B EDREE DO @ OEE E0

B @ n

B E R EEBEGEGESEEEREEEEHEDRERESDGBB

s ae

oD R ESEDEDEERNEEBREaB

A Framework for Malicious Workload
Generation

Joel Sommers

Vinod Yegneswaran
Paul Barford

Technical Report #1508

June 2004

OF

|

UNIVERSITY

A Framework for Malicious Workload Generation

Joel Sommers, Vinod Yegneswaran and Paul Barford

Computer Sciences Department
University of Wisconsin, Madison

tors

{jsommers,vinod,pb} @cs.wisc.edu

Abstract—Malicious traffic from self-propagating worms and denial-of-
service attacks constantly threatens the everyday operation of Internet sys-
tems. Defending networks from these threats demands appropriate tools
to conduct comprehensive vulnerability assessments of networked systems.
This paper describes MACE, a unique environment for recreating a wide
range of malicious packet traffic in laboratory testbeds. MACE defines a
model for flexible composition of malicious traffic that enables both known
attacks (such as the Welchia worm) and new attack variants to be created.
We implement this model in an extensible library for attack traffic specifi-
cation and generation. To demonstrate the capability of MACE, we provide
an analysis of stress tests conducted on a popular firewall and two popular
network intrusion detection systems. Our results expose potential weak-
nesses of these systems and reveal that modern firewalls and network in-
trusion detection systems could be easily overwhelmed by simple attacks
launched from a small number of hosts.

I. INTRODUCTION

Network outages due to self-propagating worms and denial-
of-service attacks have been widely reported over the past few
years. Despite efforts by the research and operational commu-
nities to mitigate these threats, many Internet systems remain
vulnerable. One reason for this insecurity is that systems and
protocols are often not designed with deliberate consideration
of threat models. An example that has received recent attention
is the TCP initial sequence number protocol vulnerability that
has the potential to inflict chaos by disrupting BGP sessions in
the backbone of the Internet [4]. Another reason is that sys-
tem behavior under heavy load is often unpredictable. Although
scaling properties of commercial software systems and routing
hardware are quite impressive, they are typically not developed
with malicious traffic conditions in mind. Ogielsky et al. re-
port how software bugs combined with load introduced by the
unprecedented spatial diversity of Code-Red worm traffic and
elevated BGP activity led to widespread cascading outages [10].

The potency of Internet worms and viruses has contin-
ued to evolve since Code-Red. Examples include high-speed
worms such as SQL-Slammer and more recently multi-modal
worms/viruses such as Agobot which package exploits for
many known vulnerabilities. We have also witnessed the Witty
worm which exploits vulnerable network stacks in firewalls.
Witty targets all destination ports equally, hence it cannot be
neutralized by simple techniques like port blocking at network
gateways. These attacks underscore the need for scalable intru-
sion detection systems to protect large networks by performing
signature matching at Internet gateways. They also galvanize
the need for better tools for evaluating the resiliency routers,
middleboxes and intrusion detection systems.

This work has two primary objectives. The first is to cre-
ate a performance benchmarking tool that enables assessment of
quality of service degradation (the effect of maltraffic on good
traffic) and resilience of middleboxes and network intrusion de-

tection systems (NIDS) over a range of malicious traffic volume.
The state of the art for benchmarking firewalls and NIDS is still
considered nascent, and there are no universally accepted stan-
dards. Current best practice is to gather and use malware itself.
This approach is limited in its ability to scale traffic volume
and compose as yet unseen attack traffic. A flexible research-
oriented toolkit for producing maltraffic is therefore a critical
component for the development and standardization of bench-
marks for NIDS and firewalls. Our second objective is to recre-
ate attack traffic scenarios in a laboratory setting to test proto-
col suites, software, and hardware systems. This capability will
enable us to move toward quantitative measurement and assess-
ment of claims regarding the degree to which individual network
devices contribute to large-scale correlated failures.

This paper describes the design and implementation of a
flexible, extensible toolkit that called the Malicious trAffic
Composition Environment (MACE). MACE provides the ba-
sic building blocks for recreating a large set of known attacks.
MACE satisfies the following requirements:

1. Generate a large, diverse set of attacks,
2. Generate and control benign background traffic,
3. Compose attacks in a high-level language.

The MACE model decomposes attacks into three compo-
nents: exploit, propagation and obfuscation. To our knowledge,
MACE is the first tool to adopt an extensible approach to sys-
tematic attack synthesis through a modular attack composition
framework. MACE enables resiliency of systems to resource
exploits and traffic mix to be evaluated. MACE is distinguished
from related efforts like Thor which focus on obfuscation meth-
ods and individual session morphing [5]. Results from such
work can be easily folded into MACE.

We discuss the MACE framework in greater detail and pro-
vide example attack traffic configurations in Section III. Sec-
tion IV demonstrates MACE by providing a case study of a
popular firewall (a Cisco PIX) and two NIDS (Snort and Bro)
under varying traffic mixes. Our results reveal that modern fire-
walls and NIDS could be easily overwhelmed by simple attacks
launched from a small number of hosts. In most instances, the
resilience of the devices to particular attacks varies with respect
to the degree of connection state maintained by each device. The
case study also illustrates the capabilities of MACE as a perfor-
mance benchmarking tool.

II. RELATED WORK

Internet traffic generation for measuring application and net-
work device performance has been well-studied. Harpoon
reproduces network traffic in an application-oblivious man-
ner [15]. Numerous application-aware traffic generators like

D> UKAIE proauce workloaas [o SIress-Iest Web Servers [Y]. 1nese
tools are complementary to MACE and can be used as plug-ins
that generate legitimate (benign) background traffic.

Taxonomies of malicious traffic inform the design and devel-
opment of the MACE attack types and propagation models. One
such taxonomy of DDoS attack characteristics is provided in
[13]. A similar taxonomy of Internets worms based upon target
discovery, carriers, activations, payloads and attackers is pro-
posed in [16]. Our study is also related to the work by Lippman
et al. which provides a dataset for evaluation of NIDS [12].

Our laboratory measurement of the performance of a firewall
middlebox is complementary to the work of Allman, who mea-
sured the performance of an operational middlebox infrastruc-
ture in [7].

Two other analogs to our work are Mucus [14] and Nessus [3].
Mucus is a tool for black-box testing of NIDS systems. As a
benchmarking tool for NIDS systems, Mucus’ evaluation cri-
teria are alert correctness and alert quality. Nessus is a tool
for penetration testing of network hosts. MACE differs consid-
erably from both of these tools in its objectives. The MACE
framework for malicious traffic generation accommodates its
use both for penetration testing or as a NIDS benchmarking
tool. Our goals of performance benchmarking NIDS and mid-
dleboxes do not require a complete database or accurate replica-
tion of specific attacks. While it is unnecessary, for example, to
faithfully replicate all variants of the Beagle worm, it is desirable
to have representatives from all classes of attacks. Finally, since
the MACE model isolates obfuscation and propagation from ex-
ploit signatures, it can generate attacks that are not present in
current valnerability databases.

I11. MACE FRAMEWORK

We begin by defining the abstract model for MACE. We then
describe implementation details of the MACE toolkit with ex-
amples of attack instances and show how they can be composed.

A. Abstract Model Definition

The conceptual model for MACE is illustrated in Figure 1.
It provides flexibility in specifying the base characteristics of
malicious traffic which we define as the following:
« Exploit Model — set of vulnerabilities that are part of the
attack sequence.
« Obfuscation Model — morphs in the header or payload to
enable the exploit to elude NIDS. These could either be at the
network layer or at the application layer.
» Propagation Model — order in which victims are chosen to
be attacked.
« Background Traffic Model — legitimate traffic flow in the net-
work.

B. Model Realization

The modular MACE library consists of the exploit, obfusca-
tion, and propagation components defined by the model, as well
as a number of functions to support interpretation, execution,
and exception handling of attack profiles. Our objective is not
to provide a complete attack database, but rather to support a set
of basic building blocks that can be used to create both known
and custom attack vectors.

malicious traffic composition environment

exploit obluscation ropagation

welchia spooled source horlzontal swaep
aexamples blaster wi rawriting coordinaled scan
synflood fragmentation random

background traffic
{Harpoon, SURGE, etc.)

test objectives test traffic

Fig. 1. The MACE architecture. Test objectives inform the selection and com-
position of exploit, obfuscation, and propagation components into a series
of attack vectors. Existing tools such as Harpoon produce the desired benign
background traffic.

MACE is currently implemented in the Python programming
language. The dynamicism of a language like Python is impor-
tant for MACE as it enables sequences of exploits or obfusca-
tions to be fabricated on-the-fly. Python has libraries that sup-
port many application layer protocols, such as HTTP, NNTP,
and SMTP, allowing application-specific exploits to be easily
created. For evolving scalability requirements, we plan to mi-
grate key components of the library to C, extending the capabil-
ities of the Python interpreter much in the way ns-2 [6] extends
Tcl/Tk.

The building blocks of MACE include the following:
Payload Construction Elements - Payload elements in MACE
are defined as character arrays. In practice, these are often pay-
loads from various higher level protocols such as HTTP, Net-
BIOS/SMB or DCE RPC. The following example defines an
HTTP GET request for the file index.html.

[httprequest, ('method’ :’GET’, ’absolute_path’:’/index.html’)]

Header Construction Elements - Attack traffic often requires the
use of raw sockets to construct custom TCP, UDP and IP head-
ers. The header construction elements in MACE modify specific
attributes without exposing the entire header to the user. The fol-
lowing example illustrates the definition of a TCP SYN packet.
The source and destination IP addresses and ports are defined by
the propagation elements. Other unspecified fields are appropri-
ately filled with default or random values.

{rawtcp, (‘th_flags’:'TH_SYN’ }]

Obfuscation Elements - The obfuscation elements can be spec-
ified at the network layer or at the application layer. An ex-
ample of network layer obfuscation is IP fragmentation. Ex-
amples of application layer obfuscation include HTTP URL en-
coding techniques such as Bare-byte or Unicode encoding used
by worms such as Nimda [8]. The following example applies a
Unicode obfuscator to the example HTTP request given above:
{ httprequest, {’'method’:’GEI’,

’absolute_path’ :URLObfuscator.uencode{* /index.html’) }]
Propagation Elements - MACE supports different propagation
models via AddressPool objects. Each AddressPool is in-
stantiated with a list of CIDR prefixes and port ranges, along
with an indication of how to generate addresses from the given
pool. Address pools may be traversed randomly, horizontally
(sequentially across IP addresses, sequentially across ports),

vertically (sequenuially across ports, sequentially across v aa-
dresses), or by a more complex methodology definable by
the user. The following example illustrates an address pool
defined to perform a vertical sweep of the target IP address
10.42.1.1.

target_pool = AddressPool {AddressPool.Vertical, "10.42.1.1:1-65536')

C. Example Test Scenarios

We focus on four attack vectors:

o SYN flood: A standard denial-of-service attack. TCP SYN
packets are sent from the attacker but no more packets are sent.
o Welchia: A ping followed by a series of HTTP requests de-
signed to exploit a buffer overflow in the WebDAV module of
Microsoft’s IIS web server [1].

o Rose: An attack that exploits poorly implemented handling of
IP fragments. Two small packet fragments are sent, one with an
offset of 0 and one with a large offset. Some network stacks re-
serve memory for the fragment hole, so a series of Rose packets
can exhaust memory [11].

o Blaster: An attack that exploits a buffer overflow in Microsoft
Windows RPC service (epmapper) [2].

The four attack profiles are realized in the example MACE
code fragment shown in Figure 2. Attack profiles are defined
by their vulnerability exploit and propagation method. A full
exploit is a sequence of generator and validator steps, along
with parameters. A generator builds packet traffic using the pay-
load and header construction and obfuscation building blocks in
MACE. A validator collects and processes responses from the
attack target, verifying that the generated traffic evoked an ap-
propriate response. Each step in an attack vector is executed
as long as they are successful. An exploit step may simply be
“create a TCP packet with the SYN flag set” (line 1). Other
steps might be as complicated as “create an HTTP GET request
for the document /" and validate that the HTTP response con-
tained a 200 (success) code and that it was produced by a Mi-
crosoft web server” (lines 6-7). Some generator steps are not
followed by validation, e.g., the Rose attack where validation is
unnecessary (lines 12-15). Since generators and validators are
simply Python functions, it is easy to define new exploit steps.
Propagation models for the four attack profiles are defined by
the address pools in lines 23-25. Finally, attacks are sent using
the send.once or send_periodic functions (lines 27-28).
send.periodicisaconvenience function used to produce at-
tack traffic for a given duration (delaying a specified amount of
time between successive call to send..once).

IV. SECURITY SYSTEM PERFORMANCE EVALUATION

To demonstrate MACE'’s capability, we examine performance
characteristics of three standard network security systems: a
firewall middlebox and two network intrusion detection systems
running on commodity hardware.

A. Test Environment

The firewall we test is a Cisco PIX 515e. It contains three Fast
Ethernet interfaces, 64MB of RAM, a 433 MHz Intel Pentium
11, and is running version 6.2(2) of the PIX Firewall operating
system. It is a typical device deployed as the first line of defense

synflood = [[rawtcp, { ‘th_flags’ :TH_SYN} }) 1
2

bad_string = ’...’ & the buffer overflow string - not deflined here 3
welchia = [4
{ ping 1, 5

{ htiprequest, { ‘method’:'GET’ }, 6
httpvallidate, | ’Server’:’'Microsoft-118/5.07 1}, 7

[httpreqguest, { ‘method’:’SEARCH' }, 8
httpvalidate, | ‘code’:411, ’Server’:'Microseft~-I15/5.0"} 1}, 5

[httprequest, { ’'method’:’SEARCH’, ‘ahsoclute_path’:bad_string }] 1} 10

11

rosepayload = ‘\0’ * 32 § just a small fragment 12
rose = | 13
[rawudp, { ’'frag_offset’:0, ‘frag flag':IP_MF, 'payload’ :payload }). 14

| rawudp, { 'frag_offset’:B100, ‘payload’ :payload } | } # 64800 byte offset 15

16

bindreq = *...' % the DCE RPC bind request - not defined here 17
overflow = '..." f the buffer overflow exploit request - not defined here i9
blaster = | i3
{ dcerpcbind, | ‘bindreq’ :bindreq }, dcerpcbindack, { "bindreq’ :bindreq }], 20

{ deerpcreq, | ‘payload’:overflow }] } 21

22

src_pool = AddressPool (AddressPeol.Vertical, '10.42.0.0/16:1-65536) 23
dst,.pool = AddressPool (AddressPool.Random, '10.52.128.0/20:1024-65536") 24
http_pool = AddressPool (AddressPool.Horizontal, '10.52.128.0/20:80') 25
26

send_once {src_pool, dst_pool, roge) 27
send_periodic(src_pool, http_pool, welchia, duration=60, delay=0.001) 28

Fig. 2. A MACE code fragment, similar to what was used in our experiments.

for edge networks, implementing basic packet filtering and per-
forming network address translation (NAT). The network intru-
sion detection systems are Bro (version 0.8a79) and Snort (ver-
sion 2.1.1). Bro generally maintains significant connection state,
while Snort does not. Each NIDS runs on a separate worksta-
tion with a 2 GHz Intel Pentium 4 processor and 1 GB of RAM.
FreeBSD 5.1 is installed on each machine'. For each NIDS, we
use a default set of rules. Our Snort instance uses the default
snort.conf included with the software distribution and Bro
uses the mt policy.

The PIX and NIDS are configured in a testbed as shown in
Figure 3. The setup mimics an edge network connected to an
ISP, with legitimate background traffic and attacks focused on
a remote network. The PIX resides between the edge (“inter-
nal”) network and the ISP (“external”) network. The internal
network contains traffic generators for MACE and background
traffic, and the two NIDS. All network traffic received from or
sent to the PIX is duplicated on the links connected to the NIDS.
In the external network, we use a hardware propagation delay
emulator (Adtech SX-14) between two backbone-class routers
(Cisco 12000} to create a round-trip time of roughly 100 mil-
liseconds between the traffic generators and the target servers.
‘We use popular enterprise-scale switches (Cisco 6500) to aggre-
gate traffic at the endpoints.

On each host in the internal network, we create 2'? alias ad-
dresses and on the remote hosts we create 224 aliases. The PIX
performs network and port address translation between hosts on
the internal network and a pool of 224 addresses routable across
the external network. It is important to note that the PIX per-
forms an implicit packet filtering based on its NAT configura-
tion: it only performs NAT or port address translation (PAT) for
local addresses that are part of its configuration. Packets from
any other source address are dropped.

Using two levels of benign background traffic, we generate
attack traffic using a set of five exploits and six levels of of-
fered load. Two levels of background traffic, “low” and “high”,

10On each host we modify the kernel parameter debug.bpf.bufsiz from
4096 bytes to 524,288 bytes, as suggested in the Bro documentation. Snort
presumably can benefit from this change as well so we apply the change to each
NIDS host.

are generateq using Harpoon |12 ana are uneda o averages or
20 Mbps and 70 Mbps, respectively. Source and destination
addresses for legitimate traffic are chosen randomly from the
pool of 22 source addresses and the pool of 224 destination ad-
dresses. The six levels of attack load are generated by using
one to five hosts running MACE. For each exploit, the MACE
processes on a single host are configured to generate roughly 1
Mbps of traffic, regardless of background traffic level.

The exploits we use are (1) Welchia worm traffic, (2) SYN
flood denial-of-service attack, (3) a SYN flood with spoofed
source addresses, (4) the Rose fragment attack, and (5) a multi-
modal attack consisting of the previous four exploits plus Blaster
worm traffic. Each host running MACE uses a source address
pool of 212, as described above. For the SYN floods and Rose at-
tack, we horizontally traverse the source address space. For the
two worm exploits, we randomly (uniformly) sample the source
address space. All attack traffic is directed toward a single ad-
dress on the remote network.

B. Test Measurements

For the 52 distinct experiments, we measured CPU and mem-
ory utilization at all three systems every five seconds. We also
measured packet counts in and out of the PIX every five seconds
and the number of reported packet drops using SNMP, and took
packet traces on either side of the PIX. At the two NIDS hosts,
we verified and used the capabilities of each software package to
report received packet volume and the number of dropped pack-
ets. Packets are dropped by each system due to overflow of the
queue of incoming packets received by the packet filter (each
NIDS system uses the Berkeley Packet Filter and libpcap for
packet capture). For packet drops at each NIDS, we did not dis-
criminate between benign and malicious traffic. For the PIX, we
used the packet traces to measure benign packet drops. Each ex-
periment was run for six minutes, including a one minute warm-
up phase from which measurements are discarded.

C. Results

Figure 4 shows average CPU utilization and Figure 5 shows
packet loss measurements for each experiment. The two rows in
each figure correspond to low and high background traffic lev-
els, and the three columns display results for each device. The
first feature to notice in the plots is the diversity of responses
of each system to distinct MACE attack profiles. Except for a
few cases, there is also a noticeable, and sometimes very large,
divergence between the first two data points. These points cor-
respond to zero malicious traffic and a single MACE host. We
discuss detailed results for each device class (firewall and NIDS)
below.

C.1 Effects on the PIX firewall

For the PIX, the Rose attack has the least effect on perfor-
mance. When processing fragmented packets, the PIX keeps a
queue of (by default) 200 fragments in order to reassemble them
before forwarding them to the remote network. If the missing
fragments do not arrive in a configurable amount of time (the
default is 5 seconds), the fragments are dropped. For the Rose
attack, the fragment queue becomes full shortly after starting
MACE. When fragments arrive that cannot be queued, they are

aropped. Alnougn tnere 1S No Iragmented legiiimarte ramc 1n
our setup, these packets would very likely be dropped even with
an attack rate of just over 40 Rose packets per second. Also,
queues for each interface and the fragment reassembly queue
share a common buffer pool. Since there are fewer buffers avail-
able during a Rose attack, interface queues are more likely to fill,
causing additional packet drops?.

The non-spoofed SYN flood is the attack with the most im-
pact on the PIX. Since the PIX is performing NAT, it must main-
tain state for each connection. Even with a single MACE host,
all 64 MB of system memory is used after a short while because
of this state requirement’. While there is still some memory
available for buffering packets as they flow through the system,
this memory pool is now much smaller and consequently, the
PIX has diminished ability to absorb bursts of packets. This
situation does not occur with the spoofed SYN flood, since the
source addresses do not conform to the NAT configuration at the
PIX and are dropped. In our traces, we see persistent dropping
of legitimate packets during the non-spoofed SYN flood and
multimodal experiments (in both low and high background traf-
fic regimes) and aggregate traffic rates through the PIX clearly
show the well-known poor performance of TCP in the face of
such high packet loss: for the low background SYN flood ex-
periment using only one MACE host, the inbound (external to
internal) packet rate through the PIX for the spoofed SYN flood
is nearly twice that of the non-spoofed SYN flood. For experi-
ments with more than one MACE process, the results are more
dramatic. In summary, maintaining state and managing system
resources under a low rate non-spoofed SYN flood is difficult
even for a specialized device. Considering the rate at which re-
sources consumed by the embryonic connections are reclaimed
by the PIX, there is probably a “sweet spot” at which SYNs can
be sent at a low enough rate to cause problems for good traffic,
but are not at a high enough rate to easily detect.

The Welchia and Blaster worms, as with other worms, are
typically short flows, so even with a low attack rate the primary
effect on the PIX is an increased rate of connection initiations.
To the PIX (without any special packet filters installed) these
worms look like benign traffic and are treated the same as all
other legitimate packets. In our experiments, the PIX appears to
be sufficiently provisioned to handle the increased volume.

Finally, it is interesting to note that while all Rose and spoofed
SYN flood packets are dropped by the PIX, these attacks have
peculiar effects on CPU usage. Without detailed internal infor-
mation of the PIX, we can only surmise the path for handling IP
fragments is significantly faster than the process of matching a
source address to the NAT configuration at the PIX (though, as
pointed out above, there is a potential denial-of-service problem
related to fragment processing).

Summary: (1) Non-spoofed low-rate SYN floods are effective

2The PIX documentation notes that it is possible to set the fragment reassem-
bly maximum queue length to be equal to the total number of buffers available.
The documentation warns that such a configuration would enable fragment at-
tacks to be effective denial-of-service attacks.

3There are timeouts defined in the PIX to reclaim resources used by idle and
half-closed connections, and a feature called “floodguard” which essentially pri-
oritizes which resources to reclaim in order to deal with resource shortages. Our
experiments are shorter than either one of the default values for these timeouts
(1 hour for idle connections, 10 minutes for half-closed connections).

mace traffic———»

legitimate requests————®
~e—— [agitimate response.

Bro Snort

external network

Adtech SX~14
P

oca Ls_o_"_‘_s_l oc3
delay

emulator

. ' 100baseTX
internal network

Cisco

Cisco
6500

o
Cisco’
12000

remote hosts

traftic generators 12000

Fig. 3. Experimental Environment. Legitimate and malicious traffic originate from the internal network and are directed toward a host on the external network.
The PIX firewall separates the inside and outside networks and performs network address translation.

low background load

PIX Firewall Bro Snort
o o o
21 o wekni 2 o wekh e B e B B e
& SN foud _ A 2 Bt A P s 3
4+ SYN fiood (spooted) A + SYN ﬂuod (sHfooted) ° SY) ood (spuolod
o -4 o / o
Qo x fose g - x Ros o g Rofe
< & multimodal ~ 3 o mummo { g g
2 A’ & | 2
T o / W o W o
£8 - / ¢ 28 1 +| 28
3 R o/ 3/6 El o o 3
To J [~
g% / 3/ g% /+ +/ — g Q
g o7 3= g ke g 0 —°
& 1 3/ & 1 Z x x & o0
o g 5 e X e K e X a
o - © - o
1 T H ¥ T H T T T 1 T T T T T T T T
[1 2 4 5 [1 2 3 4 5 0 1 4 5
load load foad
high background load
PIX Firewali Bro Snort
o (=3 @
° - (= L w3, oo o - x x o1
=] A e 9=—" g 2 e et =1
A e /¢¢‘ #x
g o/o g ’// x—% g - /5
5 - I 5
£ L e @ e = =
ig b " ig R o—0
E — tf § 5 —— e O
§$ o / x §$ n gg B ‘/0
g | *-"—“"G’W"cﬁm g © Welhia g g Wokhia
o SYN o A SYNflood . A
& + SYNilood(spooted) & + SYN flood {spooted) & 7] + SYNl!uod(spoc!ed)
X Hosn X foso x
© multimodal @ multimodal 3 mummadal
o - o - o -

T T Y ¥ T T T T T T T T T T T T T T

foad

Fig. 4. CPU utilization measurements. Results for the PIX, Bro and Snort are in left, middle, and right columns, respectively. Top and bottom rows contain results
for low and high background traffic loads, respectively. Load levels along the x-axis correspond to number of MACE hosts used in each test. Each MACE host
generates roughly 1 Mbps of traffic regardless of attack or background traffic level.

low background load

PIX Firewall Bro Snort
R R A 2 4
o Wolchin o Wekhie 9 Wolchia
2 -4 A S¥Nflood g« & S¥Ntood g+ A SYNifood
+ $YNflood (spoolo) + YN fiood (spootec) + S flood (spoted)
51 x
8 6 mulimodal ° 89 © mulimodnt 81 & mutimodsl
£ ol P B D
¥ @’ / =7 7] J-S o ¥
o v——
ER o 8 A £8 o SR S S St
ol a—" Be Ro |
N o N
o — o o
2 A 2 4 a 2 -
o _‘4.4._.._..___. o - ‘4.——‘—‘——‘ég O o B © s Q) e) i § ———— O
T 13 T H]) 13 T T H T T T] H T T T
0 1 4 5 1} 1 2 3 4 5] 1 2 3 4 5
foad load foad
high background load
PIX Firewall Bro Snort
R A R A S
9 Wakhia o Wokhia 9 Wokhia
g -4 A SYNfood 2 . A SyNfood g4 a
@ :- SYN fiood (spooted) ° : SYN fiood {spooted) © : gYNﬂnod (spooted)
51 loga
33 4 o muimedai A/° " B - & mutimodal a a ag 4 6 mutimecal
2o / L3 2o J / Ba J
e ~ -9 - = ~ N a P <
Bg e gs - 8g — T T T
g8 o & & 3%
g A/o/ e A g
——.]
o e 4 o9 + o .
- e 07
O e @ @ e § e B o] 0 § e § T g s 5, it B, o 4 0"——9 ° °
T T T T H T H 3 T L T H T 3 T
4] 1 3 5 [1 2 3 4 5 0 1 2 3 4 5
Ioad toad load

Fig. 5. Packet loss measurements. Results for the PIX, Bro and Snort are in left, middle, and right columns, respectively. Top and bottom rows contain results for
low and high background traffic loads, respectively. Plots for the PIX show packet drops for benign traffic only, while plots for Bro and Snort show aggregate
packet drops. Load levels along the x-axis correspond to number of MACE hosts used in each test. Each MACE host generates roughly 1 Mbps of traffic
regardless of attack or background traffic level.

resource exploilts leaaing (o Signifcant service aegraaation, ana
(2) Obfuscations via packet fragmentation are effective resource
exploits against poorly configured systems.

C.2 Effects on Bro and Snort

There is a sharp contrast between behavior of Bro and Snort.
For example, the Rose attack has little effect on Bro, but an
enormous impact on Snort. Since Bro and Snort receive raw
packets from the network interface, they must perform reassem-
bly of fragments. Bro is clearly able to handle fragments more
efficiently than Snort, even though Snort maintains much less
overall state than Bro.

For Bro as with the PIX, the non-spoofed SYN flood has the
greatest impact on CPU load and packet loss. For the non-
spoofed SYN flood, Bro maintains state for all attack-induced
connections. Although Bro periodically expires idle connection
state, the rate of SYNs in our experiment was high enough that
Bro eventually exhausted available memory*. Since the table of
known connections continues to grow during this attack, con-
nection state lookups are more costly. The resulting effect on
packet drops is clearly shown in the center column graphs of
Figure 5. The reason the spoofed SYN flood has relatively little
impact on Bro is that the PIX silently blocks the spoofed SYNs
so Bro will never see a SYN/ACK response. Apparently this
lack of response allows Bro to flush the embryonic connection
state in a more efficient manner.

Except for the Welchia attack, Snort performs similarly un-
der all attacks. The SYN floods, Rose, and multimodal attacks
each contain packet-level attacks in contrast to Welchia, which
(at least from the perspectives of IP and TCP) looks like the
legitimate background traffic to Snort>. Efficiently processing
ill-formed packets and pathological packet sequences is clearly
a requirement and a challenge for NIDS.

With respect to packet loss, Bro and Snort again exhibit con-

trasting behavior. Except for the Welchia attack, Snort consis-
tently drops roughly 20-30% of all packets once MACE traffic
is introduced. Bro, despite maintaining significant connection-
level state, drops a relatively small portion of packets except for
the non-spoofed SYN flood attack. For both NIDS, any signif-
icant level of packet dropping will clearly affect the ability of
the tool to detect ongoing attacks. Additionally, knowledge of
packet dropping behavior could be exploited by an attacker to
launch a relatively benign low-rate attack in order to mask one
that is more insidious.
Summary: (1) Multiple attack vectors are effective resource ex-
ploits leading to packet loss, implying degraded detection rates,
and (2) The marginal impact of resource exploits does not ap-
pear to be greater for NIDS that maintain connection state.

V. CONCLUSIONS AND FUTURE WORK

The escalation of malicious activity in the Internet motivates
the need for better tools to measure the resiliency of routers and

4We also experimented with the reduce-memory policy script with Bro,
which caused an increase in CPU usage and higher packet loss rates for all at-
tacks.

51n our experiments we used the default configuration of Snort, in which there
are no specialized rules for processing HTTP traffic. Enabling these rules causes
higher CPU load and packet drops for all attack profiles.

MIQaIenoXes [0 Maliclous raffc. 10 aadress tis neea, we pro-
pose MACE, a framework for malicious network traffic gener-
ation. The MACE architecture is composed of three building
blocks: exploits, obfuscators, and propagation elements. These
components define and create malicious traffic for use in labo-
ratory testing of routers and network security infrastructure. We
provided experimental results of measurements conducted on a
popular firewall and two network intrusion detection systems to
document the varying responses of these systems to malicious
traffic. Our results show that relatively low rates of attack traf-
fic can exploit the overheads of maintaining connection state or
inefficient processing of certain packets.

A tool like MACE can be used for testing and refining the
operation of network systems, but if in the wrong hands, could
be used for generating malicious traffic in the live Internet. Our
plan for making MACE available to a wider community is to
supply the code only to legitimate researchers and, to the best
of our ability, keep careful documentation regarding who has
copies of the code.

We plan to expand the list of exploit and obfuscation building
blocks within MACE and to make improvements to the volume
of exploit traffic that MACE is able to produce. We believe these
enhancements will facilitate the laboratory emulation of large-
scale failure scenarios using more elaborate physical and logical
topologies and a greater diversity of network devices.

REFERENCES

[11 Microsoft Security Bulletin MS03-007. http : //www.microsoft-
.com/technet/security/bulletin/MS03 — 007.mspz, 2003.

[2] Microsoft Security Bulletin MS03-026. hitp : //www.microsoft-
.com/technet/security/bulletin/M S03 ~ 026.mspzx, 2003.

[3] Nessus. http : //www.nessus.org, 2004.

[4] NISCC Vulnerability Advisory 236929. http : //www.uniras.gov.-
uk/vuls/2004/236929/, 2004.

[5] THOR: A Tool to Test Intrusion Detection Systems by Variations of At-
tacks. http://thor.cryptojail.net/, 2004.

[6] UCB/LBNL/VINT Network Simulator - ns (version 2). http://www.isi.-
edu/nsnam/ns/, 2004,

[7] Mark Allman. On the Performance of Middieboxes. In Proceedings of
Sigcomm Internet Measurement Conference, 2003.

[8] Eugene J. Aronne. The Nimda worm: An overview.
//www.sans.org/rr/papers/36/95.pdf , 2001.

[9] Paul Barford and Mark Crovella. Generating Representative Web Work-

loads for Network and Server Perfromance Evaluation. In Proceedings of

ACM SIGMETRICS, 1998.

James Cowie, Andy Ogielsky, BJ Premore, and Yougu Yuan. Global

Routing Instabilities Triggered by CodeRed 11 and Nimda Worm Attacks.

http : //www.renesys.com/projects/bgp;nstability, 2001.

Gandalf. IP Fragmentation —— > The Rose Attack. htip

/ Jwww.security focus.com/archive/1/359144, 2004.

Richard Lippmann, David J. Fried, Isaac Graf, Joshua W. Haines, Kristo-

pher R, Kendall, David McClung, Dan Weber, Seth E. Webster, Dan

Wyschogrod, Robert K. Cunningham, and Marc A. Zissman. Evaluating

Intrusion Detection systems: 1998 DARPA Off-line Intrusion Detection

Evaluation. In Proceedings of IEEE Security Symposium, 1998.

Jelena Mirkovic and Peter Reiher. A Taxonomy of DDoS Attack and

DDoS Defence Mechanisms. In Proceedings of Computer Communica-

tions Review, 2004,

Darren Mutz, Giovanni Vigna, and Richard Kemmerer., An Experience

Developing an IDS Simulator for the Black-Box Testing of Network In-

trusion Detection Systems. In Proceedings of ACSAC, 2003.

Joel Sommers, Hyungsuk Kim, and Paul Barford. Harpoon: A Flow-Level

Traffic Generator for Router and Network Tests. In Proceedings of ACM

SIGMETRICS, 2004,

Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert Cunningham.

A Taxonomy of Computer Worms. In Proceedings of CCS Worms, 2003.

http

[10]

(1]
[12]

[13]

[14]

[15]

[16l

