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Abstract

Model-based intrusion detectors restrict program exeaout a previously computed model of ex-
pected behavior. We consider two classes of attacks aghiest systems: bypass attacks that evade
detection by avoiding the detection system altogethertem$formational attacks that alter a detected
attack into a semantically-equivalent attack that goe®tetwded. Recent detection approaches are prob-
lematic and do not effectively address these threats. Weeskestions or outright failures in effective-
ness and efficiency when systems (1) monitor execution dittteey call interface, (2) provide accuracy
via inlining of statically-constructed program models(8) use simplistic analysis of indirect function
calls. Attacks can defeat library-call monitors by dirgakecuting operating system kernel traps. In-
lined models grow exponentially large at the trap interfanedels for several test programs are 12,000
to 38,000 times larger at the trap interface than at therljbeall interface. Naive indirect call analysis
produces models 14 to 177 times larger than models built witdepth analysis and that are less able
to detect attacks. In examining these issues, our aim isseateomplexities of model-based detection
that have not been previously well understood.

1 Introduction

Host-based intrusion detection systems identify attertgpexploit program vulnerabilities, frequently by
monitoring the program’s execution. A model-based or behaltbased anomaly detector [6] restricts exe-
cution to a precomputed model of expected behavior. An di@tmonitor verifies a stream of system calls
generated by the executing program and rejects any caleseqa deviating from the model. Constructing
a model that balances the competing needs of detectiomyadnild efficiency is a challenging task.

A successful attack subverts the execution of a vulneratdegss in a manner undetectable to an ex-
ecution monitor. We consider two threat models meeting deiffinition. Bypass attacks exploit design
deficiencies of a detection system to avoid the executiontoraand generate arbitrary unmonitored system
calls [2]. The system calls executed by the attack may notlbeed by the execution monitor; unfortu-
nately, the monitor never intercepts the calls of a bypasslat Transformational attacks, such as a mimicry
attack [18,27,29], alter a detected attack so that it godetected by the model-based detection system yet
carries the same malicious intent. A transformationalcitis allowed by the program model.

Recently proposed model-based detection systems do ratiedfly address these threats. Resistance
to bypass attacks requires enforcement of an interfaceathattacks are required to use. This requires
identification of the trusted computing base—the companefd computer system trusted as non-malicious



and impenetrable to attack. In common host-based intrusetaction scenarios, the trusted computing
base usually includes the operating system kernel and #saauonitor, but no other code on the system.
Effective system call interception requires monitoringtad kernel trap interface. Bypass attacks can defeat
recent detection systems that monitor at other interfawes) as the library call interface [16,17], by directly
trapping to the kernel.

Resistance to transformational attacks requires prograwhels to accurately represent correct execu-
tion behavior. Recent systems using static program aisalysiuild models [8,16,19, 28] do not address the
limitations of the analysis [20]. An accurate model of cohftows at indirect function call sites requires
identification of the possible targets of each indirect.calsimplistic indirect call analysis can offer oppor-
tunities to an attacker by including incorrect control flawshe model. Transformational attacks become
easier to mount as the number of allowed execution paths\astens call sequences increases. In our ex-
periments on a UNIX system, the weak analysis used by a resystem [19] increased model size by 13
to 177 times and decreased model precision by 17 times whapared to models constructed with deeper
indirect call analysis.

An accurate model must also correctly characterize functialls and returns. Model inlining is a
recently proposed technique that addresses this needqJL6Unfortunately, inlined models can not be
efficiently enforced by an execution monitor. To be reastndeployed, a monitor must rapidly verify
system calls and maintain a low in-memory footprint. Intlnaodels grow exponentially with the height
of a program’s call graph and impose unreasonable requiresmoa verification. In our experiments, an
inlined model was 71 times slower and required 83 times mamany than a non-inlined model of equal
accuracy.

In examining these issues, our aim is to reveal attackeathignd model construction complexities that
affect model-based intrusion detection systems. We lelieat this paper makes the following contribu-
tions:

e Explicit enumeration of attacker threats that model-bas®amaly detectors must address. Section 2
describes both the bypass attack and the transformatittaakan further detail.

e An in-depth analysis of the interface at which an executiamitor can securely enforce a program
model. We show in Section 3 that resistance to bypass attagkges a non-circumventable interface.
In most computer systems, the set of traps to the operatistgraykernel defines the entire secure
interface. Attackers can trivially bypass recent systehad monitor execution at the library call
interface.

e A comparison of two techniques that accurately model famctall and return behavior—automata
inlining [16, 19] and the non-inlined Dyck model [14]. A pieus publication [16] reported results of
an unfair comparison between an inlined model at the libcatlinterface and a Dyck model at the
kernel trap interface. Our static analysis infrastructte@ construct both inlined and Dyck models
at both the library call and the kernel trap interfaces, valhg for valid comparisons. Section 4
shows that inlined models become prohibitively large tdcdbaind enforce when constructed at the
non-circumventable kernel trap interface.

e Examination of the effect of indirect function calls on stally-constructed models and a call for
foundational research in this area. In Section 5, we giveeramples of how current automated
identification of the targets of indirect calls significgntiverapproximates the set of possible targets.
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Figure 1: Monitored execution. The monitor intercepts eystall requests and allows only calls matching
the process’ behavioral model.

2 Attacks Against Model-Based Anomaly Detectors

Host-based intrusion detectors find attacks by monitorhmg liehavior of locally executing processes.
Model-based anomaly detectors verify a stream of systefa frain an executing process against a pre-
computed model of expected behavior [1, 3,10, 21,22, 268R281].

An execution monitoonly allows process execution that matches the program imdte process and
its monitor execute above a trusted operating system (Eigjyralthough the monitor may be incorporated
into the operating system kernel for improved performaficemaintain its integrity, the monitor is isolated
in a separate address space from the possibly subvertegsprtiat it observes. Note that such designs must
be carefully architected so that new vulnerabilities, uidahg time-of-check to time-of-use races between
the monitor’'s verification of a system call and the subsetjkemel execution, are not introduced into the
system [12]. Attackers attempt to alter a process’ exenwmthat the process issues malicious system calls
in a way undetectable to the monitor. Common attacks incix@eution of a command shell, appending of
a new user to the system’s password file, or privilege esoalat

The monitor can verify the process’ execution at any prognarg interface with observable events,
such as the kernel trap interface. Whenever the processthallinterface, the monitor intercepts the call
and suspends execution of the process. If the call is alldwebe program model, the monitor resumes the
process’ execution. A call falling outside the program niadeicates to the monitor that the process has
been subverted, and any appropriate response can thenvagesct The monitor thus protects the operating
system from subverted processes.

The operating system and monitor form tinasted computing basgrCB) of the computer system.
For any assurances of system security to be valid, we retherd CB to be non-malicious and free from
exploitable vulnerabilities. Processes change the TCB timbugh a well-defined system call interface.
All processes outside the TCB are explicitly untrusted, @edexpect that an attacker can manipulate these
processes in an arbitrary manner. Model-based intrusitectigs prevent manipulation from harming the
TCB by identifying a process’ attempts to use system caliininexpected way.

Successful detection of an attack requires two assumptimheld. First, attacks must produce events
observable to the monitor. Second, the model of expecteaviomhmust be precise and not accept attacks



as valid system call sequences. Attackers can evade detegiih any attack that violates one or both
assumptions. We consider both possibilities.

Bypass attackevade detection by bypassing the monitored interface. eTatacks exploit systems that
monitor high-level interfaces and fail to enforce exeautid the interface of the trusted computing base. By
calling the trusted computing base directly rather thaaugh a higher interface, the attack can maliciously
alter the system without detection. We examine bypasskatiacSection 3.

Transformational attackalter an existing attacld detected by a model-based anomaly detector into a
semantically-equivalent attack’ that evades detection by appearing as valid execution [129. The
sequence of system calls i exists as a sentence in the language accepted by the progodel. mif
the program could generat& when executing correctly, then the model is correct andratée/e detection
approaches may be necessary. If the program could nevergeAéin correct execution, then the program
model is imprecise and new model construction strategiest brideveloped. We examine two techniques
to build more precise program models, context-sensitivesitaction and indirect call analysis, in Sections 4
and 5.

3 Monitored Interface

Bypass attacks exploit design errors of an execution motit@avoid the monitor and execute unverified
system calls. To resist bypass attacks, a model-basedimtraletection system must verify a process’
execution at the non-circumventable interface of the édisbmputing base (TCB). This section addresses
the following points:

e For most common operating systems, including Windows, Xjirmnd UNIX, the TCB usually in-
cludes only the operating system kernel and execution mon@ode in shared object files and dy-
namically linked libraries (DLLs) are explicitly not part the TCB.

e Bypass attacks can evade a model-based intrusion detsgstem that does not monitor the interface
of the trusted computing base.

e Although current Windows exploits commonly call librarynttions in Windows subsystem DLLSs,
these exploits could be modified to directly execute Windkersel traps.

Recent research has focused on execution monitoring atiffeoett interfaces—library calls and op-
erating system kernel traps. The library call interfacenmseeeasonable: most programs make calls to
standard library code, and library interpositioning igjfrently an easy way to generate events during ex-
ecution. However, library code is not part of the trusted paotimg base. We will show that this interface
is circumventable and cannot provide security for secustesys. We subsequently consider sequences of
kernel traps generated by programs and claim that this isthenon-circumventable interface useful to
execution monitors.

The implications of choosing an improper interface are quatl. Efforts to enforce correct patterns
of use on any circumventable interface will not be securepaByg attacks can escape such monitoring by
simply bypassing the interface. Furthermore, we will showSection 4 that poorly choosing the event
interface compounds the problems of algorithm design fouete model construction.

3.1 Library Call Interface

Nearly every process running on a modern operating systetues code both from the application and
from shared libraries. We make a distinction between agptin code and library codépplication code
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void main (int, char *+argv) {
sysl og(0, argv[O0]); //Format string vulnerability

setui d(0); /I Need root uid for chroot

chdir("/var/ww'); // Need chdir before chroot

chroot ("."); // Establish chroot jail

if (scandir(".", NULL, isSetuid, alphasort) > 0)
exit(1); /I Exit if jail contains setuid program

setui d(101); /I Drop privilege from root

exec(argv[1]); /I Exec any program inside jail

}

Figure 2: Code example. The functios Set ui d is a user-provided function that takes a directory entry
and returns true when that entry is a setuid binary.

.syslog"setuid chdir , o chroot, o scandif o setuid exec
< exit ji

Figure 3: Library model.

includes the binary code sections contained in the exeleutatlage file loaded by the operating system.

This code is generally unique to the program and was writtem pecific uselibrary codeis binary code

in shared object files, including the runtime linker, thengtard C library, and Windows subsystem DLLs.

This is general-purpose code used by many processes andatageside in the image file of the application.
In many ways, some functions in the standard libraries cavidveed as a user-space extension of the

kernel. These library calls serve two basic purposes:

1. Convenience.A process makes an operating system request by executinftnasotrap. The trap
requires a particular machine instruction, such a$, systrap, orsyscal |, that is generated
from hand-written assembly code rather than from a higktl&anguage compiler. Shared libraries
can provide convenient wrapper functions around kernpbtraroviding applications with a function
call interface to the kernel.

2. Error checking. The library wrapper functions examine error returns frommkétraps and provide
a higher-level error interface to application programs.

Hence, we can reasonably expect programs to make use ofidiimegies because it is easy and convenient
to do so. As a direct consequence, we can expect any kerpexXeauted by a process to have been preceded
by some call to a library function.

Recent model-based intrusion detection systems make dbs afituition and monitor execution at the
library call interface [16,17]. This interface offers adt@ges: the library call interface is much richer and
can better fingerprint correct process execution. For el@nwgindows, UNIX, and Linux kernels each
have fewer than 256 traps, but the Windows system librarynieasly 1200 entry points. The Solaris C
library has over 2000 addressable functions.

Therich library interface can build expressive executimuels. Consider the example functioai nin
Figure 2 that makes a series of library calls. After loggitsdilename, it creates a chroot jailfivar / waww,
ensures that the jail directory contains no setuid exeteitaloops privilege, and executes any program in
the jail. Thesysl og call contains a format string vulnerability that allows dtaeker to write to arbitrary
memory locations, possibly changing the program’s exenuibllowing sysl og to jump directly to the



/* setuid(0) */

"\ x31\ xc0" // xorl %ax, ¥%eax
"\ x31\ xdb" // xorl|l %ebx, ¥ebx
"\ xb0\ x17" // novb $0x17, %al
"\'xcd\ x80" // int $0x80

Figure 4: A fragment of shellcode used by a format stringcittd he final four bytes directly execute the
set ui d kernel trap. The preceding four bytes construct the argts@assed to the kernel trap handler.

exec call. Systems that enforce correct use of library callsya®athis code to build the automaton model
of library call events shown in Figure 3.

Unfortunatelythese systems offer no real securitye security of systems monitoring execution at the
library call interface requires that the only way to exeauteernel trap is by first calling a library function.
Although library code may appear to be an extension of theélethis is a fallacy. Libraries are not part
of the TCB, and the library interface ércumventableallowing attack code to execute kernel traps without
first calling a library function. The attacker exploitingetformat string vulnerability in the example code can
transfer execution into machine instructions containgtiéir format string that execute kernel traps directly
(Figure 4). This bypass attack invokes kernel operatiohg$capes any process monitor intercepting library
calls.

3.2 Kernel Trap Interface

However, the attack cannot bypass the kernel. As part ofrtletetd computing base, the kernel code is
immune from direct attack and can only be entered via knowry gwoints. These entry points define a
secure interface that attacks cannot circumvent. An attatkgenerates malicious system calls must create
kernel trap events. An execution monitor verifying a pretexecution at the kernel trap interface can
intercept the trap and detect the malicious behavior. Aackttan evade the monitor by failing to execute
kernel traps, but any such attack would be contained to thesss.

Regarding their work on Linux, Jones and Lin write:

The library call approach works well with buffer overflowatks whenas is typica) the at-
tacker code adds new sequences of library call§17] (emphasis added)

We disagree. In our experience, typical Linux and UNIX dtsado not call library functions. On UNIX-
like systems, it is often easier for attacks to directly exedernel traps rather than call library functions.
The kernel trap interface is well known and easy to invokepTuise requires no knowledge of the address
at which the library code resides in memory. These obsemnsthold in practice: We surveyed Linux
and UNIX exploits archived by SecuriTeam between 1 Janu@fAZand 2 May 2005 [25]. Of 47 code
injection attacks, including buffer overflows and formairgj attacks, 46 injected code that bypassed the
library interface and directly executed kernel traps. amneple, Figure 4 shows a fragment of code injected
and executed in a format string attack against a web semst-énd load balancer [5]. Intrusion detection
systems monitoring the library call interface would notredetect these current attacks.

Current exploits against processes executing on Windowk difierently. All operating system kernel
traps are intended to be executed only by Windows subsydtaned libraries and not directly by applica-
tions. Windows exploits largely obey this programming i so library call enforcement would detect
most current Windows attacks.

This exploit design is largely an artifact arising from tHgfuscated set of Windows kernel traps. The
kernel trap interface is not widely published and may chabg®veen operating system releases. Yet,
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details of the Windows trap interface, called the “Nativel’ARre available to interested attackers [23].
These attackers can convert an attack that calls subsysteany| functions into an attack that directly
invokes Windows kernel traps. Although library call verdfiion may detect today’s attacks, with little
effort attackers can alter their Windows exploits to bypasslibrary call interface.

Recent intrusion detection systems monitor a combinatidtemel traps and function call return ad-
dresses stored on the call stack [8, 9, 14]. It is importanintiberstand the utility of function call monitoring
given the knowledge that the function call interface iswnwentable [11, 18].

Function call and return events serve only to improve theieficy of online execution monitoring.
Only the kernel traps provide a secure monitoring point. &stem and the system of Feagal. build
automata accepting the context-free language of kernesd treat a correctly executing process can generate.
Recognizing a context-free language incrementally is acetilme operation and too slow for real-world
deployment [30]. However, monitoring function calls det@rizes automaton operation and allows the sys-
tems to recognize a context-free language in linear time.flihction call events offer no additional security
but significantly improve the efficiency of kernel trap verdiion. Attacks can produce fake function call
events but are still limited to the context-free languagkeshel traps accepted by the model.

Gopalakrishnaet al. recognized that attacks can trivially escape library cadhitoring, and suggested
that a combination of library call and kernel trap enforcammay be useful [16]. Such enforcement is
subsumed by systems that monitor both traps and the entio# 8enction calls, as library calls appear as
just another function call to these systems.

3.3 Changing the Trusted Computing Base

Secure execution monitoring occurs at the interface tortteted computing base. If the TCB changes, then
the monitored interface must likewise shift. Remote anttifiged execution environments reflect such a
change. Processes execute on remote, untrusted machthesramunicate with the parent process of the
distributed computation via a stream of events. The entineote machine, including the operating system
and the hardware, may be malicious [13, 24]. The trusted adingp base includes the machine on which
the parent process executes and the parent process itself.

An attacker at the remote machine may attempt to harm thepparrecess by sending malicious events
to the parent. This communication channel is the non-cik@ntable interface that an attacker is unable
to bypass. A model-based anomaly detection system can fadelnthe remote process’ use of the com-
munication channel, and subsequently monitor the chamndétect subversion of the remote process as
deviation from the model.

4 Constructing Efficient Context-Sensitive Models

To reduce an attacker’s opportunity to construct transftional attacks, a program’s model must accurately
characterize the program’s possible control flows. One toectson method used recently to accurately

model function calls and returns inlines models of calledcfions [16, 19]. We show that techniques

that replicate model structure, such as inlining, buildhgsdively large models at the secure kernel trap
interface:

e In our experiments on a UNIX system, we could not construthed models at the kernel trap
interface for two test programbt zi pd andgnat sd, because the construction consumed the entire
4 GB virtual address space of our machine.



Figure 5: Call-site replacement applied to the C library saft ui d. The simplistic algorithm used intro-
duces an impossible path, shown in bold, because it doe®reictly model function calls and returns.

e We successfully constructed inlined models for two othegmms,cat andl ht t pd. The inlined
models were 360 to 400 times larger than corresponding miored models.

e Choosing a poor interface compounds the difficulty of findiagsonable model construction algo-
rithms. Although of reasonable size at the bypassableriiirderface, our inlined models became
12,000 to 38,000 times larger at the secure kernel trapfacier

e The large size of inlined models leads to prohibitive rustiemforcement resource demands. Inlined
models were 71 times slower and required 83 times more methanymodels of equal accuracy that
used different construction techniques.

Static analyzers construct a program model in two stages:

1. First analyze each function, abstracting away all codexfor control-flow transfers like branches,
function calls, and kernel traps.

2. Second, assemble the models for each function into alghobdel for the program. The designer of
the system must choose an algorithm dall-site replacementhat dictates how to model interproce-
dural control flows like function calls and returns.

Good call-site replacement strategies must keep modelpactinaccurately characterize interprocedural
control flows, and produce models efficient to operate dusimime execution verification. These strategies
are not trivial to develop and are the topic of this section.

Figure 5 shows the model forai n of Figure 3 with a simplistic call-site replacement strgtagplied
to the library callset ui d. The original call edges targetirget ui d have been replaced withhedges
transferring control into and out of the model &et ui d. This strategy is context insensitive and does not
enforce proper function call and return behavior. Contegénsitive models are subject to transformational
attacks, such as impossible path attacks [28] and mimitagkd [18, 27, 29], that exploit this inaccuracy.
The bold path in Figure 5 is an impossible path acceptingedtprogram executions that bypass chroot jail
creation and loss of root privilege.

4.1 Push-Down Automaton

A push-down automaton (PDA) accepts a context-free langsagh as that generated by a program ex-
ecuting with proper call and return semantics. The cadl-siplacement algorithm constructs a PDA by
adding push and pop symbols to #hedges of Figure 5. Each call site uses distinct symbolespanding

to the distinct function call return addresses used in tlognmam. The execution monitor rejects any event
sequences not contained in the context-free language tadcbp the PDA. This algorithm keeps model
size compact, as all calls to a particular function link te #ame model. There is no replication of state.
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| Program | Application only| With libraries |

cat 1,232 185,844
htzipd 16,485 337,560
Ihttpd 1,826 313,014
gnatsd 33,853 351,279
sendmail 133,915 688,387

Table 1;: SPARC instruction counts.

Fenget al. [8, 9] and our previous work [14] used function call and retavents to keep the cost of online
PDA operation to time linear in the PDA size.

4.2 Inlining

The additional call and return events do impose a slight, astthe execution monitor must read data
from the virtual address of the monitored process at eadersysall. Two recent publications suggested
an alternative method to retain much of a model's contexsitieity while dispensing with the need to
compute call and return events. Lam and Chiueh [19] and G&pahnaet al. [16] implemented call-site
replacement as an algorithm that inlined models at cak site

Inlining replaces a function call transition in an autonmataith a unique copy of the target function’s
model. Even though a program may contain multiple call siiegargeting the same function, this algo-
rithm does not introduce impossible paths because eacsitedlinks to a different copy of the target model.
Inlining cannot be used at recursive call sites, so the firaggam model accepts a regular language over-
approximation of the context-free language of events thateixecuting process can generate. A regular
language can be recognized in linear time without requitiregadditional function call and return events.

However, inlining replicates models of functions, raisamncerns that it will not scale to large programs.
Gopalakrishnat al. presented reasonable results for three of four test pregvehen building their inlined
IAM model for the insecure library interface. Unfortunatehis poor interface selection obscures inlining’s
performance when constructing models at the non-circutatdém kernel trap interface. Intuition suggests
that the space cost of inlining is exponential in the heidtihe call graph. Consider a simple example: if
function f is a leaf function called by four other functions, and eacthoke four other functions are called
by five other functions, the number of copies of the modelffes already4 - 5. This multiplication repeats
for the entire height of the call graph and for every leaf tiorcin the program.

Modeling a program at the kernel trap interface increasestimber of functions that must be modeled
and the height of the call graph by including code from shditedries. The first four programs listed in
Table 1 correspond to the test programs used by Gopalakrethal. in their previously published results.
Using static binary analysis of SPARC executables, we cocted inlined models for these programs at
both the library interface and the kernel trap interface &msure the ability of inlining to scale to complete
programs. From our earlier intuition, we expected inlineddeds constructed for the trap interface to be
significantly larger than models for the library interface.

Tables 2-5 show the results of our comparisons of the stadilysis demands for the four test programs
used by Gopalakrishnet al The static analyzer executed on a Sun Microsystems Sul®Bi88 server
with dual 32-bit 750 MHz UltraSparc Il processors, 4 GB ofypltal memory, and running Solaris 8.
Solaris allows user processes to address the entire 4 GB mepace. We list the memory used by the
static analyzer, the time required to construct the progmamdel, and the size of the resulting model for



(a) Model construction memory use.

(b) Model construction time.

(c) Automaton sizes.

Interface Interface
Model Library calls  Kernel traps Model Library calls  Kernel traps
Binary IAM 5.4 MB 760 MB Binary IAM 19MB | > 4082 MB
Dyck 5.4 MB 8 MB Dyck 8.4 MB 16 MB

(a) Model construction memory use.

Interface Interface
Model Library calls  Kernel traps Model Library calls  Kernel traps
Binary IAM 0.48 sec 515 sec Binary IAM 16 sec| > 1382sec
Dyck 0.39 sec 4 sec Dyck 2 sec 20 sec

(b) Model construction time.

Interface Interface
Model Library calls Kernel traps Model Library calls Kernel traps

IAM [16] 90 states Unreported IAM [16] 2,821 states Unreported
791 edges 31,047 edges

Binary IAM 53 states 17,338 statesg Binary IAM 2,943 stateg Out of memory
123 edgeq 4,689,814 edges 20,796 edges

Dyck 57 states 1,737 stateg Dyck 593 states 2,167 stateg
117 edges 12,882 edgeq 1,377 edges 14,812 edges

(c) Automaton sizes.

Table 2: Results focat . Table 3: Results font zi pd.

each test program. We list values both for model constroatising the circumventable library interface
and for construction using the secure kernel trap interf&esults for the IAM model are not computed
but are copied from the publication of Gopalakristetaal. [16]. That publication did not present results
for memory use, build time, or models constructed at the itntgrface, so we implemented inlining as a
call-site replacement technique in our existing binarylysis infrastructure. We computed results shown
as Binary IAM using this infrastructure. We lastly includesults for construction of our Dyck model [14],

which uses the PDA call-site replacement algorithm.

The Binary IAM models at the library interface are signifidtgrsmaller than the IAM models con-
structed by Gopalakrishnet al. from source code analysis. We examined the inlined modeat & and
identified two analysis differences that accounted for thechmof the discrepancy. First, our infrastruc-
ture performed more aggressive optimization of program eteothan did the infrastructure of Gopala-
krishnaet al. In particular, we minimized the automata to remove redaohddges. Second, the source code
analyzed by Gopalakrishret al. did not match object code produced by a compiler. The satode was
a strange mix of preprocessed and non-preprocessed cddeathsome macros expanded and some re-
maining [15]. As a result, the IAM models contained macros\ants even though library interpositioning
could never intercept a macro event. By disabling optindzst and manually inserting macro events, we
could increase the size of the Binary IAM model tomt to 100 states and 640 edges. Manual verification
indicated that our analyzer was executing correctly antddbhaBinary IAM models are better optimized
than the source-level IAM models previously reported.
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(a) Model construction memory use.

(b) Model construction time.

Interface Interface
Model Library calls  Kernel traps Model Library calls  Kernel traps
Binary IAM 6.5 MB 2328 MB Binary IAM 1582 MB | > 4083 MB
Dyck 5.7 MB 14 MB Dyck 15 MB 45 MB

(a) Model construction memory use.

Interface Interface
Model Library calls  Kernel traps Model Library calls  Kernel traps
Binary IAM 3 sec 919 sec Binary IAM 870sec| > 1588sec
Dyck 0.47 sec 20 sec Dyck 25 sec 64 sec

(b) Model construction time.

Interface Interface
Model Library calls Kernel traps Model Library calls Kernel traps
IAM [16] 429 states| Unreported IAM [16] 338,736 stated Unreported
1,098 edgesq 7,915,678 edges
Binary IAM 280 states 21,445 states Binary IAM | 1,600,999 states Out of memory
459 edges 5,567,470 edge 7,888,767 edges
Dyck 212 states 2,050 stateg Dyck 2,105 stateg 6,827 states
455 edges 13,774 edgeq 8,928 edges 284,715 edges

(c) Automaton sizes. (c) Automaton sizes.

Table 4: Results for ht t pd. Table 5: Results fognat sd.

The tables contain important features:

¢ Inlined models grow prohibitively large for even small pragis when modeling the kernel trap inter-
face. The model focat grew by3.8 million percent Attempts to construct models fat zi pd and
gnat sd failed after consuming the entire 4 GB address space of tHet3%/stem.

e The non-inlined Dyck model better scales with increasingecsize and code complexity.

e Even when building models at the library interface, the mdimed Dyck models are smaller than
their inlined counterparts.

We also measured the ability of inlined models to enforcecetien at the kernel trap interface. We
executedcat with the command-line option “-n” and a workload that wrot fdes totaling 500 MB to
disk. Both the Binary IAM model and the Dyck model effectivelonstrained an attacker. Measurements
of precision were identical to three decimal places, inthcathatthe inlined model’s loss of precision at
recursive call sites was not significant.

Inlined models faired less well when evaluating their perfance impact. Table 6 shows the slowdown
in runtime due to execution verification. Both the Binary |Ad Dyck models can be operated in time
linear in the automaton size. The significant increase inrtliveed model’s size thus resulted in significantly
worse performance. Table 7 gives the memory use demands nfrtttme monitor for the two models. The
large inlined model required significant system resources.

The architecture of the Windows operating system will ontrsen the effects of inlining. Given its mi-
crokernel design, the user-space subsystem DLLs congriiifisant functionality that models constructed
for the library call interface will not include. However,ifting execution monitoring to the secure Windows
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Unverified \erified execution
Model execution | Initialization | Parse mode| Execution| Total | Slowdown
Binary IAM 55.32s 0.06 s 6.75s| 166.57s| 173.38s 214 %
Dyck 55.32s 0.02s 0.06 s 56.90s| 56.98 s 3%

Table 6: Performance impact of verifyirmgat 's execution against a program model.

| Model | cat memory us¢ Model size| Increase|
Binary IAM 976 KB | 19,936 KB| 2043 %
Dyck 976 KB 240 KB 25 %

Table 7: Memory use impact of execution monitoring.

kernel trap interface requires any execution model of a \Givelapplication to additionally model code
from the libraries. Consider an example: the simple editor epad. exe contains 85 functions. The
DLLs required bynot epad together contain 22,120 functions.

These results speak emphatically about the inability ohéd models to meet the needs of practical
security systems. We believe that Gopalakrisbhal. were able to realize relatively small inlined models
forcat , ht zi pd, andl ht t pd because the application code size of these three prograssmad enough
that inlining had not yet reached the rapid growth of the exgodial growth curve. As they reachgdat sd,
explosive growth becomes evident even at the library iaterf Adding library code to the programs pushes
all models into rapid growth.

Lam and Chiueh constructed inlined models at the Linux Kerae interface without the exponential
model growth presented here [19]. Their results are pas$iblthree reasons. First, Linux standard library
code is less complex than the Solaris standard libraried inseur experiments. Second, Lam and Chiueh
did not statically inline models at indirect call sites andtead used a monitoring-time call-site replacement
algorithm that did not replicate model state. Third, theglgred statically-linked programs that contained
no runtime linker. In typical dynamically-linked prograymevery library call may invoke the runtime linker
due to lazy linking and lazy loading. The runtime linker isTq@ex and significantly increases model
complexity when used.

5 Effects of Indirect Calls

Indirect function calls add control-flow complexity that yngequire deep analysis to satisfactorily resolve.
Indirect calls significantly affect program models consted from static analysis:

e Omission of indirect call analysis builds models 7 to 144entarger than models built with analysis
and 14 to 177 times larger than models built with a combimadibanalysis and manual annotation.

e Indirect call analysis can significantly constrain attaskeOmitted or weak analyses increase an
attacker’s opportunity to develop a transformationalcitta

e Current automated data-flow analyses are insufficient aquireemanual annotation.

Static code analyzers must identify all possible targetadifect function calls so that the generated model
correctly characterizes all control-flow transfers. Faraple, the library functioscandi r, called in Fig-
ure 2, takes two function pointers as arguments and substygealls them via indirect call sites. Analysis
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Indirect call analysis 25
Program None | Data-flow analysis| Annotations
cat 5,179 states 1,643 stateg 1,737 states c 20
2,285,988 edges 15,849 edges 12,882 edges '% 15
htzipd 5,748 states 2,082 states 2,167 states 8 1
2,303,075 edges 17,958 edges 14,812 edges a
Ihttpd 5,378 states 1,977 states 2,050 states 5
2,286,568 edges 17,499 edges 13,774 edges 0
gnatsd 13,566 states 5,908 stateg 6,827 stateg == No Analysis
8,828,375 edges 455,809 edges 284,715 edges == Analysis & Annotations
sendmalil 27,286 states 18,591 states 18,478 states _ o
15,613,707 edges 2,118,193 edges 1,149,040 edges  '9ure 6: Model precision for

cat with indirect call analy-
Table 8: Effect of pointer analysis on Dyck model size. sis. A lower bar is better.

of this code must identify the targets of these indirectscdlhis identification is undecidable for both source
and binary code analysis [20], so statically-constructed@s can only approximate the set of possible tar-
gets. The most naive approach, used by Lam and Chiueh [@8@rms no analysis and allows an indirect
function call to target any function in the program. This hwet greatly overapproximates correct program
behavior and gives an attacker significant freedom. WagmeDgean constrained the set of targets to only
those functions whose address is taken in the program’'ss@ade [28]. Again, this significantly overap-
proximates correct execution by treating all function peig as identical. Gopalakrishea al. improved
this analysis by separately analyzing each function point€ source code [16]. They allowed an indirect
function call to target only those functions whose type atgre matched that of the call site.

Binary code analysis is of greater difficulty because bir@ge is weakly typed. Our previous work
used binary data-flow analysis to compute the addressesatisedirect function calls [13]. When data-
flow analysis could not recover a call site’s possible taxgiie constructed model allowed the site to target
any function with its address taken, as computed from data-8nalysis. Significantly, implementation
limitations caused the analyzer to miss certain targetsrdarmbuce false alarms. For example, the analyzer
could not recover function addresses in C++ vtables whesetlitables were used by objects on the heap.

Manual annotation can improve the precision of these aealy$/agner and Dean manually restricted
the possible targets of some indirect function call sitesriprove the precision of their models. We used
annotation to similarly improve precision and to add cdrftows missed by the automated data-flow analy-
sis. Annotations can be relatively simple: the pair (“laad, “elf_map.so”) specifies that the indirect call
in “load_so” targets the function “elfnapso”; or inconvenient: the annotation (Oxladf8,db_setlorder”)
includes the virtual address of an indirect call site in thg@ot code of a library. Virtual addresses must be
used to distinguish among multiple indirect call sites i dunction.

These analyses significantly alter the constructed modelble 8 shows the sizes of the PDA-based
Dyck model constructed with varying levels of indirect catlalysis. We show results for the four programs
used in earlier sections and feendnai | , a program with 688,387 SPARC instructions in its applmati
code and library code. The table includes model sizes witn Bad Chiueh’s omitted pointer analysis,
our automated binary data-flow analysis, and with manuabttion. Figure 6 presents model precision
measurements, using average branching factor [28], fautxms ofcat . Lower measurements indicate
less opportunity for attack and hence greater precision.
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In each case, increasingly complex analyses improve modeigion. Models constructed with indirect
call analysis accept fewer event sequences and betteraionstogram behavior and attacker opportunities.
Including the manual annotation step improves existingrated analyses by about 50% for some pro-
grams. Unfortunately, annotation is inconvenient and dishies the usefulness of the work. We see a need
for additional research to develop more complex binary-flata analyses than those used in our previous
work and note that several researchers have already bedkingmaogress in this area [4, 7].

6 Conclusions

Model-based intrusion detection system design shouldidenthe threats that the systems must face. By-
pass attacks escape a monitor that verifies execution at@noientable interface. Recent proposals to
monitor executing processes at the library call interfaseumable to address bypass attacks and can be
successfully defeated by an attacker. The interface ofrtistetd computing base—frequently the operating
system kernel trap interface—is the only secure monitopioigt.

Transformational attacks modify a detected attack so thappears to the monitor as correct execu-
tion. The models enforced by the monitor must accuratelyessmt correct program behavior to reduce
an attacker’s opportunities to successfully develop ssframational attack. Function calls and returns can
be correctly modeled with a push-down automaton and effigi@perated with call and return events in
addition to kernel trap events. Approaches using automatiaring see exponential growth of the pro-
gram models as program size increases. Unfortunatelypmabie model size at the bypassable library call
interface was not an indicator of reasonable models at the&sdernel trap interface.

Static model construction efforts remain ongoing, as eweéd by efforts to improve indirect function
call analysis. As with function calls and returns, modelsstraccurately characterize the possible control
flows at indirect function call sites. Current automatedlyses are insufficient and frequently require
human annotation of indirect call targets to build preciseleis that produce no false alarms. We expect
that continued research in static data-flow analysis wikensolely automated algorithms effective.
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