EEEDHEEBEEREEREGE @008

B E E B 8 O 8 B0 EE BEBEBEE EBEE D BA

Attack Generation for NIDS Testing Using
Natural Deduction

Shai Rubin

Somesh Jha

Barton Miller

Technical Report #1496

January 2004

UNIVERSITY OF

Attack Generation for NIDS Testing Using Natural Deduction

Shai Rubin, Somesh Jha and Barton P. Miller
January 23, 2004

Abstract

A common way to elude a signature-based NIDS is to transform an attack instance that the NIDS
recognizes into another instance that it fails to recognize. For example, to avoid matching between the
attack payload and the NIDS signature, attackers split the payload into several TCP packets, change it
syntactically while preserving its semantics, or hide it between benign messages. We study attackers’
ability to find attack instances that elude a NIDS and our ability to recognize such instances.

We observe that different instances of a given attack can be derived from each other using simple
transformations that change either the attack transport mechanism or its payload. We model these trans-
formations as inference rules in a formal natural deduction system. Starting from an exemplary attack
instance, we use an inference engine to automatically generate all possible instances derived from a par-
ticular collection of rules. The result is a simple yet powerful tool capable of both generating attack
instances for NIDS testing and determining whether a given sequence of packets is an attack.

During several testing phases using different sets of rules, our tool exposed serious vulnerabilities in
Snort—a widely deployed NIDS. Attackers acquainted with these vulnerabilities would have been able
to construct instances that elude Snort for any TCP-based attack, any Web-CGI attack, and any attack
whose signature is a certain type of regular expression.

1 Introduction

The goal of a Network Intrusion Detection System (NIDS) is to alert a system administrator each time an
intruder tries to penetrate the network. A signature-based NIDS defines penetration via a table of malicious
signatures: if an ongoing activity matches a signature in the table, an alarm is raised [24, 32]. Such systems
are widely used [39, 46] because they are simple to use and provide concrete information about the events
that have occurred. The weakness of a signature-based NIDS is its inability to recognize an attack that is
just slightly different from the attack signature it uses.

An attacker wishing to stealthily penetrate a network monitored by a signature-based NIDS can exploit
this weakness in two ways. First, they can use an attack whose signature is not known to the NIDS. In
an up-to-date system, such attacks are difficult to find. Second, they can use a known attack, but try to
elude the NIDS by finding an instance of the attack that the NIDS does not detect. For example, to elude a
NIDS that does not perform TCP reassembly, the attacker can fragment the attack signature into several TCP
packets [12, 36, 42]. Or, to elude a NIDS that uses only printable characters in its signatures, an attacker
can change the signature of an HTTP attack by substituting equivalent hexadecimal ASCII values for the
characters in a URL [11]. If an attacker can find a single instance of the known attack that eludes the NIDS,
then the NIDS is—simply put-—useless.

We study the ability of attackers to find attack instances that elude a NIDS and the ability of a NIDS to
detect such instances. To be more concrete, we translate these abilities into the following two problems.

1. The black hat problem: given an attack A and a specific NIDS, transform the attack into a variant that
evades the NIDS.

2. The white hat problem: given an attack .4 and a sequence of network packets S, determine whether S is
an instance of A.

We propose a novel approach to rigorously tackle the black and white hat problems by formalizing them
in terms of natural deduction [35]. We observe that variants of the same attack can be methodically derived
from each other. To translate this observation into practice, we first formally express the attacker knowledge
in a set of inference, or transformation, rules; each rule represents an atomic mutation the attacker can use
to hide the attack signature. Then, starting from a known attack instance, we use an inference engine [43]
to successively apply the rules and automatically compose all attack instances based on any combination of
the rules. Finally, to solve the black hat problem, we feed the instances into the given NIDS until we find
one that is undetected. To solve the white hat problem, we check whether the given instance S matches one
of the instances generated.

Our approach has several advantages. First, it models a wide variety of the transformations that attack-
ers use. Unlike previous work that focused on transport level mutations (e.g., TCP/IP) [12, 36], our work
uses rules to model both transport and application level transformations (e.g., HIT'TP). Second, since rules
represent simple independent transformations, our deduction system can (i) combine the transformations,
(ii) incorporate other mutations not considered in this paper, and (iii) create inverse transformations; for
example, TCP fragmentation vs. TCP reassembly, or HTTP decoding vs. HTTP encoding. These transfor-
mations enable us to start the derivation from any attack instance. First, we use them to go “backwards”,
until we derive an instance to which they cannot be applied; then, we use this instance as a root from which
we generate all instances using the original (“forward”) transformations.

Based upon these ideas, we used Prolog—a language particularly suitable for implementing natural
deduction systems [43]—and implemented AGENT: an attack generation for NIDS Testing tool. AGENT’s
biggest advantage is its relative completeness: the Prolog engiﬁg can derive all possible instances from the
given set of inference rules. With the complete set AGENT derives, we can find instances that elude a NIDS
even when these instances are few and are unlikely to be found using random testing techniques. In practice,
when we use many inference rules, generating all instances is infeasible. However, our results show that
even though AGENT uses a small set of inference rules that derive a relatively small number of instances, it
is still effective in finding instances that elude a widely-deployed NIDS.

To summarize, this paper makes three primary contributions:

e A formal model for the black and white hat problems. We formalize these problems as a natural-
deduction system in which the inference rules capture the attacker’s ability to transform attacks. Our
model allows us to use automatic tools to derive mutants of known attacks.

— The model is complete. For a given attack .4, the model concisely defines all instances of .4 derived
from an exemplary instance of A by a given set of transformation rules.

— The model is sound. For a given attack .4, when each inference rule is sound (i.e., never produces a
sequence of packets that is not an instance of .A), our model is also sound.

These properties enable us to generate sets of attack instances that can be used to detect the presence or
the absence of vulnerabilities in a NIDS.

e AGENT, a practical tool for testing NIDS. We have used our formal model to build AGENT, a complete
and sound tool for attack generation. Given a set of inference rules and a representative instance of an
attack A, AGENT generates all and only those attack instances that can be derived by the given rules.

—~ When we connect AGENT to a specific NIDS, it can serve as a black hat tool. A failure of the NIDS
to detect an instance indicates a vulnerability in the NIDS, and a successful detection of all instances
demonstrates its correctness.

— When we use AGENT without a NIDS, it can serve as a white hat tool. For any TCP sequence S, attack
A, and a set of transformation rules, AGENT determines whether S can be derived from an exemplary
instance of A.

AGENT is not efficient enough to perform as a stand-alone on-line NIDS; it can be used as an aid for

NIDS developers. Either as a black or white hat tool, AGENT provides the derivation sequence for each
instance it derives.

¢ Improving a widely deployed NIDS. Using AGENT, we found several serious vulnerabilities in Snort [24,
39]. We exposed vulnerabilities in the TCP engine of Snort, the way Snort handles HTTP requests, and
its pattern-matching algorithm. An attacker acquainted with these vulnerabilities could have caused Snort
to miss any TCP-based attack, any HTTP scripting attack, and many attacks that require wild characters
in their signatures (a signature like “foo*bar”). These vulnerabilities were reported to the Snort develop-
ment team. Some were immediately fixed in Snort version 2.0.2, others will be fixed by the time that this
paper is published.

The rest of this paper is organized as follows. Section 2 presents related work on the black and white
hat problems. Section 3 illustrates how attack variants of a real attack can be derived from each other.
Section 4 formalizes the notion of derivation using natural deduction system in which attack variants can
be automatically derived from each other. Section 5 starts with a general discussion about selection of
transformation rules to use, and continues with a description of both the transport and application rules
we used to find attack instances that elude Snort. Section 6 presents AGENT, how it was used to find
vulnerabilities in Snort, and the specific vulnerabilities AGENT exposed. Section 7 discusses future work.

2 Related Work

The black hat problem. The work of Ptacek and Newsham [36] described methods for evasion of a
signature-based NIDS. Their methods include transformations that modify the attack on both the link (IP)
and transport (TCP) levels. They manually built a set of attack instances, and showed that these instances
eluded every commercial NIDS they tested. Handley and Paxson discussed similar transformations exploit-
ing inherent ambiguities of the TCP and IP protocols [12, 32].

There are three major differences between our work and the work of these researchers. First, while
they focus on individual transformations, we provide a formal model to rigorously generate all possible
combinations from a set of transformations. Second, while they provide examples of methods to elude
a NIDS, we provide an automated tool that uses such methods to actually find the undetected instances.
Third, although our transport level transformations are based on their methods, we explore payload level
transformations as well, and our model can be extended to include their IP level transformations.

The black hat problem was also investigated in the context of other types of intrusion detection systems.
Wagner and Soto showed a model, based on formal language theory, that attackers can use to evade a host-
based IDS {49]. Tan et al. provide evidence that this theoretical model can be used in practice [17, 45]. Qur
approach is similar to Wagner’s: we focus on a NIDS rather than on host-based IDS, and our formal model
is based on natural deduction rather than on regular languages.

Hackers also have developed tools for attack obfuscation. Fragroute [42] splits an attack payload into
several TCP and IP packets, but it neither always preserves the attack semantics nor enables automatic
modifications of the attack payload. Tools to obfuscate binary code in shell exploits are well known [9], but
we leave this type of transformation to future work.

The white hat problem and NIDS verification. While the white hat problem has attracted much more at-
tention than the black hat problem (see survey papers, [4, 22, 25]), the particular problem of NIDS validation
has not received much attention. Since network speed is increasing rapidly, some researchers have focused
on the ability of NIDS to monitor large networks [16, 18]. Lippman et al. presented a comprehensive effort
to evaluate IDS capabilities [20, 19] (with a seminal critique by McHugh [26]). However, they focused on
comparing capabilities of several NIDS to detect a number of attacks, while our methods rigorously test a
single NIDS for its ability to detect many instances of a single attack.

To the best of our knowledge, AGENT is the first tool that can be used to show that a NIDS correctly

identify all possible attack instances derived by a given set of transformation rules.

Resisting attacks on NIDS. Handley et al. [12] and Sommer et al. [41] present techniques that remove
TCP and IP ambiguities from network connections. These techniques can be used to prevent at least one of
the TCP vulnerabilities we found in Snort (Sections A.1.2). However, to the best of our knowledge, these
methods are in a preliminary stage of research and are not yet widely deployed.

Security protocol verification. There is a vast body of work on verification of security protocols [5, 15,
21, 23, 28, 27, 29, 50]. Deductive systems are used to model the “knowledge” of the participants and the
adversary in the security protocol. For example, the NRL protocol analyzer [28] uses Prolog to formalize the
set of facts learned by a participant. A similar approach is taken by Paulson [31], who uses Isabell to prove
the correctness of security protocols. Abstractly speaking, these techniques are related to the approach taken
in this paper because we also use deductive systems to model the power of the adversary. In the future, we
will explore techniques for state-space reduction available in the security protocol verification literature [40].

Deductive databases. Since we use deductive systems to model the transformations that an attacker can
perform, the literature on efficient evaluation of logic programs from the deductive databases literature is
relevant. There are several techniques and systems for efficient bottom-up [37] and top-down evaluation [10,
48] of logic programs. In our context, these evaluation techniques have the promise of providing efficient
algorithms for the black and white hat problems. We will explore these connections with deductive databases
in the future.

3 Example: Derivation of Attack Variants

We illustrate the main idea behind our work: given an instance of an attack A and a set of transformations
that preserve the semantics of .4, we can systematically transform this instance into another instance of A.
We start with examples of two attack instances of a known FTP vulnerability. Then, we describe semantics
preserving transformation rules, which are single-step transformations that transform a known instance into
a new one. Last, we illustrate that the two instances are variants of each other: one instance can be derived
from the other by repeatedly applying the single-step transformations. While the example we present is
simple, it is based on a real vulnerability found in Snort (Section A.2.3).

Our example vulnerability is a published buffer overflow in a commonly used FTP server (BlackMoon
FTP server for Windows, CAN-2002-0126 in [30]); exploiting the overflow may crash the server or present
root privileges. The exploit causes the overflow by providing an overly-long argument for the FTP CWD
(change directory) command. We call this attack fip-cwd.

The first instance of fip-cwd we present is similar to instances that can be found on many hacker sites
(e.g., [1]). Since this instance is so common, we call it fip-cwd, .,y (Figure 1a). It contains four phases,
each containing several TCP packets: (i) TCP handshake, (ii) FTP login, usually achieved by anonymous
login, (iii) innocent phase in which the attacker browses the server using benign FTP commands, and (iv)
attack phase in which the attacker launches the attack by sending a long CWD command. Since long FTP
commands may look suspicious, attackers commonly fragment the long argument into several TCP packets.

To illustrate derivation of one fip-cwd instance from another, we now present a much shorter instance
of fip-cwd (Figure 1b). We called it the Meat and Potatoes (MaP) version of fip-cwd, denoted fip-cwd 1, p,
because, as we discuss in Section 4.1, it is the simplest instance possible with respect to our rules.

There are two main differences between fip-cwd yr,p and fip-cwdyyp;eq)- First, fip-cwd pp,p contains a
single attack packet (we do not count packets in the TCP handshake phase because they are part of any
connection, benign or malicious.). Since FTP and TCP belong to two different levels of the protocol stack
[52], the FTP server is (and should be) indifferent to the number of TCP packets used to deliver the FTP
messages. Therefore, it is possible to send the three necessary FTP messages (USER, PASS, and CWD)

TCP Handshake TCP Handshake
FTP Login
Benign FTP Commands " FTP Login
S
CWD aaaahhhhhh ...
CWD aaaahhhhh ...
Attacker Victim Attacker Victim
(a) The fip-cwdyypicqr instance (b) The fip-cwdps,p instance

Figure 1: Two fip-cwd variants.

in a single TCP packet. Second, fip-cwd;,p contains only the data that is absolutely necessary for a
successful fip-cwd attack; it does not contain any victim response. Note that these differences do not reduce
the effectiveness of the fip-cwd,,,p instance; from the attacker’s point of view, if the victim responds to
Jip-ewdyy; 01, it should also respond to fip-cwd s, p-

While the fip-cwd, ;.4 and the fip-cwd ;. p might look different, both contain the necessary messages
for a successful fip-cwd attack. Hence, intuitively speaking, one can infer fip-cwd,, ;o) from fip-cwd . p,
and vice versa. Next, we illustrate this inference.

Consider the following two transformation rules:

1. Ry (TCP-fragmentation): if Sp is an instance of an attack .4, and S5 is obtained from S; by (i) frag-
menting a single TCP packet p; € S7 into two packets p;, P;+1 € S, and (ii) copying all packets other
than p; from S to Sy (shifting the indexes of all packets after p; by one), then S5 is an instance of A.

2. Rg (FTP-padding): if S is an instance of an FTP attack .A that consists of at least one malicious FTP

command after login (e.g., like the CWD command in the fip-cwd attack), and Ss is obtained from S
by inserting a benign FTP command between the login and the malicious command (but not the “QUIT”

command), then S5 is an instance of 4.

We call these rules semantics preserving: they do not alter the semantics of S;. According to the TCP
specification [33], it is legal to fragment TCP packets as desired. To the best of our knowledge, every FTP
attack can be inflated, or padded, using benign FTP commands'.

If fip-cwd 4, p 1s an instance of the fip-cwd attack, then by using R; and Ry it is possible to derive the
conclusion that the fip-cwd,,;.,; (Figure 1a) is also an instance of fip-cwd. We successively apply R; on
Jip-cwd pr, p to fragment the single attack packet into the attack packets of fip-cwd,;.q;- On the resulting
instance, we apply Ry and pad the attack with benign FTP commands. Using natural deduction terminology,
we say that the fip-cwd,,,;.,; is derived from fip-cwd . p using the rules R; and Rp. More formally we
write: ﬁp'CWd]\laP }—{Rl,R2} ﬁP'CWdtypical'

From the derivation process illustrated above, we can make three important observations:

1. R; and R define a closure over a subset of fip-cwd instances. R; and R» can be used to derive not only
the fip-cwd,,p,;.; instance, but also other instances of fip-cwd. Using these two rules we can derive every

'If there exists an FTP attack that cannot be padded by arbitrary FTP commands, then the rule is changed to only allow legal
modifications.

ftp-cwd instance with several benign FTP commands and several TCP packets delivered in-order. This
observation motivates us to automate the derivation process, because this enables (i) identification of
every fip-cwd instance that falls into the category mentioned above, and (ii) generation of finitely many
instances to be used for a NIDS testing.

2. R; and Ry are commutative. To derive fip-cwd,;q, it is possible to first change the attack payload
by padding the attack with benign FTP commands, and then to change way the attack is delivered by
fragmenting it into the several packets. This observation greatly simplified the implementation of an
automatic derivation tool as discussed in Section 5.2.2.

o
3. The inference process can be bi-directional. Consider the reverse rules: R; as de-fragmentation and
£
Ry as removal of padding. It is easy to see how fip-cwd s, p can be derived from fip-cwd,, ;.- This
bi-directional property suggests that a derivation process can start from any attack instance, so finding
instances that elude a NIDS may be less sensitive to the derivation starting point. We use this observation
when we define the starting point for our automatic derivation tool in Section 4.1.

Next, we describe a model that formalizes our intuition of inferring attack instances.

4 A Natural Deduction Model for Attack Generation

We derive attack instances using natural deduction [35]. A natural deduction system uses a collection
of predefined inference rules to derive conclusions from already known facts; the new conclusions can be
used as facts to derive further conclusions, and so on. For an attack A, we present an inference system to
derive TCP sequences that have A’s semantics. The derivation starts from a representative instance of A,
the meat-and-potatoes instance, and continues by successively applying syntactic transformations to derive
new instances of A.

Our goal is to define a natural deduction model for the black and white hat problems. To do so requires
three steps. First, to precisely define attack instances, we need a way to represent the instances. Second, to
start the derivation process, we need an exemplary attack instance. Third, to propel the derivation process,
we need inference rules that show how to derive new instances from the others. Here, we discuss the
attack representation, the selection of an exemplary instance, and the way we model the black and white hat
problems in terms of natural deduction. Section 5 presents the inference rules that we used.

4.1 Attack Representation

Natural deduction uses syntactic transformations to derive conclusions from facts. Therefore, we need
to represent an attack in a way that is easy to syntactically manipulate. To achieve this goal, we represent
an attack as a sequence of TCP packets. For our purposes, each attack has two participants: the attacker
and the vicrim. We call the packets the attacker sends attack packets, denoted a;, and the packets the victim
sends response packets, denoted r;.

The choice of a sequence of TCP packets to represent attacks is not arbitrary and is convenient for
several reasons. First, this method of representation is the most obvious choice because the majority of
known attacks use TCP; for example, 88% of Snort rules target TCP communication. Second, since our
focus is from the TCP level up, we use TCP to hide low level details of the network protocols. Last and
most important, the TCP representation exposes both TCP parameters and application data. It enables
modeling of the attacker’s control over the application data, the attacker’s control over TCP parameters and
headers, and the attacker’s ability to inject TCP packets at will.

The next step in the definition of a natural deduction system is defining the derivation starting point.

For a given attack .4 we define a special instance: a TCP sequence called the Meat-and-Potatoes se-
quence, denoted Apr,p. The Apzqp is the single starting point for every derivation required to solve the
black or white hat problems. For simplicity, we assume that a Az, p contains only one attack packet that is

part of a legal TCP sequence, and does not contain any victim response (as in the fip-cwd ,, p sequence in
Figure 1b). To the best of our knowledge, in the majority of network attacks, the exploit does not depend on
data from the victim, so the attacker activity can be combined into a single TCP packet. In the future, if an
attack must contain more than one packet, we will apply the rules for each packet separately.

For any attack A, two questions about the Aps,p should be addressed.

1. How do we identify an A s, p? Identifying an Az, p is driven by the common properties of the instances
the rules derive. For example, the common property of instances derived by TCP-fragmentation alone
is that they contain several TCP packets that are fragments of the Aps,p payload. To ensure that the
natural deduction system generates all possible instances with certain properties, the Az, p is defined as
an instance that cannot be derived, using the inference rules, from any other instance. In other words, the
Anrqp is the root of the derivation tree: it derives all instances and no instance derives it. For example,
when considering only the TCP-fragmentation and FTP-padding rules (Section 3), there is no instance
that can derive fip-cwd ;,p (Figure 1b).

2. How do we handle the case when the Apsqp is not unique? For example, since URLs in an HTTP
attack can be expressed either by printable characters or their equivalent ASCII hexadecimal values [11],
one might be tempted to use inference rules that substitute characters in both directions. However,
since such bidirectional substitution rules enable circular derivation, for example from “CNN.COM” to
“%43NN.%430M” and back, they do not define a unique Apz,p. In such a case, we artificially split
the rules into two categories—jforward and backwards rules—and define the Apsqp with respect to the
forward rules only. For example, we force forward substitution from printable characters to their ASCII
hexadecimal values and define the Apsqp to contain only printable characters. In all the rules used in
this paper, forcing such an order enabled us to find a unique Aps,p. This ordering did not reduce the
number of attack instances that our natural deduction system generated; formally, it did not affect the
completeness of our model.

The answers to these two questions suggest an automatic way to derive the Aps,p. Since the Apsqp
serves as the root for forward derivation, and since implementing backwards and forward versions of rules
is simple, there is no limitation to start the derivation process from any instance, use the backwards rules to
derive the Az, p, and then to generate all instances using the forward rules. The current implementation of
AGENT does not include this capability; however, we plan to explore this opportunity in the near future.

4.2 A Natural Derivation System for Solving the Black and White Hat Problems

We have defined how to represent attack instances and the starting point for the derivation process. To
complete the definition of the natural deduction system we need to define the inference rules and the black
and white hat problems in terms of natural deduction. Here, we formally define the two problems and leave
the inference rules for the next section. We start with the definition of attack closure.

Definition 1 (Attack Closure) Let @ be a collection of inference rules, and Aprqp be the MaP sequence of
an attack A. A’s closure with respect to @, denoted Ag, is the collection of TCP sequences derivable from
Aprap using a finite number of applications of the inference rules. Formally, Ag = {s | Anap Fo s}

Now we formalize the black and the white problems:
Definition 2 (Black Hat Problem) Let A be an attack, N be a NIDS, and ® be a collection of inference

rules. Let Ay be the collection containing each TCP sequence that N recognizes as A. The black hat
problem is to find a sequence S such that S € Ag\ An.

Definition 3 (White Hat Problem) Let A be an attack, S be a TCP sequence, and ® be a collection of
inference rules. The white hat problem is to determine whether S € Ag, or Aprep Fo S.

The definitions above highlight the advantages and disadvantages of using inference to solve the black
and white hat problems. Formally defining them as natural deduction problems enables the usage of formal

logic tools to automatically solve both problems. In the black hat case, we generate unrecognizable variants
of A and in the white hat case we detect sequences that are variants of .A. However, the formal definition
also exposes a limitation. We are able to find only instances that are derived from the Apz,p instance
using the inference rules in ®. Hence, our ability to find and detect attack instances greatly depends on
the composition of the rules in ® and the Az, p instance. While the Apz,p may be easy to create, finding
effective inference rules is a more delicate task. We address this task in the next section.

5 Transformation Rules

Our ability to find attack instances that elude a given NIDS or to detect whether a sequence S is a variant
of an attack A, depends on the composition of the inference rule set. We start by discussing the qualities
that are desirable in a rule set. Then, we give an example of a practical rule set as used in our experiments.
As the results in Section 6 show, working with these qualities in mind pays off: using this rule set exposes
several serious vulnerabilities in Snort.

5.1 Building an Effective Rule Set

Selecting the transformation rules is similar to programming: it requires expertise and human thinking.
We present the lessons we learned while building a rule set for AGENT. We believe that the guidelines
provided here will be useful for others constructing their own rule set.

5.1.1 Desirable Properties of Transformation Rules

The most important property for a transformation rule is soundness. A rule is sound if it does not change
the attack semantics: the rule can be applied to any instance of a given attack, and it derives a TCP sequence
that is an instance of this attack. If every rule is sound, then the entire system is sound as well. Given an
attack A, a sound set of rules is important for solving both the black and white hat problems. For the black
hat problem, soundness means never generating TCP sequences that do not have the semantics of .A. For
the white hat case, soundness means detecting only those TCP sequences that do have .4’s semantics.

The second desirable property of a rule set is completeness. For a given attack A, it means that the
inference rules enable the derivation of any TCP sequence that has the semantics of A. Like soundness,
completeness also is important for solving the black and white hat problems. For the black hat problem,
completeness means that if there exists an attack instance that eludes a NIDS, we will eventually find it. For
the white hat case, completeness means the ability to detect any instance of A.

When a set of transformation rules @ is both sound and complete, then for every TCP sequence S and for
every attack A, S is an instance of A if and only if S belongs to the closure of A (or S € Ag). Essentially, a
derivation tool that uses such a sound and complete & is a perfect NIDS.

5.1.2 The Structure of the Rule Set

Achieving soundness is not easy and requires expertise in the specifications of the protocol (e.g., TCP)
and application (e.g., HT'TP) that the attack exploits. What makes the situation even more difficult is that
specifications can be ambiguous [12, 44] and not all implementations obey their specifications. An example
of a disparity between implementation and specification is the BSD finger server (version 0.17). While
the finger specification permits (but discourages) escape characters in a finger query [51], this server does
not support queries with such characters, and a sound transformation rule for this server cannot dictate
insertions of such characters. Achieving soundness requires the knowledge of both the specifications and
implementations of the protocol and application that the attack exploits.

Theoretically, it is possible to build a complete rule set, but we found that such a rule set is impractical.
Since the number of instances a rule set derives can be infinite, even an incomplete rule set with only a few
rules derives a large number of instances (see Section 6).

From our experience with AGENT, we have developed two strategies that help to achieve soundness and

Payload Rules / Padding Obfuscation \

Insert/

Header | Reorder
Transport Rules (TCP) / Remove
Segment Change | Segments

Network Rules (IP)/ Not addressed in this paper \

Figure 2: The hierarchy of inference rules.

deal with the practical limitations of completeness.

To address the difficulty in developing sound rules, we divide the rules into levels based upon the proto-
col stack model (Figure 2): network and transport level rules modify the way the attack is delivered but do
not modify the attack payload?, and payload level rules modify the attack payload itself. Within each level,
rules are divided into different types according to the way they modify the attack. At the transport level, we
have rules that add or remove packets from a TCP stream, change the packet header, and change the order of
packets. At the payload level, we have rules that obfuscate the malicious subsequence in the attack payload
in a way that the NIDS signature will not match it, and rules that pad the malicious subsequence with benign
data. The advantage of this hierarchical structure is that it reduces the chance of writing an unsound rule;
the person that develops a rule can focus on a single aspect of the attack.

To address the infinite number of instances that a complete rule set dictates, we adopt two strategies.
First, we focus on rules that only derive a finite number of instances. For example, a rule that retransmits a
packet many times is required for completeness, but it is not practical to use. Instead, we limit the number
of retransmissions per packet to one; it is reasonable to assume that even few retransmissions will be enough
to expose a bug in the way a NIDS handles retransmission. Second, we do not use all rules in every testing
phase. While this hurts the overall completeness, it drastically reduces the number of instances we need to
test. Our results show that these two strategies effectively expose vulnerabilities in Snort. Further, when a
NIDS detects all instances derived from an incomplete set of rules, it increases our confidence that the NIDS
behaves correctly with respect to the set of rules we considered.

5.2 Inference Rules Description

Each rule has the structure of [RuleLevel][RuleName] o IA(SI)’R?E&%&CMG("'). To specify the rule

name we use the name of the protocol if the rule is a transport rule, or application if the rule is a payload
rule. On the right hand side, we have the rule functional description that reads:

if ((Sy is an instance of A) && RulePredicate(. . .)) then S, is an instance of A

RulePredicate specifies how the conclusion of the rule (S3) relates to the fact the rule uses (S7); this is a
mechanism to enforce semantic preserving transformations. For example, RulePredicate may state that So
must be a permutation of 57 to conclude that Sy is an instance of .A. The predicate arguments can be either
TCP sequences or packets, depending on the predicate.

5.2.1 Transport Level Inference Rules

We present the transport rules in Table 1. We use S; to denote a TCP sequence, a; to denote the 7t*
packet of the attacker, and r; to denote the _jth response of the victim.

As can be noted, the rules not only change or add packets the attacker sends, but also add response
packets from the victim. As mentioned in Section 4.1, the Az, p sequence does not contain responses from
the victim. However, responses or acknowledgments play a crucial part in intrusion detection. The ability of

*In this paper we do not address network rules, but our natural deduction model can support them.

Name Description Formal Description
TCP The " attack packet, a; € S1, is fragmented into two
Fragmen- | packets, a;,a;, € S2. The frag predicate holds if and o o
tation only if af, aj is a legal TCP fragmentation of a; [33]. Lallar, -, 05, 73’,’ 2 an,r/m]), fraglas, ai, 2is1)
(R1) When exists, the original response to a; is deleted (r;); Ta(lass--» 055755 @141 G415 Gik1 - - Gny Tm])
two responses are added to each of the new attack packets
(i, Ti41)-
TCP Per- | Ss is a restricted permutation of S1. restrictedPermute
mutation | holds if Sz is a permutation of Sy with the following two Ta(S1), restrictedPermute(S1, S2)
(R2) restrictions: (i) it preserves the original order between Za(S2)
packets and their corresponding retransmission packets,
and (i) it preserves the original order between attack
packets and their responses.
TCP This rule specifies a family of rules in which the attack
Rf,m.mS— chket, a; e' 51, is retransrm'tted in Sa. Retransy holds Ta([1,- 2185, Ti - s Gny o)), retransi(Sy, ai, a)
mission if and only if a; is retransmitted in a way that preserves -
(R3) the semantics of S;. Table 2 presents predicates that Ta(la, ., 01,0375, - Gy Tm])
specify semantics preserving retransrmissions.
TCP This rule specifies a family of rules in which the TCP
Header header of the attack packet, a; € S, is changed in Ss. ’
Change hdChangej, holds ifpand only if the header change be- Tallas, 05,75, ’af’ rml), hdChanger(a;, as)
(R4) tween a; and a; does not alter the attack semantics. The Ta(las, .., a5, 75,y Gy Tm])
investigation of these rules is left for future work.
Table 1: Semantic preserving TCP inference rules.
Name Holds is and only if Scenario

retransi(S, ai, a;)

a}.sequence<ry.acknowledgment.

al=a; except that: (i) aj.RST is set, and (i) the se-
quence number in a; is smaller than the acknowledg-
ment number in the last response in S before a;. More
formally, let €S be the last response before a;, then

The attacker retransmits a packet that
was already sent and acknowledged.
The attacker changes the packet into a
RESET TCP packet.

retransz2(S, ai, a;)

a;=a; except that:

the TCP window of the victim.

(i) a}.RST is set, and (ii) the
sequence number in a; is too large to fit into
More formally,
let 7;€S be the last response before as,
aj}.sequence>r;.acknowledgment+S.window_size.

The attacker sends a TCP RESET
packet that its sequence number is too
large to fit into the victim’s TCP win-

then | dow.

retranss(S, ai, a;)

al=a; except that: @)

aj.RST is
al.length=a;.length-1, and (iii) a;.sequence is the
sequence number the victim expects to get next.

(ii) | The attacker retransmits a packet that
was already sent but not yet acknowl-
edged. The attacker changes the packet

into a RESET TCP packet®.

set,

!
retransa,s,s(S, ai, a;)

flag, set the FIN flag.

The same as retransi, »,3(S, a:, a;) but instead of the RST

Simulates FIN eluding attempt rather
than a RESET eluding atternpt

“Called the ambiguous retransmission problem, see p. 309 in reference [44].

Table 2: Semantics preserving predicates for TCP retransmission. We focused on a single retrans-
mission of control packets, like RESET and FINISH, which occurs immediately after the original packet
without adding a victim responses. Other possibilities are left for future work.

a NIDS to detect an attack depends not only on the attack packets it sees, but also on the interleaving of those
packets with the victim’s acknowledgments [12, 16, 24, 32, 41]. To accurately represent attack instances, a
system that generates such instances must add victim acknowledgments. An easy way to do so is through
TCP inference rules because they can be used to add acknowledgments to any TCP-based attack. However,
this brings up the question of which acknowledgments to add. In general, a TCP implementation sends an
acknowledgment for each packet it receives [44], so our TCP rules usually add an acknowledgment after
each packet we add or modify. Other options to add acknowledgments or application specific responses are

possible, but we leave them for future work.
5.2.2 Payload L.evel Inference Rules

We present payload level rules and their integration into our natural deduction system. In general, two
differences exist between the transport rules presented above and payload rules:

1. Payload rules operate only on the Azqp instance rather than on any other variant of the attack. Since
transport level protocols and application level protocols are independent, there should be no difference if
we first change the attack payload and then change the way the payload is transmitted, or vice versa. So,
it is possible to apply payload, or application, modifications on the Az, p instance before any transport
level modification. There are techniques to attack NIDS that are based on interleaving of transport and
payload modifications [12, 36]; while these attacks can be modeled too, we do not address them here.

2. Payload rules are based upon the assumption that the attacker knows the signatures used by the NIDS.
Since the attacker’s goal is to elude a signature-based NIDS, they must change or hide the signature of
the attack. Therefore, we assume that the attacker knows the signature used by the NIDS to detect the
attack. We believe that it is a reasonable assumption for two reasons. First, NIDS are commodities, so it
is easy to obtain the signatures provided with any NIDS. Second, developing signatures requires intimate
knowledge of the network protocol and the attack itself. Since users of a NIDS usually do not have the
time or the knowledge to customize the provided signatures, they use them “as is”.

Regardless of the application the rules model, we divide them into two general categories. Obfuscation
rules take the subsequence in the payload that matches the NIDS signature and change it. On the other hand,
padding rules do not change the subsequence, but hide it among benign semantic-preserving sequences.
HTTP can be used to illustrate the difference between the two types of rules. To encode a malicious URL
(like “WWW.FOO.COM/SCRIPTS/CMD.EXE” in CVE-2001-0333), an attacker can obfuscate the URL. by
replacing characters with their equivalent hexadecimal values, or they can pad this request with benign
HTTP requests in the same TCP packet. The main insight behind these two types of rules is that obfuscation
rules elude a NIDS by exploiting the fact that its signature does not cover all attack instances, while padding
rules attack the NIDS pattern matching algorithm rather than the signature it uses.

Type | Name Description
5 HTTP URL Encode | Substitute printable characters in a URL with their equivalent ASCII values (was not investi-
‘§ (Rs) gated in this paper).
é’ HTTP space padding | Insert spaces after an HTTP method: changes a signature from <HTTP
2 | (Ry) Method>[SP]™<URL>> into <HTTP Method>[SP]™"!<URL>.
finger padding (Rs) Add spaces before the username. This is legal according to finger specification [51].
FTP Padding (Rs) Add benign semantics-preserving FTP commands before a malicious command. For Snort,
one of the malicious commands is a CWD with an argument longer than 100 bytes (Snort
0 Id (sid): 1919 [24]). Representative benign commands that preserve semantics are “CWD
£ /tmp\n” and “L1ST", while “QUIT” is benign but does not preserve semantics.
= HTTP Multiple Re- | Add benign semantics-preserving HTTP requests before a malicious request. For Snort, an
a quests (Rr) HTTP method followed by a URL that contains the string “perl.exe” is considered malicious
(sid: 832 [24]). Benign semantics-preserving requests can be “index.html” without a “Con-
nection: close” option which will turn them into requests that do not preserve semantics.

Table 3: Semantics preserving payload inference rules.

The distinction between the two types of payload rules is appealing for three reasons. First, it helps us
to develop rules by dividing the task into two more focused subtasks. Second, it increases the variety of
instances our model derives, because any combination of obfuscation and padding rules is possible. Last, it
helps us improve the signatures a NIDS uses, as we illustrate below.

In a recent paper, Sommer and Paxson reduced the false positive rate of a NIDS by using a contextual
signature that generates an alert only after matching several sub-signatures [41]. The padding rules can

be used to formalize their idea. For example, look at the ftp-cwd attack (Figure 1). For this attack, Snort
generates an alert when observing a TCP packet containing the string “CWD ahhh...”. As aresult, Snort will
generate an alert for a TCP packet that contains “QUIT\n CWD ahhh...”. Unfortunately, this alert is a false
positive because the FTP server first processes the “QUIT” terminating the connection. For that reason, no
attacker will use “QUIT” to pad the fip-cwd signature; they will only use a subset of the FTP commands
that do not alter the attack semantics (e.g., “CWD”). Let us denote the language that the attackers will use
for padding as FT Ppadqing. Now, if we extend Snort signature for fip-cwd to X-“CWD ahhh..” where
X € FT Ppadding, then this false positive will not be generated. The real advantage of F'T'Fpaqding 18 its
applicability to other FTP attacks; we can use it for other buffer overflows occurring in FTP servers. Hence,
it can be defined once and used in many signatures. The procedure we have illustrated can be formalized as
a set-constraints problem as we show in Appendix B.

Table 3 presents the payload rules we consider in this paper. Since payload rules are application specific,
we focus on three applications: Finger, FTP, and HTTP. For clarity, we provide only the informal description
of the rules; the formal description presented next.

5.3 Implementation

We implemented the core of AGENT in Prolog [43]. Prolog is designed for natural deduction; using
Prolog, it is easy to represent the A7, p instance as a ground fact, the inference rules as Prolog rules, and to
solve the black and white hat problems using queries. The implementation of AGENT in Prolog is compact
enough to be included as part of this paper (Table 6, Appendix C). More importantly, the same Prolog
program can be used to solve both the black and white hat problems as we illustrate below.

To solve the black hat problem, we used AGENT to generate Ag. First, we provide ®—the set of
inference rules we want to use—then, we issue the existential query:

derive(AMap,X).

which returns a list of all possible variants of Az, p that the rules in @ derive. Formally, this query returns
As. In the next section we show how we connected AGENT to Snort to solve the black hat problem for a
particular NIDS (Definition 2).

To solve the white hat problem we used AGENT alone using all rules we have. To determine whether s
is an instance of an attack .4, we issue the ground query:

derive(Anrap,S)-
Prolog will return yes if and only if s € Ag, as required by the white hat definition (Definition 3).

6 Finding Attack Instances that Elude Snort

Our goal was to use AGENT to test a real NIDS. Our testing strategy was to use AGENT to generate
instances of known attacks and to feed them into Snort—a publicly-available widely-used signature-based
NIDS [39]. When Snort missed an instance we stopped and investigated Snort code to find out the reason.
We generated instances of three known attacks: (i) finger-root, used to gain root sensitive information from a
victim (CVE-1999-0612, [30]), (ii) peri-in-cgi, used to execute arbitrary commands on a Web server (CAN-
1999-0509), and (iii) fip-cwd, a buffer overflow used to gain root access to an FTP server (CAN-2002-0126).
To generate the instances of each attack, we used the transformation rules discussed in Section 5.2.

We chose Snort as a target NIDS for several reasons. First, Snort comes with more than 1500 signatures,
so it was easy to find the signatures of our chosen attacks. Second, Snort is considered a state-of-the-art
NIDS. Snort performance is comparable to commercial NIDS [8, 46], and it seems to be aware of many
evasion techniques that were reported in the past [12, 36] and therefore uses techniques such as IP and TCP

Level Name Description Implications: enables attackers to find an
attack instance that eludes Snort for
E Evasive RST. Abugin Snort’s TCP state tracking. Snort accepts an | Any TCP-based attack.
§‘ illegal TCP RESET packet; as a result, Snort stops
E tracking a live TCP connection (Section A.1.2).
Flushing Exploits a vulnerability in Snort’s TCP reassembly | Any attack whose signature can be inflated
mechanism. Snort misses a signature that is frag- | by a context-based payload rule.
mented over several TCP packets (Section A.2.1).
HTTP Exploits Snort’s default configuration together with | Any Web-CGlI attack. With a default con-
space padding its nature to report only a single alert per TCP packet. | figuration, Snort completely misses the at-
":'é Snort misses the attack or generates a general alert | tack; with a user-defined configuration,
= instead of the perl-in-cgi alert (Section A.2.2). Snort generates a general HTTP alert rather
A than the specific alert for the attack.
HTTP multiple | Exploits a bug in Snort’s HTTP decoding mecha- | Any Web-CGlI attack.
requests nism. Snort does not analyze more than a single
HTTP request per TCP packet (Section A.2.2).
Pattern match- | Exploits a bug in Snort’s pattern matching algorithm | Any attack that uses a signature of the form
ing (Section A.2.3). “foo*bar”.

Table 4: Summary of Snort bugs found by AGENT.

reassembly, HTTP encoding, and TTL checks. As far as we can tell, Snort uses balanced data structures,
so it is not sensitive to algorithmic complexity attack as was shown for another NIDS [7]. Third, since
it is maintained regularly and bugs are fixed periodically, we assumed that it would be non-trivial to find
instances that elude it.

For each attack we tested, AGENT found instances that eluded Snort. These instances exposed vulner-
abilities in different portions of Snort’s code: the TCP engine, the HTTP decoder, and the pattern matching
mechanism. We reported these vulnerabilities to the Snort development team. Some of the vulnerabilities
have been fixed (Snort version 2.0.2) and others will be fixed in the upcoming releases of Snort. Table 4
presents a summary of vulnerabilities our testing effort exposed. For each vulnerability, the table specifies
the type of the transformation rules that exposed it, a short vulnerability description, and the vulnerability
implications.

Next, we describe the testing environment we built around AGENT and then we present a summary of
our testing efforts. The description of the individual instances that eluded Snort and the vulnerabilities they
exposed appears in Appendix A.

6.1 NIDS Testing Using AGENT

To test Snort, we used AGENT as a black hat tool: for a given attack .4, we tried to find instances that
Snort does not detect. In particular, for a given attack .4, this testing process contains the following three
stages (see Figure 3):

1. Closure Generation. This stage generates all instances in .Ag. We provided two inputs to AGENT: the
attack MaP instance, Apsqp, and a collection of transformation rules, ®. The output of this stage is a
text file containing Ag. Each instance in Ag is represented as a list of TCP packets; as mentioned in
Section 5.2.1, instances contain both attack and response packets.

2. Eluding-Instance Search. This stage finds an attack instance that eludes Snort. To perform this search,
we implement a instance simulator that plays the instances in Ag; the simulator writes both the attacker
and the victim packets to the network. On the simulator’s machine we also installed Snort, which reads
from the network. Snort raises an alert each time it identifies .A in a TCP sequence. The search stops
when an undetected instance is found, or when all instances have been checked.

We implemented the simulator using C libraries that enable creation of raw TCP packets [47, 38]. The

simulator plays complete TCP sessions, including TCP handshake and termination procedures and it
simulates an average of 350 instances per second on a Pentium III, 850MHz.

3. Instance Feasibility Check. This stage illustrates that the instance found by the search stage can be used
by attackers over the network. In the previous stage, we simulated both the attacker’s packets and the
victim’s responses. We used two machines connected by a LAN to separate the attacker from the victim.
In this stage, we used the instance simulator to send the attacker’s packets only, the victim responses
were generated by a real application.

Strictly speaking, this stage is unnecessary. As long as we use sound rules, any attack instance generated
by AGENT can be used by any hacker. We included this stage to validate our own methodology and to
illustrate that AGENT can find attack instances that can exist in the wild.

. Rues@ -
Closure [e . gt
Generation e e ;AGENT; -
A, (text file)
Eluding [instance linstanceofA] et NO
Instance Search ¢} Simulator |atack.response ’Sr’)Q‘rt | ‘A‘l?rt. ¢
i v oy segmems : : -

. YES (check next ins’tahcé);k' -

Instance of A

. real victim

_ Instance |

instance .
| Simulator

Feasibility Check

Figure 3: NIDS Testing Using AGENT.

6.2 Testing Effort Summary

Software testing is usually an incremental process. One starts with simple test cases, and gradually adds
cases to increase coverage. The ideal goal is to test every possible case. Since this is infeasible, one usually
splits the testing into more manageable phases; in each phase the goal is to test a particular type of test cases.

Here, we describe this process in the context of AGENT and Snort. We performed a total of seven
phases that yielded five vulnerabilities. We started with a simple attack and with a rule set that derived a
small number of instances. To increase coverage, in each phase we either added rules to AGENT or changed
the attack.

Table 5 presents a summary of our seven test phases. In the first two phases we used finger-root with
transport rules alone. In the second phase AGENT exposed the Evasive-RST vulnerability. We continued
to use the finger-root attack, but added the finger-padding rule. Using this rule alone did not yield new
vulnerabilities (Phase 3), but combining it with transport rules exposed the Flushing vulnerability (Phase
4). We continued with perl-in-cgi and each HTTP rule we used exposed a vulnerability in Snort’s HTTP
decode engine (Phases 5,6). Last, we tested Snort with instances of the ftp-cwd attack and discovered the
Double-Signature vulnerabilities (Phase 7).

Here is a summary of the lessons we learned from working with AGENT:

1. Selection of rules. In our current settings (Figure 3), we can test 350 attack instances per second, or
107 instances in about 8 hours. This limitation, together with the desire to increase coverage, propelled
the selection of rules in each phase. We composed rule sets that do not derive more than a few millions

Testing Phases

1 2 3 4 5 6 7
Vulnerability Frag and | Evasive Finger Flushing HTTP HTTP Double Sig-
name Permute RST Padding Space Multiple nature

Padding Request

Tested attack finger-root finger-root finger-root finger-root perl-in-cgi perl-in-cgi fip-cwd
Described in A.l.l Al A2l A2.1 A22 A22 A2.3
Section
Rules in $° {BR1, R2} {Ri, R2, R3} {Rs} {R1, Rz, Rs) {Ry} {R7} {Ri1, Rs}
Instancesin A4 1631 3,628,960 25 6,820, 346 677,960 100 178, 585
As generation 0.1 70 < 0.1 180 5 < 0.1 4
time (sec)
% of eluding in- None 33 None 0.15 > 99 99 23
stances
First eluding in- None 14 None 1,037,096 6 1 2280
stance

“See rules description in Tables 1 and 3.

‘Table 5: Testing effort summary.

of instances (in some cases we slightly changed the rule specifications, see details in Appendix A). Our
goal is to improve AGENT, so testing more instances will become more practical.

2. The advantages of soundness. Unlike tools that modify an attack in a way that may not preserve its
semantics (e.g., [42]), every instance generated by AGENT implements the attack under consideration.
This greatly helps in finding attack instances that elude Snort, because no time was wasted on under-
standing whether a given sequence of TCP packets really implements the attack. This illustrates the
usefulness of sound testing tools, and AGENT in particular.

3. The advantages and disadvantages of completeness. In Phases 1 and 3 AGENT did not expose any
vulnerability. Since AGENT generates all instances with certain properties, in these phases it serves
like a verification tool. For example, after Phase 1, we can say that Snort correctly reassembles TCP
streams with six characters or less. Similarly, after Phase 3 we can say that the Snort pattern matching
algorithm correctly ignores spaces before the attack signature. While these are simple claims, they do
provide important information about Snort reliability. To the best of our knowledge, such verification
capabilities were not reported in the past in the context of NIDS. We hope that after improving AGENT
performance, we will be able to verify more complex properties.

Completeness has a disadvantage too. In Phase 4, for example, AGENT found the first instance that
eluded Snort only after generating more than a million instances. If we compare AGENT to a tool that
randomly samples instances out of a set of sound attack instances, the random tool would have found
an instance after checking 666 instances (on average). This observation suggests that AGENT and a
random tool could complement each other. We leave this investigation for future work.

7 Future Work

There are several directions for future work. We are working to expand our knowledge-base of rules.
We are exploring other link, transport, and payload level rules, to model attackers’ knowledge. In particular,
we intend to model code obfuscation rules that enable attackers to change binary code of network exploits.
We also intend to explore ways showing that the rules cover all possible ways to modify an attack.

We envision integrating AGENT into a NIDS development cycle. While AGENT is a powerful testing
tool, it can help NIDS developers in other tasks as well. To understand why a stream of packets implements
a given attack, AGENT can provide a derivation sequence that shows all transformations used by attackers.

Moreover, developers can use AGENT transformation rules, particularly the payload level rules, to construct
better signatures as we illustrated in Section 5.2.2 and in Appendix B.

Last, to improve AGENT capabilities as a NIDS validation tool, we intend to improve AGENT perfor-
marnce using techniques described by the deductive databases community.

References

[1] Digital information society. www.phreak.org.

[2] AIKEN, A. Introduction to set constraint-based program analysis. Science of Computer Programming
35,1 (1999).

[3] AIKEN, A., AND WIMMERS, E. Solving systems of set constraints. In The 7th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS) (Santa Cruz, CA, June 1992).

[4] ALLEN, J., CHRISTIE, A., FITHEN, W., MCHUGH, J., PICKEL, J., AND STONER, E. State of the
practice of intrusion detection technologies. Tech. Rep. CMU/SEI-99-TR-028, Software Engineering
Institute, Carnegie Mellon, Jan. 2000.

[5] BURROWS, M., ABADI, M., AND NEEDHAM, R. A logic of authentication. Tech. Rep. 39, DEC
Systems Research Center, Feb. 1989.

[6] CASWELL, B., BEALEAND, J., FOSTER, I. C., AND FAIRCLOTH, J. Snort 2.0 Intrusion Detection.
Syngress, Feb. 2003.

[71 CROSBY, S., AND WALLACH, D. Denial of service via algorithmic complexity attacks. In USENIX
Security Symposium (Washington, D.C., Aug. 2003).

[8] DEBAR, H., AND MORIN, B. Evaluation of the diagnostic capabilities of commercial intrusion de-
tection systems. In International Symp. on Recent Advances in Intrusion Detection (RAID) (Zurich,
Switzerland, Oct. 2002).

[9] DETRISTAN, T., ULENSPIEGEL, T., MALCOM, Y., AND UNDERDUK, M. S. Polymorphic shellcode
engine using spectrum analysis. Phrack Online Magazine 61 (Aug. 2003).

[10] DIETRICH, S. W. Extension tables: Memo relations in logic programming. In The Fifth International
Conference and Symposium on Logic Programming (San Francisco, Aug. - Sept. 1987).

[11] FIELDING, R., GETTYS, I., MOGUL, J., FRYSTYK, H., MASINTER, L., LEACH, P., AND BERNERS-
LEeg, T. RFC 2616 - Hypertext Transfer Protocol. The Internet Engineering Task Force, June 1999.

[12] HANDLEY, M., AND PAXSON, V. Network intrusion detection: Evasion, traffic normalization, and
end-to-end protocol semantics. In USENIX Security Symposium (Washington, D.C., Aug. 2001).

[13] HEINTZE, N., AND JAFFAR, J. A decision procedure for class of set constraints. In The 5th Annual
IEEE Symposium on Logic in Computer Science (LICS) (Philadelphia, PA, June 1990).

[14] HOPCROFT, I., MOTWANI, R., AND ULLMAN, J. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 2001.

[15] KINDRED, D., AND WING, J. M. Fast, automatic checking of security protocols. In USENIX 2nd
Workshop on Electronic Commerce (Pittsburgh, PA, Nov. 1996). .

[16] KRUEGEL, C., VALEUR, F., VIGNA, G., AND KEMMERER, R. A. Stateful intrusion detection for
high-speed networks. In IEEE Symp. on Security and Privacy (Berkeley, CA, May 2002).

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[27]

[28]

[29]

[30]
[31]

[32]

KyMIE M.C. TAN, K. S. K., AND MAXION, R. A. Undermining an anomaly-based intrusion detec-
tion system using common exploits. In International Symp. on Recent Advances in Intrusion Detection
(RAID) (Zurich, Switzerland, Oct. 2002).

LEE, W., CABRERA, J. B. D., THOMAS, A., BALWALLI, N., SALUIJA, S., AND ZHANG, Y. Perfor-
mance adaptation in real-time intrusion detection systems. In International Symp. on Recent Advances
in Intrusion Detection (RAID) (Zurich, Switzerland, Oct. 2002).

LIPPMANN, R., HAINES, J. W, FRIED, D. J., KORBA, J., AND DAS, K. Analysis and results of the
1999 DARPA off-line intrusion detection evaluation. In International Symp. on Recent Advances in
Intrusion Detection (RAID) (Toulouse, France, Oct. 2000).

LiPPMANN, R. P., FrRIED, D. J., GRrRAF, 1., HAINES, J. W., KENDALL, K. R., MCCLUNG, D.,
WEBER, D., WEBSTER, S. E., WYSCHOGROD, D., CUNNINGHAM, R. K., AND ZISSMAN, M. A.
Evaluating intrusion detection systems: The 1998 DARPA off-line intrusion detection evaluation. In
DARPA Information Survivability Conference and Exposition (Hilton Head, SC, Jan. 2000).

LowEg, G. Casper: A compiler for the analysis of security protocols. In IEEE Symp. on Security and
Privacy (Oakland, CA, May 1997).

LunT, T. Automated audit trail analysis and intrusion detection: A survey. In The 1lth National
Computer Security Conference (Baltimore, MD, Oct. 1988).

MARRERO, W., CLARKE, E. M., AND JHA, S. A model checker for authentication protocols. In
Proceedings of the DIMACS Workshop on Design and Formal Verification of Security Protocols (Pis-
cataway, NJ, Sept. 1997).

MARTIN ROESCH. Snort: the Open Source Network Intrusion Detection System.
http://www.snort.org.

MCAULIFFE, N., SCHAEFER, L., WOLCOTT, D., HALEY, T., KALEM, N., AND HUBBARD, B. Is
your computer being misused? In The Sixth Computer Security Applications Conference (Tucson, AZ,
Dec. 1990).

MCHUGH, J. Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion
detection system evaluations as performed by Lincoln Laboratory. ACM Transactions on Information
and System Security 3, 4 (Nov. 2000).

MEADOWS, C. Formal verification of cryptographic protocols: A survey. In 4th International Confer-
ence on the Theory and Applications of Cryptology (Asiacrypt) (Wollongong, Australia, Nov. 1994).

MEADOWS, C. A model of computation for the NRL protocol analyzer. In IEEE Computer Security
Foundations Workshop (June 1994).

MITCHELL, J. C., MITCHELL, M., AND STERN, U. Automated analysis of cryptographic protocols
using mur¢. In IEEE Symp. on Security and Privacy (Oakland, CA, May 1997).

MITRE CORPORATION. CVE: Common Vulnerabilities and Exposures. http://www.cve.mitre.org.

PAULSON, L. Mechanized proofs of security protocols: Needham-schroeder with public keys. Tech.
Rep. 413, University of Cambridge Computer Laboratory, 1997.

PAXSON, V. Bro: a system for detecting network intruders in real-time. Computer Networks 31, 23-24
(Dec. 1999).

[33]

[34]

[35]
(36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]
[44]
[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

POSTEL, J. RFC 793 - Transmission Control Protocol. The Internet Engineering Task Force, Sept.
1981.

POSTEL, J., AND REYNOLDS, J. RFC 959 - File Transfer Protocol. The Internet Engineering Task
Force, Oct. 1985.

PRAWITZ, D. Natural Deduction: a Proof-Theoretical Study. Almquist and Wiskell, 1965.

Ptacek, T. H., AND NEWSHAM, T. N. Insertion, evasion, and denial of service: Eluding network
intrusion detection. Tech. Rep. T2R-0Y6, Secure Networks, Inc., Calgary, Alberta, Canada, 1998.

RAMAKRISHNAN, R., SRIVASTAVA, D., AND SUDARSHAN, S. Efficient bottom-up evaluation of
logic programs. In Computer Systems and Software Engineering: State-Of-The-Art. Kluwer Aca-
demic Publishers, June 1992.

SCHIFFMAN, M. D. Libnet: A C library for portable packet creation and injection.
http://www.packetfactory.net/libnet.

SECURITY ADMINISTRATOR NEWSTELLER. Instant poll, October 2002.
www.windowsitsecurity.com.

SHMATIKOV, V., AND STERN, U. Efficient finite-state analysis for large security protocols. In IEEE
Computer Security Foundations Workshop (June 1998).

SOMMER, R., AND PAXSON, V. Enhancing byte-level network intrusion detection signatures with
context. In ACM conference on Computer and Communications Security (Washington, DC, Oct. 2003).

SONG, D. Fragroute: a TCP/IP fragmenter. http://www.monkey.org/ dugsong/fragroute/.
STERLING, L., AND SHAPIRO, E. The Art of Prolog. The MIT Press, Cambridge, MA, USA, 1994.
STEVENS, W. R. TCP/IP Hustrated, vol. 1. Addison Wesley, 1994.

TAN, K., MCHUGH, J., AND KILLOURHY, K. Hiding intrusions: From the abnormal to the normal
and beyond. In The 5th International Workshop on Information Hiding (Noordwijkerhout, Netherlands,
Oct. 2002).

THE NSS GROUP. Intrusion detection systems (IDS) group test (Edition 4), 2003.
www.nss.co.uk/ids/edition4/index.htm.

THE TcPDUMP GROUP. Libpcap: Packet capture library. www.tcpdump.org.

VIELLE, L. Recursive axioms in deductive databases. In First International Conference on Expert
Database Systems (Oct. 1986).

WAGNER, D., AND SO0TO, P. Mimicry attacks on host-based intrusion detection systems. In ACM
conference on Computer and Communications Security (Washington, DC, Nov. 2002).

Woo, T. Y. C., AND LAM, S. S. A semantic model for authentication protocols. In IEEE Symp. on
Security and Privacy (Oakland, CA, May 1993).

ZIMMERMAN, D. RFC 1288 - The Finger User Information Protocol. The Internet Engineering Task
Force, Dec. 1991.

ZIMMERMANN, H. OSI reference model - the ISO model of architecture for open systems intercon-
nection. IEEE Transactions on Communication 28, 4 (Apr. 1980).

A Description of Eluding Instances
A.1 Eluding Snort Using Transport Level Rules

In the first experiments, we focused on transport level transformations. Since these transformations
affect any TCP-based attack, we choose for testing the finger-root attack which is the simplest TCP-based
attack we could find.

finger-root is an information-leak attack where the attacker uses the finger service [34] to find the last
time root logged into the host. Since applying security patches typically requires root login, hosts that root
has not logged into for a long period of time are more likely to be vulnerable. The finger-root,,, » sequence
contains a single packet with six characters: the string “root” and two characters (carriage return and line
feed) used as an end-of-message marker for the finger server.

A.1.1 Frag-and-Permute

One of the earliest transport transformations documented in the literature targets the NIDS TCP reassem-
bly mechanism [36]. In the fragment and permute transformation, the attacker first fragments the attack and
then permutes the fragments. Since the NIDS observes the permuted attack, if the NIDS TCP reassembly
engine is malfunctioning, then the NIDS may miss some of the attack instances. Since Snort performs TCP
reassembly, it should be robust against such attacks.

Snort correctly identifies all instances of the frag-and-permute finger-root attack. We conclude that, at
least for short attacks, Snort reassembly mechanism works correctly.

A.1.2 Evasive RST Injection

We added the rules for semantically preserving retransmissions of RESET packets (Table 2). Since
legitimate RST (reset) packets cause a TCP connection to terminate, the purpose of an evasive RST packet
is to convince the NIDS that the attacker terminates the connection while the connection was not truly
terminated. When this happens, the NIDS stops tracking the connection while the attacker and victim
continue to accept and respond to messages.

i 1 1
1 i !
1 1 1
1 | i
i | 1

'

a, RST 5€q:1:3(2) "ro”

8 $89:1:7(6) “root\n”

1.+ ack 7 “root detalls... 85 5eC 4:7(3) "ty
8
Attacker NIDS Victim . ack7 "root detalls...”
Attacker NIDS Victim
(a) The finger-root ,, p instance. (b) Evasive RST finger-root attack.

Figure 4: TCP evasive RST attack.

Evasive RST Description. To better understand the evasive RST bug, we first demonstrate Snort behavior
on the finger-root ;,p instance that does not contain an evasive RST (Figure 4a): (1) The attacker sends
a1 containing the string “root\n”. (2) To avoid accepting evasive RST packets, Snort first verifies that a;
fits into its image of the victim’s TCP window, then it applies the pattern matching algorithm on aq, and

finally it generates a finger-root alert because a; matches Snort finger-root signature. (3) Snort observes the
victim’s response (r1) and updates its image of the victim’s TCP window: it changes the boundaries of the
window so any packet that ends with a sequence number smaller than 7 will be (justifiably) ignored.

Figure 4b describes an instance of a finger-root attack that include an evasive RST. (1) The attacker sends
a packet containing the string “roo” (a1). The attacker immediately retransmit a1, but in the retransmitted
packet (az) the payload size is smaller, and the RST flag is set. (2) Snort verifies that a; fits into (its image
of) the victim’s TCP window and applies the pattern matching algorithm. Since there is no match, no alert
is generated. (3) Since the victim’s window was not updated yet (it is updated only after victim responses),
Snort considers as valid and acts according to RST semantics: it stops tracking this TCP session and deletes
all data associated with this connection. (4) The victim receives a; before ao, so the victim rejects ag
because it is out of its TCP window (due to a1). As a result, the victim does not terminate the connection.
(5) Snort observes r1 and ro. Since the connection was terminated, Snort initializes a new connection and
start following it. (6) Snort validates and accepts a3. Since ag does not contains “root”, and since a; was
already deleted from memory, Snort misses the signature “root”.

What went wrong? At point (3) in Figure 4b, there is no way to know whether the RST packet will be
accepted or rejected (ambiguous retransmission problem, see p. 309 in [44]). Hence, Snort concludes that
the connection was terminated was done too early and wrongly. Interestingly, when we analyzed Snort code,
it was clear that the developers made an effort to validate RST packets, but missed this corner case.

How did AGENT find it? AGENT used set of transport rules to generate all possible evasive RST cases
(Table 2). In this case, the size finger-root 4 is large, more than 3.6 million instances. Still, AGENT generates
all attack variants in this case. Since 2% of the variants exposed the RST bug in Snort, and, more importantly,
since even short sequences with a single RST exposes it, the bug was exposed in the first 1000 attack
instances checked.

Remedy. One way to solve this problem is to defer handling a RST packet until it is clear whether the
packet has been accepted. This solution was proposed by Handley and Paxson [12], but it complicates the
TCP state tracking in Snort. Instead, after we reported the bug, Snort developers issued a fix (in version
2.0.2) in which Snort does not terminate a connection when it observes a RST packet. Snort waits until the
connection is idle for a certain amount of time and then flushes the connection out of memory.

A.2 Eluding Snort Using Payload Level Rules

Since other variants of transport transformations had already been investigated [12, 36], the rest of our
experiments focus on payload level transformations. We do not claim that Snort is robust against other
transport level modifications, but we leave investigating those for future work.

A.2.1 Flushing: A General Payload Attack

We first focus on the simple finger-root attack. To find payload rules for the finger service we reviewed
the finger specification [51]. We observed that there are two options to change the payload of a finger query:
to add spaces before the username, and to include escape characters, such as backspace, in the username.
Since the finger daemon in our experiments does not support escape characters (BSD-finger version 0.17),
we only used the first option, the finger-padding rule (Table 3).

When using finger-padding alone, AGENT did not find any undetected instance. However, adding the
TCP-Fragmentation rules (Table 1) exposed the flushing vulnerability.

Flushing Description. As previously mentioned, Snort performs TCP reassembly to avoid simple frag-
and-permute attacks. Since attack signatures can be fragmented over several TCP packets that can arrive
out-of-order, Snort buffers the packets data. Once in a while, using a pseudo-random method, Snort flushes
the data buffer: it reassembles the data, checks the data for matching signatures, and deletes the data from

memory.

AGENT found an attack instance the eluded Snort by exploiting this mechanism (Figure 5): (1) the
attacker sends a long packet (a;) that contains 258 spaces followed by the string “ro”. Snort observes ay
and buffers it. (2) When Snort observes that the victim received a1, it flushes its TCP data buffer because
the buffer size is larger than a given threshold. Since “root” is not part of the buffer, Snort does not generate
any alert. (3) When Snort observes as, its reassembly mechanism cannot reassemble the full “root” because
aj was already deleted from memory.

What went wrong? The fundamental problem is that Snort reapplied the pattern matching algorithm
separately on each data packet and independently from previous packets. Buffering of data, checking the
data for matching signatures at random points in time, and deleting the data after checking, reduced the
probability of a signature being split across checks but did not completely prevent such a case. Furthermore,
AGENT found that the implementation of random flushing in Snort was not effective. Even though flushing
points were randomly selected, they were never larger than 260 bytes, so the reassembly buffer was always
flushed when its size exceeded 260 bytes. If attackers could inflate the attack payload by 260 bytes, they
would always be able to split the signature between two independent applications of the pattern matching
algorithm?.

How did AGENT find it? AGENT generated all possible instances from the finger-padding and TCP-
Fragmentation rules that are shorter than 500 bytes and contain up to three TCP packets. In this case,
finger-root & contains 6.8 x 10° instances and the first eluding instance was found after less than an hour.

Remedy. The pattern matching module should continuously monitor the stream of data, and should not
back off to its initial state after each packet it receives. Bro, which is a NIDS developed for research
purposes, adopts this approach [32].

4, seq:1:261(

260) (<258 Spaces>ro)

3, 569:261:265(4)(ot\n

Ty {root details...)

Attacker NIDS Victim

Figure 5: finger-root flushing attack.

A.2.2 Eluding Snort using HTTP transformations

Our next goal was to find instances that elude Snort for an attack more serious than finger-root. We
choose the perl-in-cgi attack in which the attacker tries to force a Web server to execute a PERL script on
their behalf. When the Web server is mis-configured, the attacker script run under the privileges of the Web
server, usually root, so the attacker can execute arbitrary commands on the server.

This attack uses HTTP, which is very common among attackers; 39% of Snort rules target HTTP com-
munication. To identify perl-in-cgi, Snort uses the signature “GET*/perl.exe” (sid #832 [24])*. We have

3 Just before the submission of this paper, this vulnerability was reported by Sommer and Paxson [41]. However, they did not show
that it can always be exploited.
“The “GET” is not part of the signature, but Snort checks for its existence as part of its HTTP decoding

developed three payload rules for HTTP: HTTP multiple requests, HTTP space padding, and HTTP URL
encoding (Table 3). We have investigated only the first two; the third is left for future work.

We applied the above rules and found two type of instances of perl-in-cgi that Snort did not detect.

1. HTTP space padding. More than 8 spaces after the “GET” cause Snort to miss the attack when Snort
uses its default configuration, and report a “Large HTTP method” alert instead of the perl-in-cgi alert
after we have modified the configuration as we describe below.

What went wrong? The fundamental problem is that Snort reports only a single alert per TCP packet.
In this case, Snort identifies an abnormally large HTTP method (“GET” + eight spaces), so it generates
a “Large HTTP Method” and does not continue to check for other alerts. However, the “Large HTTP
Method” is generated only if Snort’s internal_alerts flag is set. Unfortunately, the internal_alerts flag is
unset by default, so under the default configuration no alert is generated.

To the best of our knowledge, there is no description of this flag anywhere in Snort distribution, though
a recently published book describes it [6]; one learns about the existence of this flag only by browsing
the code.

How did AGENT find it? AGENT uses the HTTP-space-padding to add spaces between the “GET”
and “/perl.exe”; it added 5 spaces at a time, up to 250 spaces. We also used TCP-fragmentation rule lim-
ited to three packets in each instance (TCP-fragmentation was not necessary for this attack). perl-in-cgig
contains 2.7 x 10° instances and more than 99% of them eluded Snort.

Remedy. The fix for the default configuration is easy. It would be helpful if all options supported by
Snort would be documented (although undocumented options are common among publicly available
tools). The situation where one alert hides a more meaningful one is common in NIDS [8], but we are
not aware of any systematic solution for this problem.

2. Multiple HTTP Requests. Snort does not detect a malicious HTTP request that is placed after a benign
request in the same TCP packet.

What went wrong? Snort’s HTTP decode engine, which decodes hexadecimal values in a URL into
printable characters, decodes only the first HTTP request in each TCP packet. Interestingly, the software
interface to the decoding engine permits more than a single HT'TP request. This indicates that Snort
developers were aware of the possibility to have several HTTP requests in a single TCP packet, but this
functionality was not implemented yet.

How AGENT we find it? AGENT uses the HTTP Multiple Requests rule. The second instance AGENT
generated eluded Snort.

Remedy. Enables Snort to handle more than one HTTP request in a single TCP packet.
A.2.3 Double Signature: Another General Payload Attack

Our last goal was to find an instance of the ftp-cwd attack that eludes Snort. This goal is challenging
because Snort has two rules that it uses to detect the attack.

1. CWD rule (sid: #1919 [24]). According to Snort documentation [6], this rule should trigger an alert if
an end-of-line character, (“\n”), is not found within 100 characters after a CWD command. However, in
the current Snort implementation, this rule triggers an alert if an end-of-line character is not found within
100 characters after a CWD command, and before the end of the TCP packet. In other words, a TCP
packet that contains “CWD” must also contain a “\n” somewhere after the “CWD”. One might consider
such behavior overly strict because it increase Snort detection sensitivity: the attacker must include both
“CWD” and “\n” in the same packet, so it limits the attacker’s ability to find fip-cwd instances that elude
Snort.

2. Large packet rule (sid:#1748 [24]). Since FTP commands are usually short, the packets that flow into
the FTP server are also short. This rule triggers an alert if a TCP packet that flows into the FTP server is
larger than 100 bytes.

Given this situation, we had no choice but to let AGENT to perform an exhaustive search for a new
ftp-cwd variant that eludes Snort. AGENT exposed the regular expression attack described below.

Double signature description. Figure 6 presents an instance of the fip-cwd that eluded Snort. (1) After
login, the attacker sends a packet containing two FTP commands: an innocent CWD command (“CWD
/tmp\n”) and the malicious CWD command. (2) Snort applies pattern matching. Due to a bug in the pattern
matching algorithm, it identifies the innocent “CWD /tmp\n” but misses the beginning of the buffer overflow
(“CWD aa...”) even though the second CWD command violates the CWD rule mentioned above. (3) Even
after reassembly, due to the same bug, Snort misses the malicious CWD command.

ry (230 User anonymous.. logged in ...)

®

a5 208:288(84) (CWD Amp\nCWD aaa...)

——

T———

: r,7 ack 4208
’/’_________«_?—“_———'

Attacker NIDS Victim

Figure 6: FTP-CWD Double Signature Attack.

a; 288:372(84) (hhhh...)

What went wrong? The pattern matching algorithm does not correctly handle signatures from the type
“foo*bar”. The algorithm fails to recognize this pattern in a string like “foo_JUNK _rab.foo JUNK bar™.

After analyzing the prefix “foo_JUNK_rab” the algorithm incorrectly concludes that the string does not
contain the pattern “foo*bar”.

Similarly, in the case of Figure 6, the algorithm failed to identify the pattern “CWD”-(=’\n")!%° when it
appears after the pattern “CWD*\n”.

How did AGENT find it? AGENT uses FTP-padding and TCP-Fragmentation rules. ftp-cwdg contains
179 x 102 instances and 23% of them eluded Snort. The first eluding instance was found immediately.

Remedy. Use a good library for regular expression matching.

B Using Set Constraints to Generate Signatures

Recall that an attacker can transform a malicious HTTP request by encoding the URL., adding spaces
between the HTTP method and the URL, and adding a sequence of innocent HTTP requests before the
malicious one. These transformations can be modeled as set constraints [2, 3, 13] and solved using standard
techniques from the literature. The solution to these set constraints can be used as signatures to detect
malicious payloads in NIDS. We plan to explore this avenue in the future. However, we explain this idea
using the HTTP example. Let {b1,--- , by} be the set of malicious URLs and h be the substitution that
corresponds to encoding printable characters in a URL with their equivalent ASCII values. Recall that
regular languages are preserved under substitutions [14]. Let badURL and goodURL be the set variables
corresponding to malicious and innocent URLSs, respectively. The transformations that an attacker can make
to a URL can be formulated as follows:

{bl,"' ,bk} _C_ badURL (1)
h(badURL) C badURL)
LURL N (”‘!badURL) (_: goodURL (3)

The language Lyg; is the regular expression for all valid URL names according to the standard [11]. The
set constraints given above can be solved using standard techniques from the literature. However, in this
special case we can obtain the following solution:

h({bi, -+ ,bx}) = DbadURL
Lyrr NV =(h({b1,--- ,bg})) = goodURL

Using the regular expressions for badURL and goodURL, we can derive regular expressions for malicious
HTTP requests and use them as signatures in a NIDS.

C Prolog Implementation

Description

Prolog Implementation

AGENT’s main predicate. A’ is a variant of Aas, . The main predicate is based
on the observation that payload rules can be applied before transport rules (Sec-
tion 5.2.2).

derive(Anep, A') «—
apply-payload(Anrapr;s Artar)s
apply transport(Ahser, A').

Payload rules application. Here, the predicate contains only a single finger-
padding rule which inserts between 0 to 250 spaces before the username in a
finger query. To support other attacks, the finger-padding rule should be replaced
with the specific payload rules.

apply-payload({P, S, F},[P’, S, F]) «
Jinger_space_pad(P, 250, P').

Transport rules application. The predicate fragments the input, then permutes it,
and last it adds retransmission packets. For ease of presentation, the implemen-
tation here is slightly different then the specification given in Table 1. In Table 1,
permutation is done on a stream that contains retransmitted packets, but here it
is done without them. However, all vulnerabilities reported in Section 6, can be
found using this implementation.

apply.transport(IN,QUT) «
tep_frag{IN,TMP1),
tep_permute(T M P1,TMP2),
tepretrans(TMP2,0UT),

Insert between 0 and L spaces before the payload P.

finger_space_pad(P, L, P') «
between(0, L, X),
spacelist(X, SP),
append(SP, P, P').

A recursive predicate that performs TCP fragmentation. The
first packet ([P, S,F]) is fragmented into two parts, P1 and P2
(frag-packet([P, S, F],[P1,P2])). For each possible {ragmentation of
P, P2 is pushed in front of the stream tail (push-front(P2,TL, NTL)).
Then the new tail is fragmented recursively (tcp_frag(NTL,S1)). Last,
for each possible fragmentation of the new tail, P1 is pushed in the front
(push_front(P1,51, L)).

tep-frag(|],[]) « true.

tcp-f’rag([[P, 57 F] |TL]7 L) o
frag.packet([P, S, F}, [P1, P2]),
push_front(P2,TL, NTL),
tep-frag(NTL, S1),
push_front(P1,S51,L).

Permutation of a TCP stream. Uses built-in Prolog permutation predicate.

tep_permute(IN,QUT) «—
permutation(IN,QUT).

A recursive predicate that performs TCP retransmission. The retrans_packet
predicate returns a stream (S1) containing the first packet ([P, S, F]) and its re-
transmitted version. Then the predicate is applied recursively on the tail of the
original stream, For each new tail, S1 is push in the front.

tepretrans({], []) < true.

tep_retrans([[P, S, F||TL],OUT) «
retrans_packet([P, S, F], S1),
tep_retrans(TL, S2),
append(S1,52, OUT).

Fragmentation of a single packet. The output is a stream of two pack-
ets, [P1,S,F| and [P2,52, F], which are the fragmentation of the in-
put packet, [P,S,F]. First, the payload is fragmented into two parts
(append(P1, P2, P)).P2 may be empty, so P1 holds the original payload.
Then, the sequence number of P2 is fixed (plus(L, S, 52)). For ease of presenta-
tion, the current implementation does not show the adding of an acknowledgment
after P1 as specified in Table 1.

frag-packet([P, S, F|,

P15, Fl, [P2, 52, F])) —
append(P1, P2, P),
not.empty(P1),
length(P1,L),
plus(S, L, 52).

Table 6: The core of AGENT implementation. Due to space constraints we do not show the implementa-

tion for all rules discussed in this paper.

