
Strengthening Software Self-Checksumming
via Self-Modifying Code∗

Jonathon T. Giffin Mihai Christodorescu Louis Kruger

Technical Report #1531
Computer Sciences Department

University of Wisconsin
{giffin,mihai,lpkruger}@cs.wisc.edu

Abstract

Recent research has proposed self-checksumming as a
method by which a program can detect any possibly mali-
cious modification to its code. Wursteret al. developed an
attack against such programs that renders code modifica-
tions undetectable to any self-checksumming routine. The
attack replicated pages of program text and altered values
in hardware data structures so that data reads and instruc-
tion fetches retrieved values from different memory pages.A
cornerstone of their attack was its applicability to a variety
of commodity hardware: they could alter memory accesses
using only a malicious operating system. In this paper,
we show that their page-replication attack can be detected
by self-checksumming programs with self-modifying code.
Our detection is efficient, adding less than 1 microsecond
to each checksum computation in our experiments on three
processor families, and is robust up to attacks using either
costly interpretive emulation or specialized hardware.

1. Introduction

Tamper resistant software attempts to protect itself from
unwanted modification by a malicious user of the software
[5, 21]. The software provides some functionality desired
by the user but contains additional code that the user finds
undesirable. For example, commercial software frequently
includes a license verification that an illegal user of the soft-
ware may wish to circumvent. The user may attempt to alter
the program’s code to remove or bypass the license check.
To protect their code and limit its illicit use, software pro-

∗This work was supported in part by the Office of Naval Researchunder
contract N00014-01-1-0708. Jonathon T. Giffin was partially supported by
a Cisco Systems Distinguished Graduate Fellowship. A shortened version
of this report appeared in the21st Annual Computer Security Applications
Conference (ACSAC), Tucson, Arizona, December 2005.

ducers can introduce protections against manipulation, such
as obfuscated code [9, 14, 24], and manipulation detectors,
such as self-checksumming [7, 12]. Enforcement of digital
rights [11] and protection of processes executing remotely
on untrusted hosts [17, 18] similarly require detection of
code manipulation.

Self-checksumming is one technique by which a pro-
cess can detect unexpected modifications to its code. As
it executes, the process computes checksums of the instruc-
tions in its code segment. Any value that disagrees with a
checksum precomputed by the software producer indicates
that code modification has occurred. Self-checksumming
processes implicitly assume that main memory isvon Neu-
mann:code and data share the same memory address space
[23]. On a von Neumann machine, code read by the check-
sum verification routines is the same code fetched by the
processor for execution.

Wurster et al. [22, 26, 27] successfully defeated self-
checksumming by violating this implicit assumption. Using
a modified operating system, they replicated memory pages
containing program code so that data reads and instruction
fetches at the same virtual address accessed different physi-
cal addresses. The attack created a virtualHarvardmemory
architecture [2, 3] with distinct instruction and data memo-
ries. A malicious user can alter execution by changing code
in the instruction memory yet remain undetected by check-
sum routines that read from the data memory.

In their discussion of the page-replication attack,
Wursteret al. stated:

The attack strategy outlined is devastating to the
general approach of self-integrity protection by
checksumming. [27]

While it is true that their attack defeated existing techniques
that implicitly relied upon the von Neumann assumption,
the attack is not an end to self-checksumming. We show in
this paper that processes can use self-modifying code to de-

1

tect the page-replication attack. Memory write operations
in a Harvard architecture change the data memory but not
the code memory. Our detection algorithm modifies a code
sequence using memory writes and then checks whether the
modified code is visible to both instruction fetches and data
reads. More specifically, we generate codeI2 for which the
checksum is previously known at a virtual memory address
A containing a different code sequenceI1. We then both ex-
ecute the code atA and compute its checksum. If the code
executed was the original, unchangedI1 but the computed
checksum matches that ofI2, then the memory is Harvard
and the modified code was written only to the data mem-
ory. Only whenboth the executed code and the computed
checksum matchI2 can we conclude that that memory is
von Neumann. This detection works even when the Harvard
architecture is simulated in software on a von Neumann ma-
chine, as done by Wursteret al. The algorithm is efficient,
using only 68 to 1,773 clock cycles (90 to 969 nanoseconds)
in our tests on x86, SPARC, and PowerPC processors.

We show in Section 4.1 that an attacker can defeat our
detection only with custom hardware or by incurring the se-
vere performance cost of interpretive emulation. To evade
detection, the attacker must emulate memory reads or writes
or instruction fetches, which requires trapping and interpret-
ing of instructions. By interleaving program code and data
on the same memory pages, we can limit the possibility that
attack optimizations can reduce the number of instructions
requiring interpretation. Others have measured interpreted
instructions to be about 1800 times slower than code exe-
cuting at native speed [10].

Existing self-checksumming schemes defeated by the
page-replication attack can be augmented with our mem-
ory architecture detection to restore their previous viability.
Yet, self-checksumming remains an incomplete solution to
software tamper resistance. Self-checksumming programs
execute atop an untrusted operating system and untrusted
hardware. Regardless of the specific self-checksumming al-
gorithm used, the presence of obfuscation, or the use of our
page-replication attack detection, one-time, costly emula-
tion attacks that produce modified programs with no self-
checksumming code remain valid attacks.

Our use of self-modifying code does impose some lim-
itations on widespread adoption. It prevents the use of
systems such as PaX [20] that create non-writable code
pages and non-executable data pages in memory. System-
wide memory demands will increase as memory pages can-
not be shared among multiple processes. As with self-
checksumming algorithms, memory architecture detection
will increase the complexity of compilers generating pro-
tected programs.

In summary, this paper contributes the following:

• We analyze a previously unrealized assumption in
self-checksumming literature. Self-checksumming

R1

R2

R1

R2

Check1

Check2

(a) (b)

Figure 1. (a) Layout of a program to protect.
The code producer wants to protect the in-
tegrity of the code in [R1, R2). (b) Code pro-
tected using self-checksumming.

critically assumes a von Neumann main memory ar-
chitecture so that checksum code actually verifies code
to be executed. This assumption was previously over-
looked, leading to the successful page-replication attack
of Wursteret al. that created a Harvard memory architec-
ture. Section 2 further examines this assumption.

• We present a mechanism to detect violations of the
von Neumann assumption. We show how a process
can detect a Harvard memory architecture with self-
modifying code in Section 3. This mechanism enables
us to verify the overlooked assumption required for self-
checksumming to work.

• We strengthen self-checksumming to detect memory
page-replication attacks.As described in Section 4, this
detection is efficient and robust up to attacks that use ex-
pensive interpretive emulation or custom hardware.

2. Background

Self-checksumming verifies the authenticity of a pro-
gram’s code during execution. The code producer inserts
checksum computations and verifications throughout the
program code. A checksum algorithm computes a hash over
a range of critical code that should not be altered. Verifica-
tion compares the result of a checksum computation against
a known value hard-coded in the program body. A failed
verification indicates unexpected modification of the pro-
gram, and the program’s integrity is no longer assured.

Consider a program that can run only in the presence of
a valid license. The program should protect against modi-
fication of any code performing the license check. In Fig-
ure 1(a), the shaded code region contains the license check.
An attacker may wish to remove the license check by over-
writing the corresponding code, or simply by inserting code
to jump around the license check.

2

RAM

Write

Read

FetchCPU

Figure 2. Von Neumann memory architecture.
Instructions and data share a common main
memory even though intermediate caches
may be divided. Data write operations alter
both instructions and data.

Write

Read

FetchCPU

D−RAM

I−RAM

Figure 3. Harvard memory architecture. In-
structions and data are maintained in sepa-
rate main memories. Data write operations
alter the data RAM but leave the instruction
RAM unchanged.

Protecting this program fragment using checksumming
might lead to the code in Figure 1(b). Several check-
sum computation and verification sequences are added to
the program. This paper is not proposing a new check-
sum algorithm; any of the previously published algorithms
[5, 7, 12, 18] would be suitable for use. Each checksum se-
quence will verify the integrity of a critical code region,
such as the license check, and zero or more checksum se-
quences. An attack that modifies the protected license ver-
ification code will be detected because the checksums over
the critical code region[R1, R2) will not match the stored
value. The program will then terminate, preventing the at-
tacker from running the program without a valid license.

2.1. Self-Checksumming Assumptions

The ability of self-checksumming to detect software
tampering relies upon three assumptions. If the malicious
host violates any of these assumptions, an attacker can de-
feat self-checksumming. Assumption 3 has not been ad-
dressed in previous work and is the focus of this paper.

Assumption 1 [OPAQUE CODE ASSUMPTION]
The attacker cannot identify all relevant checksum computa-
tion code or verification code within the protected program.

The intuition behind this assumption is that static analy-
sis of the program is in general undecidable and can be
made arbitrarily hard using code obfuscation techniques.
This assumption prevents an attacker from first altering or
removing the checksum code from the program, and then
undetectably altering the program. Although we question
the legitimacy of this assumption—if an attacker has the
ability to find and remove undesired code like a license
check, they are likely able to find and remove checksum
code—we note that literature on obfuscation [9, 14, 24] at-
tempts to make the assumption hold.

Assumption 2 [PERFORMANCEASSUMPTION]
The attacker desires to run the protected program at full
speed or with only a reasonable slowdown.

Software self-checksumming can never guarantee secu-
rity, as a self-checksumming program executes atop an un-
trusted operating system and an untrusted machine. For ex-
ample, program emulation allows undetectable code manip-
ulation by intercepting all data reads from memory so that
only the original code is read. However, these attacks come
at high performance cost. An attacker willing to violate As-
sumption 2 and forgo reasonable performance can success-
fully defeat self-checksumming.

Our memory architecture detection technique is as re-
silient to program emulation attacks as standard self-
checksumming. We neither introduce new emulation at-
tacks nor prevent emulation attacks from working success-
fully. The threat of a one-time, costly emulation attack that
produces a modified program with no self-checksumming
code remains.Non-deterministic, multithreaded checksum-
ming routines, originally envisioned by Aucsmith [5], may
provide a successful defense against these attacks. Our
memory architecture detection restores the viability of Auc-
smith’s routines by detecting page-replication attacks.

Assumption 3 [VON NEUMANN ASSUMPTION]
Programs protected by self-checksumming operate on a
commodity von Neumann architecture.

On a von Neumann machine, instruction fetches and data
reads access the same physical memory. This architectural
property is critically important as self-checksumming relies
on the ability to read a program region both as data bytes to
checksum and as instruction bytes to execute. As most mod-
ern, commodity systems use a von Neumann main memory,
this assumption wasimplicitly considered reasonable and of
no further concern.

3

Write

Read

FetchCPU

D−RAM

I−RAM

code

code
Altered

Genuine

Figure 4. The Wurster et al. page-replication
attack creates a virtual Harvard architecture.
The data memory contains the original, gen-
uine copy of the program text read and veri-
fied by the self-checksumming program. The
instruction memory contains the actual ex-
ecuted code, undetectably altered by an at-
tacker.

Write

Read

FetchCPU

D−RAM

I−RAM

I

I1

2

Figure 5. Our memory architecture detection.
We overwrite an existing instruction I1 with a
new instruction I2 that would alter execution
behavior. In a Harvard architecture, I2 is visi-
ble only to subsequent data reads and not to
instruction fetches. Program execution still
reflects I1. This read/fetch mismatch identi-
fies the page-replication attack.

Unfortunately, the complexity of modern architectures
allows the memory values read when computing a check-
sum over a code region to have no correlation to instruc-
tions actually executed. Failure to explicitly address the
von Neumann assumption in previous work led to a suc-
cessful page-replication attack against self-checksumming.
We show in Section 3 how to efficiently verify the assump-
tion using self-modifying code.

2.2. Memory Architectures

To better understand the page-replication attack and its
implications to self-checksumming schemes, we first con-
sider the architecture of main memory on commodity sys-
tems. A processor uses three operations to retrieve instruc-
tions and data and to write values back to memory:
• fetch: retrieve an instruction from memory for execution,
• read: load a value from memory, and
• write: store a value to memory.
Based on how these three operations interact with memory,
a machine’s physical memory architecture can be classified
into one of two fundamental designs: the von Neumann ar-
chitecture and the Harvard architecture.

A von Neumannmemory architecture [23] uses a com-
mon store for both instructions and data (Figure 2). An in-
struction fetch will read from the same physical memory lo-
cation as a data read of the same address. Critically, a data
write modifies the memory so that subsequent instruction
fetches and data reads will both retrieve the new value.

Conversely, aHarvard architecture [2, 3] maintains sep-
arate instruction and data stores (Figure 3). An instruction
fetch and a data read of the same address access physically
distinct memory locations. A value written to memory al-
ters only the data memory and leaves the instruction mem-

ory unchanged. We define avirtual Harvard architectureas
a system with separate instruction and data memories main-
tained by software on a machine that is physically von Neu-
mann. Even if the software layer duplicates virtual mem-
ory addresses in both the instruction and data memories,
a process can write to only one memory at a time. Com-
modity processors provide no instruction allowing a process
to write to multiple physical memory addresses simultane-
ously.

2.3. Violating the von Neumann Assumption

As modern, commodity processors present processes
with a von Neumann main memory, previous self-
checksumming approaches implicitly assumed that the von
Neumann assumption must hold. Wursteret al. violated the
assumption to undetectably alter self-checksumming pro-
grams. Their attack modified an operating system’s mem-
ory manager to create a virtual Harvard architecture from
the physical von Neumann memory. The attack implemen-
tation varied based upon specific properties of particular
commodity processors, but, in all cases, the attack created
distinct instruction and data stores from the main memory
of the system.

Successful evasion of checksum computations then be-
comes clear. The attacker replicates in both the instruction
and data memories those memory pages containing code
that they wish to alter. The copy in data memory remains
unchanged so that checksum calculations are correct. How-
ever, execution fetches instructions from the copy in the in-
struction memory (Figure 4). The attacker is free to unde-
tectably manipulate the copy in instruction memory and al-
ter program execution as they desire.

4

1 movb $1, A+1
2 movb A+1, %al
3 A: andb $0, %al
4 if (%al == 1)
5 VON NEUMANN
6 else
7 HARVARD

Figure 6. Self-modifying code to detect mem-
ory architecture, described in Section 3.

1 movb $1, A+1
2 movb A+1, %al
3 A: andb $1, %al
4 if (%al == 1)
5 VON NEUMANN
6 else
7 HARVARD

Figure 7. Code of Figure 6 following self-
modification on a von Neumann machine. Ex-
ecution of line 1 changed the immediate value
used in line 3 from 0 to 1.

Reconsider the example program in Figure 1(b).
Wursteret al. place the original code in the data memory
at addressR1. The attack then places the modified code
in the instruction memory, also at addressR1. The pro-
gram executes this altered code from the instruction mem-
ory. The checksum sequences, however, read and verify the
unchanged but never executed code from the data memory.
By creating a virtual Harvard architecture, the attack suc-
cessfully modifies code executed by the program without
detection by code checksumming functions.

3. Memory Architecture Detection

Processes can identify the underlying main memory ar-
chitecture using self-modifying code. Intuitively, detec-
tion works by modifying code in the program and then
both reading the code and executing the code. If the value
read disagrees with the code executed, then either the data
read or the instruction fetch retrieved the unmodified code,
which occurs only when memory is Harvard (Figure 5).

The process performs the following steps:

1. Overwrite an existing instructionI1 with a new instruc-
tion I2. The code change fromI1 to I2 must alter execu-
tion in a noticeable way.

2. Read back the instruction using data memory reads.

3. Execute the instruction.

If memory is von Neumann, then the memory write in step 1
will be visible to both data reads and instruction fetches. As
a result, the value read in step 2 and the instruction executed
in step 3 will both be the new instructionI2. If memory is
Harvard, then step 1 changes only data memory. Step 2 will
readI2, but step 3 will executeI1. The requirement that
I2 changes execution in a noticeable way exists precisely
so that we can detect which instruction is fetched simply by
executing the instruction. By a symmetric argument, we can
likewise detect writes that change only instruction memory.

Figure 6 shows a pseudo-code sequence that performs
memory architecture detection. For clarity, we show a mix

of AT&T-style x86 assembly code with C-style branching.
In the AT&T syntax, the rightmost operand of an assem-
bly code instruction is the destination of any output value.
This code is self-modifying. The instruction in line 1 per-
forms step 1 of architecture detection by overwriting the
memory location one byte past the labelA. This location
corresponds to the immediate operand of the bitwiseandb
in line 3. Figure 7 shows the resulting altered code on a
von Neumann machine. In this example, instructionI1 is
“andb $0, %al” and I2 is “andb $1, %al”.

Lines 2 and 3 exercise both a data read and an instruction
fetch of the locationA+1. Line 2 is detection step 2: the
mov instruction reads the byte using a data memory read,
storing the value in register%al. Line 3 triggers an instruc-
tion fetch for an instruction that includes addressA+1 and
performs a bitwiseand of the byte read from data mem-
ory against the byte fetched from instruction memory. The
register%al is 1 only when both the data read and the in-
struction fetch retrieved data rewritten by the earlier code
modification. If either the data read or the fetch read from
the original code of Figure 6, then%al has value0.

The branching of lines 4 through 7 encode the final de-
tection logic. A von Neumann memory will write the code
alteration of line 1 to the shared store accessed by both data
reads and instruction fetches. The self-modifying detection
code will compute the value1 for register%al. A Harvard
memory updates the data memory but does not write the
code change through to the instruction memory. Register
%al then takes value0. Hence, this mechanism provides
processes a way to identify whether the main memory is
von Neumann or Harvard.

3.1. Strengthening Self-Checksumming

This memory architecture detection technique can
strengthen existing self-checksumming algorithms. These
algorithms require the von Neumann assumption to hold be-
fore any checksum computation can meaningfully verify a
code sequence. By identifying properties of the underly-
ing hardware, self-checksumming algorithms can verify the

5

1 ...
2 R1: movb $1, A+1
3 call checksum(R1, R2)
4 A: andb $0, %al
5 movb $0, A+1
6 if (%al != 1)
7 call failed_license()
8 call verify_license()
9 if (%al != 1)

10 call failed_license()
11 R2: ...

Figure 8. Self-checksumming augmented
with von Neumann assumption verification.

veracity of the von Neumann assumption and take appropri-
ate action when the hardware violates the assumption. This
detection holds even when software creates a virtual Har-
vard architecture on commodity von Neumann machines, as
done by the page-replication attack of Wursteret al. [27].

Figure 8 shows how verification of the von Neumann
assumption can be integrated into a pre-existing checksum
computation. Line 2 overwrites the immediate operand of
the bitwiseandb in line 4, as in Figure 6. The checksum
computation in line 3 returns the value1 in register%al
if the checksum calculated for themodifiedcode matches
a precomputed value. If the data reads performed by the
checksum function read the original code from line 4
rather than the rewritten value, the checksum computation
will fail. Subsequent execution of line 4 will exercise an
instruction fetch of the modified code. Only when both
the data read by thechecksum function and the instruc-
tion fetch retrieve the modified data will register%al take
value1. The virtual Harvard memory created by the page-
replication attack results in the value0 and subsequent at-
tack detection handling at lines 6 and 7. This verification
code can detect a page-replication attack that segregates
memory into code and data pages and then modifies or re-
moves theverify license call from the code page.

3.2. Construction of Self-Modifying Code

Our self-modifying code is not itself a checksumming
routine but augments existing self-checksumming algo-
rithms so that they detect the page-replication attack. Al-
though we have not yet developed the custom compiler tools
that automatically produce tamper-resistant programs con-
taining memory architecture detection, we foresee straight-
forward implementation. Given an existing checksumming
routinechecksum that operates over the range of program
points [R1, R2), memory architecture detection could be
implemented as follows:

• an instruction sequenceS1 ∈ [R1, R2) that computes
some valuex,

• an instruction sequenceS2 that overwrites instructions
in S1 such that the the overwrittenS1 computes a value
y 6= x and the checksum of the overwrittenS1 is different
than the checksum of the originalS1, and

• an instruction sequenceS3 that first executesS1 to check
if the value computed byS1 equalsy, and then overwrites
S1 to restore the original instruction sequence.

The checksum function is altered so that the hard-
coded expected checksum value matches the checksum of
[R1, R2) subsequent to the overwrite ofS1. We insert the
code sequenceS2 before the checksum computation so that
checksum reads from the modified code sequence and
verifies that the writes to code are written to data pages.
We add the sequenceS3 after the computation to verify that
the writes to code are written to code pages. The memory
region[R1, R2) has integrity only when both the checksum
verification succeeds and execution ofS3 indicates that the
code sequenceS1 computes the valuey.

This generic algorithm allows for a wide variety of code
sequences to be used as building blocks, such as the code
used in Figure 8, and makes this protection mechanism
amenable to automatic construction. For example, opaque
predicates [8] can serve as sequencesS1 andS3, while also
providing a layer of obfuscation to the verification mecha-
nism. As with code obfuscation, the self-modifying code
can be added to a program at the end of the development
cycle (at release time), and hence will not interfere with de-
bugging.

3.3. Cache Coherence

Modern systems use a hierarchy of memories that con-
tains intermediate caches between the processor and the
main memory. For efficiency, these caches are oftenwrite-
backrather thanwrite-through, meaning that a value writ-
ten to a cache is not propagated to the next layer of memory
until the cache entry is flushed. Caches close to the proces-
sor, frequently termed “L1” and “L2” caches, use a Harvard
architecture to better exploit locality differences in instruc-
tion fetches and data reads and writes. A self-modifying
program writes generated code using standard data writes,
which the processor transmits through the L1 data cache (D-
cache). The program requires cache coherency between the
D-cache and the instruction cache (I-cache) to ensure that
stale instructions cached in the I-cache are not subsequently
executed. Otherwise, the architecture detection might er-
roneously conclude that a von Neumann main memory is
Harvard when I-caches and D-caches are not coherent.

Fortunately, the highly prevalent x86 processors have
maintained cache coherency since at least the Pentium Pro
processor [4, 13]. These processors detect writes to the D-

6

cache of instructions already present in the I-cache. They
will automatically invalidate the I-cache entry and flush any
modified instructions that may have already entered the pro-
cessor’s pipeline. The correctness of a self-modifying pro-
gram’s execution is assured by the x86 hardware.

However, not all commodity processors in use today
are cache coherent [16, 19]. Some processors require self-
modifying programs to issue special instructions, such as
flush, that flush dirty D-cache entries and invalidate stale
I-cache instructions following code modification. This
presents no particular onus to self-modifying programs;
however, these cache flush instructions are not commonly
used by programs that are not self-modifying. Adding ar-
chitecture detection code containing flush instructions toa
self-checksumming program provides sentinel instructions
that an attacker can use to locate and remove the checksum
calculations. As execution of cache flush instructions does
not affect the execution correctness of code that is not self-
modifying, an obfuscator can add arbitrary flush instruc-
tions throughout the original program code, forcing the at-
tacker to determine which flushes occur due to architecture
detection and which are irrelevant.

4. Evaluation

We evaluate the robustness and performance of our
memory architecture detection technique. First, we con-
sider the possible attacks that a malicious user with knowl-
edge of our technique could mount and conclude that an
attacker can evade detection only by expending significant
resources: a high runtime overhead or the design and con-
struction of specialized hardware. Second, we examine the
interactions between our detection algorithm and other se-
curity mechanisms. Third, we evaluate the performance of
architecture detection and show that, in the worst case, one
memory architecture detection check has cost similar to an
average system call. This performance number can be used
by a software producer as guidance when inserting checks
in various parts of the program. Finally, we argue that
the memory architecture detection can be combined with
any self-checksumming scheme for any hardware platform,
making it applicable in a wide variety of settings where tam-
per resistance is required.

4.1. Resistance to a Knowledgeable Attacker

The page-replication attack executes code from a mod-
ified memory pageB while forcing self-checksumming
to complete correctly by reading data from the original
memory pageA. An attacker with knowledge that a self-
checksumming program employs memory architecture de-
tection may adjust the page-replication attack in an attempt
to evade detection. We show that we can detect any attack

that does not violate Assumptions 1 and 2 of Section 2.1 by
analyzing the possible destinations of a memory write when
the destination page has been replicated: writes that update
both pagesA andB, writes that update onlyA, and writes
that update onlyB. The fourth case of writes that update
some other page or no page at all is nonsensical and not
considered further.

First, the attacker could redirect writes that target code
to both the code and data memory pagesA andB in the vir-
tual Harvard architecture. This requires interpretive emula-
tion of write instructions, as commodity processors provide
no hardware mechanism by which one write instruction up-
dates two different physical memory locations. The attacker
can leverage page-level memory protections by marking
code pages executable but non-writable. Every time the
self-modifying code attempts to write to a code page, the
processor raises a hardware fault that the malicious operat-
ing system then handles. In the operating system, the at-
tacker can emulate the write and update both the code and
data memories.

Second, the attack may have altered operating system
data structures so that writes execute at full speed and up-
date pageA, the page containing the original program code.
Consider the effect of executing our memory architecture
detection algorithm on such a page. The checksum com-
putation will calculate the correct value, but execution of
the self-modified code will detect the virtual Harvard ar-
chitecture because the code pageB was not updated. To
defeat this detection, the attacker needs execution of the
self-modifying code to fetch fromA, but all other program
execution to fetch fromB. This requires both violation of
Assumption 1 and emulation of instruction fetches.

Finally, memory writes may update pageB, the page
altered by the attacker. This may cause outright program
failure, as the self-modifying code may be overwriting un-
known instructions inserted by the attacker. At the least,
checksum computation will fail, as the data pageA read
by the checksum function will not have been updated and
the checksum verification compares against a stored check-
sum of the code following self-modification. An attacker
requires reads specifically of self-modified code to be re-
trieved fromB, but all other reads to retrieve fromA so that
the checksum is correctly computed. This attack requires
emulation of read instructions.

Successful attacks in all three cases rely upon interpre-
tive emulation of instructions on memory pages containing
self-modifying code. The attacker can take advantage of
the expectation that the number of code modifications per-
formed by memory architecture detection will remain low,
and hence interpret a limited number of writes, fetches, or
reads with a small overall performance cost. We consider
the case of emulated writes, although symmetric arguments
hold for fetches and reads as well.

7

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

Code

Code

Data

P4

P3

P2

P1

Heap

�� ��Code

�� ��Code

�� ��Code

�
�
�
�

�
�
�
�

Code

�
�
�
�

�
�
�
�

Code

�
�
�
�

�
�
�
�

Code�
�
�
�

�
�
�
�

Code
�� ��Code
�� ��Data

�
�
�
�

�
�
�
�

Heap

�
�
�
�

�
�
�
�

Data

�
�
�
�

�
�
�
�

Heap

�� ��Data

�� ��Heap

�� ��Data

�� ��Heap

P4

P3

P2

P1

(a) Traditional memory layout. (b) Interleaved layout.

Figure 9. Traditional program memory lay-
out segregates code and data into separate
pages. Interleaving code and data can pro-
vide protection against runtime detection of
self-modifying code.

Our suggested defense increases the cost of trapped and
emulated writes by forcing the attacker to emulateall writes
rather than just the infrequent writes to code. The tra-
ditional memory layout of programs segregates code and
data, as shown in Figure 9(a). This layout allows an at-
tacker to trap only writes to code by setting code pages
non-writable. Consider an alternative program layout that
interleaves code and data, illustrated in Figure 9(b). A write
to any address in the code range of pageP1 is indistinguish-
able at the page level from a write to any address in the
data ranges ofP1. Even statically-sized stack frames for
non-recursive functions can be interleaved with code, as the
memory requirements and subsequent layout of the stack
frames in memory can be statically computed by a com-
piler. Interleaving of code, global data, and stack frames
can be achieved, in a manner transparent to the program-
mer, with a custom compiler. Interleaving heap data has
additional complexity, as the heap free list must be initial-
ized to non-contiguous memory when the process is loaded
for execution. Fortunately, however, heap regions as well
as stack frames are usually represented as linked data struc-
tures that allow straightforward interleaving. Although we
have not developed the custom compiler tools supporting
interleaving, we note that other research has successfully
integrated security enhancements into compilers [6,15].

Efficient trapping of writes to code when code and data
are interleaved on the same page requires memory pro-
tection at word-level granularity. Although the research
community has investigated fine-grained memory protec-
tion [25], current commodity hardware does not support
word-level memory protection, and we know of noefficient
implementations of word-level protection in software. The
attacker is left with two options:

• Develop specialized hardware that will, with a single
write instruction, alter the memory at two physical ad-
dresses. This is beyond the means of typical attackers.

• Write protect all memory pages in a commodity system.
Every memory write in the program will now result in a
fault regardless of whether it is a write to data or a write
to code. All writes become interpreted and performance
suffers greatly. If Assumption 2 of Section 2.1 holds, then
this option becomes unappealing to the attacker.

These arguments, and the validity of self-checksumming,
remain dependent upon Assumptions 1 and 2 holding true.
It is not clear that these assumptions are valid without
further research. An attacker willing to commit the re-
sources required for code analysis and interpretive emu-
lation violates the assumptions and can defeat any self-
checksumming algorithm, even with our memory architec-
ture detection.

4.2. Effects on Other Security Mechanisms

Our technique for strengthening self-checksumming re-
quires the protected program to overwrite part of its code.
As a result, all memory pages that contain program code
must be writable. Writable code pages in the memory of
a running process present a new target for an attacker that
manages to manipulate the control flow of the program, per-
haps by exploiting a buffer overflow vulnerability. If the
code is overwritten with malicious code, any protection sys-
tem that permits execution only from code pages, such as
PaX [20], will fail to detect the attack. The complementary
issue of executable data pages arises from the proposal to
interleave code and data in order to make identification of
checksum code more difficult. The attack-detection func-
tionality of PaX’s non-executable stack can no longer be
relied upon. Fortunately, many other dynamic techniques
detect or prevent all buffer overflow attacks and do not inter-
fere with our architecture detection mechanism [1,6,10,15].

4.3. Effects on Program Performance

Our architecture detection approach does have perfor-
mance cost in both execution time and in memory us-
age overhead. The technique adds self-modifying code
to programs, which can cause performance deterioration
due to cache coherency maintenance and processor pipeline
flushes of stale instructions. Code scheduling can minimize
this impact. Although Figures 6 and 7 show the instruc-
tion performing a code edit very near to the edited instruc-
tion, a scheduler in a compiler could lengthen this distance.
For example, the entire code of the functionchecksum in
Figure 8 separates the rewriting instruction of line 2 from
the rewritten instruction of line 4. Instruction prefetch will
follow the call. If the number of instructions executed in

8

Delay
Processor Clock Time Cycles

Athlon XP 1.83 GHz 969 ns 1773
Pentium 4 3.00 GHz 228 ns 684
Pentium 3 1.00 GHz 475 ns 475
PowerPC G4 667 MHz 271 ns 181
UltraSPARC 3 750 MHz 90 ns 68

Table 1. Performance impact of self-modifying
code. Delays are given in both nanoseconds
and processor clock cycles and are averaged
over 300 million code modifications.

checksum is greater than the depth of the processor’s
pipeline, then self-modification imposes no pipeline flush
as the instruction will be rewritten before it is prefetched.

We measured the impact of self-modifying code on ex-
ecution performance. We executed a benchmark that ex-
ercised our worst-case performance impact: the altered in-
struction is used immediately following modification. The
resulting cache and processor pipeline flushes will ad-
versely affect performance to the greatest degree possible.
We looped through self-modifying code 300 million times
on five commodity processors and present the average mea-
sured delays incurred by code modification in Table 1. Ap-
pendix A contains the complete benchmark code. In all
cases, the cost of self-modifying code is small and is sim-
ilar to the cost of a lightweight system call. Adding our
architecture detection to existing self-checksumming algo-
rithms will not significantly diminish the performance of
self-checksumming.

Self-modifying code and the more general technique of
interleaving code and data may increase memory use re-
quirements for some execution scenarios. In traditional exe-
cution designs where programs have non-writable code seg-
ments, multiple instances of the same executing program
can share the same code segments. The page table entries of
the separate processes resolve to the same physical memory
addresses containing the non-writable code. However, our
technique requires that every instance of an executing pro-
gram have separate physical memory pages, even for code.
The system’s overall physical memory demands increase.
This problem is not unique to our technique; obfuscation al-
gorithms that reorder code have similar memory needs [6].

4.4. Applicability to Commodity Processors

One hallmark of the work by Wursteret al. was the au-
thors’ ability to develop implementations of the attack fora
wide variety of processors [22]. Nonetheless, our memory
architecture detection is independent of the underlying im-
plementation of the page-replication attack. A single code
sequence that changes only to match the assembly language

of a particular processor can detect the page-replication at-
tack in any of its implementation forms. As Table 1 shows,
we tested our detection on three different classes of proces-
sor architectures. Our generic detection mechanism allows
self-checksumming to be applied to programs for many dif-
ferent architectures.

5. Related Work

Wurster [26] suggested an alternate defense to the page-
replication attack. Given that the current implementationof
the attack creates the Harvard main memory when the op-
erating system loads a process for execution and the data
memory pages remain unchanged, a process can simply
copy all unchanged code from the data pages to a new re-
gion of memory and then continue execution from that re-
gion. Although this copy-and-execute defense will evade
the existing attack of Wursteret al., a knowledgeable at-
tacker can easily adapt. Rather than replicating memory
when loading the process, the attacker can initially leave
the memory untouched and simply insert a breakpoint trap
immediately before the control flow transfer from the orig-
inal code pages to the new code pages created by the copy
loop. The process begins execution, copies its code to a new
region of memory, and then stops at the breakpoint before
jumping to the new code. The malicious operating system
can then create the Harvard memory for the copied code
pages and resume the process’ execution. This easy attack
adaptation occurs because Wurster’s defense only generates
code once during process execution, and this generation oc-
curs at a predictable time. In our design, code modification
occurs continually throughout execution and evasion of our
defense requires emulation of memory writes.

Self-modifying code has been used previously in self-
checksumming algorithms. Aucsmith [5] proposed a self-
checksumming implementation that usedintegrity verifica-
tion kernels(IVKs), or code segments for checksum com-
putation and verification that are armored against modifica-
tion. The system used self-modifying code to prevent re-
verse engineering of the IVKs.

Previous techniques such as the IVKs, Horneet al.’s
testers and correctors [12], and Chang and Atallah’s net-
works of guards [7] addressed only the opaque code as-
sumption and the performance assumption. In this work, we
presented a solution to ensure the validity of the previously
disregarded von Neumann assumption. Our solution is or-
thogonal to the self-checksumming techniques from previ-
ous work and can be successfully used in combination with
them to obtain the desired level of integrity assurance.

9

6. Conclusions

Previous self-checksumming approaches implicitly as-
sumed a von Neumann main memory and are subject to eva-
sion by a page-replication attack. We showed here that ex-
plicitly recognizing the von Neumann assumption allowed
investigation of strategies by which processes can verify
whether the assumption holds. Self-checksumming algo-
rithms can use self-modifying code to detect violations of
the von Neumann assumption. When memory appears Har-
vard on a commodity von Neumann machine, processes
can reasonably conclude that a page-replication attack is in
progress and take corrective action as necessary.

Acknowledgments

We thank Paul van Oorschot, Vinod Ganapathy, Shai Ru-
bin, Hao Wang, and all anonymous reviewers for helping
improve the quality of this paper.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-
flow integrity: Principles, implementations, and applica-
tions. In12th ACM Conference on Computer and Commu-
nications Security (CCS), Alexandria, VA, Nov. 2005.

[2] H. H. Aiken. Proposed automatic calculating machine. Un-
published manuscript, Nov. 1937. Also appeared inIEEE
Spectrum, 1(8):62–69, Aug. 1964.

[3] H. H. Aiken and G. M. Hopper. The automatic sequence
controlled computer.Electrical Engineering, 65:384–391,
Aug./Sep. 1946.

[4] AMD64 Architecture Programmer’s Manual Volume 1: App-
lication Programming, Mar. 2005. Advanced Micro Devices
publication number 24592, revision 3.10. Page 123.

[5] D. Aucsmith. Tamper resistant software: An implemen-
tation. In 1st International Information Hiding Workshop
(IHW), Cambridge, United Kingdom, Apr. 1996.

[6] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient tech-
niques for comprehensive protection from memory error ex-
ploits. In 14th USENIX Security Symposium, Baltimore,
MD, July 2005.

[7] H. Chang and M. J. Atallah. Protecting software code
by guards. In1st Digital Rights Management Workshop,
Philadelphia, PA, Nov. 2001.

[8] C. Collberg, C. Thomborson, and D. Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In25th
ACM Symposium on Principles of Programming Languages
(POPL), San Diego, CA, Jan. 1998.

[9] C. S. Collberg and C. Thomborson. Watermarking, tamper-
proofing, and obfuscation—tools for software protection.
Technical Report 2000-03, University of Arizona, Feb.
2000.

[10] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. Stack-
Guard: Automatic adaptive detection and prevention of

buffer-overflow attacks. In7th USENIX Security Sympo-
sium, San Antonio, TX, Jan. 1998.

[11] R. Dhamija and F. Wallenberg. A framework for evaluating
digital rights management proposals. In1st International
Mobile IPR Workshop, Helsinki, Finland, Aug. 2003.

[12] B. Horne, L. Matheson, C. Sheehan, and R. Tarjan. Dynamic
self-checking techniques for improved tamper resistance.In
1st Digital Rights Management Workshop, Philadelphia, PA,
Nov. 2001.

[13] Intel Architecture Software Developer’s Manual Volume 1:
Basic Architecture, 1997. Intel publication number 243190.
Page 2-8.

[14] C. Linn and S. Debray. Obfuscation of executable code to
improve resistance to static disassembly. In10th ACM Con-
ference on Computer and Communications Security (CCS),
Washington, DC, Oct. 2003.

[15] G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: Type-safe retrofitting of legacy soft-
ware. ACM Transactions on Programming Languages and
Systems (TOPLAS), 27(3):477–526, May 2005.

[16] PowerPC Processor Reference Guide, Sept. 2003. Pages
170–171.

[17] T. Sander and C. Tschudin. Protecting mobile agents against
malicious hosts. Volume 1419 ofLecture Notes in Computer
Science, pages 44–60. Springer-Verlag, 1998.

[18] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla. Pioneer: Verifying integrity and guaranteeing ex-
ecution of code on legacy platforms. In20th ACM Sym-
posium on Operating System Principles (SOSP), Brighton,
United Kingdom, Oct. 2005.

[19] The Sparc Architecture Manual, Version 9, 2000. Pages
308–309.

[20] The PaX Team. Non-executable pages: de-
sign and implementation. Published online at
http://pax.grsecurity.net/docs/noexec.txt . Last accessed
on May 20, 2005.

[21] P. C. van Oorschot. Revisiting software protection. In6th In-
ternational Information Security Conference (ISC), Bristol,
United Kingdom, Oct. 2003.

[22] P. C. van Oorschot, A. Somayaji, and G. Wurster. Hardware-
assisted circumvention of self-hashing software tamper re-
sistance. IEEE Transactions on Dependable and Secure
Computing, Apr./June 2005.

[23] J. von Neumann. First draft of a report on the EDVAC, 1945.
[24] C. Wang, J. Davidson, J. Hill, and J. Knight. Protection

of software-based survivability mechanisms. InInterna-
tional Conference of Dependable Systems and Networks,
Göteborg, Sweden, July 2001.

[25] E. Witchel, J. Cates, and K. Asanovic. Mondrian memory
protection. In10th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS), San Jose, CA, Oct. 2002.

[26] G. Wurster. A generic attack on hashing-based softwaretam-
per resistance. Master’s thesis, Carleton University, June
2005.

[27] G. Wurster, P. C. van Oorschot, and A. Somayaji. A generic
attack on checksumming-based software tamper resistance.
In IEEE Symposium on Security and Privacy, Oakland, CA,
May 2005.

10

http://pax.grsecurity.net/docs/noexec.txt

A. Performance Measurement Code

We obtained the self-modifying program execution per-
formance results presented in Section 4.3 with the code
shown in this appendix. Section A.1 shows the complete
test code used on the x86 machine, with the inline assembly
code given in the AT&T syntax used by gcc. Conditional
compilation using the macro variableSELFMODIFYING
allowed performance measurements both with and without
use of self-modifying code. The loop iterated 100 million
times; we executed each benchmark three times for a total
of 300 million code modifications per processor.

Section A.2 lists the SPARC-specific assembly code
used to measure performance on the UltraSPARC proces-
sor; the C code remained as in Section A.1. Note the use of
the explicit cache flush instruction in line 5 of the SPARC
assembly code. Section A.3 lists the PowerPC-specific as-
sembly code used to test the G4 processor. The sequence
of five instructions fromdcbst throughisync (lines 5
through 9) synchronize data caches and instruction caches
following an instruction modification.

All three assembly code sequences contain a bitwise
and instruction that uses an immediate value 0. On each
loop iteration, the 0 is overwritten with a 1, as described
in Section 3. The written code byte is then retrieved from
memory via both a data read and an instruction fetch. If
either the read or the fetch retrieve 0 rather than 1, exe-
cution jumps to the functiondie. Otherwise, the code is
again modified to reset the immediate operand of theand
instruction to 0, and the loop continues.

We compiled all benchmarks with the gcc command-line
option “–O”; the x86 and SPARC benchmarks were com-
piled with gcc 3.4.1 and the PowerPC benchmark using gcc
3.3. The compiler did not optimize out the loop, even when
conditional compilation produced an empty loop body.

We computed overheads as follows. LetMi be the user
time in seconds required to execute the benchmark on trial
i, as reported by the UNIX programtime. Let Bi be the
baseline user time with self-modifying code removed via
conditional compilation. Then the average delay, in sec-
onds, due to self-modifying code is:

(M1 − B1) + (M2 − B2) + (M3 − B3)

300 × 106

A.1. Complete x86 Code

#include <stdio.h>
#include <sys/mman.h>
#include <asm/page.h>

#define SELFMODIFYING

void die (void)
{

fputs("Rewriting failed.", stderr);
exit(2);

}

int main (int argc, char **argv)
{

volatile int i;
void *s = main;

/* Set the code page writable. */
s -= (unsigned)s % (PAGE_SIZE);
mprotect(s, 100, 7);

/* Loop 100 million times. */
for (i = 0; i < 100000000; ++i)

{
#ifdef SELFMODIFYING

__asm("movb $1, A+1");
__asm("movb A+1, %al");
__asm("A:");
__asm("andb $0, %al");
__asm("cmpb $0, %al");
__asm("je die");
__asm("movb $0, A+1");

#endif
}

return 0;
}

A.2. SPARC Assembly Code

__asm("sethi %hi(.A), %l2");
__asm("or %l2, %lo(.A), %l2");
__asm("mov 1, %l3");
__asm("stb %l3, [%l2+3]");
__asm("flush %l2");
__asm("ldub [%l2+3], %l3");
__asm(".A:");
__asm("andcc %l3, 0, %l3");
__asm("bz die");
__asm("stb %g0, [%l2+3]");

11

A.3. PowerPC Assembly Code

__asm("lis r7, ha16(A)");
__asm("addi r7, r7, lo16(A)");
__asm("li r8, 1");
__asm("stb r8, 3(r7)");
__asm("dcbst 0, r7");
__asm("sync");
__asm("icbi 0, r7");
__asm("sync");
__asm("isync");
__asm("lbz r8, 3(r7)");
__asm("A:");
__asm("andi. r8, r8, 0");
__asm("bc 12, 2, _die");
__asm("li r8, 0");
__asm("stb r8, 3(r7)");

12

	Introduction
	Background
	Self-Checksumming Assumptions
	Memory Architectures
	Violating the von Neumann Assumption

	Memory Architecture Detection
	Strengthening Self-Checksumming
	Construction of Self-Modifying Code
	Cache Coherence

	Evaluation
	Resistance to a Knowledgeable Attacker
	Effects on Other Security Mechanisms
	Effects on Program Performance
	Applicability to Commodity Processors

	Related Work
	Conclusions
	Performance Measurement Code
	Complete x86 Code
	SPARC Assembly Code
	PowerPC Assembly Code

