Stonebraker introduced partial indexes in [14] and
that work was extended by Seshadri et al. [12]. Se-
shadri proposed the use of generalized partial indexes
to increase index coverage for dense data. The work
demonstrated that systems should not index values
that occur frequently in the data. This suggestion
is similar to our proposal to index all non-null val-
ues of sparse data. However, generalized partial in-
dexes requires special techniques for index selection
and for query optimizers to choose these indexes as
access paths. Sparse indexes act similarly to full in-
dexes and, thus, do not require special support for any
non-null value. Oracle [2] implements indexes that do
not store null values, however to our knowledge there



is no published literature evaluating the performance
of the indexes on sparse data sets.

Agrawal et al. explored the tradeofls of horizon-
tal and vertical storage using then-current commercial
technology for queries over a horizontal view of sparse
data [1], but did not consider the issue of indexing
sparse data stored horizontally. Beckmann et a. [4]
evaluated an alternative record format for sparse data
that reduces the overheads for horizontal storage and
has overall better performance than the vertical Tep-
resentation. Our work extends the study of horizon-
tal schema by considering the issues of indexing data
stored in the representation.

Index maintenance and building times have been ex-
plored in the context of on-line data processing 8, 13].
Much of this work focused on minimizing the effects of
locking and latching for maintaining indexes, but none
of the work evaluated build timnes or maintenance costs
for sparse indexes.

Index-based query optimization has been consid-
ered in the context of dense data [11]. Mohan et al.
used indexes to evaluate arbitrary selection predicates
and discussed how to choose indexes based on the set
of eligible indexes over the data [7]. Chaudhuri et al.
considered efficient algorithms for factoring complex
predicates in index-based plans [5]. With accurate
knowledge of the distributions, many of the factoriza-
tion techniques also apply to sparse data sets.

7 Conclusions

Relational database Systems are increasingly facing the
demands of applications with sparse data sets. The se-
lectivity of the attributes in sparse data motivates in-
dexes over all attributes. In this paper, we showed that
sparse indexes, which only index the non-null values of
an attribute, are the best approach for indexing all at-
tributes of sparse data. In fact, they are so efficient
that it is practical to index far more sparse attributes
in a data set than one would think. Compared to full
indexes, which include both non-null and null values
of a data set, sparse indexes incur much lower mainte-
nance costs on sparse data. Our evaluation shows that
the maintenance costs of full indexes depends on the
number of indexes built on the table, whereas mainte-
nance costs for sparse indexes depends on the number
of non-null values in a row, which for sparse data is
ouly a handful of the total number of attributes.

In order to efficiently support queries over sparse
data, we propose the use of index differencing for
queries that use is-null predicates and the addition of
an “is-defined” index for is-not-nuil queries over text
data. These techniques significantly facilitate queries
that contain null predicates, which are an important
class of queries for sparse data.

Finally, we showed that the data distribution of
Sparse attributes impacts the effectiveness of index-
based query plans for conjunctive queries. Specifically,
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for single-column indexes, uncorrelated attributes ben-
efit more from index plans that use set-based intersec-
tion, whereas correlated attributes should use a single-
index to fetch rows. The results for single-column in-
dexes suggests that information about the distribution
of nulls between attributes will help systems make in-
formed decisions for query plans. We also demon-
strate that two-column indexes can perform better
than single-column indexes for all data distributions
and can be especially beneficial as covering indexes.

Although keeping multi-column statistics on all
pairs of hundreds of attributes is unrealistic, it may
be beneficial to keep statistics for only specific groups
of attributes. The reason is that sparse data sets, such
as e-commerce data, usually follow schema guidelines
that suggest to users the sets of attributes that should
be defined together for objects. An area for future
work includes using these schema guidelines to aid in-
dex selection and query optirmization.
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