=}

BB a G

O BEE 8 DB E B0 @ EE B @

BE B BB 3IBA

Lo I T = = < |

0B BB EEODEERERBD BB ERNE G GO E BB B

Formalizing Attack Mutation for NIDS
Testing

Shai Rubin

Somesh Jha

Barton Miller

Technical Report #1522

March 2005

UNIVERSITY OF

Formalizing Attack Mutation for NIDS Testing

Shai Rubin, Somesh Jha, and Barton P. Miller
University of Wisconsin, Madison
Computer Sciences Department
{shai,jha,bart} @cs.wisc.edu

March 11, 2005

Abstract

Attack mutation is a common way to test a misuse Network Intrusion Detection Systermn (NIDS). In
this technique, a known instance of an attack is transformed by repeatedly applying attack transforma-
tions into many distinct instances. For example, we can generate many instances of an HTTP attack by
splitting it into TCP segments in many different ways. The undérlying intuition behind attack mutation
is that many attack instances are derivable from a few simple exemplary instances.

We formally justify the intuition behind attack mutation. We prove that for many transformations,
all mutations of an attack are derivable from each other. Furthermore, we show that all mutations can be
derived from a few atoms which are the simplest versions of the attack.

Based on our findings, we developed two algorithms: testing and forensics. Given a set of transfor-
mations, our testing algorithm derives all attack mutations (up to a certain length) from an exemplary
attack instance. Our forensics algorithm complements the testing one; it determines whether two muta-
tions are derivable from each other. Our algorithms accommodate most of the known transformations,
so the algorithms can be immediately integrated into existing NIDS testing tools.

1 Introduction

The goal of a Network Intrusion Detection System (NIDS) is to detect malicious activities, or attacks, on
the network. A misuse NIDS defines an attack via an attack signature, typically, a regular expression that
matches a pattern of the attack [17, 21]. Ideally, each time an ongoing activity matches an attack signature,
the NIDS raises an alarm. Thousands of organizations depend upon such systems [9] because they are simple
to understand, enable customization of the signature database, and provide concrete information about the
events that have occurred.

Abstractly, a signature usually corresponds to a single attack, a sequence of events that exploits a given
vulnerability. In practice, however, a signature should match many equivalent attack forms, or attack in-
stances. For example, the same attack can be split into TCP or IP packets in many different ways. Therefore,
the reliability of a NIDS ultimately depends on its ability to detect any instance of a given attack. Unfortu-
nately, researchers (and attackers) have successfully evaded many NIDS by mutating an attack instance that
the NIDS recognizes into an instance that it misses. For example, to evade a NIDS that only uses a signature
of ASCII characters they used the URL encoding transformation that replaces the ASCII characters of a
URL with their equivalent hexadecimal values [7, 29].

To increase NIDS reliability, we should test the NIDS against as many attack instances as possible. A
common way to generate many instances of the same attack is to use an attack mutation system [12, 16, 22,
29]. In such a system, we express a mutation, such as URL encoding above, as a transformation rule that
generates a new attack instance from a known one. Then, we compute the closure of a few simple exemplary
instances; this closure is all instances that are derived from the exemplary instances by repeatedly applying

Closure:
Clg ({G,~G,1)

Simulitor |

Yes, check another
Figure 1: Using an attack mutation system for NIDS testing.

the rules (Figure 1).

While attack mutation has successfully uncovered vulnerabilities in various NIDS, researchers have not
yet formally investigated its underlying principle: the idea that attack instances are generally derivable from
each other and, in particular, are derivable from a few simple instances.

To formalize this underlying principle of attack mutation, we define the two following problems:

1. Testing problem. Given a set of transformations rules ®, attack instance o, and integer k, generate the
®.-closure of o: all instances that are shorter than k bytes derivable from o using the rules in ®.

2. Forensics problem. Given a set of transformations rules ® and two attack instances, o and 7, determine
whether o and 7 are derivable from each other using the rules in ®.

In this paper we address these problems. We prove that, given a set of transformations which satisfy
the uniformity and reversibility properties we describe below, all attack instances are derivable from a few
representative instances, called atoms. Furthermore, atoms split attack instances into equivalence classes:
two instances are in the same class if and only if they are derivable from the same atom. Using atoms, we
developed a two-phase testing algorithm. Given an attack instance, we first automatically compute its atom;
then, we generate all instances that are derivable from this atom. Similarly, atoms facilitate an efficient
forensics algorithm: to determine whether two instances are derivable from each other, we check whether
they share the same atom.

The correctness of our algorithms in based on the notion of a uniform and reversible attack deduction
system. Uniformity means that if an attack instance o derives an instance 7, then there exists a derivation
from o to 7 in which we first simplify o as much as possible and then complicate the result until we reach
7. Reversibility means that any transformation in our system has corresponding inverse one. Together,
these properties facilitate our algorithms: we derive 7 from ¢ by first simplifying ¢ to its most concise
representation, its atom, and then complicating the atom until we reach 7. We show that the majority of the
transformations that current NIDS use are indeed uniform and reversible.

Our work has both theoretical and practical implications. From the theoretical point of view, our work
provides a formal foundation for previous work on attack mutation [12, 16, 19, 22, 27, 29]. Furthermore,
splitting attack instances into equivalence classes provides a consistent, complete, and unambiguous way to
define an attack. For example, we can say that two TCP streams implement the same attack if and only if
they can be derived from the attack atoms. To the best of our knowledge, such a concise definition for a
network attack has not yet been developed.

Practically, our findings facilitate a systematic and maintainable NIDS testing process. First, we can split
the testing process into distinct phases based on the attack equivalence classes. Second, when an unfamiliar
attack instance surfaces, a NIDS developer can use our forensics algorithm to check whether the instance
belongs to a known equivalence class. If it does not, the developer knows that this instance either forms a
new class or was derived using a new transformation. In the latter case, we provide a methodology to check
whether our algorithms can accommodate the new transformation. Last, we demonstrate that our algorithms

2

can handle almost any set of transformations known today.
In summary, this paper makes the following contributions:

1. We define and prove the properties of a uniform and reversible attack deduction system. We describe
the necessary steps one should take to prove uniformity, We show that in such a system, attack instances
form equivalence classes, each represented by a simple instance.

2. We provide a testing algorithm and a linear-time forensics algorithm. We empirically evaluate the
efficiency of our algorithms and their ability to handle attacks that contain thousands of bytes.

3. We present a practical instance of a uniform and reversible attack deduction system. We prove that the
most common transformations used in known NIDS testing tools (e.g., [16, 22, 29] form a uniform and
reversible system. We demonstrate that other transformations can be proved uniform as well.

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3 informally
describes a uniform and reversible attack deduction system. Section 4 defines such a system and provides
the algorithms for the testing and forensics problems. Section 5 proves that a common set of transformations
form a uniform and reversible system. Section 6 provides empirical evaluation of our algorithms and Section
7 concludes the paper.

2 Related Work

We review related work in the areas of attack transformations, using attack mutation for NIDS testing, and
using uniform proofs in logic programming.

Attack transformations. Fundamentally, network attacks can be modified, or transformed, at any level
of the protocol stack. Ptacek and Newsham [18, 19] as well as Handley and Paxson [10, 17] were the first
to introduce IP and TCP transformations (e.g., fragmentation, packet reordering).

Based on their work, tools that use attack transformations for NIDS testing, or evasion, have been devel-
oped. Fragroute, which transforms TCP-based attacks [25], and Whisker, which transforms HTTP attacks
[20], randomly combine transformations specified by the user. Mucus [16] uses attack transformations to
perform cross-testing of two NIDS: it builds packets that match a signature of the first NIDS, transforms
them, and checks whether the other NIDS identifies the modified packets. Recently, Vigna et al. [29] devel-
oped a tool that applies application-level transformations (e.g., HITP encoding, injection of Telnet escape
characters) in addition to TCP/IP transformations. Other testing tools that are based on attack transforma-
tions are Snot [24], Stick [8], and Thor [1, 12]. To the best of our knowledge, all of these tools successfully
found attack instances that evade the NIDS they had tested. As we discuss in Section 35, the majority of
the transformations those tools use form a uniform deduction system, so the instances they generate can be
concisely described using the notion of atoms we develop in this paper.

Attack deduction systems. Essentially, the testing tools mentioned above are based on the hidden
assumption that attack instances can be derived from each other. In this paper, we formalize the properties
of a testing tool, called AGENT [22], that is explicitly based on this assumption (Figure 1). In this paper
we show that AGENT uses a uniform deduction system, we prove that AGENT generates a closure of a
set of rules, and show how to use AGENT’s deduction system to determine equivalent between two attack
instance.

Dacier et al. [6] use attack mutation to evaluate the potential of a set of different IDSs to handle a large
set of transformations. However, unlike our work here, they did not investigate the properties of their a
deduction system.

Uniform proofs. Miller et al. [14] describe uniform proofs as proofs where right-introduction rules
(which are analogous to shrinking rules) appear before left-introduction rules (which are similar to expand-

3

ing rules). The main intuition behind introducing uniform proofs was to capture goal-directed search. Miller
et al. also proved that in the framework of logic programming uniform proofs are complete, i.e., if a term is
provable then it has an uniform proof. Uniform proofs have also been in explored in other contexts [11, 23].
Special structure of derivations has also been used in security-protocol verification [3, 4, 5, 13]. To our
knowledge, the current paper is the only work that explores uniform derivations as the basis for generating
attack mutations for NIDS testing.

3 Technical Overview

We use an exemplary attack to demonstrate the fundamental concepts behind our algorithms for solving the
testing and forensics problems. These concepts are a partial order of attack instances, atoms, and a uniform
attack deduction system.

The perl-in-cgi exploit (CAN-1999-0509 [15]): a Perl interpreter is installed in the cgi-bin directory
on a Web server, allowing remote attackers to execute arbitrary commands.

Consider an instance of perl-in-cgi, denoted o, that contains a single HTTP GET request: “GET <web
page>/sgi-bin/perl.exe”. Assume that o uses a single TCP packet (not including the TCP hand-
shake packets).

Consider the following transformation rules that attackers might use to transform o:

1. ri* (TCP-fragmentation): if 7 is obtained from ¢ by copying o’s packets and then fragmenting a single
packet into two packets, then 7 is an instance of perl-in-cgi.

2. r; (HTTP encoding): if 7 is obtained from ¢ by replacing an ASCII character in ¢’s URL with its
hexadecimal value, then 7 is an instance of perl-in-cgi.

3. r;” (HTTP pipelining): if 7 is obtained from ¢ by inserting a benign HTTP GET request (e.g., “GET
<web page>/index.html”) before the malicious GET request, then 7 is an instance of perl-in-cgi.

Partial order of attack instances. It seems clear that v}, rJ, and 7§ can be used to complicate o: we
can add arbitrary benign HTTP commands, obfuscate URLs, and fragment ¢ into small TCP packets. At
the same time, the impact of the rules is reversible: we can undo r; by merging TCP packets, undo r; by
normalizing URL to only use ASCII characters, and undo 'r; by removing benign HTTP requests.

Thus, a transformation has two forms: an expanding form that complicates an instance and a shrinking
form that simplifies it. Given an arbitrary attack instance, an attack deduction system must use both expand-
ing and shrinking transformations to generate a closure. We denote the shrinking, or reverse, versions of ri*,
ry,and ry asry, 75, and 3, respectively.

Expanding and shrinking transformations imply a partial order over the instances of perl-in-cgi. For
example, the length (in bytes) of an instance can be used to rank the instance complexity: the longer the
instance the higher its complexity. Note that v, 5, and r3 increase an instance complexity, while r], 75,
and r; reduce it. (r] increase the complexity because each additional TCP packets requires an additional
TCP header.)

Atoms. Intuitively, the instance ¢ is atomic. First, we cannot shrink o any further because it uses a
single TCP packet, does not include benign HTTP requests, and contains only ASCII characters. Second, o
is the simplest form of the attack, any byte in o is required for a successful attack. Third, with respect to our
rules, o is the a building block of all other instances. Using expanding rules alone, o derives any perl-in-cgi
instance that is fragmented into several (non-overlapping) TCP packets, contains benign HTTP commands,
and its URL uses either ASCII characters or their hexadecimal values.

A uniform attack deduction system. In a uniform attack deduction system, if an instance ¢ derives
7, then there exists a uniform derivation from ¢ to T: a derivation in which all shrinking transformations

4

precede all expanding ones. For example, it is easy to see that if we first expand an instance by fragmenting
it (i.e., using rf’) and then replacing an hexadecimal value with an ASCII character (i.e., using), then it
is possible to first replace the character and then to fragment the instance.

Summary of observations. The concepts described above capture the intuition behind attack mutation
systems. Shrinking and expanding transformations correspond to our intuition that we can simplify or com-
plicate attack instances. Atoms correspond to our intuition that some attack instances cannot be simplified
any further and these instances are the building blocks for other attack instances. Uniformity corresponds to
our intuition to simplify an attack instance before we make it more complicated.

4 Modeling Attacker Transformations

We formalize the intuition behind attack mutation. First, we define a general attack deduction system and a
test-generation algorithm that is complete and sound with respect to that system. We show that a complete
and sound test-generation algorithm solves both the testing and forensics problems. However, we argue
that such an algorithm is unlikely to be found for a general attack deduction system. So, we refine the
general system into a uniform and reversible one. Then, based on the refined system, we present a sound
and complete test-generation algorithm that solves the two problems.

4.1 Attack Derivation and a Testing Algorithm

In this section we model attacks as sequences over the alphabet ¥.

4.1.1 Basic Definitions.

Let T be an alphabet set, £* be the set of sequences over ¥, and ©F C T* be the set of sequences of length
< k. An inference rule r has the following form:

o, pre(o)
o', post(c, o’)

In the expression given above, o and o’ are sequences over I, and pre and post are predicates. The rule is
interpreted as follows: if a sequence o satisfies the predicate pre, then ¢’ is derivable from o provided that
post(o,o’) is true. If a sequence o’ can be derived from o using a rule r, we write it as o = o,

A deduction system ® is a collection of rules. We say that a sequence ¢’ is derivable from o, denoted

o= o , in the deduction system @ if and only if there exists a sequence of rules (r1,...,7%) in ®, called
a derivation, such that ¢ EN o1 ... ¥ o = o’. Given a sequence o and a deduction system ®, the

closure of o with respect to ®, denoted Cly (o), is the set of sequences that are derivable in ® from o;

formally, Cle(o) = {0’ | o 2o }. Given a finite set of sequence S C 2%, its closure Clg(S) is given by
Upes Cla(0).

A test-generation algorithm, TG, is an algorithm that takes a finite set of sequences S C £* and returns
another set of sequences TG(S) such that S CTG(S). Intuitively, a test-generation algorithm takes a set of
attack instances and returns a larger set of instances that are variations of the original instances.

Next, we define the soundness and completeness of a TG with respect to a deduction system P.
Definition 1 Suppose we are given a deduction system ® and a test-generation algorithm T'G : % — ™.

o TG is called sound with respect to ®, denoted ®-sound, if an only if for all S C £*, TG(S) C Clg(S).
Intuitively, a ®@-sound test-generation algorithm only generates attack instances that are derivable from
S in the deduction system ®. :

e TG is called complete with respect to ®, denoted ®-complete, if and only if for all S C T*, TG(S) 2
Cle(S). Inwitively, a ®-complete test-generation algorithm covers all possible sequences derivable
from S in the deduction system ®.

o TG is called k-complete with respect to ®, denoted ®*-complete, if and only if for all S C T,
TG(S)NT* D Cls (S)NT*. A ®F-complete test-generation algorithm consists of all possible sequences
of length < k derivable from S in the deduction system ®.

If a test-generation algorithm TG is ®-complete and ®-sound, then for all S C ¥*, TG(S) = Cls(9).
Similarly, if 7G is ®*-complete and ®-sound, then for all § C ©*, TG(S) N ©F = Clp(S) N TF.

4.1.2 Addressing the Testing and Forensics Problems.

Based on definitions above, it is clear that a solution of our testing problem (see Introduction) is the closure
Clg(c) N T*. Hence, any TG algorithm that is ®*-complete and ®-sound solves this problem.

The forensics problem can be formally stated as follows: given two sequences o and ¢’ and deduction
system ®, is ¢’ derivable from o in ®, or o .3; o'? In general, the forensics problem in undecidable.
Sequences can be used to model configurations of a Turing machine, and rules can model the transition
relation of that machine. Therefore, the halting problem of a given Turing machine is reducible to the
forensics problem for the corresponding deduction system.

Note that any ®*-complete and ®-sound T'G can be used to solve the forensics problem:

Let 7G be a ®F-complete and ®-sound test-generation algorithm. Let k = |¢”|. Use TG to
compute Clg (o) N T*. Check that o’ € Clg(c) N TF.

Thus, for a general deduction system, there is no aék-complete: and ®-sound TG.

To better understand the difficulty in constructing a ®*-complete and ®-sound TG, consider a standard
work-list algorithm that builds a closure of o by recursively deriving successors of o. It is difficult to
determine when to terminate such a derivation process. Suppose the algorithm derives an instance o’ such
that length(c”) > k. Intuitively, since ¢’ is too long to be included in Clg (o) N X, we would be inclined
to believe that o’ cannot derive any instance that is part of Clg (o) N =*. However, in a general deduction
system, each rule might have an arbitrary effect. So, even though ¢’ is too long, it might derive a shorter
instance that is part of the closure.

The observation above suggests that a ®*-complete and ®-sound TG requires to define how rules change
the size of a sequence. This is the intuition behind a uniform and reversible system.

4.2 Uniform and Reversible Deduction Systems
We describe two additional properties of a deduction system: uniformity and reversibility. Then, given a
uniform and reversible system, we provide an algorithm that simplifies an attack to its most concise form.

4.2.1 Uniformity and Reversibility

Let < be a partial order on the set £*. Recall that < is a partial order if it satisfies the following conditions
forallo, 8, € &*:

1. o <o.
2. ¢ =% fand § < o implies that o = f3,
3. 0 = fand B <X o implies that o < a.

These conditions are referred to, respectively, as reflexivity, antisymmetry, and transitivity. We say that o <
Bifandonlyif o X Band o # (3. For a sequence o the down set of o, denoted o | <, is the set of all elements
that are < than 0. Given a finite set S C ¥, 5| < is defined as the set {¢ | there exists ¢’ € S such that o < ¢'}.

We assume that for all o € ¥* the set o < is finite. Since S| < is equal to Ugyeg(o] <), the set § | < is also
finite. This assumption implies that any descending chain starting with o € 2* is finite!. In section 5.2.1,
we show that this assumption holds for our exemplary attack-deduction system, and that it is likely to hold
for other systems as well.

Given a sequence o and partial order =, the height of o, denoted ht<(c), is the length of the longest
descending chain starting at o. Notice that ht< (o) is bounded by the size of the set o | < and hence is finite.

A rule 7 is called a shrinking rule if for all o and ¢’ such that o — ¢’ we have that ¢ = o’. A rule
r is called an expanding rule if for all o and o’ such that o -+ ¢’ we have that ¢ < o’. A derivation
00 2 01+ 5 oy, is called a uniform derivation if there does not exist an i < J such that r; is an expanding
rule and r; is a shrinking rule (shrinking rules are applied before expanding rules). Now we define a uniform
deduction system.
Definition 2 A deduction system ® is called uniform if there exists a partial order < on ©* such that the
Sfollowing conditions hold:

e With respect to < each rule in ® is either a shrinking or expanding rule.

e Forall o and o', such that o = o' there exists a uniform derivation from o to o', i.e., any derivation in
® has a corresponding uniform derivation.

Given a uniform deduction system @, ®~ and ®™ denote the deduction systems consisting of shrinking
and expanding rules in ®, respectively. Inverse of a rule 7, denoted 71, is a rule such that for all o and o’

—1
o 5 o' if and only if o' = o. Notice that inverse of a shrinking rule is an expanding ruled and vice-versa.
A uniform deduction system @ is called reversible if every rule in ® has an inverse.

4.2.2 Computing Atoms.

Given a uniform deduction system ®, a sequence o is called a ®-atom if there does not exist a shrinking

rule 7 in ® such that ¢ =+ ¢’; in other words, no shrinking rule from @ can be applied to a ®-atom. The set

of ®-atoms is denoted by Atoms(®) C X*. Given a sequence o, the set atomsg(o) is the set of ®-atoms

that have a derivation from o consisting only of shrinking rules; formally, atomsg (o) is the set Clg- (o) N

Atoms(®). Similarly, for a set of sequences S the set atomsg () is the set Clg-(S) N Atoms(®).
Consider Algorithm 1, which works as follows:

'A chain op, 01, -+ - is called descending if and only if oy = o441 fori > 0.

input : A sequence ¢
output: atomsg (o)

currentSequence = o,

while true do
if a shrinking rule cannot be applied to currentSequence then break;
else Pick arule r from &~ that can be applied to currentSequence.

currentSequence = r(currentSequence);
end

return currentSequence;
Algorithm 1: Algorithm for computing atomsg (o).

e Initially, the algorithm sets currentSequence to o.

e Each time in the while loop, a shrinking rule r is applied to currentSequence. If a shrinking rule
cannot be applied to currentSequence, the algorithm breaks out of the while loop. (Given a rule r and
a sequence currentSequence, r{currentSequence) is the sequence obtained by applying the rule to
currentSegquence.)

Claim 1 Given a sequence o, Algorithm 1 computes atomss (o).

Proof: Algorithm 1 only computes descending chains. Since any descending chain is finite, the algorithm

must terminate. It is clear that the algorithm computes an atom. Theorem 1 proves that for a uniform and

reversible deduction system, the set atomss (o) is a singleton set. Hence, the algorithm computes the set

atomsg (o). The time complexity of Algorithm 1 is O(ht<(o)) or linear in the height of the input sequence.
Notice that given a finite set of sequences S, atomsg(S) is equal to Uyes{atoma(c)}. Therefore,

atomsg(S) can be computed by invoking Algorithm 1 on each element of the set S.

Theorem 1 If @ is a uniform and reversible deduction systern, then for every sequence o, the set atomsg (o)

is a singleton set.

Proof: We prove the theorem by contradiction. Suppose there are two sequences o4 and op in the set

atomsg (o). By definition, there are derivations (ry,7s,...,7;) and (r{,r5,...,7;) from o to 0 4 and from

o to o, respectively. Since the deduction system is reversible, (r;” 1o \T1 1) is derivation from o 4 to o.

Therefore, the following sequence of rules is a derivation from o 4 to op:

—~1 -3 1 ! !
(e T Ty, T

Hence, o is derivable from o 4. Since the deduction system & is uniform, there is a uniform derivation
(r{,ry,-,r/) fromo 4 to op. If r{ is a shrinking rule, then a shrinking rule can be applied to ¢ 4, violating

input : A set of sequences S
output: A set of test sequences

worklist = (§;
// compute atomse(S).
forall o € S do
Compute atomsg (o) using Algorithm 1;

worklist = worklist U atomsg (o)
end

// Compute the closure.
tests = worklist,
while worklist # () do

Pick o € worklist,

worklist = worklist — {a};

Compute M = &+ ({a}) Nk,

forall elements (3 of M do

if 3 ¢ tests then
worklist = worklist U {§}

end
end

tests = tests UM
end

return fests,

Algorithm 2: A sound and k-complete testing algorithm.

input : Two sequences o and o’
output: true/false
Compute 0 4 = atomss (o) using Algorithm 1;
Compute o = atomse(c’) using Algorithm 1;
if (04 = op) return true;
else return false;
Algorithm 3: A linear-time algorithm for the forensics problem.

the fact that 0 4 is an atom. Suppose that all rules 77, 1 < 4 < I, are expanding rules. In this case, (r})~!is
a shrinking rule that can be applied to o g, violating the fact that o g is an atom. [J

4.3 A ®*-Complete and ®-Sound TG

We describe a new test-generation algorithm for a uniform and reversible deduction system & that is k-
complete and sound. The basic idea is as follows:

e Generate atomsg(.9).

e Next, apply expanding rules from @ to all sequences in atomss (S) to generate additional sequences.
Notice that when a sequence « is picked from the worklist, only its successor sequences that are of
length < k denoted ®* ({a}) N ¥, are generated.

For closure generation purposes, we assume that =< is length preserving: if @ =< 3 then length(a) <
length(f3). As we show in Section 5, this assumption holds for any attack transformations that we are
familiar with. Theorem 2 shows that if @ is a reversible and uniform deduction system and = is length
preserving, then Algorithm 2 is sound and k-complete.

Theorem 1 also leads to an efficient algorithm for the forensics problem. Assume that we are given a

reversible and uniform deduction system ®. We observe that given two sequences ¢ and ¢’, o 2 o' ifand
only if atomss (o) = atomsg (c’) (this follows straight from the observation that atomse (o) is derivable
from atomss(o”) and vice-versa). This immediately leads to the linear time Algorithm 3. Notice that the
time complexity of this forensics algorithm is O(ht(o) + ht(o”)).

Theorem 2 Let ¢ be a uniform and reversible deduction system based on a length preserving partial order,
then Algorithm 2 is ®-sound and ®*-complete test-generation algorithm.

Proof: Soundness of Algorithm 2 follows from the fact that we only apply rules from ® to generate test
cases. For showing k-completeness, we have to show that every sequence ¢’ in the set Clg(S) N TF is
generated by Algorithm 2.

Consider an arbitrary o’ € Clg(S) N XF. There is a uniform derivation from a sequence o € S to o’.
Let the uniform derivation be of the following form:

- — + +
"1 Tk T Tm ’
0 =00~ 01"~ 0k = Oyl " =3 Ofgm = O
In the derivation given above, r7, - -+ ,r; are shrinking rules and r, - - - , 7\, are expanding rules. If o, (the

last sequence obtained after applying shrinking rules) is an atom, then o, € atomseg(S) because there is a
derivation consisting of shrinking rules from o € S to 0. In this case, o’ will be generated by Algorithm 2
because (i) all expanding rules are applied from atomss (S), and (ii) since length(c’) < k and = is length
preserving, then oy, ..., Og+m have length < k.

If o1, & atomss (S), then we will construct a new uniform derivation that derives ¢/ from o and “passes

through” an instance in atom.se (.S). Note that showing such a derivation implies that Algorithm 2 generates

a’.

Name| pre post Description
fragt| o=(51,..-,8i,.--,8n) T = (51,-..,8i~1,T1,7T2, Si+1--+,8n)/A | Fragmentation (frag™)
8 Srag.seg(s;) = (r1,72) corresponds to string splitting.
=z _ o T = (81,000 ,8im1,T1,8i42 -5 Sn)A Defragmentation (frag™)
& frag”| o=(s1,.., 86,841 8n) Jrag.seg(r1) = (si, Si41) corresponds to concatenation.
B bwap™ o= (81,.. ., 855285y 28nIA | T = (51,...,85y-18iy-+,8n) Seeapefinibonepfifengs.segdh that
8i.5eq < 55.5eq thppeardigeat our-of-order”.
swap™| 0 = (81, 18y, 85y -0>SnIA | T= (81,185, ,8iy.--,8n) Swaps two segments such thaf
8i.8eq > 8j.8eq they are sent in-order.
http™| o={51,...,8i,...,8n) T = {T1, ey TiyeeesTn) A Replaces one ASCII character in
2 url_encode(s;) = (r;) A a URL with its hexadecimal
;‘5 Vj # i(r;.payload = s; payload)A encoding (see url_encode
o Vi > i(r;.seq = s;.5eq + 2) A definition in Appendix A). The
8 Vi < i(r;.seq = s;.seq) A predicate updates the sequence
hitp™ | o={(S1,...,8i,..-,8n) T = (ThyrresTiyeensTh) A numbers of segments that their
url.encode(r;) = (8;) A sequence numbers are larger
V7§ 5 i(r;.payload = s;.payload)n than sequence number of the
Vi > i(r;j.seq = s;.5eq — 2) A modified segment (as required
Vi < i(r;.seq = s;j.seq) A by the TCP specification [7]).

Table 1: A uniform deduction system for TCP-based attacks. rule_name™ denotes an expanding transfor-
mation and rule.name™ denotes shrinking one.

“In TCP jargon, out-of-order means not in the order of their sequence numbers.

Recall that ¢ = ¢’ if and only if atomsg (o) = atomsg(c’). Hence, there is a derivation from o, to a
sequence a € atomsg (o) C atomss(S). Let the derivation be
) i
op=0p— 01— a; = o€ atomss(S)
All the rules in the derivation given above are shrinking. Now, using the inverse rules we obtain a uniform
derivation from oy, to o, which passes through ¢, the sequence in atomss(S). This derivation looks as
follows:

m o)7 ()
Op =0Qp —rQp--" =0y — @&-1°" — Qp=0k

Notice that all the rules (r;)~! are expanding rules. Now, insert this derivation after o, in the original
derivation from o to ¢’. We obtained a uniform derivation that passes through a sequence in atomss(5).

O

5 A Practical Attack Deduction System

We prove that a set of common attack transformations forms a uniform and reversible attack deduction sys-
tem. First, we define the rules in our system (Section 5.1). Second, we prove that these rules form a uniform
and reversible system (Section 5.2). Last, we discuss the uniformity and reversibility of transformations that
are not mentioned in our formal proofs (Section 5.3).

5.1 Deduction System for HTTP Attacks

Our system derives HTTP attacks. It comprises a set of TCP transformations and two HTTP transformations.
We start with a formal definition for a TCP stream. This definition, and the TCP rules that use it, is also a
basis for deduction systems for other application-level protocols (e.g., FIP).

10

stream length disorder

a=((0,'GET perl.exe’)) (1,12) 0

B=((0,"GET %70erlﬂ,exe' » 8=((0,'GET perl.e%78e")) (1,14) 0
v=((0,"GET perl’),(8,"exe")) @=((0,'G"),(1,'ET perl.exe’)) (2,12) 0
e=,(8,".exe’), (0,'GET perl")) (2,12) 1

$=((0,"GET perl"),(7, ' ex%65)) (2,14) 0
Figure 2: Partial order over TCP streams: a < 3,6 < v, ¢ < € < ¢ (for brevity, full URLSs are not shown).

A TCP stream represents the communication between the attacker and the victim. A TCP stream com-
prises a sequence of segments,(sy, ..., Sp), where each segment represents a single message that the at-
tacker and victim exchange. Each segment is formulated as a pair, (seg, payload), where seq represents the
sequence number of the segment and payload represents the message (in bytes) that the segment contains.

The position of a segment in a sequence determines the time this segment is sent: s; is sent only after
s; have been sent for all j < 1, and before s;, for all £ > 4. For brevity, our TCP stream definition only
includes the segments sent by the attacker.

Table 1 defines the set of rules in our attack deduction system. As mentioned (Section 4.1), each rule has
the form of ?%%f(%%’)’ where pre is a precondition for applying the rule and post is a postcondition that holds
after we applied the rule. Our deduction system includes rules that fragment a TCP stream and rules that *
deliver TCP segments out-of-order. Our HTTP rules define the URL encoding transformation mentioned in
the Introduction. The superscript ™ denotes expanding rules and the superscript ~ denotes shrinking rules.

5.2 Proving Reversibility and Uniformity
Let & be the set of rules in Table 1. To prove that @ is uniform and reversible, we need to show:

1. Partial order for TCP streams. There exists a partial order such that for any two TCP streams, o, 7:

- +
(Difc S rtheno = 7,and (i) if o & 7, then o < 7.

2. Reversibility. For any two TCP streams o, 7 and arule r € ®: if ¢ — 7 then there exists 7! € ® such
-1
that 7 — o.
It is easy to see that each rule in our system has a reverse form: each rule_name™ can be reversed by
rule_name™ , and vice versa (Table 1).

. o o @ . . e
3. Uniform derivation. For any two TCP streams o, 7 if ¢ = 7 then there exist a uniform derivation from
otoT.

5.2.1 A Partial Order for TCP Streams

We order TCP streams according to their complexity. Informally, complexity of a TCP stream is based on
the stream length and the order of the stream segments. We say that o is more complex than 7, if it delivers
a longer payload, delivers the same payload but uses more segments, or delivers the same payload with the
same number of segment but the segment in ¢ are more disordered, as we define below, than the segments
inT.

Figure 2 illustrates how complexity orders TCP streams. The simplest stream has a single TCP segment
and a URL only containing ASCII characters (i.e., o). The most complex stream contains one segment per
byte and encodes a URL using hexadecimal values (not shown). A sequence with two segments is longer

11

than any sequence with a single segment; non-identical streams might have the same length and disorder-
level but are still incomparable (e.g., 3, §) and we only consider the number of segments rather than the way
the segments are split (e.g., v, ¢). Note that other definitions of complexity are also possible.
‘We now turn to a formal definition of complexity.
Definition 3 (Length of a TCP stream) Let o = (s1,... sp) be a TCP stream. Define length(o) to be the
tuple (n,> 1, size-of (s;.payload)).
Let length (o) = (n, k) and length(r)=(m, j) then:
1. We say that length(o)=length(7) if and only if n=m and k=7.
2. We say that length(o)<length(7) if and only if (n<m) or (n=m A k < j).

The next component the complexity of a TCP stream is the stream disorder-level. Intuitively, the disorder
level of o counts the number of segment pairs that are sent out-of-order. For example, the disorder level of
a stream that sends segments ordered according to their sequence numbers is zero. Similarly, the disorder
level of a stream that sends the segments in their reverse order is 2(12“—9
Definition 4 (TCP stream disorder level) Let o=(sy,...,S;,...,8;, ..,5n) be a TCP stream. Define:

1. not_in_order(o,s;,s;)=1ifand only if i < j and s;.seq > s;.seq.
2. disorder(0) =)1 <pc1<n nOt-in_order(o, sg, s1).

Definition 5 (Complexity of a TCP stream) Let o = (s1,. .., 5,) be a TCP stream.
Define complexity(c) = (length(c), disorder(o)).

1. We say that complexity(o) = complexity(t) if and only if o = 7.

2. We say that complexity(c) < complexity(r) if and only if (length(c) < length(T)) or (length(c) =
length(T) A (disorder(c)<disorder(t)).

We say that o is less complex than 7, denoted o < T, if complexity(c) < complexity(r).

Note that complexity is a partial order; it ranks streams using length as the primary index and disorder
as a secondary one. As required in Section 4.2.1, the down set of complexity is finite. Intuitively, this
means that we cannot simplify an attack instance infinitely; at some point, we derive an atom that cannot be
simplified anymore. Furthermore, complexity is length preserving as required by Theorem 2, so Algorithm 2
is sound and k-complete with respect to our rules (Table 1).

5.2.2 Shrinking and Expanding Transformations.

We prove that applying an expanding transformation increases the complexity of an instance.

+
1. Let length(o) =(n, k). Assume o f1297 . Since frag* adds a segment to a stream, then length(7)

(n+ 1,%). So, regardless the values of disorder(t) and disorder(c), complexity(c) < complexity(T),
thatis, o < 7. .

+
2. Let length(o) = (n,k). Assume o "B T Since hitp™ increases the length of a payload, then
length(t) = (n,k + 2). Note that disorder(t) = disorder(o), so complexity(c) < complexity(t),
thatis, o < 7.

+
3. Leto=(s1...p...q...5). Assume o' —5 7and T = (s1...¢...p...3n) such that o[j]=7[k]=p and
olk]=7{j]=g . From the definition of swap™ we know that p.seq < g.seq (Table 1). Note the following
properties:

(a) For all i such that i>k, not_in_order(o, g, s;) = 1 if and only if not_in.order(r, g, s;) =1.

12

(b) For all 4 such that i >k, not.in_order(o, p, 8;) = 1 if and only if not_in_order(r, p, ;) =1.
(c) For all i such that i < j, not_in_order(o, s;, p) = 1 if and only if not_in_order(r, 3;,p) = 1.
(d) For all 4 such that i < j, not_in_order(o, s;,¢q) = 1 if and only if not_in_order(r, s;,q) = 1.
(e) Forallisuchthatj <t < k: ‘
i. Assume p.seq < s;.seq < q.seq. Then not.in.order(o,p,s;) = 0 and not.in_order(c, s;,q) =
0. However, not_in_order(r, s;,p) = 1 and not_in_order(t,q, s;) = 1. This means that the swap
operation contributes to the value of disorder(r).

ii. Assume p.seq < g.seq < s;.seq. Then not_in_order(o,p, s;) = 0 and not_in_order(o, s;,q) = 1,
but not_in_order(7, s;, p) = 1 and not_in_order(t, g, s;) = 0. This means that disorder(t) is at least
as disorder(o).

iii. Assume s;.seq < p.seq < g.seq. Then not_in_order(c,p, s;) = 1 and not.in_order(c, s;,q) = 0,
but not_in_order(7, s;, p) = 0 and not_in_order(r, g, s;) = 1. This means that disorder(r) is at least
as disorder(c).

iv. Note that other orderings of p, g and s; are impossible because p.seq < g.seq.

(f) Since we used swap™, not_in_order(c, p, q) = 0 but not_in_order(t,q,p) = 1.

From properties (a) to (f), we conclude that disorder(7) > disorder(c) + 1. Since the swap™ trans-
formation does not change the length of a stream, complezity(c) < complezity(r) and o < 7.

Proofs that shrinking transformations reduce complexity is analogous to the proofs above. Hence, our
complexity order is suitable for a uniform and reversible attack deduction system.

5.2.3 Uniform Derivations.

As mentioned at the beginning of Section 5.2, our goal is show that if o 2 7 then there exists a uniform
derivation from o to 7. ‘

We prove uniformity by induction on the number of uniformity violations in a derivation; a uniformity
violation is an occurrence of an expanding transformation before a shrinking one. Intuitively, the proof
converts a long derivation into a uniform one by replacing the original subsequences that violate uniformity
with uniform derivations of length two. Since the proof of the induction base requires a case-by-case analysis
of all derivation sequences of length two, we first present the induction-step.

Definition 6 (Uniformity Violation) Let (r1,...,7y) be aderivation. The Uniformity Violation of (r1,...,Ts),
denoted UV ((r1,...,7n)), is the number of subsequences (r;,ri+1) such that r; €@+ and ri 1 €3,

Induction hypothesis. Let (ry,...,ry,) be a derivation from o to 7. Then, there exists a corresponding
uniform derivation from o to 7.

Induction step. Assume that the induction hypothesis holds for any sequence with UV equals N. Let
{r1,-..,7m) be a derivation such that UV ((ry,...,rm)) = N+1. Let {r;,r;11) be the first subsequence
such that UV ({r;,ri41)) =1, denote o; —5 0441 as Oito-

According to the induction base, there exists a uniform derivation from ¢; to g;42. Denote this sequence
(F1,...,Tr). Now, consider the sequence (r1,...,7i—1,71, ..., 7k, Ti42, - - - , 7m). This sequence derives T
from o and its UV equals N. So, according to our hypothesis, this sequence has a corresponding uniform
derivation. [

Induction base. We show that for any derivation of the form ¢ = P Z 7 there exist a uniform derivation
fromoto 7.

Our induction-base proof requires the assumption that segments in a TCP stream do not overlap (oth-
erwise, Claim 4 and Claim 5 below do not hold). Essentially, each byte in a TCP stream has a unique
identifier: the sequence number of the byte’s segment plus the byte’s index within the segment. We say
that segments of a TCP stream do not overlap if each byte in the stream has a unique identifier. Note that

13

o P T We know that: Equivalent uniform derivation:
pg,m) | {rg,p) | (,a,7)
(p,a,7) | {o,r,q) | {p,q,7) | swap™ and swap™ reverse each other. empty derivation.
pg,m) | {g,p,7) | (2y0,7)
(p,a,7) | {@p,r) | (a,mp) | T.seq < p.seg < g.seq (p,0,7) 5 (r,q,p) 2B (@7,p)
(p,g,m) | {gyp,r) | (npg) | (p-seq < g.seq) A (r.seq < g.seq) (p,a,m) 2B (p,r,q) ™ (r,p,q)
{p,q,r) (r,g,p) | {rp,g | (p.seq < r.seq) A (p.seq < g.seq) (,a,7) “2B (g, p,7m) 2 (r,p,q)
(p,g,) | (riavp) | {g,7p) | p.seq < r.seq < g.seq (p,a,r) "B (p,r,q) “2E (,p)

apt/=

(®,g,7) | (,ryq) | (@,7p) | (g.seq < r.seq) A (g.seq < p.seq) (p.g,m) "B (g,p,r) L (g,7,p)
(p,g,7) | {p,7,q) | (r,pq) | g.seq < r.seq < p.seq (p,a,7) "5 (r,q,p) 2D (T,p, q)

+ g
Table 2: Uniform derivation for the non-uniform derivation: o *—% P o swap™/~ denotes that

either swap™ or swap™ are possible.

our rules (Table 1) do not create overlapping segments; given an non-overlapping TCP stream they always
return a stream with non-overlapping segments. In Section 5.3, we discuss how to prove the uniformity of

the TCP-retransmission transformation that does create overlapping TCP segments.

. swapt swap™
Claim 2 There exists a uniform derivation for the sequence 0 " — p —= T.

Proof: The only non-trivial case for this derivation is when the two rules swap three segments of a TCP
stream. Table 2 presents uniform derivation for all possible derivations involving three segments.

. . . L ragt fragT
Claim 3 There exist a uniform derivation for the sequence o g T freg P

Proof: Assume that (s,7) ﬁﬁj (81, 82,7) frog] (81,82 - 7) (we denote s - r as the defragmentation of
s and r, see definition 7). Remember that fragmentation (frag™) is analogous to string splitting while
defragmentation (frag™) is analogous to string concatenation. Hence, like in the case of strings, we can
reverse the order of the two operations.

. agt swap™
Claim 4 There exist a uniform derivation for the sequence o Jrog T p.

Proof:

swap™

frag™t swap™
1. Assume that (g,s)— (g,$1,82) — (51,4, s2). Then s1.seq = s.seq < g.seq. Hence, (g, s) —
+ +
(s,q) g, (s1,80,9) % (s1,q,50) (we know that ¢ > sy.seq because of the non-overlapping
assumption).
2. Assume that (g,) (q, 81, S2) wap, (s2,81,9). Then s.seq = s3.seq < sp.seq < g.seq. Then

- +
(Qa 5>% <Saq>ﬁ___) <51)327q> Srjfe') (32a51aQ>'

+ _—
Claim 5 There exist a uniform derivation for the sequence o N p.
Proof:
+
1. Assume (s,7,q) — (r,s ,) — g, (r, s-q). Then (s.seq < r.seq)A\(g.seq = s.seq+size_of(s.payload)).
Since in our deduction systems TCP segments cannot overlap we get: r.seq > g.seq. Then (s, 7, g) N
Jrag™
(5,0,7) ™5 (s-q,1) 2B (1,5 q)
2. Assume (s,1,q) — owep ! (s,q,7)f—a——: (s:g,r). Then (r.seq < g.seq)\(qg.seq = s.seq-+size_of(s.payload)).
Since TCP segments do not overlap we get: r.seq < s.seq. Then: (s,7,q) —= (r,s,q)
swapt
<TaS'Q> - <3'Q7T>

14

+ -
3. Assume (s,7,q) —% (g,T,s) fze, (g,7-s). Then (s.seq < g.seq)A(s.seq = r.seq+size_of(r.payload)).

- _—— -/t
Then (s,7,q) %> (r,5,q) "% (r-s,9) "%~ (g, s).

. hupt frag™
Claim 6 There exist a uniform derivation for the sequence o R N -

+ o™ i
Proof: Assume (s,r) e (s,r) frog, (8" - r) and url_encode(s) = s'. Since http™ works on a payload of a

segment, it can work also on a larger payload. So, we can reassemble first and then apply the http encoding.
Jrag™ hap™ ’
(8,m) = (s-1) = (s'-7).

. . . . hupt swap—
Claim 7 There exist a uniform derivation for the sequence o —— 7 =,

Proof: Clearly, we can swap first and then apply the http encoding.

5.3 Modeling Other Transformations

In Section 5.2, we proved that our system (Table 1) is uniform and reversible. Here, we discuss the unifor-
mity and reversibility of transformations that are not part of our system. Since these additional transforma-
tions are similar in nature to the transformations in our system, we only provide informal arguments for the
uniformity of these additional transformations.

Modeling other TCP transformations. We identified two additional types of TCP transformations:
header change and TCP retransmission.

Header change transformations operate on the header of a TCP segment; for example, they modify the
TCP flags [7, 19]. The uniformity proof of such transformations, is similar to the proofs we provided for the
TCP transformations in our system. First, we extend the representation of a TCP stream (Section 5.2.1) by
adding a TCP header in each segment. Second, we define a partial order for TCP headers. For example, we
define setting the RESET TCP flag [7] as increasing the instance complexity and unsetting it as decreasing
the complexity. Third, we define complexity (Definition 5) as the order imposed by length (Definition 3),
disorder (Definition 4), and the new order for TCP headers. Last, to prove uniformity, we extend our
induction base (Section 5.2.3) to include short sequences that contain header change rules.

Modeling TCP retransmission is more challenging. Essentially, TCP retransmission complicates an
attack instance by resending a TCP segment [19, 22]. Hence, we model expanding-retransmission as a
transformation that duplicates a TCP segment, and shrinking-retransmission as a transformation that re-
moves a duplicated one. Unfortunately, expanding-retransmission violates our non-overlapping assumption,
so it breaks our uniformity proof (e.g., Claim 4).

TCP-retransmission breaks uniformity only when it is mixed with other rules (e.g., frag™). Hence, to
convert a non-uniform derivation that contains TCP-retransmissions into a uniform one, we separate them
from the other transformations: in the uniform derivation we group all the shrinking-retransmissions at the
beginning of the derivation and all the expanding-retransmissions at the end. More particulary, to construct
a uniform derivation from o to 7, we first use shrinking-retransmissions to remove all duplicated segments
from o. Then, we shrink the resulting instance into an atom and expand the atom without using expanding-
retransmissions. Last, we use expanding-retransmissions to duplicate segments in a way that matches 7.

Modeling application-level transformations. Application-level transformations operate on the attack
payload. For example, FTP padding [12, 22] adds benign commands before the malicious commands of an
FTP attack. Such transformations are analogous to our Izttp+/ ~ transformations (Table 1), which also add
or remove bytes from the payload. Hence, we can prove their uniformity in the same way we proved the
uniformity of htpt/~.

Modeling network-level transformation. Network-level transformations (e.g., IP, UDP) change the
way the attack is delivered; for example, IP transformations [19] might split IP packets. Such transfor-

15

Attack Max Execution Memory
(size in pack- | time (sec) consumption
bytes) ets/ (MB)
instance Naive Forensics Naive Forensics
Jinger (8) 8 37 0.05 35 1
perl-in-cgi (30) 30 10800° 0.11 . >1500° 1.2
pro-ftpd(1500)| 150 10800° 16 >1500¢ 3

“Did not terminate after three hour.
Table 3: Solving the fofensics problem. Comparing the performance of a naive algorithm to that of our
forensics algorithm (Algorithm 3).

mations are similar in nature to our TCP transformations and their uniformity proofs are similar to the
uniformity proofs of the TCP transformations above.

6 Empirical Evaluation

We empirically evaluate the execution time and memory consumption of our algorithms. To do so, we
compare the algorithms to a naive closure-generation algorithm, an algorithm that recursively applies the
rules until no new attack instances are foundz. First, we use this naive algorithm to solve the forensics
problem (as discussed in Section 4.1.2). We show that the naive algorithm does not scale beyond attacks
with more than 20 bytes, while our forensics algorithm (Algorithm 3) can handle attack with thousands of
bytes. Second, we applied the naive algorithm to generate a closure; we compared its performance to the
performance of our testing algorithm (Algorithm 2). Although both algorithms require exponential memory
to store the closure, we show that our testing algorithm is faster because it only uses the expanding rules
during closure generation.

We implemented all algorithms using XSB [28], a highly optimized evaluation engine for Prolog pro-
grams. Unlike standard Prolog [26], XSB uses tabled resolution [2] which is useful for closure generation;
it allows recursive programs to terminate correctly in many cases where Prolog does not. Essentially, the
evalnation engine of XSB implements the naive algorithm: to avoid derivation cycles, the engine store each
instance it derives in an internal data structure. All the experiments were performed on a 2.4GHz Pentium 4
processor with 1Gb of RAM.

The Forensics Experiment. To illustrate the performance gap between the naive and forensics algo-
rithms, we performed the experiment using the rules {frag"’/ =, swap™/ ~}. We performed the experiment
three times using three different attacks: the finger-root attack (CVE-1999-0612 [15]) that requires up 10
bytes, perl-in-cgi (CAN-1999-0509 [15]) that requires up to 30 bytes, and the pro-fipd attack (CAN-2003-
0831 [15]) that requires almost 1500 bytes. Using three different attacks enables us to compare the perfor-
mance of the algorithms over attacks with considerably different lengths.

The experiment comprises two steps. First, we manually generated two random instances of each attack;
then, we measured the average time and memory it took for the naive and forensics algorithms to determine
that these instances are equivalent. Even though we know that these instances are equivalent, this experi-
ment provides insight to the performance of the algorithms. We also repeated the experiment with pairs of
instances that are not equivalent, and got similar results.

Table 3 presents our measurements for this experiment. The naive algorithm does not scale, both in
terms of execution time and memory consumption, beyond short attacks. However, our forensics algorithm
can efficiently handles even long attacks.

2Since in these experiments, the closure is finite, this algorithm terminates.

16

The Testing Experiment. We used the naive algorithm and our testing algorithm (Algorithm 2) to
generate the closure of the finger-root attack with respect to our rules. The naive algorithm generates the
closure in 297 seconds while it took only 215 seconds for our testing algorithm. The memory consumption
of both algorithms was the same (35Mb) since they store the closure in memory. The testing algorithm is
superior because it only uses the expanding rules rather than the expanding and shrinking. We believe that
the memory consumption of our testing algorithm can be further improved, because we can apply the rules
in a way that avoids derivation cycles. When we can prevent derivation cycles, we no longer need to store
the closure in memory. However, this optimization is left for future work.

7 Conclusion

Attack mutation is an effective method for NIDS testing. We formally investigate the underlying principle of
attack mutation, the idea that attack instances are derivable from a few exemplary ones. We prove that when
the transformations are uniform and reversible, all attack instances are derivable from a few atoms. We show
that common transformation are indeed uniform and reversible. Therefore, the algorithms we developed can
be immediately deployed in current NIDS testing tools.

References

[1] D. Alessandri, editor. Towards a Taxonomy of Intrusion Detection Systems and Attacks. IBM Zurich
Research Laboratory, Sep. 2001. Deliverable D3, Project MAFTIA IST-1999-11583, Available at

www.maftia.org.

[2] W.Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs. J. ACM, 43(1),
January 1996.

[3] Y. Chevalier, R. Ksters, M. Rusinowitch, and M. Turuani. An NP decision procedure for protocol
insecurity with XOR. In JEEE Symp. on Logic in Computer Science, Ottawa, Canada, June 2003.

[4] E. M. Clarke, S. Jha, and W. R. Marrero. Verifying security protocols with Brutus. ACM TOPLAS, 9
(4), Oct. 2000.

[5] H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and insecurity decision in
presence of exclusive or. In IEEE Symp. on Logic in Computer Science, Ottawa, Canada, June 2003.

[6] M. Dacier, editor. Design of an Intrusion-Tolerant Intrusion Detection System. IBM Zurich Re-
search Laboratory, Aug. 2002. Deliverable D10, Project MAFTIA IST-1999-11583, Available at
www.maftia.org.

[7] R. Felding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. RFC 2616 -
Hypertext Transfer Protocol. The Internet Engineering Task Force, June 1999.

[8] C. Giovanni. Fun with packets: Designing a stick, Mar. 2001. Endeavor Systems, INC.

[9] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R. Richardson. CSI/FBI computer crime and security
survey. Computer Security Institute, 2004,

[10] M. Handley and V. Paxson. Network intrusion detection: Evasion, traffic normalization, and end-to-
end protocol semantics. In USENIX Security Symposium, Washington, DC, Aug. 2001.

17

[11] J. S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear logic. Information
and Computation, 110, 1994,

[12] R. Marti. THOR: A tool to test intrusion detection systems by variations of attacks. Master’s thesis,
Swiss Federal Institute of Technology, Mar. 2002.

[13] C. Meadows. The NRL protocol analysis tool: A position paper. In IEEE Computer Security Founda-
tions Workshop, Franconia, NH, June 1991. '

[14] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logic pro-
gramming. Annals of Pure and Applied Logic, 51, 1991.

[15] MITRE Corporation. CVE: Common Vulnerabilities and Exposures. Available at
WWW.Cve.mitre.orqg.

[16] D. Mutz, G. Vigna, and R. A. Kemmerer. An experience developing an IDS stimulator for the black-
box testing of network intrusion detection systems. In Annual Computer Security Applications Con-
ference, Las Vegas, NV, Dec. 2003.

[17] V. Paxson. Bro: a system for detecting network intruders in real-time. Computer Networks, 31(23/24),
Dec. 1999.

[18] T. H. Ptacek and T. N. Newsham. Custom attack simulation language (CASL). Available at
www.sockpuppet.org/tgbf/casl.html.

[19] T. H. Ptacek and T. N. Newsham. Insertion, evasion, and denial of service: Eluding network intrusion
detection. Technical Report T2R-0Y6, Secure Networks, Inc., Calgary, Alberta, Canada, 1998.

[20] Rain Forest Puppy. A look at whisker’s anti-IDS tactics — just how bad can we ruin a good thing?,
Dec. 1999. Available at www.wiretrip.net/rfp/txt/whiskerids.html.

[21] M. Roesch. Snort: the Open Source Network Intrusion Detection System. Available at
WWW.snort.org.

[22] S. Rubin, S. Jha, and B. P. Miller. Automatic generation and analysis of NIDS attacks. In Annual
Computer Security Applications Conference, Tucson, AZ, Dec. 2004.

[23] N. Shankar. Proof search in the intuitionistic sequent calculus. In Proceedings of 11th International
Conference on Automated Deduction (CADE-11), Saratoga Springs, NY, June 1992.

[24] Sniphs. Snot, January 2003. Available at www.stolenshoes.net/sniph/index.html.

[25] D. Song. Fragroute: a TCP/IP fragmenter, April 2002. Available at
www.monkey.org/~dugsong/fragroute.

[26] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1994.

[27] The NSS Group. Intrusion detection systems (IDS) group test (Edition 4), 2003. Awvailable at
www.nss.co.uk/ids/editiond4/index.htm.

[28] The XSB Research Group. The XSB system, version 2.7. Available at xsb.sourceforge.net.

[29] G. Vigna, W. Robertson, and D. Balzarotti. Testing network-based intrusion detection signatures using
mutant exploits. In ACM Conference on Computer and Communications Security, Washington, DC,
Oct. 2004.

18

A Definitions Used Throughout the Paper

Definition 7 (Fragmentation of a TCP Segment) Let s = {seq, payload} be a TCP segment. seg_frag(s) =
(81, 82) such that

1. s1.seq = s.seq,
2. payload = sy.payload - s3.payload,
3. sg.seq = s.seq + size.of(s1.payload).

Note that if a TCP stream contains the segments s; and s, and if seg_frag(s)=(s;, s5) then the payload of a
TCP stream contains the string s1.payload - s5.payload.

We say that a segment r is a defragmentation of s; and sy if seg_frag(r) = (s1, 52).
Definition 8 (URL encoding) Let s = {seq, payload} be a TCP segment, let payload be the string a; -
ag * -+ ap, and let a; by part of a URL.

Then: url_encode(s) = {seq,a1 - ...ai—1- %h - aiy1...an} where h is the hexadecimal value of the
ASCII character a;.

Technically, to formally express that a; is part of a URL, we can use two alphabets: one for URLs and
one for the other parts of the attack.

19

