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Abstract

‘We present measurements and analysis of the Linux ext3 file sys-
tem. We develop and apply a novel analysis method known as
semantic block-level analysis (SBA), which examines the low-
level block stream that a file system generates in order to under-
stand its behavior under a series of controlled workloads. We use
SBA to evaluate the strengths and weaknesses of the ext3 design
and implementation; in comparison to standard benchmarking
approaches, SBA enables us to understand why the file system
behaves in a certain way, knowledge that is usually only avail-
able to the file system developers. We then develop and apply
a new complementary technique known as semantic trace play-
back (STP) to evaluate the effect of different possible changes
to the file system. In contrast to the cumbersome and time-
consuming process of changing the file system implementation
directly, STP enables us to rapidly gauge the potential benefits
of a given file system modification without the heavy investment
in implementation effort. Using STP, we propose and assess var-
ious modifications to the base ext3 implementation.

1 Introduction

Modermn file systems are journaling file systems. By writ-
ing information about pending updates to a write-ahead
log [13] before committing the updates to disk, jour-
naling enables fast file system recovery after a crash at
some cost in performance. Although the basic techniques
have existed for many years (e.g., in Cedar [14] and
Episode [10]), journaling has increased in popularity and
importance in recent years; due to ever-increasing disk ca-
pacities, scan-based recovery (e.g., via fsck [18]) is pro-
hibitively slow on modern drives and RAID volumes.

The Linux ext3 file system [33] represents a modern in-
stance of journaling technology. Ext3 was designed to be
compatible with its non-journaling cousin, ext2. Specif-
ically, one can mount an extant ext2 partition as an ext3
file system, and hence easily upgrade to journaling with-
out the difficulties often associated with migrating to a
new file system. For this reason, although there are many
other journaling file systems for Linux, including Reis-
erFS [24], IBM’s JFS [4], and SGI's XFS [30], we believe
ext3 is and will remain an important (if not the most im-
portant) Linux file system.

However, little is known about the behavior of ext3.
For example, ext3 has three different journaling modes;
which of these is best for various workloads? Further,
ext3 has many configuration parameters, including such
basic choices as the size of the journal; how should such

parameters be configured? Finally, ext3 makes many in-
ternal design decisions, such as how it stores information
in the journal; were appropriate decisions made? All such
factors have a strong impact on ext3 behavior.

We believe it is time to perform a detailed benchmark-
driven analysis of ext3. Most previous benchmarks ana-
lyze file systems from above; by writing user-level pro-
grams and measuring the time taken for various file sys-
tem operations, one can elicit some salient aspects of file
system performance [6, 9, 21, 28]. However, it is diffi-
cult to discover the underlying reasons for the observed
performance with this approach.

1.1 Semantic Block-level Analysis

In this paper we employ a novel benchmarking method-
ology called semantic block-level analysis (SBA) to trace
and analyze ext3. With SBA, we induce controlled work-
load patterns from above the file system, but focus our
analysis not only on the time taken for said operations,
but also on the resulting stream of read and write requests
below the file system. This analysis is semantic because
we reverse-engineer information about block type (e.g.,
whether a block request is to the journal, to an inode, etc.),
and it is block-level as it interposes upon the block inter-
face to storage. By analyzing the low-level block stream
in a semantically meaningful way, one can understand
why the file system behaves as it does.

Our analysis is divided into structural, temporal, and
spatial components. In studying the structure of ext3, we
find that ordered and writeback journaling modes induce
only a small overhead as compared to ext2 for most types
of workloads; however, for highly random, synchronous
workloads, the costs of journaling are noticeable. We also
find that the data journaling mode of ext3, which writes
both data and metadata to the journal (sequentially) and
then to the normal file system structures, has promising
performance under certain random-write workloads, rem-
iniscent of log-structured file systems [27]; given enough
idle time or free bandwidth [16] to write data to its fixed-
place location, application-perceived write performance
tracks the sequential rate of the disk system.

In studying the temporal aspects of ext3, we find that

journal size and various commit timers play an impor-

tant role in determining when data moves from memory
to disk. Journal size is especially important for data jour-
naling mode, which rapidly consumes resources by jour-
naling both data and metadata; for the other ext3 journal-



ing modes, the size of the journal is less important. The
commit timers also play an important role in determin-
ing when data goes to disk; in particular, timers that typ-
ically force metadata to disk (by default, every 5 seconds
in Linux) now also force data to disk for both ordered and
data journaling modes; in both of those modes, the writing
of data to disk is mandated by metadata updates. Finally,
we find that the compound transaction mechanism of ext3
ties together the performance of all processes that write to
disk; if just a single process writes data synchronously, the
perceived performance of other asynchronous processes
decreases dramatically.

In exploring the spatial aspects of ext3, we find that
placing the journal on a separate partition or device per-
forms somewhat better than the default of placing it within
the file system; however, ext3 artificially limits these ben-
efits by preventing overlap of journal and fixed-place up-
dates. We also find that for highly synchronous work-
loads, update performance to files that are far from the
journal perform noticeably more slowly than files in the
immediate proximity of the journal.

1.2 Semantic Trace Playback

Analysis hints at how the file system could be improved,
but does not reveal whether the change is worth imple-
menting. Traditionally, for each potential improvement
to the file system, one must implement the change and
measure performance under various workloads; if the
change gives little improvement, the implementation ef-
fort is wasted. In this paper, we introduce and apply a
complementary technique to SBA called semantic trace
playback (STP). STP enables us to rapidly suggest and
evaluate file system modifications without a large imple-
mentation or simulation effort. We show how STP can be
used effectively as well as discuss its limitations.

We then use STP to evaluate a number of possible mod-
ifications of ext3. Specifically, we show how an adaptive
journal mode selector tailors the file system mode to the
workload at hand, achieving better performance than any
single mode can. We also show how a differential jour-
naling approach improves the performance of data jour-
naling mode by reducing the amount of I/O traffic to the
journal. We then demonstrate that an untangled transac-
tional grouping mechanism preserves the in-memory per-
formance of asynchronous processes in spite of the pres-
ence of a synchronous I/O stream. Finally, we illustrate
how improved journal location reduces worst-case perfor-
mance for synchronous workloads.

1.3 Contributions and Outline
The main contributions of this paper are:

e A new methodology for understanding in detail the
behavior of a file system (§3). Semantic block anal-
ysis is a simple and powerful approach; we apply it

here to ext3 but note that it can be readily be applied
to other file systems.

o A detailed analysis of an important file system, ext3
(§4). Linux ext3 is the default file system under Red-
Hat, and understanding how it behaves is important
developers, administrators, and application writers.

o A new methodology for rapidly gauging the benefits
of file system modifications without a heavy imple-
mentation effort (§5). Semantic trace playback en-
ables rapid prototyping of file system modifications.

e An evaluation of different design and implementa-
tion alternatives for ext3 (§6). We demonstrate the
benefits of adaptive mode selection, differential con-
tent journaling, untangled transaction grouping, and
improved journal placement and parallelism.

After we present our method, results, and analysis of
different design alternatives, we discuss related work (§7)
and conclude (§8).

2 Background

In this section, we present an overview of the Linux ext3
file system [34, 35]. Linux ext3 is a journaling file system,
built as an extension to the ext2 file system. In ext3, data
and metadata are eventually placed into the standard ext2
structures (which we often refer to as fixed or in-place lo-
cation). In this organization (which is loosely based on
the Berkeley FFS [17]), the disk is split into a number of
block groups; within each block group are bitmaps, inode
blocks, data blocks, and some per-group metadata. The
ext3 journal (or log) is commonly stored as a file within
the file system, although it can be stored on a separate de-
vice or partition. Figure 1 depicts the ext3 on-disk layout.

In most journaling file systems, the journal is used as
a log to record some extra information about pending file
system updates. By forcing journal updates to disk before
updating complex file system structures, this write-ahead
logging technique [13] enables simple and efficient crash
recovery; a simple scan of the journal and a redo of any
incomplete operations bring the file system to a consistent
state. During normal operation, the journal is treated as
a circular buffer; once the necessary information has been
propagated to its fixed location in the ext2 structures, jour-
nal space can be reclaimed.

2.1 Modes of Operation

Linux ext3 is a bit unusual in that it includes not one
but three flavors of journaling: writeback mode, ordered
mode, and data journaling mode; Figure 2 illustrates the
differences between these modes. Although the choice of
mode is made at mount time, the mode can be changed by
unmounting and then remounting the file system.
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Figure 1: Ext3 On-Disk Layout. The picture shows the layout
of an ext3 file system. The disk address space is broken down

into a series of block groups (akin to FFS cylinder groups), each’

of which has bitmaps to track allocations and regions for inodes
and data blocks. The ext3 journal is depicted here as a file within
the first block group of the file system; it contains a superblock,
various descriptor blocks to describe its contents, and commit
blocks to denote the ends of transactions.
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Figure 2: Ext3 Journaling Modes. The diagram depicts the
three different journaling modes of ext3: writeback, ordered, and
data. In the diagram, time flows downward. Boxes represent
updates to the file system, e.g., “Journal (Inode)” implies the
write of an inode to the journal; the other destination for writes
is labeled “Fixed”, which is a write 1o the fixed in-place ext2
structures. An arrow labeled with a “Sync” implies that the two
blocks are written out in immediate succession synchronously,
hence guaranteeing the first completes before the second. A
curved arrow indicates ordering but not immediate succession;
hence, the second write will happen at some later time. Finally,
for writeback mode, the dashed box around the “Fixed (Data)”
block indicates that it may happen at any time in the sequence.
In this example, we consider a data block write and its inode as
the updates that need to be propagated to the file system; the di-
agrams show how the data flow is different for each of the ext3
Journaling modes.

In writeback maode, only the file system metadata is
journaled; data blocks are written directly to their fixed lo-
cation. This mode does not enforce any ordering between
the journal and fixed-location writes, and because of this,
writeback mode has the weakest consistency semantics of
the three modes. Although it guarantees consistent file
system metadata, it does not provide any guarantee as to
the consistency of the data blocks.

For example, assume a process appends a block to a
file; internally, the file system allocates a new pointer
within the inode I and a new data block at address D to
hold the data. In ext3 writeback mode, the file system is
free to write D at any time, but is quite careful in how it
updates I. Specifically, it will force a journal record to
disk containing I, followed by a commit block. Once the
commit block is written, ext3 knows it can safely recover
from a crash, and at some time later will write I to its fixed
location in the ext2 structures. However, if I makes it to
the log successfully, and a crash happens before D gets to

disk, upon recovery I will point to D but the contents of
D will not be correct.

As with writeback mode, under ordered journaling
mode, only the metadata writes are journaled; however,
data writes to their fixed location are ordered before the
journal writes of the metadata. In contrast to writeback
mode, this mode provides more sensible consistency se-
mantics, where both the data and the metadata are guar-
anteed to be consistent after recovery from a crash. In
continuing from our example above, D will be forced to
its fixed location in the ext2 structures before I is written
to the journal. Thus, even with an untimely crash, the file
system will recover in a reasonable manner.

In full data journaling mode, ext3 logs both metadata
and data to the journal. This decision implies that when
a process writes a data block, it will typically be written
out to disk rwice: once to the journal, and then later to
its fixed ext2 location. Data journaling mode provides the
same strong consistency guarantees as ordered journaling
mode; however, it has different performance characteris-
tics, in some cases worse, and surprisingly, in some cases,
better. We explore this topic further (§4).

2.2 Transactions

The transaction model of ext3 is fairly straightforward.
Instead of considering each file system update as a sepa-
rate transaction, ext3 groups many updates into a single
compound transaction that is periodically committed to
disk. This approach is relatively simple to implement [34]
and may have better performance than more fine-grained
transactions: the compound transaction naturally batches
updates to structures that are frequently updated in a short
period of time (e.g., a free space bitmap or an inode of
a file that is constantly being extended). We explore the
impact of transaction grouping in §4.2.3.

2.3 Journal Structure

Ext3 uses additional metadata structures to track the list of
journaled blocks. The journal superblock tracks summary
information for the journal, such as the block size and
head and tail pointers. A journal descriptor block marks
the beginning of a transaction and describes the subse-
quent journaled blocks, including their final fixed on-disk
location. In data journaling mode, the descriptor block is
followed by the data and metadata blocks; in ordered and
writeback mode, the descriptor block is followed by the
new metadata blocks. In all modes, ext3 logs full blocks,
as opposed to differences from old versions; thus, even a
single bit change in a bitmap results in the entire bitmap
block being logged. Depending upon the size of the trans-
action, multiple descriptor blocks each followed by the
corresponding data/metadata blocks may be logged. Fi-
nally, a journal commit block is written to the journal at
the end of the transaction; once the commit block is writ-
ten, the journaled data can be recovered without loss.



2.4 Checkpointing

The process of writing journaled metadata and data to
their fixed-locations is known as checkpointing. Check-
pointing is triggered when various thresholds are crossed,
e.g., when file system buffer space is low, when there is lit-
tle free space left in the journal, or when a timer expires.
We discuss checkpointing in more detail in §4.2.1.

2.5 Crash Recovery

Crash recovery is straightforward in ext3 (as it is in many
journaling file systems); a basic form of redo logging is
used. Because the new updates (whether to data or just
metadata) are written to the log, the process of restoring
the in-place file systemn structures is easy. Upon startup,
the file system scans the log for committed complete
transactions; incomplete transactions are discarded. Each
update in a completed transaction is simply replayed into
the fixed-place ext2 structures.

3 Semantic Block-Level Analysis

In this section, we describe semantic block-level analysis
(SBA), which enables meaningful low-level tracing of file
system behavior. With this benchmarking approach, we
are able to not only measure file system performance, but
also gain insight as to why the system performs as it does.

Our methodology is simple. We place a pseudo-device
driver in the kernel, associating it with an underlying disk,
and mount the file system of interest (e.g., ext3) on the
pseudo device; we refer to this driver as the SBA driver.
We then run controlled microbenchmarks to generate disk
traffic. As the SBA driver passes the traffic to and from the
disk, it also efficiently tracks each request and response
by storing a small record in a fixed-sized circular buffer.
Note that by tracking the ordering of responses as well,
the SBA driver can infer the order in which the requests
were scheduled at lower levels of the system.

The main difference between the SBA approach and
more standard block-level tracing is that our driver is
aware of file system structures and can infer more relevant
information; in this way, we draw on previous work that
applies such semantic knowledge to building smarter stor-
age arrays [29]. Specifically, we assume the SBA driver
has been customized to the file system under test, and un-
derstands its basic on-disk format. We do not assume that
the driver (or indeed, the analyst) knows policies or con-
figuration parameters of the file system; indeed, SBA can
be used to derive those aspects of the file system.

To understand the actions of the file systemn from this
lower-level perspective, semantic analysis must be per-
formed not only on the location of disk block traffic, but
on their contents as well. For example, one must inter-
pret the contents of the journal descriptor block to know
which data blocks are journaled; likewise, one must inter-
pret the contents of the journal to infer the type of the jour-

nal block (e.g., descriptor or commit block). As a result, it
is more straightforward and efficient to semantically inter-
pret the block-level trace on-line; performing this analysis
offline would require exporting the contents of the blocks
as well, greatly inflating the size of trace. Thus, the SBA
driver is embedded with enough information to interpret
the placement and contents of journal blocks, metadata,
and data blocks. Care is taken to ensure that this on-line
analysis is performed efficiently.

4 Analyzing ext3

In this section, we perform a detailed analysis of ext3 us-
ing our SBA framework. Our analysis is divided into three
categories: structural, temporal, and spatial. In the struc-
tural analysis, we examine the different modes of ext3. In
the temporal analysis, we observe how ext3 controls the
timing of the data flow, from memory to the journal (i.e.,
logging) and from memory to the final fixed location (i.e.,
checkpointing). Finally, in our spatial analysis, we study
the sensitivity of ext3 to the location of the journal.

Note that the goal of our analysis is not to characterize
the performance of ext3 on a wide range of workloads or
even on realistic workloads; our goal is to construct syn-
thetic workloads that uncover the internal structure and
decisions made by the file system. Our experiments focus
heavily on write-based workloads; reads to files are virtu-
ally identical across the ext3 modes as well as ext2, and,
therefore, do not expose as many interesting issues.

All measurements are taken on a machine running
Linux 2.4.18 with a 600 MHz Pentium processor and
1 GB of main memory. The ext3 file system is created
on a single IBM 9L.ZX disk, which is separate from the
root disk. Where appropriate, each data point reports the
average of 30 trials; in all cases, variance is quite low.

4.1 Structural Analysis
In this section we analyze the basic behavior of the three
ext3 journaling modes: writeback, ordered, and full data
journaling. In particular, we evaluate the overhead of ext3
relative to ext2 as well as the relative performance of the
three modes across widely differing workloads. Thus,
we consider two extreme workloads: one which performs
only sequential writes and another that performs only ran-
dom writes. Because we want to evaluate behavior of up-
dating the file systern data structures on disk, we ensure
that all workloads flush their data to disk with £sync.
Sequential Writes: The workload in our first experiment
consists of creating a single file, writing to it sequentially,
and then performing an £sync to flush its data to disk;
across experiments, we vary the size of the file. Figure 3
shows the performance and our semantic analysis for the
three ext3 modes and for ext2.

The topmost graph plots the achieved bandwidth for the
different modes. From this graph, we make three observa-




Bandwidth

Data ———
- ' Ordered -~
£ 20 Writeback ——
- Ext2
£
3
z
=]
&
o 5
0
0 20 40 60 80 100
Amount of data written {MB)
Amount of journal writes
140 o dDa'S p——
— rdered ———
@ 120 Writeback ——
=2 100 Exi2 e
hi e
g =80 I
_‘_é’ 60 //__,,.,»/“‘
g % e
20 P
0 el
0 20 40 60 80 100
Amount of data written (MB)
Amount of fixed-location writes
g 140 o dDatg R
rdered -
% 120 Writetéax%( ——
B 100 - e
'E 80 ."..,..e!w et s
-1 e
3 60 ..e...--"' /
o I
'P:, 40 M,..»""' J
PO ot
3 20 -
v 0 L™ /
0 20 40 80 80 100

Amount of data written (MB)

Figure 3: Journaling Mode Performance under Sequential
Workloads. The achieved bandwidth to create a file of size x
is plotted, where x is varied along the x-axis. The benchmark
creates the file of size x by writing it out sequentially and then
calling £sync to flush the data to disk. The journal size is set
to 50 MB for these experiments.

tions. First, ext2 performs slightly better than the highest
performing ext3 mode — there is a small but noticeable
cost to journaling for sequential streams. Second, both
ordered mode and writeback mode perform well, achiev-
ing nearly the full sequential write bandwidth of ext2. Fi-
nally, full data journaling performs fine with small files,
but performance then degrades and fluctuates in a declin-
ing sawtooth waveform as the size of the file increases.

We now apply a simple semantic analysis of the under-
lying block stream to understand why the different modes
behave as observed. The next two graphs in Figure 3 plot
the amount of data written to the journal and the amount
of data written to the fixed ext2 data structures, respec-
tively, for the same set of experiments.

The middle graph shows that, in data journaling mode,
the total amount of data written to the journal is high,
proportional to the amount of data written by the appli-
cation; this is as expected, since both data and metadata
are journaled. In the other two modes, only metadata is
journaled, and therefore the total amount of traffic to the
journal is quite small. Note that in ext2 there is no journal
and, therefore, no journal traffic.

The bottom graph shows that for ext2, writeback, and
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Figure 4: Journaling Mode Performance under Random
Workloads. These graphs plot the performance of random
writes to a file under the various journaling modes. Along the x-
axis, the amount of random I/0 is increased, and the y-axis plots
achieved throughput (as measured after all data has been flushed
to disk). In both sets of experiments, the benchmark process per-
Jorms 4 KB random updates of a file; what varies across graphs
is the amount of outstanding /0 allowed before an Fsync s is-
sued. In the first graph, an fsync is issued after 256 such ran-
dom writes (i.e., a group commit), and in the second, a fsync
is issued after each 4 KB write.

ordered mode the amount of traffic written to the file’s
fixed location is equal to the amount of data written by
the application. However, in data journaling mode, we
observe a stair-stepped pattern in the amount of data writ-
ten to the file’s fixed location. For example, with a file
size of 20 MB, even though the process has called £sync
to force the data to disk, no data is written to the fixed
location by the time the application terminates; because
all data is logged, the expected consistency semantics are
still preserved. However, even though it is not necessary
for consistency, when the application writes more data,
checkpointing does occur at regular intervals; this extra
traffic leads to the sawtooth bandwidth measured in the
first graph. In this particular experiment with a journal
size of 50 MB, a checkpoint occurs when 25 MB of data is
written; we explore the relationship between checkpoints
and journal size more carefully in §4.2.1.

Random Writes: Our next workload issues 4 KB writes
to random locations in a single file, varying the total
amount of /O across experiments. The results are plot-
ted in Figure 4. We examine the impact of synchroniza-
tion granularity by issuing an £sync once for every 256
writes (i.e., a group commit) in the first graph and once
per write (i.e., a single-write comrmit) in the second.

The main observation from the first graph is that data
Jjournaling mode performs dramatically better than the
other modes for random writes. With data journaling
mode, all data is written first to the log, and thus even



random writes become logically sequential and achieve
sequential bandwidth. As the journal is filled, checkpoint-
ing causes extra disk traffic, which reduces bandwidth; in
this particular experiment, the checkpointing occurs near
35 MB (this relationship is explored more in §4.2.1).

The second graph illustrates that synchronous 4 KB
writes do not perform well, even in data journaling mode;
forcing each small 4 KB write to the log, although in logi-
cal sequence, incurs a disk rotation for each write and thus
does not achieve sequential performance. We also can ob-
serve that the costs of journaling (in ordered and write-
back modes) are most severe here, as compared to ext2;
the extra seeks between the journal and the fixed-location
writes reduce performance by roughly one-third.
Summary: From our exploration of ext3 journaling
modes, for most workloads, ext3 ordered and writeback
mode do not induce significant overheads as compared to
ext2. However, for certain highly synchronous, random
write workloads, the performance impact is noticeable.

The behavior of data journaling mode is more complex.
Applications using data journaling mode can commit data
to disk sequentially and achieve high performance, re-
gardless of their access pattern, as even random writes
are logged in LFS-like fashion [27]. Note that “random”
writes arise for many reasons, including workloads that
are metadata intensive or are database-like and update in-
dividual or groups of records in large tables. The main
obstacle to good performance in data journaling mode
is controlling the checkpoint which moves data from the
journal to its final fixed location. If the checkpoint oc-
curs in the foreground when application traffic is com-
peting for disk bandwidth, application-perceived perfor-
mance drops considerably; however, if checkpointing traf-
fic can be moved to the background (e.g., if workloads are
bursty), or scheduled for “free” [16], data journaling per-
formance will be superior to the other modes.

4.2 Temporal Analysis

We have seen that the flow of traffic to the journal and to
the fixed ext2 structures can have a strong impact on over-
all performance, particularly for data journaling mode.
Hence, we now analyze the timing of data flow through
the system. A number of factors influence the timing, in-
cluding journal size, system timers, and the ext3 transac-
tion grouping machinery.

4.2.1 Journal Size

We begin by examining the effect of journal size on ext3
behavior, specifically how journal size affects when trans-
actions are committed to the log and when data is check-
pointed to its ext2 fixed-place location.

Log Commits: We wish to understand how journal size
affects the timing of updates to the log. We focus on data
journaling mode; this mode is the most sensitive to the
size of the journal, since both metadata and data are sent
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Figure 5: Effect of Journal Size on Log Updates. The top-
most figure plots the bandwidth of data journaling mode under
different-sized file writes. Four separate lines are plotted, which
represent four different journal sizes. The second graph shows
the amount of log traffic generated for each of the experiments
(only two of the four journal sizes are shown for clarity).

to the log. To exercise log commits as a function of jour-
nal size, we construct a workload in which data is not ex-
plicitly forced to disk by the application (i.e., the process
does not call fsync). We write to a single file to min-
imize the amount of metadata overhead. By varying the
amount of data written in the workload, we can observe
the amount of data needed to trigger a log commit.

Figure 5 shows the resulting bandwidth and the amount
of journal traffic for data journaling mode, as a function
of file size and journal size. The first graph shows that
when the amount of data written by the application (to be
precise, the number of dirty uncommitted buffers, which
includes both data and metadata) reaches i——th the size of
the journal, bandwidth drops considerably. In fact, in the
first performance regime, the observed bandwidth is equal
to in-memory speeds. Our semantic analysis, shown in
the second graph, reveals that a log commit does occur
at %—th the journal size, forcing metadata and data to the
journal. Inspection of the Linux ext3 code confirms this
threshold. Note that the threshold is the same for ordered
and writeback modes (not shown); however, it is triggered
much less frequently as only metadata is logged.

Fixed-Location Checkpoints: We turn our attention to
checkpointing, the process of writing data to its fixed lo-
cation within the ext2 structures. We again focus on data
journaling mode since it is the most sensitive to journal
size. To understand when checkpointing occurs, we con-
struct workloads that periodically force data to the jour-
nal (i.e., call £sync) and we observe when data is subse-
quently written to its fixed location.

Figure 6 shows our SBA results as a function of file
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Figure 6: Effect of Journal Size on Checkpointing. The figures
plot the result of a sequential write of varying size, with different
Fsync intervals shown per line. Specifically, a certain amount
of data (as indicated by the x-axis value) is written out, with
a fsync issued after every 1, 15, or 20 MB of writes. The
first graph uses SBA to plot the amount of fixed-location traffic,
and the second uses SBA to plot the amount of checkpoint data
written.

size and synchronization interval for a single journal size
of 40 MB. The first graph shows the amount of data writ-
ten to its fixed ext2 location at the end of each experi-
ment. We can see that the point at which checkpointing
occurs varies across the three sync intervals; for example,
with a 1 MB sync interval (i.e., when data 1s forced to
disk after every 1 MB worth of writes), checkpoints oc-
cur after approximately 30 MB has been committed to the
log, whereas with a 20 MB sync interval, checkpoints oc-
cur after 20 MB. To illustrate what triggers a checkpoint,
in the second graph, we plot the amount of journal free
space immediately preceding the checkpoint. By corre-
lating the two graphs, we see that checkpointing occurs
when the amount of free space is between %-th and 1-th
of the journal size. The precise fraction depends upon the
synchronization interval, where smaller sync amounts al-
low checkpointing to be postponed until there is less free
space in the journal.! We have also confirmed this same
relationship for other journal sizes (not shown).
Summary: Journal size plays an important role in deter-
mining when updates are forced to disk, both to the log
and to their final fixed location; a larger journal allows

"The exact amount of free space that triggers a checkpoint is not
straightforward to derive for two reasons. First, ext3 reserves some
amount of journal space for overhead such as descriptor and commit
blocks. Second, ext3 reserves space in the journal for the currently com-
mitting transaction (i.e., the synchronization interval). Although we have
derived the free space function more precisely, we do not feel this very
detailed information is particularly enlightening; therefore, we simply
say that checkpointing occurs when free space is somewhere between
%-Lh and %—th of the journal size.

applications to write more data before seeing the effects
of log commits and checkpoints, thus potentially transfer-
ring the work of checkpointing to the background. Journal
size is especially important for data journaling mode, as
this mode increases memory pressure and quickly forces
data to the log and then to its fixed location; both types of
traffic noticeably reduce perceived application bandwidth.
For the other modes (i.e., ordered and writeback), journal
size has less impact; as long as the journal is large enough
to handle any metadata-intensive portions of a workload,
the size of the journal will not impact performance.

4.2.2 Commit Intervals

In this section, we explore the impact of commit interval
timers on ext3 file system behavior. In Linux 2.4, there are
three timer values of interest: the metadata commit timer
and the data commit timer, both managed by the kupdate
daemon, and the commit timer managed by the kjournal
daemon. The system-wide kupdate daemon is responsible
for flushing dirty buffers to disk; the kjournal daemon is
specialized for ext3 and is responsible for committing ext3
transactions. We now measure how these timers affect the
timing of disk I/O, focusing first on writes to the journal
and then checkpoints to the fixed locations.

Log Writes: We construct a workload and environment
such that commits to the journal are triggered by a spe-
cific timer. Thus, we set the journal size to be sufficiently
large, do not issue a £sync from the application, and set
the other timers to a large value (i.e., 60 s). The actual
workload is very simple: a process writes 1 MB of data
sequentially to a file and we observe when the first write
appears in the journal. Figure 7 plots our results for data

journaling mode, varying one of the timers along the x-

axis, and plotting the time that the first log write occurs
along the y-axis. Results for the other two modes are quite
similar and hence not shown.

The first and last graphs show that the kupdate daemon
metadata commit timer and the kjournal daemon commit
timer directly control the timing of log writes: the data
points along y = z indicate that the log write occurred
precisely when the timer expired. Thus, traffic is sent to
the log at the minimum time of those two timers. The sec-
ond graph shows that the kupdate daemon data timer does
not influence the timing of log writes: the data points are
not correlated with the x-axis. As we will see below, this
timer influences when data is written to its fixed location.
Checkpoint Writes: We examine how the system timers
impact the timing of checkpoint writes to the fixed loca-
tions using the same workload as above. We focus on the
data journaling; writeback and ordered checkpoint timing
are identical and therefore not shown.

We now examine data journaling mode. Here, we vary
the kupdate data timer while setting the other timers to
5 seconds. Figure 8 shows how the kupdated data timer
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Figure 7: Commit Timers. We present semantic analyses of the
impact of the various commit timers. In each graph, the value
of one timer is varied across the x-axis, and the time of the first
write to the journal is recorded along the y-axis. When measur-
ing the impact of a particular timer, we set the other timers to 60
seconds and the journal size to 50 MB so that they do not affect
the measurements.

impacts when data is written to its fixed location. First,
as also seen in the previous experiment, the log is updated
after the 5 second timers expire. Then, the checkpoint
write occurs later by the amount specified by the kupdated
data timer, at a 5 second granularity; further experiments
(not shown here) reveal that this granularity is controlled
by the kupdated metadata timer.

Summary: The strategy for ext2 is to flush metadata fre-
quently (e.g., every 5 seconds) while delaying data writes
for a longer time (e.g., every 30 seconds). Flushing meta-
data frequently has the advantage that the file system can
approach FFS-like consistency without a severe perfor-
mance penalty; delaying data writes has the advantage
that files that are deleted quickly do not tax the disk.

Mapping this strategy to ext3 leads to default timer val-
ues of 5 seconds for the kupdate metadata timer, 5 sec-
onds for the kjournal timer, and 30 seconds for the kup-
date data timer; however, it does not lead to the same tim-
ing of data and metadata traffic as ext2. Ordered and data
journaling modes force data to disk either before or at the
time of metadata writes. Thus, both data and metadata are
flushed to disk frequently. Note that this timing behavior
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Figure 8: Checkpoint Timers. The figure plots the relationship
between the time that data is first written to the log and then
checkpointed as dependent on the value of the kupdated data
timer. The scatter plot shows the results of multiple (30) runs.
The process that is running writes 1 MB of data (no fsync);
data journaling mode is used, with other timers set to 5 seconds
and a journal size of 50 MB.

is the largest potential performance differentiator between
ordered and writeback modes. Interestingly, this frequent
flushing has a potential advantage; by forcing data to disk
in a more timely manner, large disk queues can be avoided
and overall performance improved [20]. The disadvan-
tage of early flush, however, is that temporary files may
be written to disk before subsequent deletion, increasing
the overall load on the I/O system.

4.2.3 Transaction Grouping

We now investigate the ext3 transaction grouping machin-
ery. Ext3 groups individual file system updates into a
single large transaction; all file system updates add their
changes to that global transaction, which is eventually
committed to disk. Committing the entire transaction as a
group has known performance benefits [14], but can also
introduce complexities.

To quantify the effect of placing independent transac-
tions into the same group, we construct a workload con-
taining two diverse classes of traffic: an asynchronous
foreground process in competition with a background pro-
cess. Specifically, we consider a foreground process that
writes out a 50 MB file without calling £ sync and a back-
ground process that repeatedly writes a 4 KB block to a
random location, optionally calls £sync, and then sleeps
for some period of time (i.e., the “sync interval”). We fo-
cus on data journaling mode, but the effect holds across
all three ext3 modes (not shown).

Because the foreground process is asynchronous, it
should be able to achieve in-memory performance on
writes (assuming no thresholds are triggered); however,
as we will see, with the presence of a synchronous back-
ground process, the performance of the asynchronous pro-
cess drops to disk speeds.

In Figure 9 we show the impact of varying the mean
“sync interval” of the background process on the perfor-
mance of the foreground process. The topmost graph
plots the bandwidth achieved by the foreground asyn-
chronous process, in two different scenarios. In the first,
the background process issues writes periodically but does
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Figure 9: Grouping Synchronous and Asynchronous Writes.
In this experiment, an asynchronous foreground process writes
a sequential file of size 50 MB. A synchronous background pro-
cess writes out 4 KB, optionally calls fsync, sleeps for the
“sync interval”, and repeats. Along the x-axis, we increase the
sync interval. In the top graph, the bandwidth achieved by the
asynchronous process is plotted in two scenarios: with the back-
ground process running but not calling fsync after each write,
and with a fsync after each write. In the bottom graph, the
amount of data written to disk during both sets of experiments is
shown.

not call £sync after each write; hence bandwidth of the
foreground process is uniformly high and matches in-
memory speeds. In the second, the background process
calls £sync with each write, with a varying sync inter-
val. From this line in the graph, we can observe that when
the sync interval of the background process is small, it
issues many f£sync calls and forces all data in the com-
pound transaction to disk; the performance of the fore-
ground process drops to disk speeds. As the sync in-
terval increases, the asynchronous process is more likely
to complete before the background process calls fsync,
and thus the average performance of the foreground pro-
cess improves. This explanation is confirmed by the sec-
ond graph, which reports the SBA analysis of journal traf-
fic. As expected, the more frequently the background pro-
cess calls £sync, the more traffic is sent to the journal.

Summary: Linux ext3 uses a single compound transac-
tion to commit updates to disk. Although this strategy is
more straightforward to implement within the file system,
it has the downside of mixing all types of I/O together.
Although the experiment above focused on data journal-
ing mode, the result holds for the default ordered mode
as well. Group transactions tie the performance of one
process to another: the perceived performance of one pro-
cess thus depends on the behavior of the “worst” (most
random, synchronous) process in the system.
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Figure 10: Journal Within the File System. In this experiment
for ordered mode, the journal is placed in the (default) location
at the beginning of the partition. 50 MB files are created across
the file system. A file is chosen, as indicated by the number along
the x-axis, and the workload issues 4 KB synchronous writes to
that file. In the topmost graph, the y-axis plots achieved band-
width. The bottom graph shows the logical seek distance for the
experiment, calculated from the SBA trace.

4.3 Spatial Analysis

Finally, we study the spatial aspects of ext3. Specifi-
cally, we study how the placement of the journal, whether
within the file system as a file or on a separate device,
affects overall performance.

Within the File System: The default configuration of
ext3 creates the journal as a regular file near the begin-
ning of the partition. In this experiment, we show how
this typical placement can affect the performance of the
different modes. We construct a workload that stresses the
relative placement of the journal: a 4 GB partition is filled
with 50 MB files and the benchmark process issues ran-
dom, synchronous 4 KB writes to a chosen file. We vary
which file is chosen along the x-axis, and plot achieved
bandwidth on the y-axis, as shown in Figure 10.

The first graph shows that, for ordered mode, band-
width drops by nearly 30% when the file is located far
from the journal. The second graph shows that this per-
formance drop is due to an increase in seek time. In both
ordered and writeback modes, a synchronous update to a
file causes a write to the file and then a write to the journal;
these coupled writes are far from one another and hence
incur a high seek cost.

As also shown in the figure, data journaling mode is not
sensitive to the separation between a file and the journal,
because updates are sent to the log; only later (as the jour-
nal is filled or a timer expires) is the data moved to its fixed
ext2 location. Thus, the write to the log and the fixed lo-
cation are decoupled, and performance remains constant.
Outside the File System: Given that ext3 performance is
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Figure 11: Limited Parallelism. The figure plots the number of
outstanding writes to the fixed-location and journal disks. In this
experiment, we run five processes, each of which issues 16 KB
random synchronous writes. The file system has a 50 MB journal
size and is running in ordered mode, and the journal is config-
ured to run on a separate disk.

sensitive to journal location, we explore this issue more
broadly, comparing four different configurations: when
the journal is within the file system, is on the same disk in
a close-by partition, is on the same disk but in a far-away
partition, or is on a separate device entirely. We only re-
port results for ordered mode, since it is the most sensitive.
We consider a workload similar to the one used above:
the process synchronously writes a large number of ran-
dom 4 KB blocks. With this workload, placing the journal
on a different device unsurprisingly gives the best perfor-
mance (0.25 MB/s). Locating the journal within the same
file system performs almost identically to locating it on
a different partition close to the file system (0.17 MB/s),
since both setups incur roughly the same seek costs. Fi-
nally, placing journal on a distant partition performs the
worst (0.12 MB/s) because the seek distance increases.

Given that performance with a device dedicated to
journaling did not double performance, we decided to
investigate this configuration in more detail. In Fig-
ure 11, we plot the disk queue size over time for both
the fixed-location and journaling disks (note the workload
is slightly different than above for ease of presentation;
however, the results are general across many workloads).

From the figure, we observe that writes to the journal
disk and fixed-place disk do not overlap. Inspection of the
code reveals the cause: ext3 ordered mode strictly (and
unnecessarily) sequences updates to the fixed-place re-
gion and the journal. More specifically, ext3 issues the
data writes to the fixed location and waits for comple-
tion, then issues the journal writes to the journal and again
waits for completion, and finally issues the final com-
mit block and waits for completion. The first wait is not
needed for correctness (it was probably included to im-
prove scheduling order to a single disk), and in this case
limits the potential performance benefit. Hence, although
using the extra disk improves performance (by reducing
the amount of seeking within each disk), the benefit is
limited by the current implementation.

Finally, we have found that data journaling mode is sen-
sitive to whether the journal is placed within the file sys-
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tern or not. This performance difference occurs even when
no checkpointing occurs, that is, when only the journal is
being written and there are no extraneous seeks. Writ-
ing to the journal when it is stored as a regular file in the
file system incurs extra overhead than writing to a raw
log outside of the file system; specifically, ext3 must per-
form extra work to calculate the next physical block of
the log file and does not deal as efficiently with indirect
blocks. This extra work leads to a small but noticeable
performance difference for sequential workloads: one can
achieve over 14 MB/s for a raw journal, but only about
12 MB/s when the journal is a regular file.

Summary: We find that the location of the journal within
the file system, for ordered and writeback modes under
synchronous workloads, can make a noticeable (roughly
30%) performance difference in the worst case. We also
find that using a different device for the journal improves
performance, although the current implementation limits
potential benefits. Finally, we discover that in some cases
(i.e., data journaling mode), using a separate partition on
the same disk is preferred over a journaling file within
the file system. Whether these performance benefits over-
come the simple convenience of using the default config-
uration is likely domain dependent.

5 Semantic Trace Playback

In this section we describe semantic trace playback (STP).
STP can be used to rapidly evaluate certain kinds of new
file systemn designs, both without a heavy implementation
investment and without a detailed file system simulator.

We now describe how STP functions. STP is built as
a user-level process; it takes as input a trace (described
further below), parses it, and issues /O requests to the
disk using the raw disk interface. Multiple threads are
employed to allow for concurrency.

Ideally, STP would function by only taking a block-
level trace as input (generated by the SBA driver), and in-
deed this is sufficient for some types of file system modifi-
cations. For example, it is straightforward to model differ-
ent layout schemes by simply mapping blocks to different
on-disk locations.

However, it was our desire to enable more powerful em-
ulations with STP. For example, one issue we explore in
the next section is the effect of using byte differences in
the journal, instead of storing entire blocks therein. One
complication that arises is that by changing the contents
of the journal, the timing of block I/O changes; the thresh-
olds that initiate I/O are triggered at a different time.

To handle emulations that alter the timing of disk 1/O,
more information is needed than is readily available in the
low-level block trace. Specifically, STP needs to observe
two high-level activities. First, STP needs to observe
any file-systemn level operations that create dirty buffers
in memory. The reason for this requirement is found in




§4.2.1; when the number of uncommitted buffers reaches
a threshold (in ext3, % of the journal size), a commit is en-
acted. Similarly, when one of the interval timers expires,
these blocks may have to be flushed to disk.

Second, STP needs to observe application-level calls
to £sync; without doing so, STP cannot understand
whether an /O operation in the SBA trace is there due to
a £sync call or due to normal file system behavior (e.g.,
thresholds being crossed, timers going off, etc.). Without
such differentiation, STP cannot emulate behaviors that
are timing sensitive.

Both of these requirements are met by giving a file-
system level trace as input to STP, in addition to the SBA-
generated block-level trace. We currently use library-level
interpositioning to trace the application of interest.

We can now qualitatively compare STP to two other
standard approaches to file system evolution. In the first
approach, when one has an idea for improving a file sys-
tem, one simply implements the idea within the file sys-
tem and measures the performance of the real system.
This approach is attractive because it gives a reliable an-
swer as to whether the idea was a real improvement, as-
suming that the workload applied is relevant. However, it
is time consuming, particularly if the modification to the
file system is non-trivial.

In the second approach, one builds an accurate simula-
tion of the file system, and evaluates a new idea within the
domain of the file system before migrating it to the real
system. This approach is attractive because one can often
avoid some of the details of building a real implementa-
tion and thus more quickly understand whether the idea is
a good one. However, it requires a detailed and accurate
simulator, the construction and maintenance of which is
certainly a challenging endeavor.

STP avoids the difficulties of both of these approaches
by using the low-level traces as the “truth” about how the
file system behaves, and then modifying file system output
(i.e., the block stream) based on its simple internal models
of file systemn behavior; these models are based on our
empirical analysis found in §4.

Despite its advantages over traditional implementation
and simulation, STP is limited in some important ways.
For example, STP is best suited for evaluating design al-
ternatives under simpler benchmarks; if the workload ex-
hibits complex virtual memory behavior whose interac-
tions with the file system are not modeled, the results may
not be meaningful. Also, STP is limited to evaluating file
system changes that are not too radical; the basic opera-
tion of the file system should remain intact. Finally, STP
does not provide a means to evaluate how to implement
a given change; rather, it should be used to understand
whether a certain modification improves performance.
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Figure 12: Differential Journaling. This figure plots the emu-
lated performance (using STP) of a 50 MB sequential write in
data journaling mode with a single fsync at the end. Along
the x-axis, we vary the percentage of each written block that has
changed; the rightmost point shows the behavior of standard
ext3 (which is equivalent to differential journaling with 100%
of every block changing). Each line varies the size of the jour-
nal used for the experiment. The SBA trace was collected from
underneath a 50 MB journal; other journal sizes are emulated.

6 Evolving ext3

In this section, we apply STP to evaluate modifications
to ext3. From our analysis, we decided to focus on four
aspects of ext3: journaling mode, journal contents, trans-
action grouping strategies, and journal location. Where
possible, we also change ext3 directly; by doing so, we
demonstrate the validity of the STP approach (the figure
captions contain details on the validated modifications).

6.1 Journaling Mode

The journaling mode in ext3 is set at mount time and re-
mains fixed until the next mount. We consider two modes,
data journaling and ordered, each of which is good for
certain types of workload. Random writes perform better
in data journaling mode as the random writes are written
sequentially into the journal (assuming no checkpointing
occurs during the writes). Large sequential writes per-
form better in ordered mode as it avoids the extra traffic
generated by data journaling mode.

We implement a new adaptive journaling mode using
STP that chooses the journaling mode for each transaction
according to the nature of writes that are in the transaction.
If a transaction is sequential, then it is journaled in ordered
mode. Otherwise, data journaling mode is used. Clearly, a
more sophisticated mode detector is likely required; here
we simply demonstrate its potential utility.

To demonstrate the potential performance benefits, we
run a portion of a trace from HP Labs [25] and compare
ordered mode, data journaling mode, and our adaptive ap-
proach. In ordered mode, the trace takes 83.39 seconds
to complete; in data journaling mode, 86.67 seconds; fi-
nally, in adaptive mode, the workload completes in only
51.75 seconds. Because the trace has both sequential and
random write phases, no single mode will achieve the best
possible performance.
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Figure 13: Untangled Transaction Grouping. The experiment
in this figure is identical to that described in Figure 9, with one
addition: a line showing the performance of the asynchronous
sequential process with untangled transaction grouping as emu-
lated via STP.

6.2 Journal Contents

Ext3 uses physical logging and writes new blocks in their
entirety to the log, as discussed earlier. However, if whole
blocks are journaled irrespective of how many bytes have
changed in the block, journal space fills quickly, increas-
ing both commit and checkpoint frequency.

We thus investigate differential journaling, where the
file system writes block differences to the journal instead
of new blocks in their entirety. This approach can poten-
tially reduce disk traffic noticeably, if dirty blocks are not
substantially different from their previous versions. We
focus on data journaling mode, as it generates by far the
most journal traffic; differential journaling is less useful
for the other modes.

Figure 12 plots the performance of differential jour-
naling under a synthetic workload that varies the percent
of each block that changes (and hence must be logged
to disk). As we can see from the figure, as the percent
of block change increases, performance of data journal-
ing decreases; not only is more data logged, but vari-
ous thresholds (in this case, the checkpoint threshold) are
reached earlier, thus forcing data to disk. Note that the
standard non-differential approach is equivalent in perfor-
mance to differential mode with a 100% byte difference.

To better understand whether differential journaling
matters for real workloads, we also analyzed SBA traces
underneath two database workloads modeled on TPC-
B [31] and TPC-C [32]. The former is a simple
application-level implementation of a debit-credit bench-
mark, and the latter a realistic implementation of order-
entry built on top of Postgres. Our analysis reveals that
with data journaling mode, the amount of data written
to the journal would be reduced by a factor of 200 for
TPC-B and a factor of 6 under TPC-C. In contrast, for
ordered and writeback modes, the difference is minimal
(less than 1%); in these modes, only metadata is written to
the log, and applying differential journaling to said meta-
data blocks makes little difference in total I/O volume.
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Figure 14: Improved Journal Placement. This figure presents
the same experiment as described in Figure 10, except that the
Journal is placed in the middle of the file system using STP. We
also plot the performance of the real system running on a journal
that we have coaxed into the middle of the disk by allocating
the journal after the (ex12) file system was half full, and then
enabling journaling.
6.3 Transaction Grouping
Linux ext3 groups all updates into system-wide com-
pound transactions and commits them to disk periodically.
However, as we have shown in §4.2.3, if just a single up-
date stream is synchronous, it can have a dramatic im-
pact on the performance of other asynchronous streans,
by transforming in-memory updates into disk-bound ones.
We now show the performance of a file system that
untangles these traffic streams, only forcing the process
that issues the fsync to commit its data to disk. Fig-
ure 13 plots the performance of an asynchronous se-
quential stream in the presence of a random synchronous
stream. Once again, we vary the interval of updates from
the synchronous process, and from the graph, we can see
that segregated transaction grouping is effective; the asyn-
chronous I/O stream is unaffected by synchronous traffic.

6.4 Journal Location

Finally, we evaluate the benefit of more careful journal
placement within an ext3 partition. Figure 14 plots the
performance of a synchronous workload when the journal
file has been moved to the center of the volume.

From the figure, we see that the worst-case behavior
that can occur in ordered and writeback modes is avoided;
by placing the journal in the middle of the file system
instead of at the beginning, the longest seeks across the
entire volume are avoided during synchronous workloads
(i.e., workloads that frequently seek between the journal
and the ext2 structures). For data journaling mode, we
have found that the journal should be placed on the out-
ermost tracks (not shown); as writes to the journal and
fixed-location structures are decoupled, placing the jour-
nal at the beginning of the volume takes advantage of disk
zoning to improve performance.

We also remedy the problem discovered in §4.3 where
pre-comumit journal writes to a separate disk are not over-
lapped with data updates in ordered journaling mode. Fig-
ure 15 plots the performance when such writes are issued
concurrently. The performance when the journal is placed
upon a separate device is improved as a result.
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Figure 15: Unlimiting Parallelism. The same experiment is
shown as in Figure 11; however, in this run, we use STP 1o issue
the pre-commit journal writes and data writes concurrently. We
plot the STP emulated performance, and also made this change
to ext3 directly, obtaining the same resultant performance.

6.5 Summary

‘We have presented and evaluated numerous modifications
to ext3. Of all of our modifications, we believe the trans-
action grouping mechanism within ext3 should most se-
riously be reevaluated; an untangled approach enables
asynchronous processes to obtain in-memory bandwidth,
despite the presence of other synchronous I/O streams in
the system. We have also seen that adaptive journaling
mode can lead to substantial benefits, outperforming any
one single static mode for workloads that exhibit both ran-
dom and sequential streams. Journal contents can also be
important for performance, particularly for data journal-
ing mode; in that case, it may be prudent to consider dif-
ferential journaling techniques for recording disk updates.
Finally, we evaluated the merits of more careful journal
placement within the file system. We find that placing
the journal in the middle of the file system reduces worst-
case seek costs under ordered and writeback modes, and
that removing an extraneous wait improves data/metadata
write overlap.

7 Related Work

Journaling Studies: Journaling file systems have been
studied in detail before, most notably by Seltzer et
al. [28]. In that work, the authors compare two variants
of a journaling FFS to soft updates [12], a different tech-
nique for managing metadata consistency for file systems.
The authors use both microbenchmarks and applications
to compare the two types of system. Although the authors
present no direct observation of low-level traffic streams,
they are clearly familiar enough with the systems (indeed,
they are the implementors!) to make “semantic” infer-
ences to explain file system behavior. For example, in
explaining why journaling performance drops in a delete
benchmark, the authors state the drop in performance is
because the file system is “forced to read the first indirect
block in order to reclaim the disk blocks it references”
([28], Section 8.1). A tool such as SBA makes such ex-
pert observations more readily available to all.

Another recent study compares a large range of Linux
file systems, including ext2, ext3, ReiserFS, XFS, and
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JFS [7]. In that work, many benchmarks are run to deter-
mine which file systems are fastest, but little explanation
1s given as to why any one particular file system does well.
for a given workload.

File System Benchmarks: There have been numerous
previous file system microbenchmarks [6, 9, 19, 21]. Uni-
formly, all run some kind of synthetic workload and mea-
sure overall throughput or runtime in order to draw con-
clusions about the file system.

Perhaps the most related to our work is Chen and Patter-
son’s self-scaling benchmark [9]. In this work, the bench-
marking framework conducts a search over the space of
possible workload parameters (e.g., sequentiality, request
size, total workload size, and concurrency), and hones in
on interesting parts of the workload space. Interestingly,
some conclusions about file system behavior can be drawn
from the resultant output, including (for example) how
large the file cache is. Our approach differs in that we
perform a detailed and very specific study of how a file
system is implemented, which we believe is only possi-
ble by examining how the file system interacts with the
disk. However, our approach is not nearly as automated;
instead, we carefully craft benchmarks to bring out certain
file system behaviors in a controlled manner.

Other popular file system benchmarks include I0-

zone [21], Bonnie [6], Imbench [19], the modified An-
drew benchmark [22], and PostMark [15]. Some of these
(I0Zone, Bonnie, Imbench) perform synthetic read/write
tests to determine throughput; others (Andrew, Postmark)
are intended to model “realistic” application workloads.
In contrast to SBA, none are intended to yield low-level
insights about the underlying file system.
File System Tracing: Many previous studies have traced
file system activity. For example, Zhou et al. [37], Ouster-
hout et al. [23], Baker et al. [3], and Roselli ef al. [26] all
record various file system operations to later deduce file-
level access patterns. Vogels [36] performs a similar study
but inside the NT file system driver framework, where
more information is available (e.g., mapped I/O is not
missed, as it is in most other studies). Finally, a recent ex-
ample of a tracing infrastructure is found in TraceFS [2],
which traces file systems at the VES layer; while many in-
teresting pieces of information can be garnered from this
vantage point, TraceFS does not enable the type of mean-
ingful low-level tracing that SBA provides.

Perhaps more relevantly, Blaze [5] and later Ellard ez
al. [11] show how low-level packet tracing can be useful
in an NFS environment. By recording network-level pro-
tocol activity, network file system behavior can be care-
fully analyzed. This type of packet analysis is analogous
to SBA as they both are positioned at a relatively low-level
in the system, and thus must reconstruct certain higher-
level behaviors to obtain a full view of file system activity.
Distributed System Tracing And Analysis: Finally, in



many ways, our work is similar to recent efforts in debug-
ging the structure of large-scale distributed systems [1, 8].
JFor example, Aguilera er al. take low-level packet traces
and use those to infer the structure of distributed applica-
tions [1]. Our approach is similar, but informed with more
knowledge of the application (i.e., SBA requires a built-in
understanding of file system structures).

8 Conclusions

“Much fruit of sense beneath is rarely found.”
Alexander Pope

In this paper, we have presented a new methodology
for file system benchmarking that uses block-level tracing
to provide insight into the design and implementation of a
modern journaling file system. Semantic block-level anal-
ysis (SBA) is useful for gamnering detailed insights into
file system behavior.

By using SBA, we have uncovered various detailed be-
haviors of ext3 that would be difficult to discover using
more conventional approaches. Note that while we have
focused on ext3, the SBA approach is quite general, sim-
ply requiring an understanding of file system structures;
such information is available for virtually all modern file
systems, including NTFS.

To move beyond the confines of analysis, we have also
developed and presented semantic trace playback. STP
enables rapid evaluation of new ideas for file system im-
provement without heavy investment in implementation
or simulation. Using STP, we have demonstrated the po-
tential benefits of numerous modifications to the current
ext3 implementation.

As systems grow in complexity, there is a need for tech-
niques and approaches that enable system architects to un-
derstand in detail how such systems operate. For file sys-
tems, the block stream is an excellent source of informa-
tion, when annotated with semantic information. SBA and
STP exploit this block stream to enable system designers
to perform a level of analysis beyond existing tools and
approaches.
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