

Computer
Sciences
Department

Backtracking Algorithmic Complexity Attacks Against a
NIDS

Randy Smith
Cristian Estan
Somesh Jha

Technical Report #1561

September 2006

Backtracking Algorithmic Complexity Attacks Against a NIDS

Randy Smith Cristian Estan Somesh Jha
Computer Sciences Department

University of Wisconsin-Madison
{smithr,estan,jha}@cs.wisc.edu

Abstract

Network Intrusion Detection Systems (NIDS) have be-
come crucial to securing modern networks. To be effective,
a NIDS must be able to counter evasion attempts and oper-
ate at or near wire-speed. Failure to do so allows malicious
packets to slip through a NIDS undetected. In this paper, we
explore NIDS evasion through algorithmic complexity at-
tacks. We present a highly effective attack against the Snort
NIDS, and we provide a practical algorithmic solution that
successfully thwarts the attack. This attack exploits the be-
havior of rule matching, yielding inspection times that are
up to 1.5 million times slower than that of benign packets.
Our analysis shows that this attack is applicable to many
rules in Snort’s ruleset, rendering vulnerable the thousands
of networks protected by it. Our countermeasure confines
the inspection time to within one order of magnitude of be-
nign packets. Experimental results using a live system show
that an attacker needs only 4.0 kbps of bandwidth to perpet-
ually disable an unmodified NIDS, whereas all intrusions
are detected when our countermeasure is used.

1. Introduction

Network Intrusion Detection Systems (NIDS) and Intru-
sion Prevention Systems (IPS) have become crucial to se-
curing today’s networks. Typically, a NIDS residing on the
edge of a network performs deep packet inspection on every
packet that enters the protected domain. When a packet is
matched against a signature, an alert is raised, indicatingan
attempted intrusion or other misuse.

To be effective in an online environment, packet inspec-
tion must be performed at or near wire speed. The con-
sequences of not doing so can be dire: an intrusiondetec-
tion system that fails to perform packet inspection at the
required rate will allow packets to enter the network unde-
tected. Worse, an inline intrusionpreventionsystem that
fails to keep up can cause excessive packet loss.

A NIDS must also guard against evasion attempts which

often succeed by exploiting ambiguities in a protocol def-
inition itself. For example, attack mechanisms have relied
on ambiguities in TCP to develop evasion techniques us-
ing overlapping IP fragments, TTL manipulation, and other
transformations [10,15,18].

In this paper, we explore NIDS evasion through the use
of algorithmic complexity attacks [9]. Given an algorithm
whose worst-case performance is significantly worse than
its average case performance, an algorithmic complexity at-
tack occurs when an attacker is able to trigger worst-case
or near worst-case behavior. To mount evasion attempts in
NIDS, two attack vectors are required. The first is the true
attack that targets a host inside the network. The second is
aimed squarely at the NIDS and serves as a cover by slow-
ing it down so that incoming packets (including the true at-
tack) are able to slip through undetected. Evasion is most
successful when the true attack enters the network, and nei-
ther it nor the second attack is detected by the NIDS.

We present an algorithmic complexity attack that ex-
ploits worst-case signature matching behavior in a NIDS.
By carefully constructing packet payloads, our attack forces
the signature matcher to repeatedly backtrack during in-
spection, yielding packet processing rates that are up to 1.5
million times slower than average. We term this type of
algorithmic complexity attack abacktracking attack. Our
experiments show that hundreds of intrusions can success-
fully enter the network undetected during the course of a
backtracking attack against a NIDS. Further, the backtrack-
ing attack itself requires very little bandwidth;i.e., a single
attack packet sent once every three seconds is enough to
perpetually disable a NIDS.

Our countermeasure to the backtracking attack is an al-
gorithmic, semantics-preserving enhancement to signature
matching based on the concept of memoization. The core
idea is straightforward: whereas the backtracking attack ex-
ploits the need of a signature matcher to evaluate signatures
at all successful string match offsets, a memoization table
can be used to store intermediate state that must otherwise
be recomputed. Our defense against the backtracking at-
tack relies on the use of better algorithms that reduce the

1

disparity between worst and average case without changing
functionality. Empirical results show that this solution con-
fines the processing times of attack packets to within one
order of magnitude of benign packets.

Our result applies directly to Snort [17], a popular open-
source package that provides both NIDS and IPS function-
ality and claims more than 150,000 active users. Snort uses
a signature-based architecture in which each signature is
composed of a sequence of operations, such as string or
regular expression matching, that together identify a dis-
tinct misuse. In our experiments, we use Snort over both
traces and live traffic. In addition, we provide a practical
implementation of the defense by extending Snort’s signa-
ture matching functionality directly.

In summary, our contributions are two-fold. First, we
discuss NIDS evasion through algorithmic complexity at-
tacks. We present a highly effective real attack, the back-
tracking attack, that yields slowdowns of up to six orders
of magnitude and is feasible against the (estimated) tens
of thousands of networks monitored by Snort. Second, we
present an algorithmic defense, based on the principle of
memoization, that confines the slowdown to less than one
order of magnitude in general and to less than a factor of
two in most cases. We provide a practical implementation
of this solution and show its efficacy in a live setup.1

We organize the remainder of this report as follows: Sec-
tion 2 provides a summary of related work, and Section 3
describes Snort’s rule-matching architecture. Sections 4and
5 present the backtracking attack and the countermeasure,
respectively. Section 6 details our experimental results,and
Section 7 considers other types of complexity attacks. Sec-
tion 8 concludes. Appendix A contains additional exper-
imental results, and Appendix B briefly describes another
class of algorithmic complexity attacks.

2. Related work

To our knowledge, Crosby and Wallach [8, 9] were the
first to provide an algorithmic basis for denial of service
attacks. They exploit weaknesses in hash function imple-
mentations and backtracking behavior in common regular
expression libraries to produce worst-case behavior that is
significantly more expensive than the average case. The re-
sult is denial of service in general and evasion in our con-
text. For their examples, the authors observe that algorith-
mic attacks against hash tables and regular expressions can
be thwarted by better algorithm and data structure selec-
tions. Our defense also relies on algorithmic improvements.

The backtracking attack we present falls within the gene-
ral family of algorithmic attacks, although to the best of our

1We have presented our findings to the Snort developers, who have con-
firmed the efficacy of the evasion attack and have integrated the solution
into their NIDS.

knowledge our method of achieving evasion through back-
tracking is novel.

In a systems-oriented approach to addressing resource
consumption and other attacks, Leeet al. [12] dynamically
divide the workload among multiple modules, making ad-
justments as necessary to maintain performance. Load-
shedding is performed as necessary to distribute the load
to different modules, or to lower its priority. Alternatively,
Kruegelet al. [11] have proposed achieving high speed in-
trusion detection by distributing the load across several sen-
sors, using a scatterer to distribute the load and slicers and
reassemblers to provide stateful detection. Still other ap-
proaches seek to provide better performance by splitting up
(and possibly replicating) a sensor onto multiple cores or
processors [6, 25]. These approaches show that allocating
more hardware can better protect large networks with large
amounts of traffic, but they are not a cost effective way of
dealing with algorithmic complexity attacks.

The use of custom hardware has also been proposed for
performing high-speed matching [3,5,20,23,24]. The back-
tracking attack is probably not applicable to these solutions.
As our focus is on software-based systems, we do not con-
sider hardware solutions further in this paper.

Both [12] and [13] propose the use of monitors to track
the resource usage and performance history of a NIDS.
In [12], if a monitor discovers abnormally long process-
ing times, the current operations are aborted and optionally
transferred to a lower priority process. For [13], on the other
hand, the monitor simply triggers a restart of the NIDS.
In the general case, such techniques may provide a useful
mechanism for ensuring guaranteed minimum performance
rates at the cost of decreased detection accuracy. However,
such mechanisms result in periodic lapses in detection ca-
pability. Our solution is semantics-preserving, in the sense
that it does not sacrifice detection to maintain performance.

Finally, NIDS evasion has been extensively studied in
the literature. The earliest work describing evasion was
presented by Paxson [13] and Ptacek and Newsham [15].
Handleyet al. [10] show that normalization combined with
stateful analysis to remove protocol ambiguities can foil
evasion attempts, although it may affect stream semantics.
Shankar and Paxson [19] address semantics by providing
an online database of network attributes, such as the hop
count from the NIDS to a protected host, that provides the
same benefits as normalization without the risk of chang-
ing stream semantics. These solutions are orthogonal to the
problem discussed in this paper.

3. Rule matching in Snort

Our work is performed in the context of the Snort NIDS.
Snort employs a signature-based approach to intrusion de-
tection, defining distinct signatures, or rules, for each mis-

2

Predicate Description Type

content :< str > Searches for occurrence of< str > in payload multiple-match
pcre :/regex/ Matches regular expression/regex/ against payload multiple-match
byte test Performs bitwise or logical tests on specified payload bytes single-match
byte jump Jumps to an offset specified by given payload bytes single-match

Table 1. Subset of Snort predicates used for packet inspecti on. Multiple-match predicates may need
to be applied to a packet several times.

alert tcp $EXT NET any -> $HOMENET 99
(msg:"AudioPlayer jukebox exploit";

content:"fmt="; //P1
pcre:"/ˆ(mp3|ogg)/",relative; //P2
content:"player="; //P3
pcre:"/.exe|.com/",relative; //P4
content:"overflow",relative; //P5
sid:5678)

Figure 1. Rule with simplified Snort syntax
describing a fictional vulnerability.

use to be searched for. Each signature is in turn composed
of a sequence ofpredicates, that describe the operations that
the signature must perform. Section 3.1 gives an overview
of the language used to specify these rules. Section 3.2 de-
scribes the algorithm used to match rules against packets.

3.1. Expressing rules in Snort

Snort’s rules are composed of a header and a body. The
header specifies the ports and IP addresses to which the rule
should apply and is used during the classification stage. The
body has a sequence of predicates that express conditions
that need to succeed for the rule to match. A rule matches a
packet only if all predicates evaluated in sequence succeed.
Of the predicates that are part of Snort’s rule language, we
focus on those used to analyze the packet payloads. Table 1
summarizes the relevant rules.

Figure 1 depicts a signature using a simplified version of
Snort’s rule language. The header of the rule instructs Snort
to match this signature against all TCP traffic from external
sources to servers in the home network running on port 99.
The body of the rule contains threecontent predicates,
two pcre [14] predicates, and two terms,msg andsid ,
used for notification and bookkeeping. The rule matches
packets that contain the stringfmt= followed immediately
by mp3or ogg , and also contain the stringplayer= , fol-
lowed by.exe or .com , followed byoverflow .

Predicates have one important side effect: during rule
matching a predicate records the position in the payload at
which it succeeded. Further, when a predicate contains a
relative modifier, that predicate inspects the packet be-
ginning at the position at which the previous predicate suc-
ceeded, rather than the start of the payload. For example,
if predicateP3 from Figure 1 finds the stringplayer=
at offseti in the payload, the subsequentpcre predicate

(P4) succeeds only if it matches the packet payload after
positioni.

3.2. Matching signatures

When matching a rule against a packet, Snort evalu-
ates the predicates in the order they are presented in the
rule, and concludes that the packet does not match the
rule when it reaches a predicate that fails. To ensure cor-
rectness, Snort potentially needs to consider all payload
offsets at whichcontent or pcre predicates can suc-
ceed. We term thesemultiple-matchpredicates. In con-
trast, predicatesbyte test andbyte jump aresingle-
match, meaning that any distinct predicate invocation eval-
uates the payload once.

In the presence of a multiple-match predicateP, Snort
must also retry all subsequent predicates that either directly
or indirectly depend on the match position ofP. For ex-
ample, consider matching the rule in Figure 1 against the
payload in Figure 2. The caret (ˆ) inP2 indicates thatP2
must find a match in the payload immediately after the pre-
vious predicate’s match position. If Snort considers only
P1’s first match at offset 4, thenP2 will fail since P2 is
looking for mp3 or ogg but findsaac instead. However,
if Snort also considersP1’s second match at offset 28,P2
will succeed and further predicates from the rule will be
evaluated. Snort explores possible matches by backtracking
until either it finds a set of matches for all predicates or it
determines that such a set does not exist.

Figure 3 presents a simplified version of the algorithm
used by Snort to match rules against packets.2 All predi-
cates support three operations. When a predicate is evalu-
ated, the algorithm callsgetNewInstance to do the re-
quired initializations. The previous match’s offset is passed
to this function. ThegetNextMatch function checks
whether the predicate can be satisfied, and it sets the offset
of the match returned by calls to thegetMatchOffset
predicate. Further invocations ofgetNextMatch return
true as long as more matches are found. For each of these
matches, all subsequent predicates are re-evaluated, be-
cause their outcome can depend on the offset of the match.

2The Snort implementation uses tail calls and loops to link predicate
functions together and to perform the functionality described in Figure 3.
The algorithm presented here describes the behavior that isdistributed
throughout these functions.

3

Payload fmt=aac player=play 000 fmt=mp3 rate=14kbps player=cmd.e xe?overflow
Offset 012345678901234567890123456789012345678901234567890 12345678901234567

1 2 3 4 5 6

(P5,59,67)
(P4,51,59) (P4,51,59)

(P3,31,51) (P3,31,51) (P3,31,51)
(P2, 4, f) (P2,28,31) (P2,28,31) (P2,28,31) (P2,28,31)

(P1, 0, 4) (P1, 0, 4) (P1, 0,28) (P1, 0,28) (P1, 0,28) (P1, 0,28) (P1, 0,28)

Figure 2. Packet payload matching the rule in Figure 1 and cor responding stack trace after each call
to getNextMatch on line 3 of Figure 3.

MatchRule(Preds):

Stack ← (Preds[0].getNewInstance (0));1
while Stack.size > 0 do2

if Stack.top.getNextMatch () then3
if Stack.size == Preds.size then return True;4
ofst ← Stack .top.getMatchOffset ();5
Push(Stack, P reds[Stack.size].getNewInstance (ofst));6

else Pop(Stack);7

return False;8

Figure 3 . Rule matching in Snort. The algo-
rithm returns True only if all predicates suc-
ceed.

The rule matching stops when the last predicate succeeds,
or when all possible matches of the predicates have been ex-
plored. Figure 2 shows the stack at each stage of the algo-
rithm. Each stack record contains three elements: the pred-
icate identifier, the offset passed togetNewInstance
at record creation, and the offset of the match found by
getNextMatch (f if no match is found). In this exam-
ple, the algorithm concludes that the rule matches.

4. NIDS evasion via backtracking

The use of backtracking to cover all possible string or
regular expression matches exposes a matching algorithm
to severe denial of service attacks. By carefully crafting
packets sent to a host on a network that the NIDS is mon-
itoring, an attacker can trigger worst-case backtracking be-
havior that forces a NIDS to spend seconds trying to match
the targeted rule against the packet before eventually con-
cluding that the packet does not match. For the rule from
Figure 1,P2 will be evaluated for every occurrence of the
string fmt= in the packet payload. Furthermore, when-
ever this string is followed bymp3, P2 will succeed and
the matcher will evaluateP3, and if P3 succeeds it will
evaluateP4. If fmt=mp3 appearsn1 times,P3 is evalu-
atedn1 times. If there aren2 occurrences ofplayer= , P4
will be evaluatedn2 times for each evaluation ofP3, which
gives us a total ofn1 · n2 evaluations forP4. Similarly, if
these occurrences are followed byn3 repetitions of.exe

or .com , P5 is evaluatedn1 ·n2 ·n3 times. Figure 4 shows
a packet that hasn1 = n2 = n3 = 3 repetitions. Figure 5
shows the evaluation tree representing the predicates eval-
uated by the algorithm as it explores all possible matches
when matching Figure 1 against the payloads in Figure 2
and in Figure 4. Our experiments show that with packets
constructed in this manner, it is possible to force the algo-
rithm to evaluate some predicates hundreds of millions of
times while matching a single rule against a single packet.

The amount of processing a backtracking attack can
cause depends strongly on the rule. Letn be the size of
a packet in bytes. If the rule hask unconstrained multiple-
match predicates that performO(n) work in the worst case,
an attacker can force a rule-matching algorithm to perform
O(nk) work. Thus the following three factors determine the
power of a backtracking attack against a rule.

1. The number of backtracking-causing multiple-match
content and pcre predicatesk. The rule from
Figure 1 hask = 4 because it has 4 backtracking-causing
multiple-match predicates (includingP5 which does not
match the attack packet, but still needs to traverse the
packet before failing). Note that not allcontent s and
pcre s can be used to trigger excessive backtracking.
Often, predicates that have constraints on the positions
they match cannot be used by an attacker to cause back-
tracking. An example of such a predicate is the first
pcre from Figure 1, predicateP2, which has to match
immediately after the firstcontent .

2. The size of the attack packetsn. We can use Snort’s re-
assembly module to amplify the effect of backtracking
attacks beyond that of a single maximum sized packet.
The rule from Figure 1 is open to attacks of complexity
O(n4). When Snort combines two attack packets into a
virtual packet and feeds it to the rule-matching engine,n
doubles, and the rule-matcher does 16 times more work
than for either packet alone.

3. The total length of the strings needed to match thek
predicates. If these strings are short, the attacker can re-
peat them many times in a single packet. This influences
the constants hidden by theO-notation. Lets1,. . . ,sk be
the lengths of the strings that can cause matches for the

4

Payload fmt=mp3fmt=mp3fmt=mp3player=player=player=.exe.exe. exe
Offset 012345678901234567890123456789012345678901234567890 1234

1 2 3 4 5

Figure 4. A packet payload that causes rule matching to backt rack excessively.

P5 P5 P5

P4

46 54
50

P5 P5 P5

P4

46 54
50

P5 P5 P5

P4

46 54
50

P5 P5 P5

P4

46 54
50

P5 P5 P5

P4

46 54
50

P5 P5 P5

P4

46 54
50

P5

P4

59

P4

46 54
50

P5

P4

46 54
50

35 35

P3 P3 P3 P3

28 35 4251 28 42 28 42

P2P2

31 7 14

P2P2 P2

4 28 11

P1 P1

4 18

21

P5 P5P5 P5 P5P5

P4

46 54
50

P5P5

Match found!

67

Figure 5. Predicate evaluation trees in Snort. The left tree represents the 6 predicate evaluations
performed on the payload in Figure 2, and the right tree shows the 43 evaluations performed for the
payload in Figure 4. Numbers on edges indicate payload offse ts where a predicate matched.

k predicates. If we make their contribution to the pro-
cessing time explicit we can compute for each string the
exact number of repetitions. If we divide the packet into
k equal-sized portions, each filled with repetitions of one
of these strings, we obtainni = ⌊⌊n/k⌋/si⌋. The cost
of the attack isO(

∏k

i=1
ni) = O(nk/(kk

∏k

i=1
si)).

Other factors such as the amount of overlap between
these strings, the length of the strings needed to match
predicates that do not cause backtracking, and the details
of the processing costs of the predicates also influence
the processing cost. These factors remain hidden by the
constants inside theO-notation.

Approximately 8% of the 3800+ rules in our ruleset were
susceptible to backtracking attacks to some degree. Our fo-
cus is on the most egregious attacks, which typically yielded
slowdowns ranging from three to five orders of magnitude.
We quantify the strength of these attacks experimentally in
Section 6.

5. Memoization, a remedy for backtracking

As illustrated above, rule-matching engines are open to
backtracking attacks if they retain no memory of inter-
mediate results, which for Snort are predicate evaluations
that have already been determined to fail. Thus, match-
ing engines can be forced to unnecessarily evaluate the
same doomed-for-failure predicates over and over again, as
Figure 5 indicates.

Figure 6 shows our revised algorithm for rule matching
that uses memoization [7,16]. It is based on the observation
that the outcome of evaluating a sequence of predicates de-
pends only on the payload and the offset at which process-

MemoizedMatchRule(Preds):

Stack ← (Preds[0].getNewInstance (0));1
MemoizationTable← ∅;2
while Stack.size > 0 do3

if Stack.top.getNextMatch () then4
if Stack.size == Preds.size then return True;5
ofst ← Stack .top.getMatchOffset();6
if (Stack.top, ofst) /∈MemoizationTable then7
MemoizationTable←8
MemoizationTable ∪ {(Stack.top, ofst)};
Push(Stack, P reds[Stack.size].getNewInstance (ofst));9

else Pop(Stack);10

return False;11

Figure 6 . The memoization-enhanced rule-
matching algorithm. Lines 2, 7, and 8 have
been added.

ing starts. The memoization table holds (predicate, offset)
pairs indicating for all predicates, except the first, the offsets
at which they have been evaluated thus far. Before evaluat-
ing a predicate, the algorithm checks whether it has already
been evaluated at the given offset (line 7). If the predicate
has been evaluated before, it must have ultimately led to
failure, so it is not evaluated again unnecessarily. Other-
wise, the (predicate, offset) pair is added to the memoiza-
tion table (line 8) and the predicate is evaluated (line 9).
Note that memoization ensures that no predicate is evalu-
ated more thann times. Thus, if a rule hask′ predicates per-
forming work at most linear in the packet sizen, memoiza-
tion ensures that the amount of work performed by the rule
matching algorithm is at mostO(k′ ·n ·n) = O(k′n2). Fig-
ure 7 updates Figure 5 to reflect the effects of memoization.

5

P5 P5 P5

P4

46 54
50

P5 P5 P5

P4

46 54
50

P5 P5 P5

P4

46 54
50

P5 P5 P5

P4

46 54
50

P5 P5 P5

P4

46 54
50

P5 P5 P5

P4

46 54
50

P4

46 54
50

P5

P4

46 54
50

35 35

P3 P3 P3

28 35 42 28 42 28 42

7 14

P2P2 P2

11

P1

4 18

21

P5 P5P5 P5 P5P5

P4

46 54
50

P5P5

CPSMonotonicity

Figure 7. The memoization algorithm performs only 13 predic ate evaluations instead of 43 as it
avoids the grayed-out nodes. The CPS optimization reduces t he number of predicate evaluations
to 9, and the monotonicity optimization further reduces the evaluations to 5.

The greyed out nodes in the large tree from Figure 7 corre-
spond to the predicates that would not be re-evaluated when
using memoization. For the most damaging backtracking
attacks against rules in Snort’s default rule set,memoization
can reduce the time spent matching a rule against the packet
by more than four orders of magnitude(with the optimiza-
tions from Section 5.1, more than five orders of magnitude).

To implement memoization, we used pre-allocated bit-
maps for the memoization table, with a separate bitmap for
each predicate except the first. The size of the bitmaps (in
bits) is the same as the sizev (in bytes) of the largest virtual
packet. Thus if the largest number of predicates in a rule is
m, the memory cost of memoization isv(m − 1)/8 bytes.
In our experiments, memoization increases the amount of
memory used in Snort by less than 0.1%.

A naive implementation of memoization would need to
initialize these bitmaps for every rule evaluated. We avoid
this cost by creating a small array that holds up to 5 offsets
and an index into the array. When a rule is to be evaluated,
only the index into the array needs to be initialized to 0. If
the number of offsets a predicate is evaluated at exceeds 5,
we switch to a bitmap (and pay the cost of initializing it). It
is extremely rare that packets not specifically constructedto
trigger backtracking incur the cost of initializing the bitmap.

5.1. Further optimizations

We present three optimizations to the basic memoiza-
tion algorithm: detecting constrained predicate sequences,
monotonicity-aware memoization, and avoiding unneces-
sary memoization after single-match predicates. The first
two of these significantly reduce worst case processing
time, and all optimizations we use reduce the memory re-
quired to perform memoization. Most importantly, all three
optimizations are sound when appropriately applied; none
of them changes the semantics of rule matching.

Constrained predicate sequences: We use the name
markerfor predicates that ignore the value of the offset pa-
rameter. The outcome of a marker and of all predicates
subsequent to the marker are independent of where pred-

icates preceding the marker matched. As a result, mark-
ers break a rule into sequences of predicates that are inde-
pendent of each other. We use the nameconstrained pred-
icate sequence(CPS) for a sequence of predicates begin-
ning at one marker and ending just before the next marker.
For example,P3 in Figure 1 looks for the stringplayer=
in the entire payload, not just after the offset where the
previous predicate matches becauseP3 does not have the
relative modifier. Thus the rule can be broken into two
CPSes:P1-P2 andP3-P4-P5.

Instead of invoking the rule-matching algorithm on the
entire rule, we invoke it separately for individual CPSes and
fail whenever we find a CPS that cannot be matched against
the packet. The algorithm does not need to backtrack across
CPS boundaries. Less backtracking is performed because
the first predicate in each CPS is invoked at most once. For
the example in Figure 7, detecting CPSes causes the algo-
rithm not to revisitP1 andP2 onceP2 has matched, thus
reducing the number of predicate invocations from 13 to 9.

Monotone predicates: Some expensive multiple-match
predicates used by Snort have the monotonicity property
which we define below. For these predicates we use the
more aggressivelowest-offset memoization. In this opti-
mization, we skip calls to a monotone predicate if it has
previously been evaluated at an offset smaller than the offset
for the current instance. For example, say we first evaluate
a monotonecontent predicate starting at offset 100 that
does not lead to a match of the entire rule. Later we evalu-
ate the same predicate starting at offset 200. The second in-
stance is guaranteed to find only matches that have already
been explored by the first instance. With basic memoiza-
tion, after each of these matches of the second instance we
check the memoization table and do not evaluate the next
predicate because we know it will lead to failure. But, the
content predicate itself is evaluated unnecessarily. With
monotonicity-aware memoization, we do not even evaluate
thecontent predicate at offset 200.

The monotonicity property generalizes to some regular
expressions too, and it can be defined formally as follows:
let S1 be the set of matches obtained when predicatep is

6

evaluated at offseto1, andS2 the matches for starting offset
o2. If for all packets and∀o1 ≤ o2 we haveS2 ⊂ S1, thenp
is monotone. In our example from Figure 1, allcontent s
and pcre s are monotone with the exception of the first
pcre , P2, because it matches at most onceimmediately
after the position where the previous predicate matched.

Lowest-offset memoization helps reduce worst case pro-
cessing because for some predicates the number of worst-
case invocations is reduced fromO(n) to 1. For the exam-
ple in Figure 7, this optimization would have eliminated the
second and third evaluations for predicatesP4, andP5 (and
for P3 also if CPSes are not detected). This further reduces
the number of predicate instances evaluated from 9 to 5.

Unnecessary memoization: Basic memoization guar-
antees that no predicate is evaluated more thann times.
For some rules with single-match predicates we can pro-
vide the same guarantee even if we omit memoizing some
predicates. If we employ memoization before evaluating a
single-match predicate, but not before evaluating its suc-
cessor, we can still guarantee that the successor will not
be evaluated more thann times (at most once for every
evaluation of our single-match predicate). Also, if we have
chains of single-match predicates it is enough to memoize
only before the first one to ensure that none is evaluated
more thann times. Thus, our third optimization is not to
perform memoization after single-match predicates, such as
byte test andbyte jump (see Table 1), except when
they are followed by a monotone predicate. For our rule set,
this optimization reduces by a factor of two the amount of
memory used for memoization.

6. Experimental results

We performed empirical evaluations with traces and in
a live setting. In Section 6.1, we present measurements
comparing backtracking attack packets with traces of typ-
ical network traffic. Our results show that three to six or-
ders of magnitude slowdowns achieved with the backtrack-
ing attack are reduced to less than one order of magnitude
slowdown under memoization. In Section 6.2, we show ac-
tual evasion using a non-memoized implementation, and the
resulting recovery with the memoized version.

For our experiments we used the Snort NIDS, version
2.4.3, configured to use the Aho-Corasick [2] string match-
ing algorithm. Snort is run on a 2.0 GHz Pentium 4 pro-
cessor and is loaded with a total of 3812 rules. We instru-
mented Snort using cycle-accurate Pentium performance
counters. When enabled, instrumentation introduced less
than 2% overhead to the observed quantities of interest. We
found that our measured observations were consistent with
the instrumentation results collected in [4].

(IMAP) (IRC) (MS-SQL) (NetBIOS) (Oracle) (SMTP) (SMTP)

Targeted Rule ID

1

10

100

1000

10000

100000

1000000

S
lo

w
do

w
n

(lo
g

sc
al

e)

1755 1382 2003 2403 2611 3682 2087

benign traffic, unmodified Snort
attack traffic, no memoization
attack traffic, w/ memoization+opt

Figure 8. Relative processing times for be-
nign and attack traffic, and attack traffic
with memoization. Memoization confines the
slowdown to less than one order of magni-
tude.

6.1. Trace-based results

For benign traffic, we obtained two groups of three traces
each captured on different days at distinct times. The first
group of traces were captured on the link between a univer-
sity campus and a departmental network with 1,200 desk-
top and laptop computers, a number of high-traffic servers
(web, ftp, ntp), and scientific computing clusters generating
high volumes of traffic. These traces are 7 minutes long and
range in size from 3.1 GB to just over 8 GB. The second
group of traces were captured in front of a few instructional
laboratories totaling 150 desktop clients. They are also 7
minutes long and range in size from 816 MB to 2.6 GB.

We created attack traffic by generating flows correspond-
ing to several protocols and supplying payloads that are
constructed in a similar manner to the payload construction
outlined in Section 4.

In the trace-based experiments, we fed the benign traffic
and attack traffic traces into Snort and observed the perfor-
mance. We performed these experiments with and without
memoization enabled. Figure 8 shows the slowdowns expe-
rienced due to backtracking attacks targeting several rules
and the corresponding defense rates. It summarizes the in-
formation in Table 2. In each group, the leftmost bar repre-
sents the cost of packet processing for the specified protocol
relative to 20.6 s/GB, the combined average packet process-
ing rate in all our traces. For Rule 1382 (IRC), the rate is
less than 1, reflecting the fact that the average traffic pro-
cessing time for IRC traffic is less than the baseline.

The central bar in each group shows the slowdown ob-
served by packets crafted to target the specific rules indi-
cated at the base of each group. The attacks result in pro-
cessing times that are typically several orders of magnitude

7

Rule Processing time (seconds/gigabyte) Slowdown Slowdown
Protocol ID Trace Backtracking attack w.r.t. avg traffic w.r.t. same protocol

traffic Original Basic Memo. Memo+Opt. Original Memo+Opt Original Memo+Opt

IMAP 1755 200.6 89,181 1,802 91.9 4,329× 4.46× 444× 0.46×
IRC 1382 14.6 1,956,858 1,170 87.6 94,993× 4.25× 134,031× 6.00×
MS-SQL 2003 119.3 18,206 715 140.4 884× 6.82× 152× 1.17×
NetBIOS 2403 729.7 357,777 57,173 122.0 17,368× 5.92× 490× 0.17×
Oracle 2611 110.5 6,220,768 3,666 174.0 301,979× 8.45× 56,296× 1.57×
SMTP 3682 132.8 30,933,874 2,192 126.4 1,501,644× 6.14× 232,936× 0.95×

SMTP 3682, w/o reassembly 1,986,624 903 103.1 96,438× 5.00× 14,960× 0.78×
SMTP 2087 132.8 175,657 5,123 164.5 8,527× 7.99× 1,323× 1.24×

Table 2. Strength of the backtracking attack and feasibilit y of the memoization defense. Columns
7-8 shows the overall slowdown under attack when memoizatio n is not and is used. Columns 9-10
shows similar slowdowns with respect to the same protocol.

slower than the baseline, with the most egregious attack
coming in at a factor of 1.5 million times slower. Finally,
in the rightmost bar of each group we see the result of each
attack repeated with the memoization defense deployed. In
most cases, Snort performance when under attack is com-
parable if not better than when not under attack.

Table 2 details the attacks and the defenses quantitatively
for several different protocols. For each attack, Columns 1
and 2 give the protocol and the targeted Rule ID to which
the attack belongs, respectively. Column 3 shows the aver-
age processing time for each protocol. Columns 4 through
6 show the raw processing times for attack packets under an
unmodified Snort, Snort with basic memoization, and Snort
with fully optimized memoization. Columns 7-8 give over-
all slowdowns and Columns 9-10 supply the slowdowns
on a per-protocol basis. The backtracking attack achieves
slowdowns between 3 and 5 orders of magnitude for rules
from many protocols. When memoization is employed, the
overall slowdown is confined to within one order of mag-
nitude. Per-protocol, memoization confines most attacks to
within a factor of two of their normal processing time.

Rows 7 and 8 highlight the impact that reassembly has on
the processing time. In this experiment, when reassembly
is performed the size of the virtual packet fed to the rule-
matching engine is only twice the size of a non-reassembled
packet, but the processing time is almost 16× longer.

The effects of the three memoization optimizations can
be seen by comparing Columns 5 and 6 in Table 2. The
strength of the optimizations varies by protocol, ranging
from just under a factor of 10 to just over a factor of 30, ex-
cluding the NetBIOS outlier. In the Snort rule set, NetBIOS
rules contain many predicates that can be decomposed into
constrained predicate sequences. These rules benefit con-
siderably from the optimizations. Section A.2 contains the
individual contributions of each optimization to the reduc-
tion in processing time.

Recall that the attacks applied are all low-bandwidth at-
tacks. Even though the overall slowdown rate using mem-
oization is up to an order of magnitude slower, these rates

applyonly to the attack packets (which are few in number)
and not to the overall performance of Snort. Under mem-
oization, processing times for attack packets fall within the
normal variation exhibited by benign packets.

In the rightmost column, slowdowns less than 1.0 indi-
cate that with all the optimizations included, Snort was able
to process backtracking attack packets more quickly than it
could process legitimate traffic. In other words, our opti-
mizations allowed Snort to reject these attack packets more
quickly than it otherwise was able since fewer overall pred-
icate evaluations are performed.

6.2. Evading a live Snort

In this section we demonstrate the efficacy of the back-
tracking attack by applying it to a live Snort installation.We
first show successful evasion by applying the attack under a
variety of conditions. We then show that with memoization,
all the formerly undetected attacks are observed.

Figure 9 shows the topology used for testing evasion for
this experiment. To induce denial of service in Snort, we use
an SMTP backtracking attack that connects to a Sendmail
SMTP server in the protected network. We are using this
attack to mask a Nimda [1] exploit normally recognized by
Snort. Both the Nimda exploit and its SMTP cover are sent
from the same attacking computer. Each Nimda exploit is
sent one byte at a time in packets spaced 1 second apart. To
simulate real world conditions, we used the Harpoon traffic
generator [22] to continuously generate background traffic
at 10 Mbps during the experiments.

We measure the effectiveness of the backtracking attack
by the number of malicious exploits that can slip by Snort
undetected over various time frames. We initiated a new
Nimda exploit attempt every second for 5 minutes, yield-
ing 300 overlapping intrusion attempts. Table 3 shows the
results. Test 1 is the control: when the backtracking ex-
ploit is not performed, Snort recognizes and reports all 300
exploits despite our fragmenting them. In Test 2, we sent
two backtracking attack packets every 60 seconds for the

8

Background
Traffic
Generator

Traffic
Background

Generator

External Network Protected Network

Snort 2.4.3

2 GHz P4
VictimAttacker

Fast Eth Hub

Sendmail Server
HTTP Server

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Hub

Figure 9. Live Snort evasion environment.
Snort monitors a network composed of web
and mail servers.

Test Description of backtrack Exploits Required
attack detected rate (kbps)

1 Control; no attack 300/300 N/A
2 two packets every 60 sec. 220/300 0.4
3 two packets every 15 sec. 6/300 1.6
4 onepacket every 5 sec. 4/300 2.4
5 onepacket every 3 sec. 0/300 4.0
6 twentypackets initially 0/300 0.8

7 onepacket every 3 sec. 300/300 N/A
(memoization enabled)

8 twentypackets initially 300/300 N/A
(memoization enabled)

Table 3. Summary of live Snort experi-
ments. Without memoization, 300 intru-
sions pass into the network undetected.

duration of the experiment. Snort missed only one-third of
the attacks, detecting 222 out of 300 intrusion attempts. In
Test 3, we increased the frequency of the backtracking at-
tacks to 2 packets every 15 seconds, dropping the detection
rate to just 2% of the transmitted exploits. Test 4 decreased
the detection rate even further, and in Tests 5 and 6 the at-
tacker successfully transmitted all 300 exploits without de-
tection. Aside from high CPU utilization during the attacks
and an occasional, sporadic port scan warning directed at
the SMTP attack, Snort gave no indication of any abnormal
activity or intrusion attempt.

These experiments show that the transmission rate
needed to successfully penetrate a network undetected is
quite low, with both tests 5 and 6 requiring no more than
4.0 kbps of bandwidth. Test 5, in particular, suggests that
perpetual evasion can be achieved through regular, repeated
transmissions of backtracking attack packets.

Tests 7 and 8 demonstrate the effectiveness of memoiza-
tion. These tests repeat Tests 5 and 6 with memoization
enabled (including all optimizations). With memoization,
Snort successfully detected all intrusions in both tests.

In summary, these experiments validate the results of our
trace-based experiments and illustrate the real-world appli-
cability of the backtracking attack. Using carefully crafted
and timed packets, we can perpetually disable an IPS with-
out triggering any alarms, using at most 4 kilobits per sec-
ond of traffic. Correspondingly, the memoization defense
can effectively be used to counter such attacks.

7. Discussion

Often, algorithmic complexity attacks and their solutions
seem obvious once they have been properly described. Nev-
ertheless, software is still written that is vulnerable to such
attacks, which begs the question–how can a NIDS or IPS
designer defend against complexity attacks that she has not
yet seen? A possible first step is to explicitly consider
worst-case performance in critical algorithms and to look
at whether it is significantly slower than average case and

can be exploited. For example, [9] has shown that in the
Bro NIDS, failure to consider worst-case time complexity
of hash functions leads to denial of service. With this mind-
set, we briefly consider mechanisms employed by existing
NIDS with an eye towards triggering the worst case.

• Deterministic finite automata (DFA) systems can experi-
ence exponential memory requirements when DFA’s cor-
responding to individual rules are combined. In some
cases, automata are built incrementally [21] to reduce the
footprint of a DFA that cannot otherwise fit in memory.
Because each byte of traffic is examined exactly once in
a DFA, backtracking does not occur. However, it may be
possible for an adversary to construct packets that trig-
ger incremental state creation on each byte of payload,
resulting in consistently increased computation costs and
potentially leading to memory exhaustion.

• Nondeterministic finite atomata (NFA) systems reduce
the memory requirement costs of DFA systems by al-
lowing the matcher to be in multiple states concurrently.
In practice, this is achieved either through backtrack-
ing or by explicitly maintaining and updating multiple
states. In the first case, algorithmic complexity attacks
are achieved by triggering excessive backtracking. In the
second, the attacker tries to force the NIDS to update
several states for each byte processed.

• Predicate-based systems such as Snort can be slowed
down if the attacker can cause more predicates to be eval-
uated than in the average case. We have presented an
attack that forces the repeated evaluation of a few predi-
cates many times. In contrast, attacks can be devised that
seek to evaluate many predicates a few times. For exam-
ple, Snort employs a multi-pattern string matcher [2] as
a pre-filter to pare down the rules to be matched for each
packet. Constructing payloads that trigger large numbers
of rules can lead to excessive predicate evaluations.

We have performed preliminary work that combines the
second and third observations above to yield packet pro-
cessing times in Snort that are up to 1000 times slower than

9

average. These results, combined with those of this pa-
per, suggest that left unaddressed, algorithmic complexity
attacks can pose significant security risks to NIDS.

8. Conclusions and future work

Algorithmic complexity attacks are effective when they
trigger worst-case behavior that far exceeds average-case
behavior. We have described a new algorithmic complex-
ity attack, the backtracking attack, that exploits rule match-
ing algorithms of NIDS to achieve slowdowns of up to six
orders of magnitude. When faced with these attacks, a real-
time NIDS becomes unable to keep up with incoming traf-
fic, and evasion ensues. We tested this attack on a live Snort
installation and showed that the protected network is vul-
nerable under this attack, along with the tens of thousands
of other networks protected by Snort.

To counter this attack, we have developed a semantics-
preserving defense based on the principle of memoization
that brings Snort performance on attack packets to within
an order of magnitude of benign packets. Our solution con-
tinues the trend of providing algorithmic solutions to algo-
rithmic complexity attacks.

In general, it is not clear how to find and root out all
sources of algorithmic complexity attacks. To do so re-
quires knowledge of average- and worst-case processing
costs. Without a formal model of computation, such knowl-
edge is difficult to obtain and is often acquired in an ad-
hoc manner. Mechanisms for formally characterizing and
identifying algorithms and data structures that are subject
to complexity attacks can serve as useful analysis tools for
developers of critical systems, such as NIDS. We are cur-
rently exploring these issues.

References

[1] Cert advisory ca-2001-26 nimda worm, 2001.
http://www.cert.org /advisories
/CA-2001-26.html .

[2] A. V. Aho and M. J. Corasick. Efficient string matching: An
aid to bibliographic search. InCommunications of the ACM,
June 1975.

[3] M. Attig and J. W. Lockwood. SIFT: Snort intrusion filter
for TCP. InHot Interconnects, Aug. 2005.

[4] J. B. Cabrera, J. Gosar, W. Lee, and R. K. Mehra. On the
statistical distribution of processing times in network intru-
sion detection. In43rd IEEE Conference on Decision and
Control, Dec. 2004.

[5] C. R. Clark and D. E. Schimmel. Scalable pattern
matching for high-speed networks. InIEEE Sympo-
sium on Field-Programmable Custom Computing Machines
(FCCM), pages 249–257, Napa, California, Apr. 2004.

[6] The Snort network intrusion detection system on the intel
ixp2400 network processor. Consystant White Paper, 2003.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduc-
tion to Algorithms. MIT Press/McGraw-Hill, 1990.

[8] S. Crosby. Denial of service through regular expressions. In
Usenix Security work in progress report, Aug. 2003.

[9] S. A. Crosby and D. S. Wallach. Denial of service via algo-
rithmic complexity attacks. InUsenix Security, Aug. 2003.

[10] M. Handley, V. Paxson, and C. Kreibich. Network intru-
sion detection: Evasion, traffic normalization, and end-to-
end protocol semantics. InUsenix Security, Aug. 2001.

[11] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer. Stateful
Intrusion Detection for High-Speed Networks. InProceed-
ings of the IEEE Symposium on Security and Privacy, pages
285–293, Oakland, CA, May 2002. IEEE Press.

[12] W. Lee, J. B. D. Cabrera, A. Thomas, N. Balwalli, S. Saluja,
and Y. Zhang. Performance adaptation in real-time intrusion
detection systems. InRAID, Zurich, Switzerland, Oct. 2002.

[13] V. Paxson. Bro: a system for detecting network intruders in
real-time. InComputer Networks (Amsterdam, Netherlands:
1999), volume 31, pages 2435–2463, 1999.

[14] PCRE: The perl compatible regular expression library.
http://www.pcre.org .

[15] T. H. Ptacek and T. N. Newsham. Insertion, evasion and
denial of service: Eluding network intrusion detection. In
Secure Networks, Inc., Jan. 1998.

[16] T. Reps. “Maximal-munch” tokenization in linear time.
ACM Transactions on Programming Languages and Sys-
tems, 20(2):259–273, 1998.

[17] M. Roesch. Snort - lightweight intrusion detection fornet-
works. InProceedings of the 13th Systems Administration
Conference. USENIX, 1999.

[18] S. Rubin, S. Jha, and B. P. Miller. Automatic generation
and analysis of NIDS attacks. InACSAC ’04, pages 28–38,
Washington, DC, USA, Dec. 2004. IEEE Computer Society.

[19] U. Shankar and V. Paxson. Active mapping: resisting NIDS
evasion without altering traffic. InIEEE Symposium on Se-
curity and Privacy, pages 44–61, May 2003.

[20] R. Sidhu and V. Prasanna. Fast regular expression matching
using FPGAs, 2001.

[21] R. Sommer and V. Paxson. Enhancing byte-level network
intrusion detection signatures with context. InACM CCS,
Washington, DC, Oct. 2003.

[22] J. Sommers and P. Barford. Self-configuring network traffic
generation. InInternet Measurement Conference, pages 68–
81, 2004.

[23] I. Sourdis and D. Pnevmatikatos. Fast, large-scale string
match for a 10gbps FPGA-based network intrusion detec-
tion system. InInternational Conference on Field Pro-
grammable Logic and Applications, Sept. 2003.

[24] L. Tan and T. Sherwood. A high throughput string matching
architecture for intrusion detection and prevention. InInter-
national Symposium on Computer Architecture ISCA, June
2005.

[25] T. Vermeiren, E. Borghs, and B. Haagdorens. Evaluationof
software techniques for parallel packet processing on multi-
core processors. InIEEE Consumer Communications and
Networking Conference, Jan. 2004.

10

alert tcp $EXT NET any -> $SMTP SERVERS 25
(msg:"SMTP From comment overflow attempt";

content:"From|3A|";
content:"<><><><><><><><><><><><><><><><><><><><><> <>",relative;
content:"|28|",relative;
content:"|29|",relative;
sid:2087)

Figure 10. A backtracking-susceptible rule, slightly simp lified, from Snort’s rule database. As long
as the last content string (a right parenthesis) is not found , no alert will be generated.

Slowdown Factor
Stuffing Strategy Snort Snort+Memo

blocked 1,500.4× 2.3×
tiled 25.2× 1.3×
clear 1.0× 1.0×

Table 4. Comparison of blocked and tiled
payload-stuffing schemes with regard to
slowdowns. The blocked schemes provides
significantly higher slowdowns. Fortunately,
slowdowns in both schemes are tempered
using memoization.

A Backtracking Attacks Revisited

A.1 Building Attack Packets

The first-order effectiveness of a backtracking attack is
measured by the number of distinctcontent or pcre
predicates in an attack payload and the number of their rep-
etitions. A second-order effect is the arrangement of the
strings in the attack payload, especially when there is over-
lap in the content strings. Consider Snort Rule 2087, de-
scribed in slightly simplified form in Figure 10. To perform
a backtracking attack against this rule, we repeatedly stuff
the packet payload with the first three content strings, and
we omit the fourth string entirely.

We describe two payload stuffing techniques for this
rule. In the first, we repeatedly tile each of the first three
content strings in order. That is, the payload contains the
stringFrom: , followed by 22 occurrences of<>, followed
by a left parenthesis. For a 1448-byte payload, 30 repeti-
tions of this sequence can be tiled.

In the second scheme, we draw on the repetitions of the
<> characters in the secondcontent predicate to increase
the number of repetitions. In this scheme, we partition
the payload into equal-sized chunks, one chunk per con-
tent string. Each partition is then assigned a content string
and is filled with repetitions of that string. We consider the
first 21 occurrences of<> to be overhead and count them
only once. Thus, the first block of 465 bytes contains 93
occurrences ofFrom: , the second block contains 255 oc-
currences of<> (21 occurrences for overhead, and 234 oc-

currences to fill the partition), and the third block contains
473 left parentheses, yielding a 1448-byte payload.

We quantified the effects of these approaches by building
payloads using both techniques and comparing their run-
times to a payload without any of the content strings. Re-
sults of this test are provided in Table 4. Compared to the
tiling approach, blocking is almost 60× more effective. For-
tunately, in both cases memoization limits the slowdown.

A.2 Additional Experimental Results

Table 5 extends Table 2 to show the effects of the three
optimizations. ColumnsM+CPS, M+Mtn, M+SM show
the strength of constrained predicate sequences, monotone
memoization, and single-match memoization in that order.
Constrained Predicate Sequences and Monotone memoiza-
tion provide the most benefit, but their relative strength de-
pends strongly on the protocol and rule. For example, in
SMTP 3682, CPS and monotonicity perform equally well,
bringing the processing cost down to 127.1 and 187.1 s/GB,
respectively, from 2,192. For SMTP 2087, CPS provides
only a small improvement whereas monotonicity gives an
8× cost reduction. On the other hand, for IRC and Net-
BIOS rules, CPS provides slightly improved performance.

Interestingly, while all three optimizations together do
provide improvements over basic optimization, the best per-
formance results do not always result from the use of all
three optimizations. Slightly better performance for IRC
1382 is obtained using CPS only, and Oracle 2611 performs
best using only monotonicity only.

B Partial Match Attacks

Partial Match Attacks comprise another class of algorith-
mic complexity attacks to which Snort is vulnerable. We
describe partial match attacks briefly, give some experimen-
tal results, and explain the techniques we used to construct
partial match attack packets.

In order to minimize processing of legitimate traffic that
makes up most of its workload, Snort adopts the principle
of stopping the processing of a packet as soon as it becomes
clear that it is not a malicious packet using one of the known

11

Rule Slowdown Processing time (seconds/gigabyte of traffic) Slowdown
Protocol ID for origi- Trace Backtracking attack for modi-

nal Snort traffic Original Memo. M+CPS M+Mtn M+SM M+all fied Snort

IMAP 1755 444× 200.6 89,181 1,802 96.7 123.0 1,786 91.9 0.46×
IRC 1382 134,031× 14.6 1,956,858 1,170 84.3 629.2 1,230 87.6 6.00×
MS-SQL 2003 152× 119.3 18,206 715 143.6 153.8 724 140.4 1.17×
NetBIOS 2403 490× 729.7 357,777 57,173 118.8 429.7 57,160 122.0 0.17×
Oracle 2611 56,296× 110.5 6,220,768 3,666 367.2 171.6 3,650 174.0 1.57×
SMTP 3682 14,960× 1,986,624 903 104.3 138.1 921 103.1 0.78×
SMTP 3682, w/o reas. 232,936× 132.8 30,933,874 2,192 127.1 187.1 2,343 126.4 0.95×
SMTP 2087 1,323× 175,657 5,123 4,694.0 619.2 5,224 164.5 1.24×

Table 5. Extension to Table 2 showing the effects of each opti mization on backtracking attack pro-
cessing time.

exploits. An example of this principle is the algorithm for
matching one rule against a packet (see Figure 3) which
stops after the first predicate that cannot be satisfied. An-
other example of this principle is the quick rejection heuris-
tic that creates a “fast path” for processing packets. We
describe this heuristic below.

Matching strings is easier than matching rules. Aho and
Corasick proposed [2] a memory-efficient single pass algo-
rithm based on a deterministic finite automaton that deter-
mines what subset of a given set of strings occurs in a given
packet. Most Snort rules havecontent predicates, and
the rule cannot match if the strings thesecontent predi-
cates look for are not in the payload. Within every class of
traffic, Snort collects from each rule the longestcontent
string, and it builds an Aho-Corasick state machine. Pack-
ets pass through this filter first, and only those rules whose
longest strings were found are actually matched against the
packet.

An adversary can mount apartial-match attackto slow
down Snort. In this scheme, the attacker incorporates
into packet payloads the longest strings from corresponding
rules. By crafting the packets in a way that forces Snort to
match many predicates in the rules, the processing load can
be increased even further. Our measurements show that for
some traffic classes, such attacks can increase the process-
ing cost of Snort to three orders of magnitude beyond the
cost of processing normal traffic. Maximizing the number
(and cost) of predicates that Snort will need to evaluate is
not a simple process, and we do not claim that in our exper-
iments we found the absolute worst cases for various pro-
tocols (traffic classes). Determined hackers might be able
to force larger slowdowns, so our numbers might underesti-
mate the power of partial-match attacks.

Algorithmic improvements might reduce somewhat the
magnitude of partial-match attacks one can mount against
Snort, but we believe that this problem cannot be eliminated
without changing the semantics of the rule matching oper-
ation because it reflects some fundamental underlying is-
sues: quick tests can establish that many legitimate packets

are not malicious, rules describing exploits are complex in
order to keep false positives low, and some protocols have
more rules associated with them than the average.

B.1 Building Attack Packets

Whereas the target of backtracking attacks is a specific
rule, the goal of partial-match attacks is to trigger the eval-
uation of as many rules as possible. In addition, for each
triggered rule we seek to evaluate as many predicates as
possible without triggering an alarm.

A Partial Match attack for a specific protocol classP is
built by stuffing packet payloads with the longest content
strings from as many rules corresponding toP as possible.
We built partial match packets as follows: first, for each
protocol classP , the longest content string from each rule
in P is extracted, and the strings are sorted in increasing
order according to length. Second, a packet is tiled with
longest content strings starting with the shortest longest-
content strings first (the beginning of the list). The tilingfor
a packet stops when the sequence of longest content strings
exceeds the payload size of an Ethernet frame (1460 bytes),
or when the list of content strings is exhausted, whichever
comes first.

During detection, each of these tiled longest content
strings will be matched in the Aho-Corasick prefilter, max-
imizing the number of rules per packet that are examined
(note that Snort maintains a per-protocol bitmap of rules
that have been examined, so that examining a rule multiple
times by repeating its longest content string is not possible).

In many cases, the content strings from a rule are re-
quired to appear at well-defined offsets in the packet pay-
load. The Aho-Corasick state machine finds matches in
a position-independent manner, however. In these cases,
tiling content strings in the payload independent of their po-
sition allows the packet to pass through the filter only to be
rejected immediately by the rules themselves. Greater slow-
downs can be achieved by combining partial match attacks
along with hardest protocol attacks; i.e., construct packet

12

Traffic Processing (s/GB) Slowdown
class Trace Part.-m. wrt. same wrt. entire

traffic attack trf. class traffic mix

Oracle 110.5 113,658 1,028× 5,517×
ftp-ctrl cli. 117.6 1,930 16.4× 93.7×
smtp cli. 128.4 1,642 12.8× 79.7×
pop3 cli. 20.1 618 30.7× 30.0×
ssh cli. 23.3 611 26.2× 29.7×
namesrvr cli. 72.1 447 6.2× 21.7×
imaps cli. 27.7 135 4.9× 6.6×
web srv. 5.1 34.9 6.8× 1.7×
All traffic 20.6 NA NA NA

Table 6. Processing cost of partial-match at-
tacks (column 3) against processing paths
corresponding to some of the traffic classes
recognized by Snort. We compute the slow-
down of the partial-match attack (column 4)
as the ratio to the cost of processing normal
traffic from the same traffic class (column 2)
and as the ratio to the cost of processing all
traffic (column 5).

payloads such that many rules are invoked and many (but
not all) predicates in each rule are evaluated.

In this work, most partial-match attacks were built ei-
ther by hand or using simple tools that stuff payloads with-
out regard to protocol fields. Mechanisms for automatically
constructing attacks that maximize the processing time as a
function of the the number of rules examined and the num-
ber of predicates evaluated per rule is the subject of future
work.

B.2 Experimental Results

Table 6 shows the effect of partial-match attacks against
certain protocols. The partial-match attacks consisted of
packets of various sizes that force the evaluation of all rules
for the given protocol (or just the most expensive ones), and
in some cases we crafted payloads that forced certain rules
to evaluate multiple predicates, but without matching any
of the rules. In the case of Oracle database rules, the attack
traffic took extremely long to process because it hit many
rules with complex regular expressions.

One of the goals of the partial-match attack is to de-
feat the processing-time advantage gained through the Aho-
Corasick pre-filter. Table 7 shows preliminary results that
quantify the degree to which the pre-filter is circumvented.

We measured the processing time and rule counts for
Snort under three scenarios and reported these results in Ta-
ble 7. The first scenario captures the processing time and
the average number of examined rules per packet for several
protocols using memoized Snort with all optimizations en-
abled. The second scenario repeats the first except that the

Aho-Corasick filter is disabled. Finally, the third scenario is
identical to the first scenario except that distinct traces com-
posed only of partial match attacks are used in place of the
traces.

These results do not correspond exactly to the results in
Table 6 because these results are drawn from a single trace,
whereas Table 6 contains results averaged from all traces.

The Rule/Packet columns show the average number of
rules examined per packet for each of the scenarios. The
role of the Aho-Corasick filter is apparent, reducing the av-
erage number of examined rules per packet significantly and
decreasing the processing time by approximately a factor of
5 for most protocols. In all cases, partial match attacks re-
sult in larger numbers of rules being examined, leading to
increased processing times.

The oracle entry provides some insight into the com-
bined effects of partial-match and hardest-protocol at-
tacks. Many of the oracle-specific rules are composed of
a content predicate followed immediately by a complex
pcre predicate. Thecontent predicate serves as a guard
against the regular expression. During matching, if the con-
tent string is not found then thepcre processing cost is
avoided. On the other hand, if the content string is found
then thepcre must be matched. A partial match attack
composed of content strings from many rules triggerspcre
predicate evaluation for each rule, yielding a processing
time significantly larger than that obtained simply by elim-
inating the pre-filter.

13

Protocol Class Aho-Corasick Aho-Corasick Disabled Partial Match Attacks
s/GB Rules/packet s/GB Rules/packet s/GB Rules/packet

oracle 110.5 2.6 622.3 294.8 113356.5 77.3
smtp 115.8 3.3 536.8 123.8 1642.2 230.0
ssh 30.9 0.0060 153.0 84.9 610.7 43.3
imaps 62.3 1.2 141.8 86.7 134.3 46.0
mysql 27.7 0.2 45.1 89.7 261.0 70.0
dns 41.1 0.1 256.4 62.0 156.5 37.5

Table 7. Comparison of partial match attacks to Aho-Corasic k filtering performance. The average
processing time and average number of examined rules per pac ket are reported for three scenarios,
showing the extent to which partial match attacks invalidat e Aho-Corasick filtering. Note that these
results measure only one direction in the corresponding flow s of the traces and therefore do not
correspond exactly to the results in Table 6.

14

