5]

B8

BB B E

[T B N O N - QO OO DO - O - A : N N < O B - =~ O N B = = = I

B o B B A3 RO @8

mmama

Distributed Certificate-Chain
Discovery in SPKI/SDSI

Stefan Schwoon
HaoWang
Somesh Jha
Thomas Reps

Technical Report #1526

August 2005

Distributed Certificate-Chain Discovery in SPKI/SDSI

Stefan Schwoon?!, Hao Wang?, Somesh Jha?, and Thomas W. Reps®

Y Institut fiir Formale Methoden der Informatik, Universitéit Stuttgart, schwoosn@jfmi.uni-stutigart.de
2 Computer Science Department, University of Wisconsin, {hbwang, jha, reps}@cs.wisc.edu

Abstract. The authorization problem is to decide whether, according to a security policy, some principal should
be allowed access to a resource. In the trust-management system SPKI/SDSI, the security policy is given by a set
of certificates, and proofs of authorization take the form of certificate chains. The certificate-chain-discovery prob-
lem is to discover a proof of authorization for a given request. Although certificate-chain-discovery algorithms for
SPK1/SDSI have been investigated by several researchers, previous work did not address how to perform certificate-
chain discovery in distributed environments. We address the certificate-chain-discovery problem where the certifi-
cates are distributed over a number of sites, which then have to cooperate to identify the proof of authorization for a
given request. We propose two protocols for this purpose. These protocols can also handle cases where certificates
are labeled with weights and where multiple certificate chains must be combined to form a proof of authorization.
We have implemented these protocols in a prototype and report preliminary results of our evaluation.

1. Introduction

In access control of shared computing resources, the authorization problem addresses the following question: given
a security policy, should a principal be allowed access to a specific resource? In trust-management systems [1, 2, 3],
such as SPKI/SDSI [4], the security policy is given by a set of signed certificates, and a proof of authorization consists
of a set of certificate chains. In SPK1/SDSI, the principals are the public keys, i.e., the identity of a principal is
established by checking the validity of the corresponding public key. In SPKI/SDSI, name certificates define the
names available in an issuer’s local name space; authorization certificates grant authorizations, or delegate the ability
to grant authorizations. The certificate-chain-discovery problem is to discover a certificateé chain that is a proof of
authorization for a request to access a resource by a principal.

Schwoon et al. [5] introduced a new algorithm for certificate-chain discovery that translates SPKI/SDSI certifi-
cates to rules in a weighted pushdown system (WPDS) [6]. The algorithm presented by [5] can discover proofs of
authorization that consist of multiple certificate chains. In this approach, we also translate SPK1/SDSI certificates into
rules in a WPDS, where the authorization specifications of the certificates are translated to weights of the rules. This
translation to a WPDS yields a complete certificate-chain-discovery algorithm and is described in Section 4.

Although SPKI/SDSI was designed to provide trust management in distributed enviroriments, its original proposal
did not address how authorization (in the form of certificate chains) can be performed in distributed environments.
This issue is also neglected by previous work on certificate-chain discovery. For instance, the algorithms of [7, 8, 5]
assume that the set of all certificates relevant to a given request are known at a single site, at which is compute the
answer to the authorization problem for a given principal and a given resource. In practice, however, there may be no
such central authority. Certificates may be held by a number of different sites, each of which knows only a subset of
the certificate set. If a principal K from site 57 wants to access a resource at site Sp, the certificate chain authorizing K
to do so may involve certificates from both Sy and 57 (and possibly a number of other sites in between). For instance,
consider the following example: The Computer Sciences department (CS) at the University of Wisconsin (UW) is part
of the College of Letters and Sciences (LS). The department, the college, and the university could be different sites in
the sense above. UW might grant access to some resource R to all of its faculty members by issuing a corresponding
authorization certificate. The actual principals authorized to access R would be specified by name certificates, e.g.,
UW would declare that its faculty members are (among others) those of LS, LS would declare that its faculty members
are (among others) those of CS, and CS would have a list of its faculty members. If members of CS want to access R,
they need a chain of certificates from UW, LS, and CS, and none of these sites may know all of the certificates involved.

This paper makes the following contributions:

— We describe a distributed certificate-chain-discovery algorithm where the certificates are distributed across various
sites. This distributed algorithm is described in Section 5.

— The algorithms that are presented in this paper are automaton-based. Compared with the rather limited amount of
previous work that exists on authorization problem in a distributed setting, the automaton-based approach enjoys
certain advantages over other approaches, such as [9]. In particular, (fragments of) automata can be computed at
separate sites, and the information shipped between sites can take the form of (fragments of) automata.

— We have implemented a prototype system that incorporates our algorithm. Our experimental results, presented in
Section 6, demonstrate that our distributed certificate-chain-discovery algorithm is both efficient and scalable.

Our approach also benefits from using WPDS as the underlying technology. Previous work on WPDS [5] pointed
out that weighted domains enable one to address issues such as privacy, recency, validity, and trust. Moreover, weighted
domains allow us to handle authorization specifications in a semantically correct manner.

Additionally, WPDS-based reachability-analysis algorithms can be used to answer certificate-analysis questions,
such as “Is it the case that all authorizations to a resource R must involve a certificate signed by principal K?” Several
other types of certificate-analysis questions are discussed in [10] and [8]. However, as this is orthogonal to the work
presented here, we will not discuss it in this paper.

2. Related Work

A certificate-chain-discovery algorithm for SPKI/SDSI was first proposed by Clarke et al. [7]. An improved certificate-
chain-discovery based on the theory of pushdown systems was presented by Jha and Reps [8]. Both of these algorithms
are centralized and assume that the proof of authorization consists of a single certificate chain.

In general, a proof of authorization in SPKI/SDSI requires a sef of certificate chains, each of which proves some
part of the required authorization. Hence, the certificate-chain-discovery algorithms presented in {7, 8] are incomplete.
This observation is also the basis for the observation by Li and Mitchell [11] that the “5-tuple reduction rule” of [4] is
incomplete. Our algorithm does not suffer from this problem, due to the translation into WPDS.

The semantics of SPKI/SDSI has also been studied in [12, 13, 14].

In the proof-carrying-authorization (PCA) framework of Appel and Felten [15], a client uses the theorem prover
Twelf [16] to construct a proof of authorization, which the client presents to the server. However, they too assume
that all logical facts used by theorem prover reside at a single server. Li et al. [9] presented a distributed credential-
chain-discovery algorithm for the trust management system RTp. Their algorithm allows credentials to be distributed,
but the proof of authorization is constructed at one site. The credential-chain-discovery algorithms of Li et al. fetches
credentials from other sites as needed. SPKI/SDSI is a subset of RTp (SPKI/SDSI is equivalent to RT} without role
intersection). In our distributed credential-chain-discovery algorithm, various sites summarize their part of the proof
of authorization before sending it to other sites; thus, the proof of authorization is distributed. Moreover, summarizing
intermediate results also provides some privacy. We also implemented our algorithm in a trust-management server. To
our knowledge, Li et al. did not implement their algorithm.

The work by Jim and Suciu on SD3 [17, 18], the successor of QCM, is also related to ours. SD3 is a trust-
management system based on Datalog that, like our algorithms, allows for distributed evaluation of authorization
queries. In [17], the author claims that SD3 can express “roughly the same policies as SDSI 2”. While this claim is
not further substantiated in [17], we believe it to be true. However, there are several differences that set our work apart
from SD3:

— SD3 describes a generic evaluation algorithm where each instantiation corresponds to a particular strategy for
distributing the computation. We propose several concrete evaluation strategies and argue that these strategies
have certain advantages with respect to efficiency and privacy.

— Since [17] does not provide a concrete encoding of SPKI/SDSI in SD3, any comparison of the relative merits of
our encoding vs SD3’s is bound to be speculative. However, we believe that SD3’s site-safety requirement would
limit their evaluation to “forward” mode, whereas our algorithms can search both forward and backward (the latter
is explained in Section 5).

~ Unlike SD3, our framework allows certificates to have weights. As pointed out in [19], this provides a solution
for situations in which proofs of authorization require multiple certificate chains, each of which prove part of the
authorization. This solves the problem of semantic incompleteness pointed out by Li and Mitchell [11]. Moreover,
in [5], we pointed out that weights allow to address such issues as privacy, recency, validity, and trust.

3. Background on SPKI/SDSI

In SPKI/SDSI, all principals are represented by their public keys, i.e., the principal is its public key. A principal can
be an individual, process, host, or any other entity. K denotes the set of public keys. Specific keys are denoted by
K,Ka,Kp, K', etc. An identifier is a word over some alphabet 2. The set of identifiers is denoted by .A. Identifiers
will be written in typewriter font, e.g., A and Bob. A ferm is a key followed by zero or more identifiers. Terms are
either keys, local names, or extended names. A local name is of the form K A, where K € K and A € A. For example,
K Bob is a local name. Local names are important in SPKI/SDSI because they create a decentralized name space. The
local name space of K is the set of local names of the form K A, An extended name is of the form K o, where K € K
and o is a sequence of identifiers of length greater than one. For example, K UW CS faculty is an extended name.

3.1. Certificates

SPKI/SDSI has two types of certificates, or “certs™:
Name Certificates (or name certs): A name cert provides a definition of a local name in the issuer’s local name space.
Only key K may issue or sign a cert that defines a name in its local name space. A name cert C is a signed four-tuple
(K, A, S, V). The issuer K is a public key and the certificate is signed by K. A is an identifier. The subject S is a
term. Intuitively, S gives additional meaning for the local name K A. V' is the validity specification of the certificate.
Usually, V' takes the form of an interval [¢1, t2), i.e., the cert is valid from time #; to ¢ inclusive.
Authorization Certificates (or auth certs): An auth cert grants or delegates a specific authorization from an issuer to
a subject. Specifically, an auth cert ¢ is a five-tuple (K, S, D, T, V). The issuer K is a public key, which is also used
to sign the cert. The subject S is a term. If the delegation bir D is turned on, then a subject receiving this authorization
can delegate this authorization to other keys. The authorization specification T specifies the permission being granted,;
for example, it may specify a permission to read a specific file, or a permission to login to a particular host. The validity
specification V for an auth cert is the same as in the case of a name cert.

A labeled rewrite rule is a pair (I, — R, T'), where the first component is a rewrite rule and the second component
T' is an authorization specification. For notational convenience, we will write the labeled rewrite rule (L — R, T) as

L -5 R. We will treat certs as labeled rewrite rules: 3
~ A name cert (K, 4,S,V) will be written as a labeled rewrite rule K A L S, where T is the authorization
specification such that for all other authorization specifications £, TNt = t,and TUt = T.* Sometimes we
will write — as simply —, i.e., a rewrite rule of the form L — R has an implicit label of T.
— An auth cert (K, 5, D, T, V) will be written as K J L, S Oif the delegation bit D is turned on; otherwise, it
. . T
will be written as K [~— S H.

3.2. Authorization

Since we will only use labeled rewrite rules in this paper, we will refer to them as rewrite rules or simply rules. A
term .S appearing in a rule can be viewed as a string over the alphabet K U A, in which elements of K appear only in
the beginning. For uniformity, we also refer to strings of the form S [J and S # as terms. Assume that we are given a
labeled rewrite rule I, — R corresponding to a cert. Consider a term S = LX. In this case, the labeled rewrite rule

L LR applied to the term .S (denoted by (L N R)(S)) yields the term RX . Therefore, a rule can be viewed as a
function from terms to terms that rewrites the left prefix of its argument, for example,

(K4 Bob — Kp)(K 4 BobmyFriends) = Kp myFriends

* In authorization problems, we only consider valid certificates, so the validity specification V' for a certificate is not included in
its rule.

* The issue of intersection and union of authorization specifications is discussed in detail in {4, 12].

Consider two rules ¢; = (L z, Ry)andcp = (Lo z, Ry), and, in addition, assume that L, is a prefix of Ry, i.e.,

there exists an X such that Ry = Lo X. Then the composition c; o ¢; is the rule L, RALEN Ry X . For example, consider
the two rules:

¢;: Ka friends z, K 4 Bob myFriends
¢ca: KaBob z, Kp

The composition ¢y o ¢; is K4 friends mT K B myFriends. Two rules ¢; and ¢; are called compatible if their
composition ¢y o ¢; is well defined. 3

3.3. The Authorization Problem in SPKI/SDSI

Assume that we are given a set of certs C and that principal K. owns a set of resources that are identified by authoriza-
tion specifications. Moreover, assume that principal K. wants access specified by authorization specification 7'. (In
the following, we call K. the resource owner and K the client.) The authorization question is: “Can K. be granted
access to the resource specified by 77

A certificate chain ch for C is of the form ¢, 0 cg—1 © - - - 0 ¢1, where ¢1, ¢, - - - , ¢ are certificates in C. The label
of a certificate chain ch is denoted by L(ch). Given C, K, K., and T, a certificate-chain-discovery algorithm looks
for a finite set of certificate chains proving that K is allowed access specified by T'.

Formally, certificate-chain discovery attempts to find a finite set {chs, - - - , chy, } of certificate chains such that for
alli, where 1 < i< m,

m
chi(K,0) € {K. O, K. B} and T C | JL(ch).
i=1
Clarke et al. [7] presented an algorithm for certificate-chain discovery in SPKI/SDSI with O(n%|C|) time com-
plexity, where ng is the number of keys and |C| is the sum of the lengths of the right-hand sides of all rules in C.
However, this algorithm only solved a restricted version of certificate-chain discovery: a solution could only consist of
a single certificate chain. For instance, consider the following certificate set:

c1: (K, Ka, 0, ((dir /etc) read), [t1,t2])
ca: (K, Ka, 0, ((dir /etc) write), [t1,t2])

Suppose that Alice makes the request
(K4, ((dir /etc) (* set read write))).

In this case, the chain “(c;)" authorizes Alice to read from directory /etc, and a separate chain “(c,)” authorizes
her to write to /et c. Together, (c;) and (cz) prove that she has both read and write privileges for /et c. However, both
of the certificates ¢; and c; would be removed from the certificate set prior to running the certificate-chain discovery
algorithm of Clarke et al., because read 2 (* set read write) andwrite 2 (* set read write).
Consequently, no proof of authorization for Alice’s request would be found. Schwoon et al. [5] presented algorithms
for full certificate-chain discovery, based on solving reachability problems in weighted pushdown systems. Their
formalization allows a proof of authorization to consist of a set of certificate chains. This paper uses the WPDS-based
algorithm for certificate-chain discovery introduced by [5].

4, Weighted Pushdown Systems and SPKI/SDSI

In this section, we introduce weighted pushdown systems, briefly review the algorithms proposed for them, and then
show that they are a useful tool for solving problems related to certificate-chain discovery in SPKI/SDSI. The follow-
ing definitions are largely taken from [20].

5 In general, the composition operator o is not associative. For example, c3 can be compatible with ¢z © ¢; but not with cz.
Therefore, ¢3 o (c2 o 1) can exist when (c3 o ¢2) o 1 does not exist. However, when (ca o ¢2) o ¢; exists, so does ¢z o (c2 0 c1);
moreover, the expressions are equal when both are defined. Thus, we allow ourselves to omit parentheses and assume that o is
right associative.

4.1, Weighted Pushdown Systems

Weighted pushdown systems were introduced in [21, 20, 5]. In short, a pushdown system defines an infinite-state
transition system whose states involve a stack of unbounded length. In a weighted pushdown system, the rules are
given values from some domain of weights. Our weight domains of interest are the bounded idempotent semirings
defined in Defn. 1.

Definition 1. A bounded idempotent semiring is a quintuple (D, ®,®,0, 1), where D is a set, 0 and 1 are elements
of D, and ® (the combine operation) and Q (the extend operation) are binary operators on D such that

1. (D, ®) is a commutative monoid whose neutral element is 0, and where @ is idempotent.

2. (D, ®) is a monoid with the neutral element 1.

3. ®distributes over &, i.e, forall a,b,c € D we have a®(b@®c¢) = (a®b)®(a®c) and (adb)®c = (a®c) B (b®c).
4. 0 is an annihilator with respect 1o ®, i.e., foralla € D,a®0=0=0R a.

5. In the partial order & defined by: Ya,b € D, a T biffa ® b = a, there are no infinite descending chains.

Definition 2. 4 pushdown system is a triple P = (P,I',A), where P and I" are finite sets called the control
locations and the stack alphabet, respectively. The elements of Conf(P) := P x I'* are called the configurations
of P. 4 contains a finite number of rules of the form (p,v) «p (p',w), wherep,p’ € P, v € I', and w € I'™*, which
define a transition relation = between configurations of P as follows:

Ifr = (p,7) =p (0, w), then (p,yw') L (¢, we’) for all w' € I

We write ¢ =>p ¢ to express that there exists some rule v such that ¢ =—<——r>#7> ¢'; we omit the subscript P if P is
P p P

understood. The reflexive transitive closure of = is denoted by =>*.

Given a set of configurations C, we define pre*(C) £ {¢' | 3c € C: ¢ =" ¢} and post*(C) £ {c' | Jc e
C: ¢ =" '} as the sets of configurations that are reachable—backwards and forwards, respectively—from elements
of C via the transition relation. C is called vegular if for all p € P the language { w | (p,w) € C'} is regular.

Definition 3. 4 weighted pushdown system is a triple W = (P, S, f) such that P = (P, I', A) is a pushdown
system, § = (D,®,®,0,1) is a bounded idempotent semiring, and f: A — D is a function that assigns a value
Jirom D to each rule of P.

Let o € A* be a sequence of rules. Using f, we can associate avalue to o, iL.e., ifo = [r1,...,7i], then we define
(o) E fr)®...0 f (Tk) Moreover, for any two conﬁgwa(tzons cand c) of P, we let path(c,c') denote the set of
all rule sequences {rl, ., Tk that transform c into ¢, i.e., ¢ == NGO NG

Definition 4. Let W = (P, S, f), where P = (P, I', A) and S = (D, ®, ®,0, 1), and let C be a set of configurations.
A forwards (resp. backwards) (W, C)-dag is an edge-labeled directed acyclic graph (V, E) where V C Conf (P) x
Dand E CV x A x V such that

— ifavertex (¢, d) has no incoming edges, thenc € C andd = 1;

~ if((e1,d1),m1, (¢ d)), -, ((ck, di), mry (¢, d)), k > 1 are the incoming edges of (c, d), then
e d= {Bf 1(di & f(r3)) and ¢; —(-—L4-)¢p cforall1 <i <k (in aforwards (W, C)-dag);
o d= @ 1(f(r) ® di) and ¢ :—lﬂ: c; for all 1 < i <k (in a backwards (W, C)-dag).

We call a (forwards/backwards) (W, C)-dag D a witness dag for (c,d) if D is finite and (c, d) is the only vertex with
no outgoing edges in D.

Notice that the extender operation ® is used to calculate the value of a path. The value of a set of paths is computed
using the combiner operation @. The existence of a witness dag for (c, d) can be considered a proof that there exists
a set of paths from C to ¢ (or vice versa) whose combined value is d. Because of Defn. 1(5), it is always possible to
identify a finite witness dag if such a set of paths exists.

4.2. Known Results

We briefly review some known results about (weighted) pushdown systems.

Let P = (P, I', A) be a pushdown system, and let C be a regular subset of Conf (P). Then, according to [22, 23],
the sets pre*(C') and post*(C) are also regular and effectively computable (in the form of a finite automaton).

The results from [20, 5] show that the result can be extended to generalized pushdown reachability (GPR)
probiems on weighted pushdown systems:

Definition 5. Let W = (P, S, f) be a weighted pushdown system, where P = (P, I, A), and let C C P x I'*
be a regular set of configurations. The generalized pushdown predecessor (GPP) problem is 1o find for each c €
pre*(C):

- 8(c) Z P{v(0) | o € path(c,d),c € C};
~ a backwards witness dag for (c, 6(c)).

The generalized pushdown successor (GPS) problem is fo find for each c € post*(C):

- 8(c) = @{v(o) | o € path(c,c),d € C};
— a forwards witness dag for (c, §(c)).

In [20, 5], the solutions for GPS and GPP are computed in the form of annotated finite automata. We briefly review
these solutions in Section 4.4.

4.3, The Connection Between SPKI/SDSI and Weighted Pushdown Systems

The following correspondence between SPK1/SDSI and pushdown systems was presented in [5]: let C be a (finite) set
of certificates such that K¢ and Z¢ are the keys and identifiers that appear in C, respectively. Moreover, let T be the
set from which the auth specs in C are drawn. Then S¢ = (7,U,N, L, T), where U, N are the union and intersection
of auth specs as discussed in [4, 12], forms a semiring with domain 7. Now we can associate with C the weighted
pushdown system We = (Pg, S¢, f), where Pe = (K¢, Ze U{0, @}, Ac), i.e., the keys of C are the control locations
and the identifiers form the stack alphabet; the rule set A¢ is defined as the set of labeled rewrite rules derived from
the name specs and auth specs as shown in Section 3.1, and f maps every rule to its corresponding auth spec.

The usefulness of this correspondence stems from the following simple observation: A configuration (K, o) of
Pc can reach another configuration (K',¢’) if and only if C contains a chain of certificates ¢1, ..., cx such that
(exo---oc1)(K o) = K' o’. Moreover, the label of the certificate chain is precisely v(ey -+ - ¢k). Thus, solving the
GPP/GPS problem amounts to the finding a set of certificate chains to prove that a certain principal K" is allowed to
access a resource of principal K. Moreover, the solution of the problem identifies a set of certificate chains such that
the union of their labels is maximal.

To conclude, in the generalized authorization problem, we pose the following question:

Given a set of certificates C, a resource owner K, an authorization specification T, and a client K., are there
certificate chains in C proving that K grants authorization T' to K .?

This is equivalent to either of the following problems in the WPDS setting:

— As a GPP problem: For C' = {(K.,0), (K., M)} and c = (K,), compute ¢ := §(c) and a backwards witness
dag for (c, §{c)).

~ As a GPS problem: For C = {(K,,0)}, c; = (K., 0), and c; = (K., M), compute ¢ := 6(c;) ® (cz) and
forwards witness dags for (c1, 6(c1)) and (cz, 6(cz)).

Authorization for K, is granted if and only if £ D 7.

4.4, Algorithms for GPR

We briefly review the solutions for GPR problems given in [20, 5], concentrating on the GPP case, because the GPS
case is analogous except for some details.

Our input is a weighted pushdown system W = (P, S, f), where P = (P, I, A) and § = (D, ®,®,0,1),and a
regular set C of configurations. The output is §(c) and a witness dag for (¢, 6(c)) for each ¢ € pre*(C).

In general, there are infinitely many configurations in pre*(C) (and in post*(C)) even if C itself is finite, so we
can only hope to compute the solution symbolically. We use (annotated) finite automata for this purpose:

Definition 6. 4 P-automaton is a quintuple A = (Q, I',n, P, F') where Q 2 P is a finite set of states, 1 C Q@ x I'x Q)
is the set of transitions, and F' C Q) are the final states. The initial states of A are the control locations P. We say
that a sequence of transitions (D,¥1,P1)s -+ (Pn—1, T, ¢) € 1 reads configuration (p,y1 ... Yn) ¥ P1y- -+, Pny, g are
arbitrary states. The sequence is accepting iff g is a final state. If ¢ is a configuration of A, we denote by acc4(c) the
set of all accepting paths in A for c; we say that ¢ is accepted by A if acc 4(c) is non-empty.

Note that a set of configurations of P is regular if and only if it is accepted by some P-automaton. In the following
P is fixed, so we usually omit the prefix P and speak simply of “automata”.

A convenient property of regular sets of configurations is that they are closed under forwards and backwards
reachability [23]. In other words, given an automaton .4 that accepts the set C, one can construct automata that accept
the sets of all configurations that are forward or backwards reachable from C. Following [20, 5], two additional
labellings for the transitions of .4 are computed to solve the GPP and GPS problems. The first, [: n — D assigns a
weight from D to each automaton transition and allows to compute é (s¢e below). The second allows to compute the w
function. In the following presentation, we omit the second labeling for the sake of simplicity. A detailed presentation
is given in [20], and the method there is straightforward to transfer to the distributed case.

Without loss of generality, we assume henceforth that for every rule (p,) — (p’, w) we have Jw| < 2; this is not
restrictive because every pushdown system can be simmulated by another one that obeys this restriction and is larger by
only a constant factor, see e.g. [8].

In the following, we first present an abstract version of the procedure given in [20, 5], which is designed for
centralized computation. Section 5 describes an implementation for the distributed case.

Abstract algorithm Let A = (Q, I, n, P, F) be a P-automaton accepting a set of configurations C. Without loss of
generality we assume that .4 has no transition leading to an initial state.

Initially, we set [(¢) := 1 for all £ € 7. When we say that transition ¢ should be updated with value d, we mean the
following action: if £ is not yet in 7, add ¢ to 7y and set I(t) := d; otherwise, update [{¢) to [(¢) & d.

For GPP, we add new transitions to .A according to the following saturation rule:

Ifr := (p,v) — (p',w) is arule, t;...%, a sequence that reads (p, w) and ends in state g, then let d be
I(t1) ® ... ® l(t}w|) and update (p,y,) with the value f(r) ® d.

The algorithm stops when further applications of the saturation rule cause no further changes in A.
Pseudocode for the algorithm is given in [20] and reproduced in Figure 1. Each iteration of the loop starting at
line 14 executes one or more applications of the saturation rule.

Example Assume that the pushdown system contains the following rules (the meaning of this example is explained
in greater detail in Subsection 6, Case 1):

1 := (K, 0) — (Kyy, faculty H)

79 1= (Kyw, faculty) — (Kj,, faculty)
r3 1= (Kjs, faculty) — (K, s, faculty)
ra = (K5, faculty) — (Kpio, Faculty)
7y = (Ko, faculty) — (Kpgob, €)

Let f(r;) = t, (i.e., the auth cert grants permission ¢), and f(r;) = T for 2 < i < 5 (i.e, the name certs do not
change permissions). Suppose that Bob wants permission t from the resource owner K,. We determine whether Bob
is authorized to do so by solving the GPP problem for C = {{K gop, 3}, (Kpos, W) }.

Algorithm 1

Input: a weighted pushdown system W = (P, S, f), a
where P = (P, I, A)and S = (D, ®,®,0,1); Kpo,)
an automaton A = (Q, I', mo, P, F') accepting C,
such that A has no transitions into P states. @ @

Output: an automaton A’ = (@, I, P, F) for pre*(C); @ ' @

with annotation function!: n — D

1 procedure update(t,v)

2 begin

3 n:=nU{t}

4 new Value := I{t) ® v

5 if newValue # I(t) then

6 workset := workset U {t}

7 Ut) := newValue Fig. 2. Initial automaton (above) and final pre* automa-
8 end ton created by the algorithm in Figure 1; weights on tran-
9 sitions are shown in parentheses.

10 7= no; workset := ng; | := At.0

11 forallt € nodoli(t) =1

12 forallr = (p,v) — (p',e) € Ado

13 update((p,7,p"), f(r))

14 while workset 3 0 do

15 remove some transition ¢ = (q,, ¢’) from workset;
16 forallr = (p1,71) — (g,7) € Ado

17 update((p1,71,4'), f(r) ® ()

18 for allr = <P1, ’Yl) ey (q,'y'yz> € Ado

19 forallt’ = (g’,v2,4") € ndo

20 update((p1,71,9"), f(r) ® 1(t) ® (1))

21 for all 7 = (p1,71) < (p', v27) € Ado

22 ift' = (p',v2,q) € nthen

23 update((p1,11,q'), f(r) ® U(t") @ (1))

24 return ((Q,I,n, P, F),1) Fig. 3. Partial automaton computed at C'S, L.S, and UW

for the query pre*((R,)): weights on transitions are
Fig. 1. An algorithm for creating a weighted automaton for the GPP shown in parentheses.
problem,

The upper part of Figure 2 shows an automaton that accepts C. The automaton for pre*(C), produced by Algo-
rithm 1, is shown in the lower part. There, we can see that (K., () is accepted with weight ¢, and so Bob’s authorization
is granted. The extra annotations for witness dags (not shown) would let us deduce that the relevant certificate chain is
[T1,72,73,Ts].

5. Distributed Certificate-Chain Discovery

The algorithms for GPR problems discussed in Section 4.4 work under the assumption that all pushdown rules (or
certificates, resp.) are stored at a single site. In a real-world setting, certificates may be issued by many principals, and
forcing them to be stored at (or shipped to) a single site may not be permitted. We therefore propose versions of these
algorithms that solve GPR problems in a distributed environment.

Remark: Because of the connection between SPKI/SDSI and WPDS explained in Section 4.3, it is safe to use
pushdown and SPKI/SDSI terminology interchangeably, and we shall do so in this section.

We proceed as follows: Section 5.1 introduces some definitions and notation. Section 5.2 gives high-level descrip-
tions of protocols for the communication between the client, the resource, and the servers that co-operate to solve
the distributed certificate-chain-discovery problem. We propose two protocols, one based on the GPP formulation,
the other on the GPS formulation. Both protocols consist of several phases, the core of which is a search phase. The
algorithms used in that phase are described in further detail in Section 5.3. The relative merits of the protocols, as well
as security and privacy-related issues, are discussed in Section 5.4.

8

5.1. Preliminaries

For the rest of the section, let us fix a weighted pushdown system W = (P, S, f), where P = (P, I, A) and § =
(D,®,®,0,1). We consider the authorization problem where client K requests permission T' from the resource
owner K.

We assume that the certificates are distributed over a set Sites of servers, and that there exists a mapping fg: P —
Sites, which maps each principal to a site that is ‘responsible’ for the principals.

We say that certificate (p,y) < (p’,w) crosses a site boundary if fs(p) # fs(p'). If such a cross-boundary
certificate exists, we call the sites responsible for p and p’ neighbouring sites.

Moreover, we denote by 7(s) = { (p,w) | fs(p) = s, w € I'* } the configurations that begin with the keys for
* which site s is responsible. The basic idea behind the distributed algorithms is that every site s computes (an automaton
representation of) the set pre*(C) N Te(s) or post*(C) N ¢ (s), respectively. Moreover, s annotates its automaton
with information that allows recovering part of the witness dags. This notion is made more precise in the following
definition:

Definition 7. Let D = (V, E) be a (W, C)-dag and s € Sites. The s-slice of D is the subgraph of D induced by the
vertices Vi° UV, where

~VEE{(c,d) eV |ceT(s)}
- ;‘-’:cr{UEV[Bv’EVf,TGA: (v,r,v) € E}

Informally, the s-slice contains the part of D that consists of configurations for which s is responsible, and their
immediate successor vertices (reached by cross-boundary certificates). An edge labeled by a cross-boundary certificate
is henceforth called a boundary edge. v is called a boundary node of s if v is the target of a boundary edge, and s
is responsible for the subject of the rule with which the edge is labeled.

5.2. The Protocols
Our distributed solutions for the authorization problem make certain assumptions about the storage of certificates:

— In the GPP protocol, we assume that every certificate/rule (p,y) < (p', w) is stored at the site responsible for its
subject, i.e., at fg(p").

— In the GPS protocol, we assume that every certificate/rule (p, v) — (p/, w) is stored at the site responsible for its
issuer, i.e., at fs(p).

These assumptions will make our algorithms more efficient because every site will know which other sites to
contact for information concerning any given principal. The assumptions are realistic: they are basically saying that
if a certificate mentions a principal (either the subject or the issuer), then its site should know about it. (In general, it
would be realistic to assume that each certificate is known to the sites of both the issuer and the subject, but the stated
conditions are the only ones actually required by our algorithms).

In a distributed setting, multiple access requests may happen at the same time. We shall use unique request ids to
distinguish among them. Both protocols consist of three phases, initialization, search, and verification.

The GPP Protocol for Distributed Certificate-Chain Discovery In this setting, the search is started at the site that
is responsible for the client, and the search works its way “up” towards the site that is responsible for the resource
owner from whom the client is requesting permission.

Initialization Initialization consists of the following steps:

1. The client sends a request T to the resource owner.

2. The resource owner generates a unique request identifier regid, which will distinguish this request from other
requests that may be in progress now or in the future, until request regid is resolved.

3. The resource owner sends the pair (K, reqid) to the site fg(K,) (called the resource site and denote s, from
now) to notify it of an ‘incoming’ search. After s, has acknowledged receipt of the message, reqid is sent to the
client. ‘

4. The client sends a message to the site fs(K) (called the client site and denoted s..). The message contains (i) its
key K., (ii) the request id regid, (iii) a so-called client certificate, i.e. the request id signed by the client.

5. The client site checks that the contents and signature of the client certificate match expectations. If the check is
successful, s begins the search.

Search The client site initiates a GPP query for the set C' = {(K., W), (K.,)}, where regid is used to distinguish
this query from others (so that servers may work on multiple requests simultaneously). The query is resolved by
all the sites together; the details of the search algorithm are given in Section 5.3. At this point, it is sufficient to
understand the following: s. starts a local GPP computation, and may (transitively) request other sites to participate
in the computation; each site s constructs the set pre*(C') N 7 (s), and maintains information that allows constructing
the s-slice of the required witness dags. Communications between sites are tagged with both reqid and the client
certificate.

Verification Because ofits earlier communication with the resource owner, the resource site s, knows thatc = (K, 0)
is the target of the search. Moreover, because ¢ € 7 (s,), the resource site will be able to determine whether c is
reachable from C, using the set post*(C) N T (s,) it has computed. To complete the algorithm, the result must be
reported to the resource owner.)

We propose two alternative methods:

~ In the first alternative, the resource site starts by constructing the s,-slice of the witness dag. When it reaches
a boundary node of its slice, it requests the sub-dag ‘below’ that node from the neighbouring site at that node.
The neighboring site computes this information, which possibly involves recursive queries to sites further ‘down-
stream’, and returns it to s,. When s, has constructed the full witness dag, it sends it to the resource owner along
with the client certificate. The resource owner verifies the result, i.e., checks the integrity of the dag, the signatures
on all certificates used in the dags, whether the client certificate matches reqid, and whether its signature matches
the client. Depending on the outcome, access is allowed or denied to the client.

— The second alternative is as follows: instead of constructing the witness graph, s, just reports the certificates issued
by the owner for the resource, the combined values of the paths that start with them, and the client certificate. In
that case, no further communication between the sites is necessary.

The first alternative provides the resource owner with the complete witness set of certificate chains. This may give
the owner a higher degree of confidence and control over the authorization process. On the other hand, the verification
of the complete dag may place a great workload on the resource owner, which is reduced in the second alternative.
The second alternative may also drastically reduce the amount of network traffic exchanged between sites.

The GPS Protocol for Distributed Certificate-Chain Discovery In this setting, the search is initialized at the re-
source site, and the search works its way “down” to the client.

Initialization

1. The client sends a request T to the resource owner.

2. The resource owner responds by sending a unique request identifier regid.

3. The client sends a message to the client site s, to register the search. Along with the message, it sends reqid and
the client certificate as in the GPP protocol.

4. The client site again checks correctness of the client certificate. If the check is successful, the client site tells the
client that certificate-chain discovery may begin.

5. The client asks the resource owner to initiate the search.

6. The resource owner sends a message to its resource site containing its public key K, the request id reqid, and a
request to initiate a certificate discovery.

Search The search stage is analogous to the GPP protocol, except that it is initiated by the resource site and from the
singleton set C' = {(K-,[0)}. The details of the search algorithm are given in Section 5.3. In brief, a site s becomes
involved in the search if post*(C) intersects 7 (s), and s maintains information that allows constructing the s-slice of
the required witness dags.

10

Verification Because of steps 3 and 4 in the initialization phase, the client site s, knows that ¢; = (K,,[J) and
cg = (K., H) are the targets of the search. Moreover, it can determine whether ¢; and ¢, are reachable from C, using
the set post*(C) N T (s.) it has computed. To complete the algorithm, the result must be reported to the resource
owner. In this phase, the direction of the flow of information is contrary to that of the search phase.

Like in the GPP protocol, we have two alternatives at this stage, which are analogues of the ones provided for GPP.
For a discussion about their relative merits, see the remarks in the GPP protocol.

— In the first alternative, the client site starts by constructing the s.-slice of the witness dags. It then sends the
sub-dags starting at its boundary nodes ‘upstream’ to the corresponding neighboring sites. The neighboring sites
supplement this information with their own sub-dags and send them further upstream until s,- has the full witness
dags for ¢; and cp. The result is then reported by s, to the resource owner. Moreover, all communications in this
phase are accompanied by the client certificate mentioned earlier.

The resource owner can now verify the result, and grant or deny access to the client.

- In the second alternative, the sites only report the sum (w.r.t. @) of the paths inside their slices of the witness dags.
Then, the result given by s, to the resource owner consists of certificates issued by K. and the combined values
of the paths below them.

5.3. Distributed Search Algorithms

In this section, we give some more details about the Search phase of the protocols.

At an abstract level of description, every site s computes the set pre*(C) N T¢(s) (or post*(C) N Z¢(s), respec-
tively). Site s becomes involved in the search if it is discovered that its intersection is non-empty. In the GPP protocol,
the client site starts with the set C = {(K,,), (K., H)}; in the GPS protocol, the resource site starts with the set
C = {(K,,[0)}. If a cross-boundary cert causes some site s to discover terms belonging to 7¢(s’) (for some other
site 8'), then s will send those terms to ¢, and s’ continues the computation on those terms. All terms communicated
between sites will be tagged with the request id, so that sites can distinguish among them when working on multiple
queries.

At a more concrete level of description, the resource/client site starts by building an automaton accepting C, then
carries out the algorithm from Figure 1 (or its post® counterpart [20], respectively), using its own certificates. If it
derives an automaton transition ¢ = (K, q) that begins at a state K (key, respectively) for which another site is
responsible, then ¢ and the part of the automaton reachable from g are shipped out to that other site. Thus, every site
computes a “partial” automaton (i.e., a fragment of the full automaton).

Example: Consider once more the example from Section 4.4, and assume that the rules r; to r are distributed
over four sites called UW, LS, CS, and Bio as shown in Figure 4 of Section 6. Suppose that we use the GPP
protocol to decide whether Bob at site CS is granted permission ¢ by K. Then, the site CS starts the search with
C = {(KBob,), (Kpob, M)} and discovers, through 75 and rs, that pre*(C) intersects T(LS), so site LS gets
involved and notices that (because of) site U W must also take part in the search. The partial automata computed by
CS, LS, and UW are shown in Figure 3; notice that site Bio does not get involved. At the end of the computation,
site UW sees that (K, []) is accepted by its partial automaton with weight ¢, and that is the result reported to the
resource owner.

Bidirectional search The approaches discussed so far allow for unidirectional search, either “forward” (from resource
to client) or “backwards” (from client to resource). Taking a leaf from [9], one could envisage a hybrid algorithm that
works in both directions at once. In this case, the resource site would initiate a GPS query, and the client site would
initiate a GPP query, both with the same request id. All sites would maintain two automata, one for each direction.
Because the intersection of two automata can be performed efficiently, a site “in the middle” would be able to notice
when the two searches intersect. We have not investigated this approach in our prototype, but it does present an
interesting direction for future work.

5.4. Discussion

Here, we discuss privacy and security-related topics, compare the two protocols, and discuss possible improvements.

11

Privacy During the search phase, the parties involved learn the following:

— Only the resource owner and the client know that the client has asked to access the resource. This is because the
resource owner and the client do not give out information about each other when they communicate with their sites.
The sites can determine the outcome of a search just by using the request id, which is generated independently of
either key.

— The resource site knows that a request for the resource has been made, but not by whom. Once again, this is because
the resource site receives only a request id from the resource owner. Moreover, the resource site maintains only a
partial automaton and a slice of the associated witness graph, so it cannot determine anything about principals at
any other site. i

— The client site knows only that the client has made a request, but not for what or to whom. This holds for reasons
that are analogous to the previous argument.

— All other sites know only that a request has been made, but not by whom or to whom. They may surmise something
about the nature of the request judging from the identifiers on the transitions, the direction from which the query
comes, and the direction from where a confirmation comes, but they can only observe the communication with
their neighbor sites.

Thus, the privacy of the access request is ensured during the search phase. However, when the witness dag is
constructed during the construction phase, all sites learn the identity of the client. This can be avoided if the alternative
method is used, in which only the values of certain paths in the dag are transmitted between sites. This alternative
solution also prevents the unnecessary spread of certificates between sites (which might contain sensitive information).

Security against attacks

Spoofing and eavesdropping. To protect the protocol-related communication from attacks such as spoofed messages
or eavesdropping, all messages exchanged in the protocols are encrypted and digitally signed, e.g., using any of the
well-established public-key cryptography systems.

Trusting the sites. Because the main part of the computation is carried out by the sites, the protocols are potentially
susceptible to malicious behavior of the sites. A malicious site could either invent or ignore certificates. Ignoring
certificates would only be to the detriment of the users for which the site is responsible and seems unlikely to be a
cause for concern.

Inventing certificates is also not a problem if the verification stage constructs the full witness dag because in this
case all certificates (which are signed by their issuers) have to be supplied. The alternative solution, in which only
values are reported, is more problematic: in essence, reporting the value of the paths in a sub-dag rooted at a node
((K,w), d) amounts to issuing a confirmation (in the name of principal K) that there is a certificate chain from (K, w)
to the client. Therefore, the alternative solution requires K to trust the site to use K’s certificates truthfully. Note that
if all cross-boundary certificates have subjects that are under direct control of the respective site operator, this is not a
problem.

The client certificate. The resource must verify that the reported result is indeed valid for the client who has initiated
the request. If the verification stage constructs full witness dags, this becomes straightforward: the maximal (minimal,
resp.) nodes of the dags must refer to the client.

If the alternative solution is used in the verification, the client certificate serves this purpose, provided that both
resource and client site verify its correctness.

A comparison of the two protocels In the GPP-based protocol, the search starts at the client site; in the GPS-based
protocol it starts at the resource site. If a site is responsible for a ‘popular’ resource, the GPS-based protocol may put
too much workload on it. Moreover, denial-of-service attacks are conceivable in which a malicious client causes a large
number of GPS computations (under different identities) that are doomed to fail. In the GPP-based protocol, this is less
likely to happen: the workload would fall mostly on the client site, which can be assumed to have a relationship to the
client (e.g., the client’s company, his/her ISP, etc), and thus there is some ‘social safeguard’ against denial-of-service
attacks.

Moreover, the GPP-based solution does not require a separate verification stage when the construction of complete
witness dags is omitted. For these reasons, it seems that the GPP-based solution has some advantages over the GPS-
based solution. However, we have yet to carry out a more precise analysis on this topic.

12

Possible improvements

Caching results. Notice that the methods we describe do not have to be carried out every time that a client tries to
access a resource. This would only have to be done for the first contact between a given client and a given resource. If
the outcome is successful, the resource may remember this and grant access without a full search next time.

Caching can also be used by the sites: unless a site is the client site or the resource site for some request, the result
of its local search is independent of the request identifier. Therefore, sites may cache recent results and reuse them
when an identical request (modulo regid) comes along,

In SPKI/SDSI, certificates may be annotated with validity information that specifies how long a certificate is valid
(see Section 3.1). A certificate chain is valid only as long as all certificates on it are valid. In both situations described
above, the caching must take this validity information into account. This requires some straightforward additions to
our algorithms that are omitted here.

Guided search. In both protocols, the sets pre*(C)/post*(C) may intersect the domains of many sites; therefore, any
request could involve many different sites even if only a few of them are ‘relevant’ for the search. This increases the
length of the computation as well as the amount of network traffic. Thus, the protocol could be improved by limiting
the scope of the search. It is likely that the client has an idea of why he/she should be allowed to access the resource;
therefore, one possibility would be to let the client and/or the client site suggest a set of sites that are likely to contain
suitable certificates.

Termination. In the distributed GPP/GPS computation, a standard termination-detection algorithm can be applied to
determine that the search has terminated, which entails additional time and communication overhead. However, even
before the search has terminated, or before all relevant certificate chains have been found, the resource site (in the
GPP case) or the client site (in the GPS case) may have discovered some paths with a tentative value (which may be
‘larger’—with respect to the ordering—than the § value). If the goal of the search is just to establish that the § value
is no larger than a certain threshold, then this information could be used to terminate the search early. For instance, if
Alice is interested in a set of certificate chains that is valid for at least one hour, then the search algorithm could be
stopped as soon as certificate chains are found that are valid for, say, one and a half hours (or any other amount of time
longer than one hour). Moreover, the computation could be limited by a timeout.

6. Implementation

We have implemented a prototype of our distributed certificate-chain-discovery algorithm. We use the prototype to
evaluate the scalability of the algorithm by varying two parameters: configuration topology, and number of certificates.
We use response time from the perspective of clients as the performance metrics. Because we currently do not have
the resources to perform a real-world test, all experiments are configured using synthetic data. However, we tried to
make sure that the configurations mimicked the real world as closely as possible. The two main conclusions that can
be drawn from these experiments are:

— Network overhead is dominant: The results show that the topology of the configuration affects the system per-
formance. However, the most significant factor is network overhead: our experiments show that a significant
percentage (about 80% to 90%) of the total time is spent on network operations. However, since our current
implementation is only a prototype, we can reduce the overhead using optimization techniques.

— Local filtering effect: As one might have expected, the more certificates we have, the longer it takes to perform
certificate-chain discovery. However, the time that it takes to perform certificate-chain discovery increases at a
much smaller rate than the increase in the number of certificates. This is due to what we call the local filtering
effect: only local rules are processed at each site (see Sections 5.2 and 5.3).

In summary, the experimental results show that the distributed certificate-chain algorithm implemented on top of

WPDS is both efficient and scalable. In the rest of this section, we explain the experimental design and discussed the
results obtained.

13

KO 5 Ky faculty @ Fig.4. (Case 1.): R grants read permis-
Ku faculty — Ki, faculty sion to directory /etc to UWs faculty: ¢

= ((dir /etc) read); Bob requests
Ky, faculty — Koy, faculty read access for the directory /etc.

KeO b Ko faculty® o S KO Ko, faculty B Fig. 5. (Case 2.): Authorization Over Multi-
ple Paths. R grants read privilege to direc-
Koo faculty = Kariee tory /etc to CS’s faculty: ¢1 = ({dir
/etc) read), and write privilege

Koo faculty — Kyeg faculty ~ 7 Kuio faculty — Kues faculty to BIO’s faculty: t2 = (dir /etc)

write); Bob requests (read write)
Koee faculty — Kpop access for the directory /etc.
t.
K, 0124 Kot edu programs 8 NSF (R) K O <24 Koog gov
Koo edu — Koy Koot gov — Koy
-~
% t
2
Koy programs — Kuuagers | EDU | [com] [Gov] %ser D — Kgovprograns B

I(Gﬂ" programs — Kmanagur)!

Keaw programs — Koy schools faculty b
Keaw schools — Kyse schools

Kyov programs — Kgo, PubSchools faculty
Koy PubSchools ~+ Kyiee schools

Ky faculty — Kig faculty| Fig.6. (Case 3.): R authorizes all NSF’s
EDU programs to apply for funda:
Kis faculty — Ko faculty £ = (fundA apply), and all NSF’s
GOV programs can apply for fundp:
ta = (fundB apply); Bob attempts to

Ke faculty — Kpoo apply for funda.

Configuration Topology The first parameter that we considered is the configuration topology. A configuration of
the SPKI/SDSI system consists of multiple connected sites and is represented as a graph. In our experiments, we
considered three different configurations of varying degrees of complexity, as shown in Figures 4 — 6. In each graph,
shaded nodes represent distinct sites of a distributed SPKI/SDSI systemn, while labels represent the cross-boundary
SPKI/SDSI certificates. Nodes with a symbol (R) denote the resource from where SPKI/SDSI auth certs are issued.
The dashed lines denote the certificate chain discovered by our algorithms when Bob requests access to resource R.

For example, in Case 1, the root node UW denotes the University of Wisconsin; LS denotes the college of Letters
and Science, one of the colleges of UW; while CS and B/O represent two departments, Computer Science and Biology,
under LS. There is an edge between UW and LS because UW has issued two certificates with respect to site LS: the auth
cert K; 0 -5 K, faculty B grants access right ¢ to all Ky,’s faculty; the name cert Ky faculty — Kis faculty
states that all K¢’s faculty are Ky, ’s faculty.

Case 1 represents the simplest topology of the three configurations. Case 2 adds additional complexity on top of
Case 1 by forming a DAG. As aresult, a certificate chain may consist of multiple paths, as demonstrated by the dashed
lines in Figure 5. Case 3 builds on top of the first two and forms a more complex configuration.

14

Number of Certificates The second parameter that we con- Number of Cerfificates
sidered is the number of certificates. In a real-world envi- | Configuration || Small | Medium | Large
ronment every principal has a key and can issue certificates. | Case 1 1:5 3:57 30:570
Consequently, we expect a SPKI/SDSI system to contain | Case2 2:4 4:56 40: 560
thousands or more certificates, distributed over the various | Case3 3:13 5:155 50:1550

sites in the system. Hence, for each of the three configura- i _

tions, we varied the number of certificates used in the exper- 12ple 1. Test Configurations. Each cell contains two num-

iments ranged from 6 to 1600. We consider only the num- bers: the first is the number of auth certs used in the run and
& . . the second number of name certs.

ber of reachable certificates since unreachable ones do not

contribute to certificate-chain discovery. Table 1 shows the

breakdown of the certificates of the experiments.

6.1. Analysis

In this section, we report on the results of the experiments. We use response time from the perspective of clients as the
performance metric. All tests were conducted under a simulated environment: each site runs on a separate machine
on a local area network. All test machines have identical configurations: 800 MHz Pentium III with 256 MB RAM,
running TAO Linux version 1.0.

Table 2 shows the performance results for the three configurations. Each configuration is run three times, with in-
creasing numbers of certificates. For comparison purposes, we also collected performance data for running certificate-
chain discovery in centralized mode (i.e., with all the certificates stored at a fixed site), using the largest number of
certificates.

Topology effect: The data from Table 2 shows that the

effect of configuration topology varies from case to case. 1200 - F
For instance, comparing Cases 1 and 2 one can observe that ST
the performance difference is small. This indicates that the 1000 1 IR

path-combining operation (in Case 2) adds little overhead.
However, in Case 3, we see a substantial variance in the
time to process queries. One obvious observation is that the
certificate-chain length affects the performance, as shown by

606 |- x e

600 [~

Response Tima (ms}

Manager A TfundA apply]
Manager B (fundB agply;

the top line in Figure 7. In comparison, the flat line in the a0 |

same figure shows the response time had we centralized all ditibuled « -~
the certificates at one location. This time reflects the cost or . Y .
of running the GPS algorithm at one site, plus the network .)))) ,
overhead of the two communicating between the client and ¢ ! : ° ¢ §

Carlificate Chain Length

the site (request and reply). This reveals that the most sig-

nificant factor is network overhead. We collected additional ~Fig- 7- Response Time vs. Chain Length (Case 3. com-
data that confirmed this hypothesis: in distributed certificate- Plex configuration)

chain discovery, about 80% to 93% of the time is spent on network-related operations, such as establishing TCP

connections, sending and receiving messages. Since this is currently a prototype, we are investigating optimization
techniques to improve the average performance.

Number of certificates: Table 2 shows that there is an insignificant change in performance when the number of
certificates increases from small to medium and a very small increase (about 4% on average) from medium to large.
We attribute this to two reasons. First, the local filtering effect caused only relevant rules to be composed at each site.
This corresponds to Lines 12-13 of the algorithm shown in Figure 1. Second, the WPDS methodology is efficient.

References

{1} Blaze, M., Feigenbaum, J,, Ioannidis, J., Keromytis, A.: The KeyNote trust-management system version 2. RFC 2704 (1999)
[2] Blaze, M., Feigenbaum, J., Toannidis, J., Keromytis, A.: The role of trust management in distributed systems security. In

Vitek, Jensen, eds.: Secure Internet Programming: Security Issues for Mobile and Distributed Objects. (1999) 185-210 LNCS
1603.

15

[3]

[4]
(5]
(6]

[7

—

(8]

Table 2. Performance Results

Time (ms)

Distributed Centralized

Configuration|Client Request _ Small | Medium | Large Large
Casel Bob (dir /etc (read)) | 661] 685] 713 54]
Case 2 Bob (dir /etc (read)) 663 685 716 55
Bob (dir /etc (read write)) 723 736 741 55
ManagerA | (fundA apply) 654 683 664 118
ManagerB | (fundB apply) 793 769 796 116
Case 3 Chancellor| (fundA apply) 979 960 996 107
Bob (fundA apply) 1146 1133 1218 110
Bob (fundB apply) 1132 1150 1232 115

Weeks, S.: Understanding trust management systems. In: Proceedings of the IEEE Symposium on Research in Security
and Privacy. Research in Security and Privacy, Oakland, CA, IEEE Computer Society, Technical Committee on Security and
Privacy, IEEE Computer Society Press (2001)

Ellison, C.M., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Yldnen, T.: RFC 2693: SPKI Certificate Theory. The Internet
Society. (1999)

Schwoon, S., Jha, S., Reps, T., Stubblebine, S.: On generalized authorization problems. In: Proceedings of the 16th IEEE
Computer Security Foundations Workshop (CSFW), IEEE Computer Society (2003) 202-218

Reps, T., Schwoon, 8., Jha, S.: Weighted pushdown systems and their application to interprocedural dataflow analysis. In:
Proceedings of the 10th Internation Static Analysis Symposium (SAS), San Diego, CA (2003)

Clarke, D., Elien, J.E., Ellison, C.M., Fredette, M., Morcos, A., Rivest, R.L.: Certficate chain discovery in SPK1/SDSI. Journal
of Computer Security 9 (2001) 285-322

Jha, S., Reps, T.: Analysis of SPKI/SDSI certificates using model checking. In: Proceedings of the 15th IEEE Computer
Security Foundations Workshop (CSFW), IEEE Computer Society (2002) 129-146

Li, N., Winsborough, W.H., Mitchell, J.C.: Distributed credential chain discovery in trust management. Journal of Computer
Security 11 (2003) 35-86

Li, N., Winsborough, W.H., Mitchell, J.C.: Beyond proof-of-compliance: Safety and availability analysis in trust management.
In: Proceedings of 2003 IEEE Symposium on Security and Privacy (Oakland), Berkeley, CA (2003)

Li, N, Mitchell, J.: Understanding SPKI/SDSI using first-order logic. In: Proceedings of the 16th IEEE Computer Security
Foundations Workshop (CSFW), IEEE Computer Society (2003)

Howell, J., Kotz, D.: A formal semantics for SPKI. Technical Report 2000-363, Department of Computer Science, Dartmouth
College, Hanover, NH (2000)

Abadi, M.: On SDSI’s linked local name spaces. Journal of Computer Security 6 (1998) 3-21

Halpern, J., van der Meyden, R.: A logical reconstruction of SPKI. In: Proceedings of the 14th IEEE Computer Security
Foundations Workshop, IEEE Computer Society Press (2001) 5970

Appel, A., Felten, E.: Proof-carrying authentication. In: Conf. on Comp. and Commun. Sec. (1999)

Pfenning, F., Schiirmann, C.: System description: Twelf — a meta-logical framework for deductive systems. In Ganzinger,
H., ed.: Int. Conf. on Auto, Deduc., Springer-Verlag, LNAI 1632 (1999) 202206

Jim, T.: SD3: A trust management system with certified evaluation. In: SP '01: Proceedings of the IEEE Symposium on
Security and Privacy, IEEE Computer Society (2001) 106

Jim, T, Suciv, D.: Dynamically distributed query evaluation. In: PODS *01: Proceedings of the twentieth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, ACM Press (2001) 28-39

Jha, S., Reps, T.: Model checking SPKI/SDSI. Journal of Computer Security 12 (2004) 317353

Reps, T., Schwoon, 8., Jha, S., Melski, D.: Weighted pushdown systems and their application to interprocedural dataflow
analysis. Science of Computer Programming (To appear)

Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of concurrent programs with procedures. In:
Proceedings of POPL’03. (2003)

Esparza, I., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model checking pushdown systems. In Emerson,
E.A., Sistla, A.P, eds.: Proceedings of CAV°2000. Volume 1855 of Lecture Notes in Computer Science., Springer (2000) 232~
247

Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In:
Proceedings of CONCUR’97. Volume 1243 of Lecture Notes in Computer Science., Springer (1997) 135-150

16

