B E B OB

2 om@a

E @B E O

B E = B

E a3 888

Qe B @ EBE QR A

P E @ E0DEREREEDEB G

Wire Speed Packet Classification Without
TCAMs: A Few More Registers (And a Bit of
Logic) Are Enough

Qunfeng Dong

Suman Banerjee

Jia Wang

Dheeraj Agrawal
Technical Report #1549

September 2006 (Revised)

UNIVERSITY OF

M A D1 S O N

Wire Speed Packet Classification Without TCAMs: A Few
More Registers (And A Bit of Logic) Are Enough

Qunfeng Dong
University of Wisconsin
Madison, WI

gunfeng @ cs.wisc.edu

Jia Wang
AT&T Labs - Research
Florham Park, NJ

jlawang @research.att.com

ABSTRACT

Packet classification is the foundation of many Internet
functions such as QoS and security. A long thread of
research has proposed efficient software-based solutions
to this problem. Such software solutions are attractive
because they require cheap memory systems for imple-
mentation, thus bringing down the overall cost of the
system. In contrast, hardware-based solutions use more
expensive memory systems, e.g., TCAMs, but are often
preferred by router vendors for their faster classifica-
tion speeds. The goal of this paper is to find a ‘best-of-
both-worlds’ solution — a solution that incurs cost of a
software-based system and has the speed of a hardware-
based one. Our proposed solution, called smart rule
cache achieves this goal by using minimal hardware — a
few additional registers — to cache evolving rules which
preserve classification semantics, and additional logic to
match incoming packets to these rules. Using real traf-
fic traces and real rule sets from a tier-1 ISP, we show
such a setup is sufficient to achieve very high hit ratios
for fast classification in hardware. Cache miss ratios
are 2 ~ 4 orders of magnitude lower than flow cache
schemes. Given its low cost and good performance, we
believe our solution may create significant impact on
current industry practice.

1. INTRODUCTION

The Internet has been and will be constantly evolv-
ing in its functionality. For example, many enterprises
today require quality of service (QoS) guarantees from
their ISPs so that their Internet traffic is not affected
by traffic from other users. Similarly, they also require
security guarantees from their ISPs to protect them-
selves from malicious traffic. All such functions require
a finer differentiation of packets based on packet header
fields other than destination IP address [7], which is re-
ferred to as packet classification. Other Internet func-

Suman Banerjee
University of Wisconsin
Madison, Wi

suman @ cs.wisc.edu

Dheeraj Agrawal
University of Wisconsin
Madison, Wi

dheeraj@cs.wisc.edu

tions that rely on packet classification include virtual
private network (VPN) services, traffic billing, policy-
based routing, and so on [12].

Packet classification involves matching each incoming
packet against a rule set which is a set of rules defined
over a number of packet header fields. For each of those
packet header fields F', a rule specifies a literal given
in the general form of F € [a,b]. For example, the
source port number may be required to be in the range
[5001, 65535]. Three commonly used special cases of the
range [a, b] are single values, prefixes and the entire do-
main of field F (represented by a wildcard), as shown
in Table 1. When matching a packet against a rule,
each literal in the rule is evaluated on the correspond-
ing packet header field. If every literal is evaluated to
be true, the rule is considered to match the packet. Be-
sides the literals, each rule also specifies a decision (or
action) on packets matching the rule. For example, the
decision may be deny if packets that match the rule is
classified as unwanted traffic.

In general, there are two models of packet classifica-
tion. The most commonly used model is the first-match
model, where the rule set is ordered and the objective
is to find for each incoming packet the first matching
rule. The other model is the multi-match model [33],
where rules are not sorted and the objective is to find
for each incoming packet all the rules that match the
packet. In this paper, we focus on the most commonly
used first-match model. This is also the model that is
widely popularized by the Cisco Access Control Lists
(ACLs) [1].

Both software solutions and hardware solutions have
been proposed for packet classification. Software solu-
tions can be implemented in much less expensive DRAMs,
and are especially useful to perform complex packet
classification at reasonable speeds. For example, state-
ful packet classification, where states from previously
observed packets affect the classification of an incoming
packet, are usually better performed in software. Hard-
ware solutions may be both expensive and sometimes

rule # source IP destination IP source port destination port protocol | action
1 * 10.112.% . % 5001-65535 * TCP deny
2 32.75.226.153 * * 1001~2000 ICMP deny
3 199.36.184.% * 491562-65535 * ICMP deny
4 * * * * * permit

Table 1: Example rules in a rule set.

infeasible to meet these needs. As a consequence, ex-
pensive signature detection operations implemented in
firewalls are usually performed in software. In contrast,
hardware solutions (e.g. those using ternary content
addressable memory (TCAM) [20]) are more expensive
and more suited to perform relatively simpler packet
classification, but at wire speeds. Such simpler but
wire speed classification is the need in Internet back-
bone routers, and is the focus of this paper.

Despite the long thread of research [16, 26, 12, 27, 13,
31, 23, 3, 2, 30, 24, 15, 28, 6, 14] on designing efficient
packet classification algorithms, packet classification as
a general theory problem is inherently hard. Overmars
and van der Stappen [21] have shown that for packet
classification over d > 3 packet header fields, the best
known algorithms have either O(logn) search time at
the cost of O(n?) space or O ((logn)4~1) search time at
the cost of O(n) space, where n is the number of rules
in the rule set. While fast network processors have been
successfully designed to keep up with wire speeds, the
only widening gap between memory access speeds and
wire speeds represents an increasingly tough challenge
to software solutions for wire speed packet classification.
In [9], Estan and Varghese report that DRAM speeds
improve 7% ~ 9% per year while wire speeds improve
100% per year.

Given that, most router vendors favor hardware so-
lutions based on TCAM for its fast and scalable speed.
For convenience, we define the projection of a packet
to be the d-tuple consisting of the packet header field
values corresponding to the d packet header fields spec-
ified in the rule set. Basically, TCAMs compare a given
search key (i.e., the projection of a packet) with all en-
tries (i.e., stored rules) in parallel and returns the first
matching entry in one single clock.

However, TCAM has its own problems as well. As a
more complex technology, TCAM is more expensive and
more power consuining than conventional DRAM/SRAM-
based systems. Moreover, TCAM is well known to suf-
fer inefficient range specification [8]. To be stored in a
single TCAM entry, a range must be represented as a
prefix. For example, the range [128,191] can be rep-
resented as the prefix 10xxxxxx. Otherwise, the range
is usually partitioned into multiple sub-ranges, each of
which can be represented as a prefix. In general, a range
defined over an m-bit field may take up to 2m—-2 TCAM
entries to represent. The total number of TCAM entries
needed to represent a rule is the multiplication of the
number of prefixes needed to represent the ranges spec-
ified on individual fields. For example, if a rule specifies

ranges on k m-bit packet header fields, it will take up to
(2m — 2)¥ TCAM entries to represent. As wire speeds,
rule set size and range specifications rapidly increase
[17], a pure TCAM-based solution, where all rules are
expressed in TCAMs will become an increasingly ex-
pensive solution.

To summarize, hardware solution are attractive be-
cause of their ability to classify packets at wire speeds,
but are quite expensive and are a significant part of
the cost of a router; on the other hand, software solu-
tions reduce expensive hardware costs (since they can
be implemented in much less expensive DRAMs), but
can rarely match the speed of hardware solutions. In
this paper, we therefore, address the following challeng-
ing problem — is it possible to design a classification
system that has the cost similar to a software-based sys-
tem and speed of a hardware-based system? We answer
this question in the affirmative and present an approach
which can provide the best-of-both-worlds solution to
the classification problem.

Our approach called smart rule cache has the follow-
ing attractive properties. First, it proposes the use of
just a few cache entries to cache a few specially-crafted
rules. A unique aspect of our proposal is that we do
not necessarily cache an exact rule from the rule set.
Instead, we cache independently constructed rules that
are derived from the semantics of the rule set. In or-
der to preserve correctness, we ensure that such rules
preserve semantic equivalence of the classification task.
Second, the cached rules evolve over time. This rule
evolution process is driven by (changing) characteris-
tics of incoming traffic that is continuously learned by
the smart rule cache module.

Use of fast caches for fast packet classification is nat-
urally appealing and has been studied in the past, e.g.,
flow cache schemes [32, 4]. (In this paper, a flow corre-
sponds to a set of all packets with the same projection.)
Previous work [5, 29, 11] has reported a high degree of
temporal locality in Internet traffic, i.e., the arrival of
a packet implies a high probability of the arrival of an-
other packet of the same flow in the near future. In flow
cache schemes, the cache is used to store the projection
and decision of recently observed packets, with the ex-
pectation of speeding up the classification of succeeding
packets with the same projections.

Given that most flows are short-lived [22], i.e., flow
populations are fairly dynamic, it is not rare for in-
dividual routers to observe millions of concurrent flows
today [10] and we expect this number to only grow with
time. Hence, a large flow cache would be necessary to

Rule I (Fy €[30,70]) A (F» € [40,60]) — permit
Rule I : (F; € [10,80]) A (F; € [20,45]) — permit
Rule IIT : (F; € [25,75]) A (F» € [55,85]) — permit
Rule IV : (Fy € [0,100]) A (F € [0,100]) — deny

Table 2: A rule set of 4 rules. Rules ordered by priority.

(@ (&)

Figure 1: Caching an independently defined and dy-
namically evolving rules based on the rule set in Table 2.

achieve high and stable cache hit ratios when using such
flow cache schemes. For instance, using 16K cache en-
tries, the flow cache scheme proposed in [32] delivers a
cache miss ratio of 8% on a sample trace with less than
14,000 concurrent flows. Another flow cache scheme is
later proposed in [4]. Using a 4KB size cache that can
be configured to store 611 concurrent flows, the authors
report a cache miss ratio of 4.85% on a sample trace con-
taining up to 567 concurrent flows. In contrast, we will
show in this paper that our rule caching approach can
achieve superior performance than flow caching ones,
with orders of magnitude lower cache requirements (just
a few registers). As discussed in Section 1.1, this supe-
rior performance stems from three related advantages
of our proposed constructs.

1.1 A motivating example

In this section, we illustrate our proposed smart rule
cache approach through a simple example. Through
this process, we also present an intuitive understand-
ing why such an approach is naturally superior to flow
cache schemes. Consider the rule set shown in Table 2,
which is also pictorially illustrated in Figure 1. In the
figure, the two fields, F; and F5, are represented along
z and y axes, respectively. The boxes correspond to
different rules. In particular, the shaded boxes corre-
spond to rules whose decision is permit whereas the
white boxes correspond to rules whose decision is deny.
In the scenario depicted in Figure 1(a), there are six
flows observed by the router, each represented by a cor-
responding dot. Each of Rules I, II, and III matches
two of these six flows. Subsequently (as shown in Fig-
ure 1(b)), a seventh flow appears, and is represented by
a seventh dot P. Only Rule III matches this new flow.
We now make three observations:

Cache rules instead of flows: If we cache any one
of the first three rules (instead of caching any of these
flows), a greater fraction of packets will be classified us-

cache | TooolooS *

i original }
manager |1 :
(software) ".r.‘fl,e .sﬁl.:
learn :
instali
traffic :
s evolving
characteristics, rules 1
_______________________________ full packet
O Tl | e et [0 i | classification
incoming missed {software)
packets ;Q: packets .Q,
classified classitied
packets packets

Figure 2: Framework of the smart rule cache.

ing the cache.! This simple observation is reinforced
by recent studies by Cohen and Lund [6]. They re-
port a strong Zipf-like pattern in the usage of rules in
rule sets of a tier-1 ISP, where a very small number
of rules match most of the incoming traffic. Moreover,
cache hit ratio can also be much more stable. Because
a popular rule in cache can match a series of flows and
hence continues to remain in cache, while a flow cache
may suffer severe thrashing. In practice, such stabil-
ity also means enchanced robustness against malicious
attacks than caching flows. Because although an at-
tacker can forge a large number of short-lived flows to
occupy and thrash a flow cache, it is much harder for the
forged flows to match sufficiently many rules that are
not needed by legitimate flows with sufficiently many
hits. Because it is extremely difficult for the attacker to
obtain accurate real time knowledge of concurrent legit-
imate flows, even if the attacker may manage to figure
out the rule set. In Section 3.4, We conduct a quantita-
tive analysis on the security property of our smart rule
cache, assuming an adversary who is not only perfectly
informed in a real time manner, but also able to arbi-
trarily create the worst possible traffic to baffle smart
rule cache.

Construct new rules for better cache perfor-
mance: If we construct a new rule Rule X: (F; €
[32,55]) A (F» € [32,68]) — permit as illustrated by the
dashed box in Figure 1(a), this single rule is able to
match all six flows and execute the same action. Thus,
caching this single new rule is adequate.

Evolve cached rules over time: Now consider the
scenario where the new flow, P, starts. Rule X will not
match this flow. But we now construct another new
rule, Rule Y: (F € [32,55]) A(F» € [32,80]) — permit,
as illustrated by the dashed box in Figure 1(b), then this
new rule will continue to match all seven flows. Thus,
by evolving the cached rule (from Rule X to Rule Y)
based on incoming traffic pattern, we can continue to
match a great fraction of the incoming traffic with a
single rule.

Based on these insights, we propose smart rule cache,
where the classification task can occur in two stages, as

1Cadch‘ing a flow and caching a rule both involve caching
some values of those relevant packet header fields plus the
decision. Therefore, the cache space per entry is comparable.

shown in Figure 2. The first stage occurs in the small
on-chip rule cache, which is composed of a few regis-
ters and corresponding hardware logic. Each rule cache
entry stores an evolving rule and the hardware logic is
used to match packets against the stored rule. Rule
cache entries are organized in such a way that allows
parallel search across all cached rules. The search ends
with either the right decision or a report of a cache miss
within one clock cycle. A cache manager module, im-
plemented in software, is responsible for continuously
updating the evolving rules stored in the rule cache.
The goal of the cache manager is to minimize the num-
ber of packets that are not classifiable in the rule cache
component. A packet not classifiable by the rule cache,
passes to the second stage of the classification process,
where it is matched against the entire original rule set
by a full-fledged classifier. This stage, preferably im-
plemented in software, provides completeness and cor-
rectness guarantees to the classification process. While
the software packet classification is a slower operation,
our results using real traffic traces from a large tier-I
ISP indicate that a good cache manager design would
require less than 0.07% of packets to take this slower
path.

1.2 Challenges and results

Although the basic idea is conceptually clear, a num-
ber of key problems remain to be addressed.

(1) What (not which!} rules should be placed in the
cache?

(2) How should rules in cache evolve in response to
incoming traffic pattern changes?

(3) How can we guarantee the semantic integrity of
the rule cache? Namely, for each incoming packet, how
can we ensure that the decision output by the rule cache
is always consistent with the original rule set? In flow
cache, this is not a problem. But in rule cache, this
issue needs to be carefully handled due to the priority-
based ordering among rules. For example, caching Rule
IV only in Table 2 suffices to match all the flows but
gives the wrong decision.

(4) How can we smooth out the effect of cache man-
agement delay on cache hit performance? To minimize
the cost, we only require low cost and slow memory
for cache management. Therefore, cache management
delay can be long (compared with the packet classifica-
tion speed we target). The updated rule cache will not
be available until after cache management. This means
potentially decreased cache hit ratios during cache man-
agement delays.

In this paper, we present effective solutions to these
design problems and evaluate the performance of our
smart rule cache using real traffic traces and real rule
sets from a tier-1 ISP. We show that even for backbone
routers carrying 10° concurrent flows and operating on
large rule sets containing thousands of rules, a small rule
cache composed of just a few entries has been enough to
deliver stable cache hit ratios above 99.9842%. Such a

small cache can be easily implemented in network pro-
cessors to perform wire speed packet classification, at
negligible cost. As the volume of missed packetsis 3 ~ 4
orders of magnitude lower than the total volume of in-
coming traffic, it will not be hard to classify the missed
packets using a low cost packet classifier. In fact, our
smart rule cache employs a data structure called Pruned
Packet Decision Diagram (PPDD) for cache manage-
ment, which can also be used to classify any incoming
packet. Therefore, a separate packet classifier may be
preferred but not required. Given its negligible cost and
high cache hit performance, we believe our smart rule
cache represents a cost efficient solution for wire speed
packet classification. Moreover, we believe the value of
this solution will only increase as the gap between wire
speeds and memory access speeds keeps widening.

1.3 Roadmap

The rest of the paper is organized as follows. We
first present preliminaries of packet classification in Sec-
tion 2. The basic design of smart rule cache is then de-
scribed in Section 3. Some effective optimization tech-
niques are proposed in Section 4. We evaluate the per-
formance of our smart rule cache using real traffic traces
and real rule sets from a tier-1 ISP and present the re-
sults in Section 5. After reviewing related work in Sec-
tion 6, we conclude the paper in Section 7.

2. PRELIMINARIES

A rule set is an ordered set R = {ry,ra,- - ,rn} of
rules. Each rule r; is composed of two parts: a pred-
icate and a decision (or action). The predicate is a
conjunction of d literals defined over d packet header
fields. In its most generalized form, each literal can be
written as a range literal F; € [l;, h;], where F; denotes
a packet header field. A rule r; defined over d packet
header fields is thus written as

d
T /\ (Fy € [lj, hj]) — decision.
j=1

The industry standard of packet classification comes
from Cisco Access Control Lists (ACLs) [1]. Currently,
the predicate of each rule may specify a literal on each
of the following five packet header fields: source IP ad-
dress, destination IP address, source port, destination
port, and protocol type. For convenience, we define the
projection of a packet to be the tuple consisting of the
packet’s d header fields specified in the rule set. A rule
and a packet are considered to match if the conjunctive
predicate of the rule is evaluated to be true on the pro-
jection of the packet. If a rule is the first rule in the
rule set that matches a packet, the action it specifies is
performed on the packet.

Either explicitly or implicitly, rule sets contain a de-
fault rule that matches every incoming packet. If none
of the preceding rules matches a packet, the action of

(@)

Figure 3: SPDD of the rule set in Table 3.

the default rule is performed on the packet. Thus, each
rule set covers the entire d-dimensional space defined
over the d packet header fields specified in that rule
set. The domain of each dimension is the domain of the
corresponding packet header field. For example, the di-
mension corresponding to the 32-bit source IP address
field has a domain of [0,23% — 1] while the dimension
corresponding to the 16-bit destination port field has a
domain of [0,2%6 — 1].

Within this d-dimensional space, the conjunctive pred-
icate of each rule delimits a d-dimensional hypercube,
which we refer to as the definition region of the rule.
We can think of the decision of a rule as a “color” that
colors the definition region of that rule. For simplicity,
we refer to it as the color of that rule. A rule set as an
ordered set of rules essentially defines a coloring of the
d-dimensional space, which we refer to as the seman-
tics of the rule set. The projection of a packet/flow can
be viewed as the coordinate of a specific point in the
‘d-dimensional space, which we often use to represent
the packet/flow. Each point in the d-dimensional space
may be contained in the definition region of multiple
rules. The color of a point is defined to be the color
of the first rule whose definition region contains that
point.

As we have pointed out in Section 1, we need to en-
sure that the rules stored in the rule cache are consistent
with the rule set in semantics. To facilitate the verifica-
tion of this semantic integrity, we need an efficient data
structure to represent the rule set’s semantics for verifi-
cation. In this paper, we use such an efficient data struc-
ture called pruned packet decision diagram (PPDD).
Given a rule set, we obtain its PPDD by trimming its
standard packet decision diagram (SPDD), which is pro-
posed by Liu and Gouda in [18]. The SPDD f of a rule
set defined over packet header fields Fy, Fy,--- , Fy is a
directed tree that has the following properties.

1. Each node v in f has alabel F'(v). If v is a leaf node,
F(v) specifies an action. If v is an internal node, F{v)
specifies a packet header field.

2. FEach internal node v has a set E(v) of outgoing
edges pointing to its children and only one incoming
edge from its parent. Each edge e € E(v) has a label

r1: {F1 €(31,80]) A (F» € |46, 70]) — permit
ro: (F1 € [41,65]) A (F» € [31,50]) — deny
7a3: (Fy € [1,100]) A (Fy € [1,100]) — permit

Table 3: An example rule set.

I(e), which denotes a non-empty subset of the domain
of field F(v). In general, I(e) can be represented as a
set of non-overlapping ranges. For any two edges e # ¢’
in E(v), I(e)NI(e') = ¢. Meanwhile, Uecp(v)I(€) is the
entire domain of the packet header field F(v) (denoted
by D(F(v)). Namely, the labels of v’s outgoing edges
form a partition of D(F(v)).

3. On the path from the root to any leaf node (which
is referred to as a decision path), there are exactly d in-
ternal nodes. The label of the ith internal node denotes
the ith packet header field Fj, i.e., the ith dimension of
the d-dimensional space. Notice that the label of the
leaf node denotes the decision. The decision path, de-
noted by viejvnes - - vgeqv4+1, actually represents the
rule AL, (F; € I(e;)) — F(vgy1).

For the example rule set in Table 3, its SPDD is
given in Figure 3(a). To facilitate discussion, we start
with a more regular form of SPDD as shown in Fig-
ure 3(b). Compared with the original form of SPDD
in Figure 3(a), the regular form of SPDD possesses the
additional property that the label of each edge denotes
a single range. In the sequel, we use “SPDD” to denote

the regular form of SPDD for simplicity.

Let %72 denote the ith dimension of the d-dimensional
space. In general, each node v; in a decision path
U1€1V2€3 + - - UgeqUq+1 can be viewed as representing the
d-dimensional hypercube:

i-1 d
Hy, = (/\ (FJ € I(Ey))) /\ </\ (Fy € D(FJ))> .

=1 j=i

When context is clear, we use “node v” and “the hyper-
cube represented by node v” interchangeably for ease of
presentation. It is not hard to verify that for any inter-
nal node v in the SPDD, v’s children form a partition of
H,. Furthermore, it can be verified that all the leat de-
scendants of v also form a partition of H,. As a special
case, all the leaf nodes in the SPDD form a partition of
the entire d-dimensional space, which is represented by

the root node of the SPDD. Recall that each leaf node
is labeled with a decision. Together, all the leaf nodes
actually define a coloring of the d-dimensional space,
which is consistent with the semantics of the rule set.
To verify this semantic integrity of the SPDD, we refer
interested readers to {18}, which also contains a detailed
algorithm for building the SPDD of a given rule set.

Given the semantic integrity of SPDD, if needed we
can classify any packet by checking through a decision
path from the root to some leaf node. At the ith in-
ternal node v; on the path, we follow the outgoing edge
whose label contains the value of field F; in the packet
header. Let 6 denote the number of ranges denoted by
the outgoing edges. The number of memory accesses
needed to pick the right outgoing edge is bounded by
O(6). The number of memory accesses needed to clas-
sify a packet is thus bounded by O(dA), where A is the
maximum & value over all nodes in the SPDD. In the
regular form of SPDD, A is the maximum fanout of any
node in the SPDD.

As the size of SPDD can be potentially large for large
rule sets, we propose to obtain the PPDD of a rule set
by trimming its SPDD. Our proposed algorithm is pre-
sented in Section 4. As we will see, PPDD preserves
the semantic integrity of SPDD but contains fewer and
shorter decision paths. Therefore, PPDD can also be
used to classify each incoming packet (using O(dA)
memory accesses), and its average performance is much
better than SPDD.

Computing and optimizing the PPDD is a one-time

preprocessing task before packet classification. The PPDD

remains valid throughout the packet classification pro-
cess until the semantics of the rule set has changed. In
practice, rule sets are not frequently modified. There-
fore, the time spent on building the PPDD should not
raise any concern on the packet classification perfor-
mance of smart rule cache. Nonetheless, we point out
that our algorithm for trimming SPDD to obtain a
PPDD is quite simple and efficient.

In this paper, our primary concerns are cache hit ra-
tio and hardware cost. To help deliver high and stable
hit ratios, we would rather spend enough preprocessing
time to build as good a PPDD as possible. To im-
prove cost efficiency, if necessary low cost DRAMs can
be used to store the computed PPDD as well as other
cache management related data structures. Actually,
all these data structures are stored in low cost DRAMs
in our evaluation. Thus, our results demonstrate the
performance of smart rule cache in such a cost efficient
solution.

3. DESIGN

Our smart rule cache design consists of two parts: a
small rule cache (the hardware component) and a cache
manager (the software component). The rule cache is
a small number of on-chip cache entries each storing
an evolving rule. Each cache entry consists of a regis-

ter storing the evolving rule and some simple logic for
matching incoming packets against the stored rule. The
cache entries are design to match each incoming packet
in parallel. Synchronized with the network processor,
the rule cache is able to report either a cache miss or
the right decision on the packet in a single network pro-
cessor cycle. Such a simple hardware design of the rule
cache is presented in Section 3.3. This small rule cache
is the only additional hardware needed by our smart
rule cache design. Its size and simplicity make it easy
to implement in network processors at negligible cost.

The core part of smart rule cache is the cache man-
ager. On one hand, its effective and efficient manage-
ment of the rule cache decides the cache hit ratios that
can be delivered. Basically, the cache manager decides
cache hit performance by placing the right rules into
the rule cache and dynamically evolving those rules in
response to incoming traffic pattern changes. On the
other hand, as the cost of the rule cache is negligible,
the overall cost of smart rule cache is largely decided
by the cost of implementing the cache manager. Thus,
it is critical to design a cost efficient cache manager
that requires as little additional resource as possible.
As we will see in Section 3.1 and Section 3.2, our de-
sign of the cache manager requires nothing more than
a small amount of low cost memory such as DRAM.
Through evaluation using low cost DRAM-based sys-
tems, we demonstrate that smart rule cache is able to
deliver extremely high hit ratios on real traffic traees
and real rule sets obtained from backbone routers of a
tier-1 ISP. Nonetheless, users are free to equip line cards
with more powerful network processors and more fast
memories to achieve even better performance.

To achieve good performance, the cache manager needs
to collect sample packets to acquire knowledge about
incoming traffic. We discuss detailed sampling strate-
gies in Section 5.4. Following each traffic sampling is
cache management. The cache manager conducts rel-
evant statistics on the sample packets stored in a slid-
ing window, which contains the most recent w sample
packets (w is the sliding window size). In particular,
the cache manager needs to find out all distinct flows
and their frequency (which we will refer to as weight)
in the sliding window. The cache manager uses this
flow weight statistics to (1) maintain a list of evolving
rules and (2) determine which rules should be switched
into/out of the rule cache in order to maximize cache
hit ratio.

In this section, we first present relevant data struc-
tures for cache management in Section 3.1 and then
present detailed algorithms for cache management in
Section 3.2. A simple hardware design for the rule cache
in Section 3.3. We conduct a preliminary quantitative
analysis on the security property of smart rule cache in
Section 3.4.

3.1 Data structures

Sliding window: The data structure of the slid-

e i

[N o BN E o I

Stiding Window | NEL BB D NN

RHL [welght=4 [e weight=2 | o—f weight=1] |

Figure 4: Data structures of smart rule cache.

ing window is straightforward — a First-In-First-Out
(FIFO) queue of the w sample packets in the sliding
window (as shown in Figure 4) is most appropriate. For
each sample packet, its corresponding element in the
queue records its projection and whether it is a cache
hit or cache miss.

Evolving rules: The cache manager maintains a
data structure called regular hyper-cube list (RHL), which
is of central importance in our design. Basically, each
RHL element is an evolving rule to be placed into the
rule cache. The RHL is regular in that it possesses the
following key properties.

(I) Fach RHL element represents an evolving rule
whose definition region is a d-dimensional hyper-cube.
When context is clear, we use “hyper-cube”, “evolving
rule”, and “RHL element” interchangeably for ease of
presentation.

(IT) Each hyper-cube in the RHL is colored by one
single color in the coloring of the d-dimensional space
defined by the original rule set. Thus, by assigning each
evolving rule that corresponding color, it is guaranteed
that each evolving rule can be stored in a single entry
in the rule cache and is sementically consistent with the
original rule set.

(I1IY) Each sample packet in the sliding window is as-
signed to one evolving rule that matches it. This ensures
the RHL contains all the sampled information. The
weight of each evolving rule is defined to be its num-
ber of assigned sample packets. To keep track of this
assignment, we add a pointer to each sample record,
pointing to the RHL element it is assigned to, as shown
in Figure 4.

(IV) Ewvolving rules either have the same action or
are non-overlapping. This greatly simplifies cache man-
agement, because the ordering of evolving rules in the
rule cache is not important and hence we can place each
evolving rule in an arbitrary cache entry. As we will see
shortly, this also greatly simplifies the hardware design
of rule cache. Because it guarantees that if multiple
cache entries match the same packet, they must have
the same decision.

The data structure of an evolving rule stores its range
along each dimension, color, weight, cache entry index
(if it is in cache) and its current position in the RHL
(for use in cache management). Intuitively, we should
try to maximize the total weight of those evolving rules
in cache. We thus sort the RHL in non-increasing order

of weight. Assume the rule cache consists of m entries.
Property IV allows us to simply cache the first m el-
ements of the RHL, and the semantic integrity of the
rule cache is guaranteed.

3.2 Cache management

To be precise, cache management refers to the oper-
ations performed by the cache manager to update rele-
vant data structures and the rule cache after obtaining
a new sample packet. Here, we present a detailed de-
scription of these cache management operations.

Delete the oldest sample: On obtaining a new
sample packet, we first remove the oldest sample packet
from the sliding window. Following its pointer to the
evolving rule H it is assigned to, we decrement the
weight of H by one. These operations take O(1) time.

(1) If the weight of H comes down to zero, it is re-
moved from the RHL, which also takes O(1) time. If
H is currently in cache, its cache entry is replaced with
the first evolving rule H' that is currently not in cache
(if such an H' exists). In the worst case, locating H'
in the RHL takes O (min{m, n)) time, where n is the
length of the RHL. In our evaluation, we have observed
that n almost never exceeds three and hence locating
H' can be done very quickly.

(2) I the weight of H is still positive, we move H
toward the tail of the RHL until the weight of its suc-
cessor (if any) is no larger than its own weight. In
the worst case, this position adjustment operation takes
O(n) time. If H is originally in cache (i.e., top m in the
RHL) but not top m in the RHL after position adjust-
ment, we should place the new mth evolving rule H'
into the cache entry of H. In particular, when moving
H toward the tail of the RHL, if H is currently the mth
element and is about to switch with the (m + 1)th el-
ement, we place the (m + 1)th element into the cache
entry of H.

Insert the new sample: After removing the oldest
sample packet from the sliding window, we append the
new sample packet to the tail of the sliding window,
which takes O(1) time. Then, we check through the
RHI to find the first evolving rule H that matches the
new sample packet.

(1) If such an H is found, its weight is incremented
by one and we assign the new sample packet to H. To
keep the RHL sorted by weight, we move H toward
the head of the RHL until the weight of its predecessor
is no less than its own weight. If H is currently not
in cache but ranks top m in the RHL after position
adjustment, we should place H into the cache entry of
the new (m + 1)th evolving rule. In particular, when
moving H toward the head of the RHL, if H is currently
the (m + 1)th element and is about to switch with the
mth element H', we place H into the cache entry of H'.

(2) If none of the evolving rules already matches the
new sample packet, we need to obtain an evolving rule
that matches the new sample packet in order to preserve
property ITI. There are two possible ways to achieve

that: expanding an existing evolving rule or creating a
new evolving rule. We prefer to cover sample packets
using as few evolving rules as possible. Because intu-
itively that will enable a small cache to cover as many
incoming flows as possible. For the same reason, we
also prefer to cover new sample packets with the top-
most evolving rules. Therefore, we go through the RHL
and check each evolving rule to see if it can be expanded
to match the new sample packet while preserving prop-
erties I, IT and IV. If none of the existing evolving rules
can be expanded, we create a new evolving rule match-
ing exactly the new sample packet only and append it
to the tail of the RHL. It takes O(d) time to create a
new evolving rule and O(1) time to append it to the
RHL. As we have discussed in Section 2, d = 5 in Cisco
ACL, which is the de facto industry standard.

Expanding a hyper-cube H to cover a point p while
preserving property I is straightforward. Assume on the
ith dimension, the range of H is denoted by [l;, h;] and
the coordinate of p is x;. If z; < [l;, we decrease [; to z;.
If z; > h;, we decrease h; to ;. If z; € [l;, hy], there is
no need to expand H along the ith dimension. In total,
expanding H to contain p takes O(d) time.

Discussion: Here, we minimally expand a
hyper-cube H along each dimension to ob-
tain a hyper-cube H' that contains the new
sample packet. However, one may suspect
that, if instead we maximally expand H along
each dimension, then hopefully the expanded
hyper-cube H’ will be able to match more
incoming packets later on. To better under-
stand the design choice, it is worth noting
that we are actually solving an online opti-
mization problem, where the input is unpre-
dictable incoming traffic and the objective
is to optimize cache hit ratio. While such
an aggressive expanding strategy has some
merits in its own right, we prefer the design
choice of minimally expanding hyper-cubes
because that leaves us more flexibility on sub-
sequently expanding existing evolving rules.

For example, let us again consider the rule
set in Table 2. Initially, there is no evolving
rule and here comes the first flow (denoted
by P; in Figure 5). The cache manager cre-
ates an evolving rule H to cover precisely that
point only. When the second flow {denoted
by P in Figure 5) appears, let us assume we
maximally expand H to be the dashed box in
Figure 5(a). Later on, there start five other
flows, denoted by those unlabeled points in
Figure 5(b). We will not be able to further
expand H to cover these new flows, due to
the semantic integrity constraint imposed by
property II. At least one more evolving rule
has to be created to cover these new flows.

In contrast, if upon appearance of the second

[

(a) (b}

Figure 5: An example of maximally/minimally expand-
ing an existing evolving rule to cover new sample packets,
based on the rule set in Table 2.

flow we expand H to be the small dashed
box in Figure 5(b), later on we shall be able
to further expand H to be the large dashed
box in Figure 5(b), which covers all the flows.
One evolving rule is enough.

Verifying if the expanded H (denoted by H') satisfies
property IV is not difficult, either. We can simply go
through the RHL and check each evolving rule to see
whether it overlaps with H' but has a different color
from H’. (H and H' have the same color.) In total,
this operation takes O(nd) time.

Now it only remains to verify whether H' satisfies
property II. This is where the SPDD of the rule set
can be used. Recall that the leaf nodes of an SPDD
form a partition of the entire d-dimensional space and
define a coloring that is consistent with the semantics
of the original rule set. Therefore, property II is pre-
served if and only if all the leaf nodes overlapping with
H’ have the same color as H’. This can be easily veri-
fied by traversing the SPDD and check the color of each
leaf node overlapping with H’. However, this straight-
forward solution can potentially take a long time and
hence result in a long cache management delay.l We
propose effective optimization techniques in Section 4.

3.3 Hardware design of the rule cache

For each incoming packet, the rule cache should ei-
ther report a cache miss or output the correct decision
on that packet. For wire speed packet classification, we
require this to be done within one network processor
cycle. In this section, we present a simple hardware de-
sign of the rule cache to achieve this design objective.
Basically, each cache entry is composed of two parts:
a register for storing an evolving rule and some sim-
ple logic for matching packets against the stored rule.
Cache entries are organized in such a way that allows
parallel search within one processor cycle.

First of all, each cache entry should be able to de-
termine whether the stored rule matches the incom-
ing packet or not. Testing whether a hyper-cube (i.e.,
rule) contains a certain point (i.e., packet) is actually a
special case of testing overlapping hyper-cubes, since a
point can also be expressed as a “hyper-cube”. Testing

a Y b X

e Ty
1
[‘ comparator comparator :
1
' ol o '
! 3 x

o » !
' yif i ‘
¥ <ie e ‘
! i
! i
! i
1 Queriapping |
! flonges |
I Tester t
' (oAn

output

Figure 6: Hardware design for testing whether two
ranges [a,b] and [z,y] overlap (output 1) or not (output

0).

a yi b e a y: b X2 ool st Yor Doy Xaa @9 Yo Da Xo
e
ORT I [ORT l ------ [ORT l I ORT

1
3
k
i
¥
1
i

1

Overlapping
Hyper-cubes 1
Tester |

|
1
)
]
i
T
i
|
!
)
!
!
e T ©m

output

Figure 7: Hardware design for testing whether two
hyper-cubes overlap (output 1) or not (output 0).

overlapping hyper-cubes can be implemented using the
more basic function of testing overlapping ranges: two
hyper-cubes overlap if and only if they overlap on ev-
ery dimension. Consider two hyper-cubes H; and Ho.
Assume their ranges along the ith dimension are [a;, b;]
and [x;, v, respectively. Testing whether [a;, b;] and
|4, y:] overlap can be done with the simple Overlap-
ping Ranges Tester (ORT), as shown in Figure 6. Using
one ORT for testing each dimension, testing overlap-
ping hyper-cubes can be easily done within one proces-
sor cycle using d ORT's in parallel. Such an Overlapping
Hyper-cubes Tester (OHT) design is shown in Figure 7.

Assume the value of ith field in the incoming packet
header is x; and the range specified by the stored rule
on that field is [ai, b;]. The entire design of a cache entry
is shown in the dashed box in Figure 8. The decision of
the cached rule is stored as a k-bit positive integer (e.g.
Ay, Ag,---, A in Figure 8). 0 is reserved for cache
miss. Each one of the k bits Ay, Ag, -, Ay is logically
ANDed with the output of the OHT. This yields the
final k-bit output of that cache entry, which is either
cache miss (i.e., all 0s) if the output of its OHT is 0
or the stored rule’s decision AjAs--- Ay if the output
of its OHT is 1.

It is easy to input a packet to all cache entries in
parallel. Given simultaneous outputs from all cache en-
tries, we need to ensure that the rule cache eventually
presents the right output. Property II and property IV
of the RHL play a critical role in making a simple so-

Incoming packet
[[xe] - Jxad Xa]

Figure 8: Hardware design of a cache entry.

lution possible. As we have discussed in Section 3.2,
property IV of the RHL guarantees that if two or more
stored rules match a packet, they must have the same
decision. Moreover, property II of the RHL guarantees
that their decision is consistent with the rule set. Thus,
we can simply bit-wise OR the k-bit output from all
cache entries, which yields the final output of the rule
cache. If none of the cache entries matches the incoming
packet, the rule cache outputs cache miss (i.e., all 0s).
Otherwise, the rule cache will output the right decision.

The entire rule cache works as follows. The projec-
tion of the incoming packet is input to all cache en-
tries simultaneously. The cache entries try to match
the incoming packet in parallel and simultaneously re-
port their matching result (i.e., either a decision or a
cache miss), which are bit-wise ORed to yield the fi-
nal output of the rule cache. If we only need a few
cache entries, such a simple and small rule cache can be
easily implemented in network processors at negligible -
cost. Synchronized with the network processor, the rule
cache is able to output its matching result within one
network processor cycle.

An issue that has not been addressed so far is cache
update. Basically, to update a cache entry we only need
to rewrite its register, which stores the evolving rule.
Since the rule cache is synchronized with the network
processor, this can be easily done within a processor cy-
cle. Only one packet will not be able to match the cache
entry being updated. As each cache management exe-
cution updates at most one cache entry and lasts for no
less than one millisecond in our evaluation, the percent-
age of packets that are affected by cache update is very
low. Assuming OC-768 (40Gbps) and ‘a packet size of
500 bytes, ten thousand packets will pass through dur-
ing a one-millisecond cache management delay. That
is, only one out of teni thousand packets will be affected
by cache update. Nonetheless, if a disturbance-free so-
lution is preferred, we can use two identical rule caches
to achieve seamless hot-swap. The two rule caches can
be controlled using a simple 0/1 switch. Directing in-
coming packets to one of them automatically disables
the other for update.

3.4 Security analysis

As a preliminary security analysis, we hereby derive
a bound on the additional cache miss ratio of legal traf-
fic that can be caused by an attacker. To derive such
a bound, we assume an adversary who is perfectly in-
formed of the rule set, cache size, cache management
algorithm and concurrent flows in a real time manner.
When combatting such a perfectly informed adversary,
a commonly employed weapon is randomness. Here,
our cache manager employs a random sampling strat-
egy. Using this random sampling strategy, the proba-
bility with which a flow will be sampled is precisely the
percentage of its traflic volume in the aggregate traffic
traversing the router line card. While we further as-
sume the adversary can arbitrarily control the content
of sampled attacking packets to baffle the cache man-
ager, the presumed bottomline of randomness prevents
the adversary from deciding which packets are going to
be sampled by our random sampling process.

Let us first look at the moment when the adversary
is about to launch its attack. Supppose there are n
RHL elements, Ry, Ra, -- -, Ry, sorted in non-increasing
order of their weight. Let wy, we, - -+, w, denote their
normalized weight, respectively. If the rule cache has
m entries, the first m RHL elements will be cached and
the cache hit ratio of legal traffic is given by Z -1 Wi

Now, suppose the adversary injects attacking traffic
at its maximum possible rate, and its generated attack-
ing traffic accounts for a percentage of § in the aggre-
gate traffic. Recall that the cache manager prefers to
associate sampled packets with existing RHL elements,
in non-increasing order of their weight. New RHL el-
ements are created only if it has to. Suppose we now
have | > n RHL elements, R}, Rj, ---, Rj, sorted in
non-increasing order of their weight. For each R;, let
w;” and w; denote the portion of its normalized weight
contributed by sampled legal packets and sampled at-
tacking packets, respectively. Consider any R; of the
n existing RHL elements. Let us assume it is (possi-
bly expanded into) the new RHL element R’. Due to
the dilution caused by the attacking traffic, the random
sampling strategy makes w} = (1—6)w;. The cache hit

ratio of legal traffic achievéd by this new RHL is given

+

by 3oL, 1w 5
Among the top m new RHL elements, R], o
R, let us assume without loss of generahfy that k of

them R}, R}, ---, Rj_, were not among the origi-
nal top m RHL elements Ry, Ry, -+, Rp. Accord-

ingly, there must be k other new RHL elements, R},

R}, -+, R;, , that are not currently among top m but

were orlglnally among top m. Since the original RHL
is sorted in non-increasing order of weight we know for
any 1 < d < k, it must be the case that w;} < w+ Sim-
ilarly, since the new RHL is also sorted in non~1ncreas1ng

order of weight, it must be the case that

w;, +w+2w +w;;2w

+
= w,, >w’d wy.

Summing this inequality over all d € [1, k] gives us the
following key inequality:

Z[(l—&

(wi, —wid)

<

s
[
)

a &

Il El | &
r

s g -

Dividing both sides by 1 — § leads us to our final con-
clusion:

= wy]

Su-y i s i o
The left side of Equation (1) is precisely the increase
in the cache miss ratio of legal traffic, caused by the
adversary, which is at most 1—53" For instance, if the
attacking traffic generated by an attacker accounts for
10% of the aggregate traffic traversing a router line card,
the resulting increase in the cache miss ratio of legal
traffic is at most 11.1%.

4. SPDD OPTIMIZATION

As we will see in Section 5.1, the SPDD of large rule
sets can be potentially very large if not built in an ap-
propriate way. Verifying property II by traversing a
large SPDD can result in long cache management de-
lays, which may decrease cache hit ratio. In this section,
we propose effective techniques for optimizing SPDD. In
Section 4.1, we present an algorithm for trimming the
SPDD without violating its semantic integrity. The ob-
tained data structure is called Pruned Packet Decision
Diagram (PPDD). In Section 4.2, we propose that an
appropriate ordering of packet header fields for build-
ing the SPDD can lead to a much smaller SPDD and
PPDD.

4.1 Pruned packet decision diagram (PPDD)

Our motivating observation is that we may signifi-
cantly decrease the number of SPDD nodes we have to
visit in order to verify property II, by employing vari-
ous early detection techniques. The first early detection
technique is quite straightforward. Assume we are cur-
rently at node u in the SPDD. For each child v of node
u, we need to explore the subtree rooted at v (denoted
by T,) only if H, overlaps with the expanded hyper-
cube H’. Because v’s leaf descendants form a partition
of H,. If H, does not overlap with H’, none of v’s leaf
descendants can overlap with H’'. Therefore, there is
no need to explore T,. For example, assume H' is de-
fined by (Fy € [45,70]) A (Fz € [35,45]). In the example
SPDD in Figure 3(b), there is no need to explore the

subtrees rooted at v;, vo and wvs, since those subtrees
cannot contain any leaf node overlapping with H'.

Now suppose H,, overlaps with H' and hence we may
need to explore T,. The following two early detec-
tion techniques can be employed to further avoid ex-
ploring Ty,. (1) If H, is colored by a single color that
is the same as H’, we can determine without explor-
ing T, that T, cannot contain any leaf node with a
color different from H’. For example, assume that H
is defined by (F; € [45,60]) A (F3 € [10,25]) with deci-
sion permit and the expanded H' is defined by (Fy €
[25,60]) A (F € [10,25]) with the same decision. In
the example SPDD in Figure 3(b), there is no need to
explore Ty, and Ty,, since H,, and H,, are both col-
ored by the same single color permit. (2) If H, is col-
ored by a single color that is different from H’, then
T, must contain some leaf node that overlaps with H’
and has a different color from H’. Thus, we can im-
mediately fail the verification of property II without
exploring T;,. For example, assume that H is defined
by (Fy € [45,60]) A (F» € [35,45]) with decision deny
and H' is defined by (F; € [45, 70]) A (F» € [35,45]). In
the example SPDD in Figure 3(b), we can immediately
fail the verification of property II without exploring T,
since H,, is colored by a single color permit that is
different from H'.

The above two early detection techniques require some
additional information: for each node v in the SPDD,
we need to know whether H, is colored by a single
color and if yes what is that color. This information
can be easily obtained through a simple extension of
the SPDD. In particular, we mark each node v in the
SPDD with an additional field color. Assume that the
decisions specified in the packet classifier are encoded as
non-negative integers. If H, is colored by more than one
color, we assign -1 to the color field of node v. Oth-
erwise, the color field of node v is assigned the color
that colors H,. This additional information can be eas-
ily computed in a single bottom-up pass of the SPDD.
The color field of each leaf node v is the same as its
label F(v), which denotes a decision. If all the children
of an internal node v have the same color value, node
v is also assigned the same color value. Otherwise, the
color field of node v is assigned -1.

According to the early detection techniques described
above, we will explore the subtree T, rooted at a node
v only if node v's color value is ~1. This implies that
we can safely remove the descendents of a node v if v’s
color field value is not -1. That will make node v a leaf
node and we label node v with its color value, which
is the same as the decision of all the leaf descendants of
node v. This trimming operation can also be done in a
single bottom-up pass of the SPDD and can be easily
implemented as a simple recursive function, as shown
in Table 4.

Our discussion so far has been based on the regular
form of SPDD. However, recall that there is only one
difference between the regular form of SPDD and the

int SPDD2PPDD (node root)

if (root is a leaf node)
root.color = root.label;
return root.color;

prune = true;

color == o0;

for {each child of root)

if (color == o)
color = SPDD2PPDD(child);
if (color == -1)

prune = false;
else if (color != SPDD2PPDD(child))
prune = false;
if (!prune)
root.color = —-1;
return ~1;
for (each child of root)
dispose child;
root.color = color;
root,label = root.color;
return root.color;

Table 4:
PPDD.

Algorithm for trimming SPDD to obtain

C) (b)

Figure 9: PPDDs obtained by trimming SPDDs in Fig-
ure 3.

r1: (F1 € [1,100]) A (F2 € {1, 25]) — permit
ro: (P € [1,100]) A (F; € [26,5]) - deny
r3: (F1 € 51 100)) /\(Fz [51,75]) — permit
ra: (F1 € [76,100]) A (F; € [76,100]) — deny
rs: (F1 €1, 100]) A (Fz € [1,100]) — permit

Table 5: An example rule set.

original form of SPDD: the label of each edge can con-
tain multiple ranges in the latter but contains only one
range in the former. Since the trimming algorithm in
Table 4 ignores the label of edges, it is clearly applica-
ble to the original form of SPDD as well. The PPDDs
obtained by trimming the SPDDs in Figure 3 are shown
in Figure 9.

4.2 Ordering packet header fields

Based on the PPDD we now have, some further op-
timization is definitely possible. For example, in the
PPDD in Figure 9(b), v; and vy can be merged into
one node, vy and vs can be merged into one node and
the right two children of vz can also be merged into one
node. For another example, we can merge v1, v2, v4 and
vs into a single node in the original form of the SPDD.
Although that does not reduce the number of ranges,

that does reduce the number of nodes. However, as
we have limited space, we prefer to leave such less im-
portant optimization techniques in the full version of
this paper. Instead, we stick to the regular form and
present another fundamental optimiazation technique:
it turns out we can significantly reduce the size (number
of nodes) of a PPDD by building the SPDD according
to an appropriate ordering of the packet header fields.
Notice that in the regular form, the number of ranges is
the same as the number of edges, which is the number
of nodes minus one.

Consider the rule set in Table 5. If we use F; as
the first dimension and Fy as the second dimension,
the resulting SPDD contains 15 nodes as shown in Fig-
ure 10(a). This SPDD cannot be pruned and hence the
PPDD is of the same size. Interestingly, if we switch
the order of F} and F3, the resulting SPDD will contain
only 11 nodes (shown in Figure 10(b)). After trimming
the first four leaf nodes, the new PPDD will contain
only 7 nodes. As we will see in Section 5, the effect
of a good ordering of packet header fields on real rule
sets (which typically use five packet header fields) can
be much more significant than its effect on such a 2-
dimensional simple rule sets.

In general, it is not easy to directly pick out the opti-
mal ordering of packet header fields that will lead to a
PPDD of minimum size. However, as we have discussed
in Section 2, building the PPDD is a one time prepro-
cessing task and it is worth spending time on building
as good a PPDD as we can. Given that, a straightfor-
ward solution is to try out as many possible orderings
as we can and keep the minimum size PPDD we have
so far. In our evaluation, for real rule sets containing
thousands of rules, it take only a few seconds to build
the SPDD and PPDD according to a certain ordering
of packet header fields. Given five packet header fields,
there are totally 5! = 120 possible orderings, which take
about ten minutes to check out.

In future work, we are interested to search for more
efficient algorithms for finding the optimal ordering of
packet header fields. For practical interest, after check-
ing a number of real rule sets containing up to thou-
sands of rules, we have found the following ordering of
packet header fields to be very effective: (1) protocol
type; (2) source IP address; (3) destination IP address;
(4) source port; and (5) destination port. For a consid-
erable portion of the real rule sets, this (not necessarily
the best) ordering already reduces the PPDD size by
1 ~ 2 orders of magnitude. For the other rule sets,
their PPDD size is reduced by at least a factor of 2.
We report detailed evaluation results in Section 5.1.

5. EVALUATION

We evaluate the performance of our smart rule cache
using 4 real traffic traces and 10 real rule sets obtained
from a tier-1 ISP backbone network. The traffic traces
are collected by NetFlow using 1/500 packet sampling

Trace 1 | Trace 2 | Trace 3 | Trace 4
Date 1721706 | 1/21/06 | 1/21/06 | 1/21/06
Trace length (sec) 4,793 5,008 4,645 5,016
Number of flows 9.95M 5.86M 9.67TM 10.83M
Max #
concurrent flows 164,420 | 143,166 | 103,591 | 176,160
Max flow length 11,821 28,119 14,85 24,041
(pkt, sec) 334.10 519.47 164.76 520.30
Avg flow length 8.20 8.66 6.91 9.22
(pkt, sec) 62.65 92.05 39.46 72.00
% TCP flows 92.52 92.97 93.37 91.62
% UDP flows 6.28 6.26 6.06 7.64
% other flows 1.20 0.77 0.57 0.74

Table 6: Statistics of sampled traffic traces (after
1/500 packet sampling).

at a number of links connected to edge routers. For each
flow, NetFlow maintains a record containing a number
of fields including the source and destination IP ad-
dresses, source and destination routing prefixes, source
and destination ASes, source and destination port num-
bers, the protocol type, type of service, flow starting
and finishing timestamps, number of bytes and number
of packets transmitted. Each traffic trace lasts about
one day. The real rule sets include packet filters config-
ured at corresponding router interfaces. Each rule set
contains hundreds or thousands of rules. The decision
of rules is either permit or deny.

Due to resource constraints, traffic traces are uni-
formly sampled according to a certain sampling factor
«. That is, each packet is sampled with probability %
In the sampled traces, the maximum number of concur-
rent flows is less than 10°. As we target more than 10°
concurrent flows, we compact the sampled traces into
shorter traces by possibly advancing flows such that the
maximum number of concurrent flows is great than 10°.
Let the start time of a sampled trace be 0. If the start
time of a flow is tg, its start time in the compacted trace
will be ty = to MOD 4500 (in seconds). Its end time
in the compacted trace will be tj = ty + T, where T
is the duration of the flow. Some statistics of the ob-
tained traffic traces are given in Table 6. As we can see,
most flows are likely to be short-lived flows, which rep-
resents a serious challenge to cache schemes. We believe
this characteristics of the traces makes our evaluation
results more reliable.

5.1 PPDD

We conduct simulations on the rule sets to evaluate
the effectiveness of a better ordering of packet header
fields and the effectiveness of PPDD. The default order-
ing we use is: (1) source IP address; (2) destination IP
address; (3) source port; (4) destination port; (5) pro-
tocol type. Through simulations, we find the following
ordering consistently perform very well: (1) protocol
type; (2) source IP address; (3) destination IP address;
(4) source port; (5) destination port. To evaluate the
effectiveness of a better ordering, we report the PPDD
size (i.e., number of nodes in the PPDD) achieved by

(b)

Figure 10: SPDD and PPDD of the rule set in Table 5 derived from different orderings of packet header fields.

0.5% \:] Traffic trace 1

[Traffic trace 2
Traffic trace 3
B Trafiic trace 4

i

0.4%
0.3%[

0.2%
01% Rule set 2 Rule set 3
Rule set 1

Cleallmm m Clenle

Cache miss ratio

Rule set 4

[len

Rule set 5
PRp——] (e

Rule set 7

Rule set 6 Rule set 8 Rule set 9

mZE

Rule set 10
e Naze

Figure 11: Cumulative cache miss ratios achieved using a single cache entry and a sliding window of

1024 sample packets.

rules | Default ordering | Better ordering
Rule set 1 373 6,703 3,336
Rule set 2 617 218,602 8,449
Rule set 3 378 6,099 3,002
Rule set 4 226 4,003 1,981
Rule set 5 391 349,990 14,897
Rule set 6 203 3,736 1,869
Rule set 7 2,755 27,865 13,768
Rule set 8 666 203,101 7,378
Rule set 9 539 5,389 2,677
Rule set 10 628 6,539 3,187

Table 7: PPDD size achieved by the default or-
dering and a better ordering of packet header
fields.

both orderings in Table 7.

For rule set 2 and rule set 8, the better ordering re-
duces their PPDD size by two orders of magnitude.
The PPDD size of rule set 5 is reduced by one order
of magnitude. For the other rule sets, the better order-
ing reduces their PPDD size by at least a factor of 2.
Although these real rule sets each contains as many as
thousands of rules, with the better ordering of packet
header fields, their PPDD size never exceeds 15K. In
our simulations, we use a sliding window size of 1024
and we find that the length of the RHL never exceeds
3. Both are much smaller than the PPDD. Therefore,
the total amount of memory needed by smart rule cache
is dominated by PPDD and hence is very small.

To evaluate the effectiveness of PPDD, we define the
ratio between the size of an SPDD and the size of its
PPDD as the compression ratio and report the com-

s A petault ordering

Rule set 8
Better ordering e

Rule 5ot §

Fuis set 1 Rule st 3 Rule set4

Fule set6 Rule sel7
B g Fe

Rule set & Rule set 10

Compression ratio
w
1

Figure 12: Compression ratios achieved by the
default ordering and a better ordering of packet
header fields.

pression ratios achieved by both orderings in Figure 12.
It is clear that PPDD effectively reduces the size of
SPDD. Moreover, the better ordering of packet header
fields universally enhances the effectiveness of PPDD.

5.2 Cache management delay

As we have previously discussed, cache management
delay can potentially impact cache hit ratio. Because
during cache management, incoming packets are still
matched against the old rule cache. Only after cache
management is done, the updated rule cache is avail-
able for matching incoming packets. To obtain reliable
simulation results, we carefully simulate the cache man-
agement delay for each new sample packet.

In our simulations, we keep track of two clocks simul-
taneously. One clock is the physical clock of the machine
running our simulations, which can be read through a

system call. The other clock we maintain is the logi-
cal clock of the traffic trace — each packet in the trace
has its time of emergence in the trace. Right before
cache management starts, we read the physical clock
time t; and record the current logical time g in the
traffic trace. Upon completion of cache management,
we read the physical clock time again and record it as
ta. At = tp — t; is taken as the cache management
delay. We do not update the rule cache until logical
time t’ = to + At in the traffic trace. Packets emerg-
ing before t’ in the traffic trace are matched against
the old cache. In our simulations, we record the delay
of every cache management execution. The observed
average cache management delays are no less than one
millisecond.

5.3 Results

To conduct an extensive evaluation of smart rule cache,
we run each traffic trace through each rule set and simu-
late smart rule cache at per packet level in that context.
Using a single cache entry and a sliding window of 1024
sample packets, we report the cumulative cache miss ra-
tios observed on individual pairs of traffic trace and rule
set in Figure 11. The cache miss ratios are calculated
after a warm-up stage, which lasts for five minutes and
one million packets, whichever comes later. The cumu-
lative miss ratio of a traffic trace accounts for all packets
after the warm-up stage. As we can see in Figure 11,
the cache miss ratios observed on all 40 pairs of traffic
trace and rule set never exceed 0.5%. Actually, on all
rule sets except rule set 7, the cache miss ratios never
exceed 0.1%. This represents a decrease in cache miss
ratio by two orders of magnitude, compared with the
cache miss ratios reported in [32, 4].

Considering that the traffic traces we use are not a
full traces, we have also conducted some simulations
based on “enriched” versions of the traces. Given the
sampling factor of « of a trace, we keep the inter-packet
interval of each flow unchanged and evenly inject o — 1
packets between each pair of successive packets of each
flow. This gives us a traffic trace with o times as many
packets as the original trace. After conducting some ini-
tial simulations using sampling factors as large as 1000,
we have not observed any impact of sampling factors on
the performance of smart rule cache. This is actually
not surprising. Because the traces are uniformly sam-
pled, in the enriched traces hitting flows and missed
flows are equally enriched. Therefore, cache hit ratio
will basically remain the same.

5.4 Tuning sampling strategy

Although the cache miss ratios reported in Figure 11
have been extremely low, we still find the relatively
higher cache miss ratios observed on rule set 7 quite in-
triguing. So we ask the question “Is there any specific
reason underlying this, other than the maybe special
characteristics of rule set 77" After careful analysis and
extensive experiments, the answer turns out to be “yes”.

0.04%

0.03%

0.02% 0.0190%

0.01%

Cache miss ratio

0.0051%
o

16 32 64 128 256 512 1024
Sampling interval (number of packets)

00038% g opagy;

0.0011% 0.0010%

Figure 13: Effect of sampling interval on cache
miss ratio. Cache size = 1. Sliding window size
= 1024.

The sampling strategy plays a decisive role there. For
the results in Figure 11, our sampling strategy is to im-
mediately collect the next incoming packet aftef cache
management is completed. This straightforward strat-
egy seems not bad, as it allows the cache manager to
sample incoming traffic as frequently as possible. How-
ever, sampling more frequently does not mean the cache
manager will obtain more useful knowledge. To effec-
tively evolve the rules to capture missed flows, the cache
manager needs to sample missed packets. Packets hit-
ting the rule cache add no additional useful knowledge
about incoming traffic. Because the cache manager ig-
nores incoming traffic during cache management, sam-
pled packets are its only source of knowledge. As the
cache miss ratio has been quite low, such a blind sam-
pling strategy makes the cache manager oblivious of
missed flows with high probability. Therefore, the rules
cannot be effectively evolved to capture the missed flows
and hence cache miss ratio cannot be further reduced.

To further decrease the cache miss ratios and to verify
the correctness of this understanding, we have designed
and evaluated a smarter sampling strategy. After cache
management is completed, we wait for a fixed number
of packets (which we refer to as sampling interval) be-
fore collecting the next sample packet. If some packet
during the sampling interval results in a cache miss, we
take that packet as our next sample and restart cache
management immediately.

Using rule set 7 and traffic trace 2, we evaluate the
performance of smart rule cache with different sampling
intervals and report the results in Figure 13. With an
appropriate choice of sampling interval, this smart sam-
pling strategy reduces the cache miss ratio by two or-
ders of magnitude. Using traffic trace 2 and a sampling
interval of 512 packets, we also evaluated the perfor-
mance of smart rule cache with smart sampling on other
rule sets. The observed cache miss ratios are between
0.0158% and 0.0003%. Compared with the cache miss
ratios reported in [32] and [4], this represents a decrease
in cache miss ratio by 2 ~ 4 orders of magnitude. That
means the workload on the full-fledged packet classi-
fier is reduced by 2 ~ 4 orders of magnitude, which in
turn means potentially shorter packet classification de-
lays experienced by missed packets and the possibility

Rule Number of cache entries

set 1 2 3 4

3 421 x1077 1 124x107T] 182x10"% | 6.08 x 10~%
4 385%x10 1 | 383%x10-2 | 1.50x 10 ° | 6.20 x 10~ %
6 389 x 1071 [384 %1072 | 1.14x 1079 | 6.12x 10~ %

Table 8: Cumulative cache miss ratios observed on dif-
ferent rule sets with different number of cache entries.

of using less efficient but cheaper solutions.

5.8 More complicated rule sets

So far our simulation has been based on real rule sets
used for packet filtering, each specifying two possible
decisions: permit and deny. While packet filtering is a
globally deployed application of wire speed packet clas-
sification, there are also many other applications such
as QoS and security that specify much more diversified
decisions. To evaluate the effectiveness of smart rule
cache on such applications, we also conducted simula-
tions based on such rule sets. As we do not have access
to any such real rule sets, we extend the real rule sets
we have been using by randomly assigning one of 1024
different decisions to each rule. In practice, it is un-
likely that more than 1024 different decisions will be
specified.

Using traffic trace 2 and a sampling interval of 1024
packets, we evaluate the performance of smart rule cache
on the extended rule sets. For rule sets 1, 2, 5,7, 8, 9
and 10, the cache hit performance of smart rule cache
using one cache entry has degraded very slightly, by
a negligible amount. For rule sets 3, 4 and 6, we do
observe some impact on the performance of smart rule
cache. We present the cumulative cache miss ratios ob-
served with different numbers of cache entries in Ta-
ble 8. As we can see, using as few as 4 cache entries,
our smart rule cache is still able to reduce cache miss
ratio to the order of 1074

We also conducted the same simulation for smaller
numbers of different decisions. To reduce cache miss
ratio to the order of 104, the number of cache entries
needed appears to grow no faster than logrithmically.

5.6 Sliding window size

We have also studied the effect of sliding window size
on the performance of smart rule cache, using sliding
window size ranging from 1 to 4096 in multiples of two.
In our evaluation, we observe that for all sliding win-
dow sizes between 64 and 4096, there is no perceptible
change in performance. To be conservative, we have
been using a sliding window size of 1024 for all our ex-
perimentation.

6. RELATED WORK

Packet classification on multiple fields was first stud-
ied in [16] and [26]. Since then, there have been two
lines of research on designing efficient packet classifica-
tion schemes. A long thread of research [16, 26, 12, 27,

13, 31, 23, 3, 2, 30, 24, 15, 28, 6, 14| has been devoted
to designing efficient algorithms for packet classifica-
tion. The other thread of research focuses on designing
efficient packet classification schemes based on TCAMs
[19, 34, 25, 33, 17, 8].

Instead of proposing new packet classification schemes,
in this paper we focus on designing a high performance
cache scheme for cost efficient wire speed packet classi-
fication. T'wo flow cache schemes have been previously
proposed in [32] and [4], respectively. These flow cache
schemes cache recently observed flows to speed up the
classification of succeeding packets in those flows. How-
ever, the increasingly large number of concurrent flows
witnessed by backbone routers present, serious threat to
the performance of flow cache schemes. Based on the
notion of rule evolution, our proposed smart rule cache
has been able to handle many more concurrent flows, re-
quires much smaller cache size and delivers much higher
cache hit ratios.

In {6], Cohen and Lund propose to reorder rules based
on popularity. Although their goal is to reduce the ex-
pected time of sequentially searching through a rule set
to classify packets, this technique can actually be used
to reorder rules and then cache the top m rules. In that
sense, their proposal shares some common observation
with rule cache. However, simply reordering given rules
is still far from our smart rule cache. In smart rule
cache, rules in cache are not necessarily present in the
given rule set and dynamically evolve in response to
incoming traffic pattern changes. Use of such indepen-
dently defined and constantly evolving rules is decisive
to the success of smart rule cache.

More recently, Hamed et al. [14] propose to add some
“early reject” rules to the beginning of firewall packet
filters, in pursuit of the same goal of reducing the ex-
pected time needed to sequentially search through a rule
set. Compared with the proposal by Cohen and Lund,
Hamed et al. have gone one step further in that the
early reject rules they add are not necessarily in the
rule set. However, the key idea of dynamically evolv-
ing rules is still absent. Moreover, in identifying early
reject rules, they have not been able to take a system-
atic approach based on the semantics of the rule set.
Instead, their approach are based on the specific values
that are explicitly specified in the rules. This limits the
flexibility and effectiveness of added early reject rules.

7. CONCLUSIONS

Cost efficient wire speed packet classification is an
important topic of research. On one hand, the only
widening gap between wire speeds and memory access
speeds represents an increasingly tough challenge to
software solutions. On the other hand, the rapidly in-
creasing wire speeds, rule set size and range specifica-
tions make TCAM-based hardware solutions increas-
ingly expensive. In this paper, we propose to use a
smart on-chip rule cache with a low cost backup classi-

fier in DRAM as a viable, cost efficient option. A key
contribution of this work is the notion of a few evolv-
ing rules that reside in the rule cache. Although the
evolving rules depend on the given rule set, it is usu-
ally not identical to any individual rule in the rule set.
In addition, they evolve with changes in incoming traf-
fic patterns. Through evaluation based on real traffic
traces and real rule sets from backbone routers of a tier-
1 ISP, we demonstrate our smart rule cache can achieve
stable cache miss ratios at the order of 1074, using just
a few cache entries. Such a small cache can be eas-
ily implemented in network processors to keep up with
wire speeds, at negligible cost. As cache miss ratios are
extremely low, missed packets can be classified using a
low cost backup classifier.

We believe the value of our smart rule cache design
will only increase with wire speeds and TCAM costs. As
our next step, we expect to implement smart rule cache
on an FPGA platform and conduct comprehensive ex-
periments using more diversified real traffic traces and
real rule sets.

8. REFERENCES

[1] Controlling Network Access With Access Control
Lists, 2004.
http://cisco.com/univercd/cc/td/doc/product/lan/
cat6000/mod.icn/fwsm/fwsm. 2.2 /fwsm_cfg/
mngacl.pdf.

[2] F. Baboescu, S. Singh, and G. Varghese. Packet
classification for core routers: is there an
alternative to CAMs? In IEEE INFOCOM, 2003.

[3] F. Baboescu and G. Varghese. Scalable packet
classification. In ACM SIGCOMM, 2001.

[4] F. Chang, W. C. Feng, and K. Li. Approximate
caches for packet classification. In IEEE
INFOCOM, 2004.

[5] K. Clafty. Internet Workload Characterization.
Ph.d. thesis, UC San Diego, 1994.

[6] E. Cohen and C. Lund. Packet classification in
large ISPs: Design and evaluation of decision tree
classifiers. In ACM SIGMETRICS, 2005.

[7] S. Dharmapurikar, P. Krishnamurthy, and D. E.
Taylor. Longest prefix matching using bloom
filters. In ACM SIGCOMM, 2003.

[8] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and
A. Shukla. Packet classifiers in ternary CAMs can
be smaller. In ACM SIGMETRICS, 2006.

[9] C. Estan and G. Varghese. New directions in
traffic measurement and accounting. In ACM
SIGCOMM, 2002.

[10] C. Estan and G. Varghese. Data streaming in
computer networking. In Proceedings of the
Workshop on Management and Processing of
Data Streams, 2003.

[11] N. L. for Applied Network Research (NLANR).
Flow statistics analysis for fix-west. June 1998.

[12] P. Gupta and N. McKeown. Packet classification
on multiple fields. In ACM SIGCOMM, August
1999.

[13] P. Gupta and N. McKeown. Packet classification
using hierarchical intelligent cuttings. In HOTI,
1999.

[14] H. Hamed, A. El-Atawy, and E. Al-Shaer.
Adaptive statistical optimization techniques for
firewall packet filtering. In IEEE INFOCOM,
2006.

[15] M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar,
and A. T. Campbell. Directions in packet
classification for network processors. In NP2
Workshop, 2003.

[16] T. Lakshman and D. Stiliadis. High-speed
policy-based packet forwarding using efficient
multi-dimensional range matching. In ACM
SIGCOMM, September 1998.

[17] K. Lakshminarayanan, A. Rangarajan, and
S. Venkatachary. Algorithms for advanced packet
classification with Ternary CAMs. In ACM
SIGCOMM, 2005.

(18] A. X. Liu and M. G. Gouda. Removing
redundancy from packet classifiers. Technical
Report TR-04-26, Department of Computer
Sciences, The University of Texas at Austin,
Austin, Texas, U.S.A., June 2004.

[19] H. Liu. Efficient mapping of range classifier into
Ternary-CAM. In Hot Interconnects, 2002.

[20] R. K. Montoye. Apparatus for storing “don’t
care” in a content addressable memory cell.
United States Patent 5,319,590, June 1994.

[21] M. H. Overmars and A. F. van der Stappen.
Range searching and point location among fat
objects. Journal of Algorithms, 21(3):629-656,
November 1996.

[22] C. Partridge. Locality and route caches. In NSF
Workshop on Internet Statistics Measurement and
Analysis, February 1999. ,

[23] L. Qiu, G. Varghese, and S. Suri. Fast firewall
implemention for software and hardware based
routers. In IEEE ICNP, 2001.

[24] S. Singh, F. Baboescu, G. Varghese, and J. Wang.
Packet classification using multidimensional
cutting. In ACM SIGCOMM, 2003.

[25] E. Spitznagel, D. Taylor, and J. Turner. Packet
classification using extended tcams. In JCNP,
2003.

[26] V. Srinivasan, G. Varghese, S. Suri, and
M. Waldvogel. Fast and scalable layer four
switching. In ACM SIGCOMM, pages 191-202,
September 1998.

[27] V. Srinivasan, G. Varghese, S. Suri, and
M. Waldvogel. Packet classification using tuple
space search. In ACM SIGCOMM, 1999.

(28] D. E. Taylor and J. S. Turner. Scalable packet

[29]

(30]

classification using distributed crossproducting of
field labels. In IEEE INFOCOM, 2005.

K. Thompson, G. J. Miller, and R. Wilder.
Wide-area internet traffic patterns and
characteristics. IEEE Network, 11(6):10-23,
November 1997.

J. van Lunteren and T. Engbersen. Fast and
scalable packet classification. IEEE Journal on
Selected Areas in Communications, 21(4):560-571
2003.

T. Y. Woo. A modular approach to packet
classification: Algorithms and results. In IEEE
INFOCOM, 2000.

J. Xu, M. Singhal, and J. Degroat. A novel cache
architecture to support layer-four packet
classfication at memory access speeds. In /EEE
INFOCOM, 2000.

F. Yu and R. H. Katz. Efficient multi-match
packet classification with TCAM. In Hot
Interconnects, 2004.

F. Zane, G. Narlikar, and A. Basu. Coolcams:
Power-efficient tcams for forwarding engines. In
IEEE INFOCOM, 2003.

3

