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Abstract

Malicious code can wreak Havoc on our cyberinfrastructure. Hence, discovering and containing ma-
licious code is an important goal. This paper focuses on privacy-violating malicious code. Examples of
privacy violations are leaking private user data to an external entity or downloading data fo a user’s host
without their permission. Spyware, which has recently received considerable attention in the popular lit-
erature, is an important example of privacy-violafing malicious code. We propose a multi-step approach
to discovering and containing privacy violations. We have designed and implemented a dynamic slicing
tool to discover dependencies between events in an execution trace. We demonstrate that dynamic slicing
can be used to discover privacy violations. Information gathered using dynamic slicing can be used to
construct security policies to contain the discovered privacy violations. These security policies are then
enforced by a sandbox. We have implemented a sandbox for Windows, and have successfully evaluated
our approach on two applications: KaZaa and RealOne Player. For both of these applications we were
able to discover privacy violations in them using our dynamic-slicing tool. Moreover, using information
gathered through dynamic slicing we were able to design policies to thwart these privacy-violations. Al-
though our preliminary evaluation was performed on spyware, in the future we will evaluate our approach
on other privacy-violating malicious code.



1 Introduction

Malicious code can infiltrate hosts using a variety of methods, such as aftacks against known software flaws,
hidden functionality in regular programs, and social engineering; a taxonomy of malicious code appears
in [35]. Disruption of services caused by malicious code can have catastrophic effects, including loss of
haman life, disruption of essential services, and huge financial losses. The increased reliance of crifical
services on our cyberinfrastructure and the dire consequences of security breaches have highlighted the
importance of detecting and containing malicious code.

This paper addresses privacy-violating malicious code, where a privacy violation is defined as the disclo-
sure of private information or use of a resource without its owner’s permission or knowledge. Transmitting
sensifive user data to an external server and downloading data to a user’s host without their knowledge are
two concrete examples of privacy-violations. Spyware is an important example of privacy-violating mali-
cious code. Spyware [52, 56] is malicious code that performs useful functionality, but resulfs in disclosure
of sensitive information, such as a customer’s credit card information. RealNetworks’ Real Jukebox [31, 43]
was one of the well publicized examples of spyware. In [35] spyware is defined as follows:

Spyware is a useful software package that also transmits private user data to an external entity.

A recent measurement study discovered that 10% of active hosts on a campus of a major public university
were infected with spyware [47]. Given the widespread prevalence of spyware and privacy breaches that can
result from them, detecting and containing privacy-violations is an important goal. The initial focus of our
work is on spyware, but in the future we will evaluate other privacy-violating malicious code. Discovering
privacy violations can be viewed as a special case of information-flow analysis [14, 36, 44, 54]. Since we
are analyzing programs without access to source code, we will have to perform information-flow analysis
on large executables. To our Knowledge, information-flow analysis techniques have not be demonstrated to
scale fo large executables. Dynamic slicing finds dependencies between events in an execution trace. Our
methodology uses a combination of dynamic slicing (which can be thought of as information-flow analysis
for execution fraces) and sandboxing.

There are two major classes of techniques for addressing malicious code: static and dynamic. Stafic
analysis techniques [6, 7, 11, 12, 24, 33] attempt fo detect malicious behavior in programs. Typically,
virus scanners search for a pattern of instructions and thus use static analysis (albeit a very simple one).
Dynarmic techniques confine the behavior of a potentially malicious program using sandboxing. A sand-
box [I5, 19, 23, 29] monitors a program and confines ifs execution fo a security policy. However, these
techniques have not been applied to contain privacy violations.

This paper makes the following contributions:

Discovering privacy-violations using dynamic slicing: Malicious code, such as a virus or a worm, leave
an observable footprint behind. In contrast, privacy-violating malicious code (e.g., spyware) perform useful
functionality, such as downloading or replaying music, but also perform stealthy privacy-violating activities.
Therefore, discovering such privacy-violating features is challenging. We have designed and implemented a
dynamic-slicing algorithm thaf enables an analyst to discover privacy-violating features using event traces.
Unlike traditional dynamic-slicing algorithms [3, 30] our algorithm works with incomplete information (in
our case, a sequence of Win32 API calls made by the application). A description of our dynamic-slicing
algorithm and its use in discovering privacy-violations appears in Section 4. Recent work on mimicry and
hiding attacks [50, 51, 55] has demonstrated that it is important to incorporate dependency and argument
information in security policies used for enforcement. Dynamic slicing can be used to recover dependencies
Between events and recover argument values, which can be used fo construct precise security policies.
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Containing privacy-violations using sandboxing: We present the design and implementation of a dynamic-
monitoring infrastructure for Windows, called sandBoX86 . We have designed a language called the event
description language or EDL, to abstract events. EDL provides a decoupling between raw events (Win32
API calls in our case) and abstract events used for monitoring, which makes porting our architecture to other
platforms easier. Security policies are defined using a language called the event sequence language or ESL,
which uses the abstract events defined by a EDL specification. These security policies also use the informa-
tion gathered using dynamic slicing. EDL and ESL specifications for an application are then compiled into
a monitor. Defails about the architecture can be found in Section 5.

Case studies: In order to evaluate our sandboxing system we considered two applications: KaZaa [25]
and RealOne Player [41]. A detailed description of these applications along with privacy-violating features
we discovered in them can be found in Section 6. Details about these features were discovered using our
dynamic slicing tool. For these two applications, we were able fo construct security policies to thwart the
discovered privacy-violafing features, which lead us to believe that sandboxing can be very effective in con-
taining privacy-violating malicious code, such as spyware. We also measured the memory and execution
overheads introduced by our sandbox. Our evaluation demonstrated that the performance and resource costs
associated with sandBoX86 are nominal. The macrobenchmarks show a slow down of less than 3.2% for all
our applications. The results of these experiments can be found in Section 7.

2 Overview

This secfion gives an overview of our entire methodology. We describe how dynamic slicing can be used
to discover privacy violations and gather information for constructing security policies. We also give two
examples of security policies in ESL.

2.1 (Step I) analyzing execution fraces using dynamic slicing

Dependencies between events in an execution trace can be inferred using dynamic slicing. These dependen-
cies can then be used to discover privacy violations and gather information to construct security policies.
We will illustrate the use of dynamic slicing using two scenarios.

Scenario 1 (discovering privacy violations): A security analyst wants to discover whether a network event
(e.g. sending a message to a remote host) depends on a sensifive event (e.g. reading from a specific file).
This dependency indicates that the application is sending data obtained from a sensitive operation to a re-
mote host.

Analysis: A forward slice from a sensitive event shows all the events that depend on it. If a network event is
in the forward slice, it represents a potential privacy violation.

Scenario 2 (information gathering): Suppose a security analyst wants to discover all the remote hosts that
an application connects to. This information will be useful in recognizing servers that are used by cerfain
applications to download pop-up advertisements or fo send information about user activity.

Analysis: Figure 1 demonstrates informafion gathering using dynamic slicing. The left side of the figure
lists a portion of a program’s running frace. The right side shows the results of dynamic slicing. In this
example, we want to find all the hosts which a program has sent data fo using the send call. First, we isolate
the send events. In this case there are two: 170 and 284. Next, backward slicing is performed from each one
of the two send events. The result from the backward slicing consists of fwo trees, one from each of the two
send events. From the two slices, we extract only the gethostbyname calls, which give us the set of hosts the



Dynamic Slice From
send(...) calls

Program Call Trace

158 getﬁosﬁbyname("ayb.neﬁ")=209.73,225u22
159 gethostbyname("c.d.com")=207.55.243.12
161 bind( 1764, ...}

162 connect( 1764, "209.73.225.22"...)

1/0 send({ 1764, ...)
270 BInd( 1768, ...}

271 connect ( 1/68, "207.55.243.12"...)

284 send{ 1768, ...)
Figure 1: Information Gathering using Dynamic Slicing.

program has sent data to. Appendix B.2 shows a screen shot of our GUI interface to the dynamic slicer. The
GUI interface provides a mechanism for a security analyst to visualize and browse the slices.

2.2 (Step 2) constructing security policies

In this step a security analyst designs ESL security policies to thwart privacy violations. Next we show two
example policies which are related to scenarios I and 2 described before.

Example 1 Assume that using dynamic slicing an analyst was able to discover a privacy violation. Depen-
dencies between events exposed during dynamic slicing helps an analyst construct a policy to thwart the
discovered policy violation. Hence dynamic slicing can expose some of the context missing from traditional
Kernel-level enforcement mechanisms by detecting and tracking dependencies between operating system in-
terface calls (e.g., API calls in windows, syscalls in UNIX). We demonstrate the power of this approach by
describing the implementation of a canonical privacy policy: preventing the transmission of sensitive files
across a network.

Consider a user who wishes to protect the files in her web browser cache from being exported by a
malicious program. Pragmatically, she wants to prevent any process from reading items in her cache and then
subsequently transmitting them over the network. This requires the system to infer dependencies between
two very separate operations; the reading of data from the sensitive (cache) directory, and the use of network
inferfaces.

Figure 2 shows an ESL policy that protects the browser cache. Line I indicates that this ESL security
policy uses the EDL specification given in file generic.edl. Lines 4, 5, and 6 define how the reading
of sensitive material is detected. Line 4 defines a protection domain by identifying the sensitive cache
directories for both Internet Explorer and Netscape, and lines 5 and 6 indicate how access to the protection
domain should be monitored. The policy tracKs the open and subsequent read of sensitive files by saving
state between API calls. Specifically, the addHasH operator allows open and read operations to be
correlated with the file handle results of open calls (which are stored in the handles hash table).! Using

INote tHat such mappings can be trivially circumvented by file descriptor aliasing operators such as dup. Note that these requiré
OS API or system calls, and as such can be governed by policies in a similar manner as the open call. For brevity, we omit farther
discassion of these interfaces. :




edl "generic.edI"

hash HandIes

boolean block=false

string sensitive = "My Documents\Netscape\CacHe\¥|[My Documents\IE\Cache\*"

maich open (file <IsSensitive(sensitive, file)») - allow <addHasK(handIes, Handle)>>
match read (handle) — allow < cHecKHasH (Handles, HandIe)» bIock=true

HONO RNV LD

match connect(...,Host,...,) — allow
match sendto(...,HRost, ..., KbIlock>») — transform(fiost — localhost)
match send(...,socKet, ..., KbIock>>) — transform(liost — localhost)
1 match recvfrom(...,host,...) — allow
1 maich recv{...,sockef, ...) —+ allow

Figure 2: Preventing an application from leaking sensitive information.

the file descriptor mapping in the hash table, line 6 annotates (with a bIock flag) the process as having
consumed sensitive data when it reads from a sensitive file. Note that prior fo this annotation, the process
can freely send and receive data over the network. Lines 7-11 state how the policy is enforced. If the block
flag is true, then the argument corresponding to the host in the send call is changed to the localhost (lines
8-9). All other operations are permitted independent of annofation, e.g., connect, recv, recvfrom, etc.

While context mapping allows semantically deep policy enforcement, it is still limited to the information
present in the interface calls themselves. In the normal case, this may lead to false-positives. For example,
this example is sufficient fo prevent arbitrary malicious software from performing these operations, but a
normally behaving browser would frequently violate this policy and be prevented from using the network.
During normal operation a browser frequently reads cache files and sends data. However, the cache data is
not sent by the browser. The problem is that the policy does not have sufficient context to determine if the
data being sent is derived from sensifive dafa. In general, determining data dependence requires information
flow analysis, which is well Known to be enormously difficult. For example, the cascade problem involves
aggregation of authorized information flows to produce an unauthorized flow, which arises in networks of
systems. The problem of removing such cascades is NP-complete [21]. While this work does not solve
the most general problem (information flow), we argue that the semantically rich policies made possible
using this approach represent a significant step forward in fracking and controlling the behavior of untrusted
software.

Example 2 Our second example is related to scenario 2. KaZaa downloads and displays advertisements
during its use. Furthermore, KaZaa users cannot prevent KaZaa from displaying the adverfisements unless
they choose to uninstall it. Our goal, therefore, is to be able to disable KaZaa’s advertisement feature without
having to uninstall KaZaa. We now give a policy that can detect and prevent KaZaa from connecting, sending
or receiving any data from a list of blocked servers. At the same time, the policy allows other activities such
as searching and downloading files from peer hosts. The policy is shown in Figure 3. Line 3 specifies the
list of remote servers we want to block KaZaa from accessing. This list is constructed using dynamic slicing
as was discussed earlier. In Line 4, we hash each IP address KaZaa has obtained through the gethostbyname
call. Line 5 of the policy prevents KaZaa from establishing TCP connections to any of the remote servers
that is on the blocked list. Lines 6 and 7 deal with the cases where KaZaa attempts to send or receive data
from the blocked servers using UDP sockets.

This policy achieves the goal of stopping KaZaa from downloading advertisements from a list of remote



1. edl "kazaa.edI"

2. Hash iptable

3. string blocked = "cydoor|doubleclick|adserver| fastclick.com]..."

4. maich getHostbyname (blocked) ~— allow <addHash(Iptable, ret, name)>

5. match connect (...,Host, ..., €cHeckHask (Iptable, host)>>) — returnsuccess
6. match sendto(...,HRost, ..., €checkHasH(iptabIe, host)>>) - returnsuccess
7. match recvfrom(...,Host, ..., €chHecKHasH (Iptable, Hhost)>»>) — reiurnsuccess

Figure 3: Stopping an application from sending or receiving data from remote servers.

servers, which, consequently, prevents KaZaa from displaying the advertisements. The policy has one addi-
tional property: if also stops KaZaa from sending any information fo these servers, which potentially could
be more damaging since KaZaa can send privafe or sensifive data back to these servers. Line 6 stops this
potential spying activity by intercepting any attempt to send data to the blocked servers. When KaZaa tries
to send data to any one of the remote servers, we do not execute the send call but instead return success as
if the call went through.

Above we give an example policy that stops KaZaa from receiving unwanted data from remote servers.
We want to emphasis that this is just one example demonstrafing the expressiveness of our policy language.
In general, one can use ESL policies to block any sequence of events where the policy may seem to fif.

2.3 (Step 3) enforcing security policies

ESL security policies are enforced by our sandbox. We briefly describe the the process by which the security
policies are enforced. Details can be found in Section 5. The ESL secarity policies described before are
compiled into two dynamically loadable libraries (DLLs): event-interceptor and policy-enforcer DLL. A
raw event (in our case of Win32 API call) is transformed into an abstract event by the event-interceptor
DLL. The abstract event is passed onto the policy-enforcer DLL, which decides on the action to be taken for
that event.

3 Related Work

This section considers how past works have detected and contained undesirable software behavior (e.g.,
bugs, spyware, malicious code).

Dynamic slicing algorithms typically reconstruct dependencies between statements in an execufion
trace [3, 4, 30, 53, 57]. Since slicing tracks the flow of values between statements, it can be cast in an
information-flow framework [9, 14, 20, 44]. Agrawal et al. showed how dynamic slicing can be used fo nar-
row the search for software errors, and hence reduce debugging costs [3]. Their dynamic slicing tool works
backward from a Known erroneous output toward the possible sources of the error. All code upon which the
error state is dependent (as indicated by trace and symbolic information) is included in the program slice.
Because all causality is captured in the slice, no other code need be searched for the source of the error.
Smith and Korel recognized the difficultly and cost of obtaining and analyzing potentially large execufion
traces [49]. Also used for debugging, they define an algorithm that detects dependencies between logged
resource usage events, rather than complete execution traces. Event slices are constructed from computed
event dependencies and used to identify the cause of an error.
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Slicing has also been shown to be a valuable tool for detecting malicious behavior. For example, King
and Chen show how fo reconstruct adversarial behavior from traces of operating system events on com-
promised hosts [27]. Their BackTracKer system uses timed filesystem and process system call fraces to
reconstruct possible compromising events. BackTracker reconstructs a graph of relevant operations work-
ing from some Known compromised behavior. This graph highlights the possible sources of compromise,
and hence is a succinct and intuifive forensic representation of the attack. We note that such solutions may
face similar issues as debugging slicer applications. For example, the cost of keeping complete execution
or event fraces may be prohibitive. We posit that sampling techniques, such as those proposed Liblit ef.
al. [32], may help mitigate these costs.

Sandboxing is an increasingly important tool for secure systems deployment {I5, 17, I8, 19, 23]. Sand-
boxing tools prevent malicious behavior by monitoring and regulating security relevant operations according
to some policy. For example, Provos regulates process operation by intercepting and enforcing policy over
system calls [39]. These policies reduce the range of possible behaviors of a governed process, and hence
the power of the compromising adversary. Garfinkel provides a thorough treatment of complex issues faced
by designers of these system call interposition solutions [16]. Other systems are based on similar ideas, but
built upon formal policy models [8, 45, 46]. Based on the Flask architecture, the SELinux platform uses a
number of similar enforcement mechanisms to enforce role based access confrol, type safety, and multi-level
security policy [34].

Policy enforcing solutions need not require privileged or Kernel level access. Jain and Sekar introduce the
notion of user level interposition of system calls as a vehicle for intrusion detection and malicious behavior
mitigation [23]. Other solutions attempt to control program flow [28] or monitor for and prevent specific
behaviors (e.g., buffer overflows) [13] through code instrumentation or process infrospection.

Several commercial products have recently been launched in response to heightened public concern
about spyware. In addition to a range of other security related features, Zone Alarm [58, 59] restricts local
network connections based on a local policy. Zone Alarm further allows policy to be learned through
user input, e.g., by appealing to the user when network operations with unspecified policy occur. Other
commercial products treat spyware as viral behavior. Products such as Ad-aware [I, 2] develop signatures
for spyware. Local drives, memory, and attachments are checked for the presence of spyware. Where found,
the offending sources are quarantined.

While we build on many of these works, but the goals and execution of sandBoX86 make it unique. The
novelty of our solufion lies not only in the technology, but in the domain of policy; we focus on services
that ensure user privacy. We use dynamic slicing to analyze behavior and guide policy construction, rather
than as a forensic tool. Moreover, our dynamic slicing tool processes execution traces that do not have
complete information (e.g., only system calls are visible but all the internal computation is hidden). The
idea of interposing a library to intercept Win32 APIs has been suggested [22, 42] and UNIX system call
inferposition is well understood. However, we are the first fo integrate comprehensive tools for policy
creation and their subsequent enforcement. The following sections detail how we bring these elements
together to form a complete and novel solution to combat privacy violations.

4 Dynamic Slicing

Dynamic slicing attempts fo discover dependencies between events in an execution trace. In this section
we present our dynamic-slicing algorithm. One of the main challenges we faced in dynamic slicing was
incomplete information. For example, we only log events that correspond to Win32 API calls, and therefore
all the information about the internal computation of the application is absent from the trace. We present a



subtype addr_edl = unsigned Int

struct Hostent ({ sfruct socKaddr_in { struct Hostent_edl | strucf socKaddr_in_edI ({

cliar * Hh_name; shHort sin_family; char * H_name,

sHorf sin_family,

ddresses

}i

(a) Two different ways fo store IP addresses (b) Using normalized data structure to store IP addresses

Figure 4: Using type normalization fo improve slicing precision.

dynamic-slicing algorithm which constructs slices using such event traces.

4.1 Dynamic Slicing

This subsection provides the description of our dynamic-slicing algorithm. First, we formally define events
and fraces. Different events (such as getHost byname and bind) use different types to represent the same
informaftion. For example, getHostbyname and bInd use different types to represent IP addresses (see
Figure 4 (a)). In order to determine dependencies between events, types of arguments and return values have
to be normalized, e.g., all elements representing IP addresses should have the same type. We describe such a
type-normalization procedure. Using types of arguments and return values to events, we define dependencies
between events. Finally, dependencies between events are used to define forward and backward slices.
Events and traces. An event is a triple e = {(pc, event-name, arg-list), consisting of the program counter
pc, name of the event event-name, and a list of typed arguments arg-list = (vr : 71, , v ¢ ) (Where
value v; has type 7;). An event represents a Win32 API call made at a specific location by the application.
By convention, the last value in the argument list is the value returned by the event. A trace T is simply a
sequence (er, - - - ,€en) of events.

Type normalization. The type mismatch problem is a result of the fact that equivalent data types can have
different representations in C. For example, types cHar* and cHar [] are equivalent. Instead of using
sophisticated type equivalence algorithms [10, 37] we normalize the types using the EDL specification. For
example, the Windows’ socket API defines two structures that refer to hosts, shown in Figure 4 (a). The
structure Hostent uses a cHar** to represent a list of possible IP addresses. On the other hand, the
structure sockaddr_in stores a single IP address for a host using the type struct In.addr (which
is a union of 4 bytes). Some calls like getHostbyname, and gethostbyaddr use hosfent to re-
turn the address information for a given host. On the other hand, calls such as connect and HInd use
sockaddr.In to pass IP address information. Our slicing algorithm needs to deduce equivalence between
types in order fo determine dependency information.

Using the EDL specification we normalize all equivalent types and replace them by an unique type. This
unique type is used in every place where one of the equivalent types is used in the APL. Continuing with
the example, we choose fo use addr_edl as the unique type to represent IP addresses. We first create a
unique type to represent the normalized type, and then update all corresponding data structures inside EDL
fo use this new data type. The corresponding EDL data structures (all the type names end with the suffix
edT) are shown in Figure 4 (b). Here the new unique type addr_edI is used to represent IP addresses in
the two data structures sockKaddr_in_edI and Hostent_edI. This solution works as long as the types




are compatible, and the fact that both structures now use the same subtype allows the slicing algorithm to
infer data dependency.

Killed and used sets. Consider an event e = (pc,event-name, arg-list), where arg-list = (v :
T1,+-- , U : k). We associate two sets of values, called the killed set and used set (denoted by killed(e) and
used(e)), with an event e. The Killed and used set are defined as follows:

killed(e) = {v; | v; is a pointer and is modified by the event}

used(e) = {v;|wv;Isused by the event e}

Notice that the Killed set only contains pointers. Whether an argument is modified or used by an event is
inferred from the documentation of the Win32 API call corresponding to the event. Note that the value
corresponding to the return value of an event is always in the Killed set.

Computing Dependencies. In order to define data dependence formally, we need to precisely define
whether a value v depends on another value v’. In traditional dynamic-slicing algorithms [4, 30, 53, 57], one
records all the loads and stores at all memory addresses. Therefore, dependency information is easy to infer
from memory addresses. Since our logs have incomplete information, deciding whether a value is dependent
on another is tricKy. We define a predicate depends(v : 7,v' : 7'), which retarns I if v is dependent on v’ and
returns 0 otherwise. Our definition of depends(v : 7,v : 7') uses type information associated with values.

In our type system, cerfain primitive types (such as addr_edI) are designated as types with equality.
Intuifively, primitive types with equality represent an operating-system resource or an entity (such as a host),
e.g., a value of type addr _edI abstractly represents the host with the specified IP address. Two values of
primitive types can only be compared if the types are designated as types with equality. In other words,
given two values v : 7 and v’ : T, we say that v = ¢ is true iff v = v’ and 7 is a primifive type with equality.

A record type that has k fields of type 71, , 7% is denofed by record(7r,--- ,7%). A pointer to an
object of type 7 has type ref. Suppose that we have two values v and v’ of type T = record(rr,- -+ , 7k)
and ref 7, respectively, where for I < ¢  k, 7; are primitive types (v is a record and v’ is a pointer to a
record). Let the i-th field of the record v be v; and the i-th field of the record pointed to by v’ be (xv);. In
this case, we say that v depends on v’ if there exists ¢ such that v; = (¥v'); and 7; is a primitive type with
equality. Intuitively, the records represented by v and pointed to be v’ share an operating system resource or
enfity corresponding to the primitive type 7;. This intuitive idea is formalized and extended to the complete
type system shown in appendix A.1.

Consider a trace T = (eg, -+ ,en). A value v in an event e is denoted by (v, e). We say that there is a
data dependence of value (v;, e,) on a value (vy, ep) if following three conditions are satisfied:

e v; € used(e,),
o for all k such that b < k < a we have that v; & killed(ey), and
e value v; depends on v; or depends(v;,v;) = 1.

Nofice that in traditional program analysis literature this is called a def-clear path from (vy, ep) to (v;, eq) [5].
Forward and backward slices. Consider a trace T = (ey, - - - , e,,). The data-dependency graph or DDG
of T is defined as a directed graph G = (V, E), where V and F are defined as follows:

e Consider an event e = (pc, event.name, (v1 : 71, -+ , v : 7%)). The set of vertices V' (e) associated
with e is {(v1,e), - , (v, e)} . The set of vertices V of the DDG is [ J]__; V'(e;), where {er,--- ,en}
is the set of events occurring in 7.

e There is an edge from (v, &;) to (v', e) (denoted as (v, e;) — (v', ex)) iff (v/, e;) depends on (v, €;).



EDL

. typedef sockaddr.edl union string | int

Operating . ftypedef socket_edl = int

Application
PP System APT

. event connect (socKet.edl sock, sockaddr.edl addr)

connect {} 7| connect {)

> W N

. evenft getHostbyname(string name) = sockaddr-edl

int

Figure 6: EDL example.
Figure 5: Architecture Diagram

A forward slice from a value (vj, ;) in the trace T' (denoted by fslice((v;, €;),T)) is the sub-graph of Gr
that contains all vertices that correspond to events which are reachable from (vj,e;). A backward slice
from a value (vj, ;) in the trace T' (denoted by bslice((v;, €;), T')) is the sub-graph of G that contains all
vertices that can reach (vj, €;).

Implementation details and GUL  Our dynamic-slicing tool is about 9000 lines of Java code. Description
of the GUI and additional implementation details can be found in appendix B.2.

5 SandBoX86

The architecture of our infrastructure is shown in Figure 5. We first describe the life-cycle of an event
through our architecture. Since our architecture monitors Windows applications, the events of interest are
Win32 API calls. The number of the item given below corresponds fo the arrows in Figure 5.

1. The application generates an event which is captured by the event-interceptor DLL.

2. The event generated by the application is transformed info an abstract event by the event-interceptor
DLL and is passed to the policy-enforcer DLL.

3. The policy-enforcer DLL processes the abstract event and decides on an appropriate action.

4. If the abstract event is allowed, then the policy-enforcer DLL passes the concrete event to the operating
system.

5. Results from the operafing system are received and passed back to the application and the state of the
monifor is updated. If the abstract event is denied, a failure code is returned o the application.

Event Description Language (EDL). The event description language or EDL is a platform-independent
language for specifying parameterized events. It has a rich type system (described in appendix A) , which
allows for detailed specification of events and their associated arguments and return values. Intuitively, EDL
describes abstract events which are used by the security policy. The intent of the EDL is that it can be used to
create an abstract model for a given platform. For example, a model describing the Win32 and socket APIs
would be an expected use of the EDL. We have implemented a compiler for EDL, which takes as its input
a file with an EDL specification and produces header files which are used in generating the policy-enforcer
DLL. We will describe various features of EDL using an example.

Example 3 Consider the EDL example shown in Figure 6. The example defines the following data-types
and events:
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o typedef sockaddr_edI... defines a type representing an IP address. It is a union because an IP
address may be stored as either a string or an integer value.

o typedef sockef._edl... defines a type representing a socket descriptor, stored as an integer.

e event connect(...)= Int defines an event representing a connect system call. It fakes two
parameters, a socket, and an address. The event returns an integer error code.

e event gethostbyname(...) =sockaddr._edl defines an event representing a DNS nameser-
vice lookup. It takes a hostname and returns an IP address.

Event Sequence Language (ESL). Our security policy is expressed in a language called the event se-
quence language or ESL. Examples of two ESL policies were given in Section 2. Therefore, due to space
limitations we will Keep the discussion of ESL brief. An ESL specification defines patterns on abstract
events specified by the EDL. Once a pattern is matched, rules can be applied to determine whether or not the
abstract event should be allowed or denied. Formally, ESL is a framework to describe a security automa-

ton [48] whose alphabet is the set of abstract events defined using EDL. We have built a compiler for ESL
which takes files containing EDL and ESL specifications and creates the policy-enforcer DLL. We describe
various components of ESL.

Abstract events. In Figure 3 of Section 2, [ed] "Kazaa.edI"]referstothe EDL filenamed "Kazaa.edI".
All rules defined in this ESL specification use the abstract events defined in the EDL file Kazaa . edI.

State. The state in the security policy is defined using auxiliary variables. Any valid type in the C pro-
gramming language is an allowable type for an auxiliary variable.

Actions. We define three types of actions in our security policy: aIIow, deny, and €ransform. The
aIlow action specifies that an event should be allowed and passed on to the operating system. The deny
action indicafes that an abstract event should be disallowed and a failure code should be returned to the
application. The £ransform action indicates how certain arguments of an event should be transformed
before the event is passed to the operafing system (OS). The €ransform action was added becanse certain
applications will shut themselves down if system calls they issue fail. We are investigating OS-virtualization
techniques to handle this issue.

Rules. Each rule in the security policy is of the following form:

match event [precondition] — action [postcondition]

An event e maiches the above rule if the state of the security policy satisfies the precondition of the rule and
e matches the event specified by the rule. If event e matches a rule, the action specified in the rule is taken
and the state is updated according to the postcondition. If there are multiple rules, then the first rule that
matches an event is applied (this is similar to processing of firewall rules). Events that do not match any rule
are allowed by default.

Implementation details. The ESL and EDL compiler are about 2700 lines of Java code. For efficiency
reasons, the monitor was implemented in C. Our implementation for the monitor is approximately 3000
lines of C code. Additional details can be found in appendix B.I.

5.1 Threais

A thorough discussion of traps and pitfalls of sandboxing systems which rely on system call interposition is
given by Garfinkel [16]. The three major threats specific to our sandboxing system are:

DLL bypassing. A hostile application could fry to thwart the interposed monitor DLL by nof making calls
through the standard Win32 API. We have implemented a kernel hook to address this attack. Our kernel
hook is described in detail in Appendix C. Eventually, in order to eliminate the DLL bypassing atfack we

11



want to move fo a hybrid-sandboxing architecture 2, which is a difficult task given the arcane nature of the
Windows kernel APL

Direct attack. This attack can taKe two forms: modifying the monitor on disk or in memory with the goal of
bypassing the security policy.

Mimicry attack. The idea behind this attack is fo analyze the specific ESL policies in use, and transform the
attack such that it is allowed by the security policy [55].

Countermeasures to direct and mimicry attacks are discussed in the appendix C.

6 Case Studies

To evaluate our infrastructure, we considered two applications: KaZaa [25] and RealOne Player [41]. We
chose these two applications because they have two properties in common: both are very popular and more
importantly, both are often classified as spyware. As defined earlier, spyware is a useful software that also
transmits private user data to an external enfity. As both KaZaa and RealOne Player are used by millions
of users, the prospect that they may contain malicious spying activities often causes great concerns. This
section gives a brief overview of the two applications.

6.1 KaZaa

KaZaa [25] is a distributed peer-to-peer (P2P) file-sharing application which allows millions of users fo
share files over the Infernet. As of May 2004 [26], an estimated 348 million copies of KaZaa had been
downloaded. Although KaZaa itself may not have any spyware features, it often distributes third-party
software with every release, and some, if not all, of these third-party software are spyware-laden. We divide
these bundled spyware into three categories.

o Advertising. Most of the spyware distributed with KaZaa is related to advertising (and hence is called
AdWare) and their main objective is to display advertisements to KaZaa users. Since KaZaa receives
fees from third-party software vendors, there is an incentive for KaZaa to make sure that the users
cannot bypass the AdWare. For example, Cydoor, a frequently cited spyware bundled with Kazaa, is
in fact embedded within KaZaa so that a forceful removal of Cydoor will cause KaZaa to malfunction.
The latest version of KaZaa that we have investigated (version 2.5.2) has the capability of thwarting
users from using simple techniques to block its third party software. If KaZaa is unable to defect or
undo the changes made by users, then it will crash when the built-in spyware aftempts to connect to
the home servers.

e Spying. Although KaZaa claims that it no longer bundles any spyware, older versions of software
‘bundled with KaZaa had features such as tracKing and reporting user activities back to the vendors
and downloading and installing binary programs.

o Hidden features. When first revealed to the public in 2002, Altnet, a software bundled with KaZaa,
caused an uproar amongst users. Altnet, once enabled, could allow Altnet’s distributor, Brilliant
Digital, to tap into the vast computer resources of the KaZaa users. For instance, Brilliant Digital
could use millions of KaZaa users’ computers to store and retrieve files, or fo perform computation
taskKs. Altnet software is currently still bundled with KaZaa, even though Brilliant Digital has not
acfivated it.

2In a Hybrid sandbox, the trapped event is first passed to a kernel module which consults a user module (which contains the
secarity policy) to decide on the appropriate action for the event.
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6.2 RealOne Player

RealOne Player [41] is a part of the widely used software suite developed by Real Networks. RealOne Player
can manage and play back many types of media files, such as real, mpeg and MP3. In addition, as a feature,
RealOne Player can retrieve detailed information about the media file being played. For example, when a
user is playing a music CD, RealOne Player can display the fitle of the CD as well as details about each
track. Real Networks’ software has a well known history of sending user-related information back to Real’s
server, which is clearly stated in their End-User License Agreement (EULA). Although Real Networks does
not reveal the details about what kind of information their software is collecting, it was widely reported that
Real Jukebox from Real Networks used to send its user’s music preferences back to Real Networks’ home
servers. For instance, when a user is listening to a CD, Real Jukebox could send information about the CD
and the user’s unique identifier to Real Networks.

6.3 Thwarting Privacy Violations

Using a process very similar to the one described earlier (see scenario 2 in section 2) we were able to
discover privacy violations in KaZaa and RealOne Player and gather detailed information about them. Using
this information we were able to design security policies (which are very similar to the policy shown in
Figure 3 of Section 2) to thwart these privacy violafions. Details about this process are omitted due to space
limitations.

7 Evalaation

This section describes an empirical study of the performance of sandBoX86. We evaluate cost over three
sefs of experiments. We measure low-level costs by collecting per-API call microbenchmarks, and profile
application sandboxing using macrobenchmarks collected from user programs. Finally, we study the re-
source usage of our tool by analyzing memory consumption. These tests reveal that the performance and
resource costs associated with sandBoX86 are nominal. Moreover, they further illustrate that these costs are
less than those incurred by the majority of extant sandboxing tools, and did not demonstrably change the
user experience in interactive applications (e.g., the sandboxing did not visibly change application response
time). For example, the macrobenchmarks show a slow down of less than 3.2% for all three test applications.

We conducted all experiments on a 2.8GHz Intel Pentium-4 based machine with IGB of memory, run-
ning Windows 2000 Professional. We use the high-performance timer (with the precision of 0.28-sec/cycle)
to obtain the experiment data. The SSH Secure Shell (version 3.2.0), KaZaa (version 2.5.2) and RealPlay
(version 2.0) were profiled in our experiments. The SSH Secure Shell application was tested by connecting
to a random host selected from a host pool. This test further simulates a SSH workload by connecting to
the remote host, executing a fixed series of UNIX commands (e.g., cd, €ar, gzip andgrep), and dis-
connecting. The KaZaa application searched and downloaded the KaZaa installation binary (about 7MB),
after which it exited. Finally, the RealPlay played a music file (about 3 minutes long) and terminated. Each
experiment was conducted three times and results were averaged.

7.1 Microbenchmarks

Microbenchmarks measure the per-API call overhead. Our base mefrics are obtained by measuring the
time of each API call as uninstrumented (original in Table 1) and sandboxed. The difference between the
two metrics is the measured fotal overhead of our sandbox infrastructure. We note that it is necessary to
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Bind RealPlay 78.78 5.87 1.68 16.34 | 23.89
KaZaa 66.99 5.92 1.57 16.17 | 23.66

SSH 69.84 6.15 2.23 6.70 | 15.08

cIosesocket RealPlay 64.81 6.29 1.54 8.66 16.49
KaZaa 57.93 6.31 1.47 7.93 1571

SSH 77.24 6.15 3.49 31.71 | 41.35

connect RealPlay 126.41 6.29 4.75 20.11 | 31.15
KaZaa 81.76 6.12 3.10 22770 | 31.92

SSH 31669.40 8.38 82.41 39.39 | 130.17

getHostbyname RealPlay 7314.34 8.38 84.65 22.07 | 115.10
KaZaa 34144.00 8.66 117.85 29.10 | 155.61

celect RealPlay 4736480.00° 4.90 0° 0° 4.90
' KaZaa 107134.30° 4.20 0° 0° | 420

SSH 29.49 6.99 1.79 60.38 | 69.16

send RealPlay 13.13 6.70 1.68 100.85 | 109.23
KaZaa 38.13 5.95 1.56 4525 1 52.76

SSH 620.75 6.98 3.91 9.50 | 20.39

socKe€ RealPlay 286.53 7.26 4.84 9.08 | 21.18
KaZaa 78.05 6.04 1.66 872 | 1642

[ WwsARsyncSeIect | SSH | 8.89 || 5.81 | 144 | 852 | 1577 |
WSEReCY SSH 10.48 5.88 1.46 12.67 | 20.01
KaZaa 40014.94 5.90 1.52 1425 | 21.67
| wsERecvFrom | KaZaa | 11.56 || 5.94 | 150 | 2394 | 31.38 |

“Due to space limitation, we only show a subset of the data. Trivial API calls such as nfoHI, NEonI, etc are omitted here.
»The cost Bere inclades the fime spent waiting for /O to complete, therefore is not an accurate reflection of the CPU overhead.
“In this case, the policy does not enforce or log the select call. Therefore there is no overhead.

construct finer-grained metrics to capture the impact of application specific behavior. For example, policy
enforcement is naturally applicafion dependent. Additionally, because logging records the arguments of
each API call, its cost could differ greatly from application to application (and in some cases, within the
same application). For these reasons, we broke down the total overhead into three cost categories: monitor
overhead, enforcement overhead and logging overhead. The results are shown in Table 1.

7.2 Memory Usage

Note that in all tests, the seIect call appears to be abnormally expensive. This is because the measured
select calls are blocking, and much of the measured time was actually spent waiting for the T/O to be
ready, i.e., the program had yielded the processor. The actual CPU time for a seIect call should be a tiny
fraction of the cost shown in the table. The measured cost of the WSARecv calls in the KaZaa application
is also high for the same reason. Similarly, getHostbyname shows high execution cost in all three test
cases also due to the blocking nature of the call.

The monitoring costs are small and nearly identical in all tests. This is not surprising because monitor-
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Figure 9: API Call Patterns For Each Application.

ing is implemented by a largely fixed matching operation. The measured enforcement overhead is highly
dependent on the policy and hence exhibits variation between tests. Note that geEHostbyname calls have
relatively high enforcement cost. This is because the regulating policy requires expensive book-keeping. In
particular, enforcement requires the hashing of multiple IP addresses [38]. Logging overhead also differs
among applications since each application may use the same API slightly differently. However our results
show that this variance is largely insignificant. In one exception, the logging overhead for send calls on
KaZaa is smaller that those of other applications. This is because of the variable costs associated with storing
the varying “send buffer” sizes, i.e., cost grows linearly with the size of the recorded buffer.

Not every application uses every API call and certainly not in the same way. Figure 9 illustrates the
high level of diversity in API use. For example, only KaZaa used the accept and Iisten calls. Both
RealPlay and KaZaa made a large number of blocking seIlect calls. While at the same time SSH Secure
Shell frequently utilized the non-blocking select call WSZAsyncSeIect. As we shall see in following
section, such call distributions provide insight into the total overhead incurred by an application.

7.3 Macrobenchmarks

While microbenchmarks gives a clear picture on the per-API overhead, it is the performance of the appli-
cations which end users care most about. For this reason, we measure the fotal overhead incurred by each
applicafion using macrobenchmarks. Shown in Table 7, these metrics reflect the aggregate cost by measur-
ing the applications’ total run time. Out of the three applications tested, SSH incurred the highest overhead.
For monitoring only, SSH took an additional 12.17 milliseconds of overhead; the total overhead for SSH
is 27.54 milliseconds, or about 3.2% comparing to the original cost. In comparison, both RealOne Player
and KaZaa only incurred a small amount of overhead (about 0.05% and 0.80%, respectively). In summary,
the experiments indicate that interactive or computation bound applications will see little performance im-
pact. Network bound applications may see some performance degradation, but even those costs are within
reasonable limits (e.g., 3.2%).
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7.4 Memory Usage

In addifion to the run-time overhead, we also measured the memory overhead, shown in Table 8. Since we
use the same code-base for all three test cases, the text-memory overhead is the same for all applications.
The data-memory overhead varies slightly among applications because of the various data structures we
maintain are policy specific. Some data structures are shared among applications for efficiency reasons. For
example, we maintain a cache of all function pointers to the libraries we are infercepting. This cache is
shared among all monitored applications.

8 Conclusion

We presented the design and implementation of a sandboxing infrastracture for Windows. We also described
a dynamic-slicing algorithm for analyzing data dependencies in event traces. Our dynamic-slicing algorithm
can be used to discover privacy violations. Finally, we performed an evaluation of our techniques on two
applications: KaZaa and RealOne Player.

There are several directions for future work. A sandboxing system is only as good as the security policy
it enforces. We want to investigate techniques, such as model checking, for analyzing security policies.
We also want to develop a more powerful query interface fo our dynamic-slicing tool. We believe that this
will improve the task of discovering privacy violations. We also plan to undertake a thorough study of
weaknesses and vulnerabilities of sandboxing systems for Windows.
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