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Abstract

A new representation of faces, called face cyclographs,
is introduced for face recognition that incorporates all
views of a rotating face into a single image. The main
motivation for this representation comes from recent psy-
chophysical studies that show that humans use continuous
image sequences in object recognition. Face cyclographs
are created by slicing spatiotemporal face volumes that
are constructed automatically based on real-time face de-
tection. This representation is a compact, multiperspec-
tive, spatiotemporal description. To use face cyclographs
for recognition, a dynamic programming based algorithm
is developed. The motion trajectory image of the eye slice
is used to analyze the approximate single-axis motion and
normalize the face cyclographs. Using normalized face
cyclographs can speed up the matching process. Experi-
mental results on more than 100 face videos show that this
representation efficiently encodes the continuous views
of faces and improves face recognition performance over
view-based methods.

1 Introduction

Over the last several years there have been numerous ad-
vances in capturing multiperspective images, i.e., com-~
bining (parts of) images taken from multiple viewpoints
into a single representation that simultaneously encodes
appearance from many views. Multiperspective images
[23, 15] have been shown to be useful for a growing vari-
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ety of tasks, notably scene visualization (e.g., panoramic
mosaics [11] [16]) and stereo reconstruction [14]. Since
one fundamental goal of computer vision is object recog-
nition [9], a question may be asked: are multiperspective
images of benefit for object recognition?

Under normal conditions, 3D objects are always seen
from multiple viewpoints, either from a continuously
moving observer who walks around an object or by turn-
ing the object so as to see it from multiple sides. This
suggests that a multiperspective representation of objects
might be useful.

Recently, psychophysical results have shown that the
human brain represents objects as a series of connected
views [18] [21] [2]. In psychophysical experiments by
Stone [18], participants learned sequences which showed
3D shapes rotating in one particular direction. If partici-
pants had to recognize the same object rotating in the op-
posite direction, it took them significantly longer to rec-
ognize and the recognition rate decreased. This result
cannot be reconciled with traditional view-based repre-
sentations [19] whose recognition performance does not
depend on the order in which images are presented. In-
stead, it is argued in [18] that the temporal characteristics
of the learned sequences such as the order of images are
closely intertwined with object representation. These re-
sults and others from physiological studies [10] support
the hypothesis that humans represent objects as a series
of connected views [2].

The findings from human recognition may have prac-
tical guidance for developing better computational ob-
ject recognition systems. Biilthoff et al. [2] presented a
method for face recognition based on psychophysical re-
sults [18] [21] in which they showed experimentally that



the representation of connected views gives much bet-
ter recognition performance than traditional view-based
methods. The main idea of their approach is to process
an input sequence frame-by-frame by tracking local im-
age patches to achieve segmentation of the sequence into
a series of time-connected “key frames” or views. How-
ever, a drawback of the “key frames” representation is that
it still needs several view images to characterize the whole
sequence.

Can we integrate all continuous views of an object into
a single image representation? In this paper we propose a
new method to incorporate all views of an object, which
is the cyclograph of the object [5] [15], a type of multi-
perspective image. A cyclograph is generated when the
object rotates in front of a static camera or the camera ro-
tates around the object. See Figure 5 for some examples
of face cyclographs. It has a long history in photography,
with the first patent related to making cyclographsin 1911
[5]. Cyclographs have been used previously for image-
based rendering [13] and stereo reconstruction [14]. But,
to our knowledge, there is no previous work using cyclo-
graphs for object recognition.

The major contributions of this paper are:

e Propose a new method to incorporate all continuous
views of an object for recognition using the cyclo-
graph image of the object.

e Develop a method to recognize faces using cyclo-
graphs based on a dynamic programming technique
which can align and match cyclographs simultane-
ously.

e Present a method to normalize cyclographs based on
motion trajectory image analysis and image warping.
Using the normalized cyclographs a faster method
for recognition is developed.

The paper is organized as follows. Section 2 presents
the analysis of the spatiotemporal volume of continuous
views of objects, and the generation of face cyclographs.
Section 3 describes properties of face cyclographs espe-
cially for face recognition. Section 4 presents two meth-
ods for face recognition using face cyclographs. Exper-
imental results are given in Section 5. Some issues are
discussed in Section 6.

2 Viewing Rotating Objects

Our goal is to develop a computational method that en-
codes all continuous views of faces for face recognition.
In psychophysical experiments, the connected views of
an object are captured from object rotation in one partic-
ular direction [18] [2]. Following the psychophysical ex-
periments, we consider the class of single-axis rotations
and associated appearances as the basis for capturing the
continuous views of faces. The most natural rotations in
depth for faces are when an erect person rotates his or her
head, resulting in an approximately single-axis rotation
about a vertical axis. Many other objects have single-axis
rotations as the most “natural” way of looking at them.
When we see a novel object we usually do not see random
views of the object but in most cases we walk around it or
turn the object in our hand [2].

2.1 Spatiotemporal Volume

Suppose that a 3D object rotates about an axis in front of
a camera, as shown in Figure 1, where different circles
represent different depths of the object, and a sequence
of images are captured. Stacking together the sequence
of images, a 3-dimensional volume, x-y-f, can be built,
which is called a spatiotemporal volume. All continuous
views are contained within this 3D volume data.
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Figure 1: A camera captures a sequence of images when
an object rotates about an axis. Circles with different radii
denote different depths of the object.

In psychophysical studies, this 3D volume data is called
a spatiotemporal signature and there is evidence showing
that such signatures are used by humans in object recog-



nition [17], but no computational representation was pre-
sented. We analyze the spatiotemporal volume and gener-
ate a computational representation of rotating objects.

2.2 3D Volume Analysis

The spatiotemporal volume, x-y-t, is a stack of x-y images
accumulated over time ¢. Each x-y image contains only
appearance but no motion information. On the contrary,
the x-f or y-t images contain both spatial and temporal in-
formation. They are called spatiotemporal images. The
x-t and y-f images can be obtained by slicing the x-y-f
volume, as shown in Figure 2, with blue and red lines,
respectively.

Figure 2: A 3-dimensional volume is sliced to get differ-
ent image content. The x-f and y-t slices are spatiotempo-
ral images.

Given a 3D volume, x-y-1, all the x-7 (or y-f) slices pre-
serve all the original information without any loss. This
is not difficult to see. The x-y slices are captured by the
camera, while the x-7 or y-¢ slices are cut from the volume
independently. The union of all x- (or y-7) slices is exactly
the original volume. On the other hand, different slices,
i.e., x-y, x-t, or y-t, encode different information from the
3D volume.

Although both x-f and y-f slices are spatiotemporal im-
ages, they contain different information. When the object
rotates about an axis that is parallel to the image’s y axis,
each x-f slice contains information on object points along
a horizontal line on the object surface, defining the mo-
tion trajectories of these points. One example is shown
in Figure 8(a). On the contrary, each y- slice contains
column-wise appearance of the object surface because of

the object rotation about an axis that is parallel to the im-
age’s y axis. Thus y-f slices encode the appearance of the
object as it rotates 360°. Partial examples are shown in
Figure 7.

When a convex (or nearly convex) object rotates about
an axis 360°, the spatiotemporal volume is constructed
by stacking the whole sequence of images captured by a
static camera. The slice that intersects the rotation axis
usually contains the most visible appearance of the object
in comparison with other parallel slices. Furthermore, this
slice has also least distortion.

As shown in Figure 3 with a top-down view, when an
object rotates 360°, each point on the object surface inter-
sects the slice, 4, once and only once. All other slices
will miss seeing some parts of the object. In this sense Sy
contains the most appearance of the object. This can also
be observed from the y-f slices in the face volume shown
in Figure 7 in which the middle image corresponding to
S4. Further, slice S4 usually minimizes foreshortening
distortion because it samples every visible surface point at
a near-normal angle. While other parallel slices approach
the object surface at variable angles.

Figure 3: Top-down view of a 3D object rotating about
an axis. The circles with different radii denote different
depths on the object surface.

2.3 Spatiotemporal Face Volume

To represent rotating faces for recognition we need to ex-
tract a spatiotemporal sub-volume containing the face re-
gion, which we call the spatiotemporal face volume. A
face detector [20] can be used to automatically detect
faces in sequences of face images. Figure 4 shows the



face detection results in the first frame of a face video.
The face positions reported by the face detector can then
be used to determine a 3D face volume. False alarms from
the face detector are removed by using facial skin color
information. The eyes, detected with a similar technique
as that in the face detector [20], are used for locating the
motion trajectory image of the eye-level slice, which will
be presented in Section 4.3,

Figure 4: Face and eye detection in a frontal face image.

2.4 Face Cyclographs

Given a spatiotemporal face volume with each coordinate
normalized between 0 and 1, we can analyze the 3D face
volume via slicing. Based on Section 2.2, one may slice
the volume in any way without information loss. How-
ever, the y-f slices encode all of the visible appearance
of the object for single-axis rotation about a vertical axis.
Furthermore, the unique slice that intersects the rotation
axis contains the most visible appearance of the object
with minimum distortion among all y-f slices. As a result,
we will use this slice for the rotating face representation.

In our face volume, the slice that intersects the rota-
tion axis is approximately the one with = 0.5. This
middle slice extracts the middle column of pixels from
each frame and concatenates them to create a face-like
image, called the “cyclograph of a face,” or simply “face
cyclograph.” One face cyclograph is created for each face
video. The size of a face cyclograph image is determined
by the video length and the size of the segmented faces,
i.e., the width of the face cyclograph is the number of
frames in the video, and the height is the height of the
segmented faces.

A face cyclograph can also be viewed as being cap-
tured by a strip camera [13]. As shown in Figure 6(b), the
face cyclograph captures the face completely from left to
right profiles, and all parts of the face surface are captured
equally well. On the contrary, when a pin-hole camera is
used as shown in Figure 6(a), the face surface is captured
poorly when the camera’s viewing rays approach grazing
angle with the face surface, and the face surface, causing
parts of the face surface to be captured unequally.

Figure 5: Some examples of face cyclographs. Each head
rotates approximately 90°.

(@) (b)

Figure 6: A face (nearly-convex object) is captured. (a)
The frontal (from C3) and side views (from C1 and Cs)
are captured separately. (b) The face cyclograph captures
all parts of the face surface equally well.

Because in our face videos (see Section 5.1 for details)
the initial face is always approximately frontal and the last
face is approximately a profile view, the created face cy-
clographs look like a “half face,” as shown in Figure 5. To
create a “whole face cyclograph,” the head needs to rotate
approximately 180°. For recognition purpose, there is no
need to capture 360° head rotation since the back of the
head has no useful information.



Figure 7: The y-f slices of the face volume at every twenty-pixel interval in the x coordinate.

3 Properties of Face Cyclographs

Some properties of the face cyclograph representation are
now described, especially concerning the face recognition
problem.

3.1 Compact

The face cyclograph representation is compact. From
Section 2, the y-# slices contain all appearance information
in a spatiotemporal face volume. But only one slice inter-
sects the rotation axis (see Figure 3). The face cyclograph
is constructed from this slice. The other slices that do not
intersect the rotation axis are not used. Consequently, this
representation largely reduces the redundancy in the spa-
tiotemporal face volume. In comparison with Biilthoff’s
key frames approach [2], the face cyclograph uses local
strips from moving faces without overlap, instead of us-
ing partially overlapped key frames and overlapped local
patches from each key frame. Therefore the face cyclo-
graph is a concise representation.

3.2 Multiperspective

A face cyclograph is a multiperspective image of a face.
The advantage of using a multiperspective face image is
that the faces observed from all viewpoints can be inte-
grated together into a single image representation. The
multiperspective face image encodes facial appearance all
over the face surface and not just from 1 viewpoint. The
face cyclograph can be viewed as being captured by a
strip camera [13]. For nearly cylindrical objects (e.g.,
faces), each strip captures frontoparallel views of the sur-
face along that strip. On the contrary, the “key frames”
approach [2] uses a series of single perspective images.

3.3 Keeps Temporal Order

If a head rotates continuously in one direction, the face cy-
clograph successively extracts strips from the spatiotem-
poral face volume without changing the temporal order
in the original face sequence. Temporal order is impor-
tant for moving face recognition in psychophysical stud-
ies [17][18] {2].

Computationally, the temporal order is also important
for designing a matching algorithm for face recognition.
In Section 4 the recognition algorithm, which is based on
dynamic programming, depends on this property.

4 Recognition using Face Cyclo-
graphs

For face recognition, one face cyclograph is computed for
each face video sequence containing one rotating face.
Given a testing face sequence, the face cyclograph is com-
puted first and then matched to all face cyclographs in
the database. Two algorithms have been developed for
matching face cyclographs. The first uses dynamic pro-
gramming (DP) [12] for alignment and matching of face
cyclographs. The monotonicity condition has to be satis-
fied to use DP and face cyclographs satisfy this by keep-
ing the temporal order of the original face sequences. The
second method analyzes the face motion trajectory image
and then normalizes face cyclographs to the same size be-
fore matching.

4.1 Matching Two Strips

The local match measure of two strips is described in this
subsection. Each strip is a vertical column in a face cyclo-
graph image. Matching two strips in two face cyclographs
is a 1D image matching problem. We define the similarity



between two strips, strip; and strip;, using the a-norm:

M

where p; and py are transforms for strips with respect
to a parameter set ©. © characterizes the methods used
for feature extraction. Currently, we simply use the pixel
color information as the similarity measure; one could al-
ternatively use a 1D wavelet transform to extract features
and then match strips.

S =\ pi(strip;, ©) — pa(strip;, ©) |l

4.2 Matching Face Cyclographs using Dy-
namic Programming

Given a match measure between two strips, the next step
is to match two face cyclographs. The number of strips
within each cyclograph will vary in general because it is
determined by the number of frames in the input video
sequence, which itself is influenced by the speed and uni-
formity of the head rotation. The algorithm has to take
these variabilities into consideration in matching face cy-
clographs.

We develop a method for matching face cyclographs
based on the dynamic programming technique [12],
which can effectively align variable-width face cyclo-
graphs and match them simultaneously.

The DP technique can be used for matching face cy-
clographs because they keep the temporal order in head
motion. The sub-problem of matching two strips was pre-
sented in Section 4.1.

The cost function of DP optimization is

Cij = min{Cj1,j-1,Ci-1,;,Cij-1} + 57, (2)

where Cj ; is the minimum cost of matching strip pairs ¢
and j. The accumulated costs are filled in a 2D table and
an optimal path is traced back in the cost table. The final
cost corresponds to the optimal path to match two face
cyclographs. The smaller this cost, the more similar are
two face cyclograph images.

The computational complexity of dynamic program-
ming is O(M N') to match two face cyclographs of widths
M and N.

4.3 Normalized Face Cyclographs

Face cyclographs can also be normalized to the same
size before matching. Using normalized face cyclographs

can make the recognition process much faster, and allow
feature extraction on 2D images rather than 1D strips.
To normalize face cyclographs, we developed a method
based on motion trajectory image analysis.

Motion-trajectory images are slices perpendicular to
the rotation axis in the spatiotemporal volume. They are
similar to the epipolar plane images (EPI) [1]. The EPI
was used for scene structure estimation with a camera
moving along a straight line. Here we use the motion
trajectory images for face motion analysis. For a face ro-
tating about a vertical axis, the horizontal slices contain
face motion trajectory information. Experimentally we
found that the slice of the eyes gives richer information
than other slices for motion analysis. One example of the
eye slice is shown in Figure 8(a).

Given the eye slice motion-trajectory image, we can de-
tect and remove non-motion image frames from the origi-
nal sequence of face images, and then align the remaining
frames. The whole algorithm consists of the following 5
steps:

(1) Edge detection. Edges in the motion trajectory im-
age are detected using the Canny edge detector [3].

(2) Average edge direction. The average of edge direc-
tions over each row in the edge image is estimated using

1
Diri= 3 e 0y |
-

where n; is the number of edges in row 1 of the motion
trajectory image, 0;; is the edge direction angle of the j**
edge in row i, and Dir; is the average of edge direction
in row i. This average improves the robustness for edge
direction estimation.

(3) Median filtering.

(4) Non-motion detection. Each row in the motion tra-

jectory image corresponds to one frame in the original

video sequence. Dir; characterizes the amount of mo-
tion in frame 4. If the edge in row 7 is almost vertical then
there is no motion in frame %, and the value of Dir; will
be very small. So the criterion for non-motion detection
is that if Dir; is smaller than a threshold (experimentally
chosen to be 0.4), frame 7 contains no motion. The de-
tected frames with no motion are removed.

(5) Image warping. The remaining frames in the im-
age sequence contain some head rotation between con-
secutive frames. The corresponding strips sliced from
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Figure 8: (a) Motion trajectory image sliced along the right eye center. (b) Detected edges. (c¢) Cotangent of the edge
direction angles averaged and median filtered. (d) The new face cyclograph after non-motion part removal.

those frames are concatenated to construct the face cy-
clograph. In this way, all face cyclographs contain only
moving parts. Finally, the face cyclograph is normalized
to a fixed size by image warping [22].

5 Experiments

5.1 A Dynamic Face Database

A face video database with horizontal head rotation was
captured. Each subject was asked to rotate his or her head
from an approximately frontal view to an approximately
profile view (i.e., approximately a 90° head rotation). A
single, stationary, uncalibrated camera was used to cap-
ture videos of the subjects. 28 individuals, each with 3 to
6 videos, were captured for a total of 102 videos in the
database. The number of frames per video varies, rang-
ing from 98 to 290, resulting in a total of 21,018 image
frames. Each image is size 720 x 480. An image in one
of our face videos is shown in Figure 4.

Each video in our face video database was matched
against all other face videos, providing an exhaustive
comparison of every pair of face videos. Precision and re-
call measures were computed to evaluate the algorithm’s
performance. Let T'P stand for true positives, FP for
false positives, and FN for false negatives. precision
is defined as 'T%ﬁ’ and recall is defined as T’FI&W'
Precision measures how accurate the algorithm is in pre-
dicting the positives, and recall measures how many of
the total positives the algorithm can identify. Both preci-
sion and recall were computed with respect to the top n
matches, characterizing how many faces have to be exam-
ined to get a desired level of performance.

5.2 Face Recognition Results

Face cyclographs were created for all 102 face videos in
our database. No faces were missed by this completely
automatic process. The similarity measure between two
face cyclographs was the 1-norm, i.e., @ = 1 in Eq. (1).
Given a query face cyclograph, the costs of matching it
with all remaining 101 face cyclographs were computed
and sorted in ascending order. Then the precision and re-
call were computed with respect to the top n matches,
with m = 1,2,---,101. Finally, the precision and re-
call were averaged over all 102 queries and are shown in
Figure 9. The average precision was very high for the top
matches. For example, it was 99.02% for the top 1 match,
95.10% for the top 2, and so on for the DP method. The
recall curve approaches 1 very quickly.

Using the normalized face cyclograph method, the per-
formance was slightly lower than using DP. The reason
may be that linear warping introduces artifacts. A non-
linear warping method is under consideration.

The face cyclographs algorithms were also compared
with a simple view-based face recognition method, sim-
ilar to those in [2]. The test faces in [2] were the faces
between key frames. Since there is no manual labelling
in our approach, we randomly chose one frame in each
video and did face detection [7] together with false detec-
tion removal. We used the same 1-norm image similarity
measure similar to Eq. (1) but defined in 2D. As seen in
Figure 9, the performance of the face cyclographs meth-
ods is much higher than view-based face recognition in
both precision and recall.

We did not compare our face cyclographs approach
with the “key frames” approach [2] because it requires la-
belled faces, which are not easily obtained for the amount



of video in our database. Our approach uses dense se-
quences without any manual work.

6 Discussion

In this paper we used face cyclographs for face recogni-
tion, which integrated the continuous views of a rotating
face into a single image. We believe that this multiper-
spective representation is also useful for other object rep-
resentation and recognition tasks. The basic idea is to cap-
ture object appearance from a continuous range of view-
points and then generate a single multiperspective image
to represent the object, instead of using multiple single-
perspective images which is the traditional view-based
representation.

Assuming a simplified 3D head model, e.g., a cylinder
[4] or ellipsoid [8], a 2D face image taken from a single
viewpoint can be unwrapped when it is registered with
the head model that contains reference face texture maps.
Our face cyclograph representation does not require any
assumptions about the object shape, nor registration of
different object views. Hence it is not difficult to extend
the cyclograph representation for other object recognition
tasks. Furthermore, the creation of a face cyclograph is
simple and fast so it is useful for real-time recognition.
Finally, unwrapped faces [4] [8] are not necessarily mul-
tiperspective [15], as face cyclographs are.

The focus of this paper is to propose a face representa-
tion that encodes all views of a rotating face with a face
cyclograph, and to demonstrate its use for face recogni-
tion. Our work is different from recent methods on video-
based face recognition where head motions are arbitrary
(see [6] and references there).

In order to extend the face cyclograph representation
for a face video containing arbitrary head motions, a key
pre-processing step is required. That is, to manipulate
a face video with arbitrary head motion to create a face
video with single axis head rotation starting from a frontal
view and ending at a side view. This pre-processing
step can be viewed as an image-based rendering problem.
Then, a face cyclograph can be generated and used for
recognition based on the techniques presented in this pa-
per. We will investigate this issue in the future.

7 Conclusions

Motivated by recent psychophysical studies, this paper
presented a new face representation, called face cyclo-
graphs, for face recognition. Temporal characteristics are
encoded as part of the representation, resulting in better
face recognition performance than using traditional view-
based representations. This new representation is com-
pact, robust, and simple to compute from a spatiotempo-
ral face volume, which itself is automatically constructed
from a video sequence. Face recognition is performed us-
ing dynamic programming to match face cyclographs or
using normalized face cyclographs based on motion tra-

jectory analysis and image warping, We expect the multi-

perspective representation to improve results of other ob-

ject recognition tasks as well.
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Figure 9: Average precision and recall with respect to the
top N matches. The comparison is between the face cy-
clographs (multiperspective) and view-based faces (single
perspective). In face cyclographs, two methods are pro-
posed, one is face cyclographs + DP, and the other uses
normalized face cyclographs.



