
],

is
th
3]).
m
-
a-

ve
le
lly

n-
se
ts

ol
]
-
d

r-
ta
a

ck-
ted
l’s

rt,

-
nts

ta-
d

o-
st
s,
ys-
se
MRNet: A Software-Based Multicast/Reduction Network
for Scalable Tools

Philip C. Roth, Dorian C. Arnold, and Barton P. Miller

Computer Sciences Department
University of Wisconsin, Madison

1210 W. Dayton St.
Madison, WI 53706-1685 USA

{pcroth,darnold,bart}@cs.wisc.edu

Abstract

We present MRNet, a software-based multicast/reduction
network for building scalable performance and system
administration tools. MRNet supports multiple simultaneous,
asynchronous collective communication operations. MRNet is
flexible, allowing tool builders to tailor its process network
topology to suit their tool’s requirements and the underlying
system’s capabilities. MRNet is extensible, allowing tool
builders to incorporate custom data reductions to augment its
collection of built-in reductions. We evaluated MRNet in a
simple test tool and also integrated into an existing, real-world
performance tool with up to 512 tool back-ends. In the real-
world tool, we used MRNet not only for multicast and simple
data reductions but also with custom histogram and clock skew
detection reductions. In our experiments, the MRNet-based
tools showed significantly better performance than the tools
without MRNet for average message latency and throughput,
overall tool start-up latency, and performance data processing
throughput.

Keywords: Scalability, tools, multicast, reduction,
aggregation.

1 Introduction
The desire to solve large-scale problems in areas

like climate modelling, computational biology, and par-
ticle simulation has driven the development of increas-
ingly large parallel computing resources. There has been
a steady deployment of traditional high-end parallel sys-
tems with many processors, such as the various ASCI

systems [1] in the USA, Japan’s Earth Simulator [9
and HPCx [26] in the UK. Coupled with the low
price/performance ratio of commodity hardware, th
desire has also led to the proliferation of clusters wi
hundreds and even thousands of nodes (e.g., [7,13,2
Unfortunately, performance, debugging, and syste
administration tools that work well in small-scale envi
ronments often fail to scale well as systems and applic
tions get larger. To address this problem we ha
developed MRNet, an infrastructure providing scalab
multicast and data aggregation support especia
designed for scalable tools.

A parallel tool’s functionality can be divided into
two categories: (1) data collection, analysis, and prese
tation; and (2) control of application processes. The
activities are implemented by one or more componen
within the tool system. The components of a typical to
system are shown in Figure 1a; tools like TotalView [10
and Paradyn [23] follow this organization. Data collec
tion and process control occurs in the tool’s back-en
components (often called tooldaemons) running on the
nodes of a parallel or distributed system. The user inte
acts with the tool via the user interface component. Da
analysis and high-level control may be implemented in
separate component or be co-located with the tool ba
ends. Often, analysis and user interface are implemen
in the same component, commonly called the too
front-end.

All tool activity comes at a cost. If any activity’s
cost is larger than the underlying system can suppo
that activity limits the tool’s overall scalability. These
costs can be placed into one of several categories:
• Computation. Tools incur a computation cost when

ever some processor executes code that impleme
tool functionality. A tool’s most obvious computation
cost is for data analysis, but the tool pays a compu
tion cost for other activities like data collection an
user interaction.

• Communication. Tools incur a communication cost
whenever they transfer data between tool comp
nents. For example, tools incur a communication co
if they transfer data from their back-ends for analysi
either because the analysis occurs on a different s
tem than the one on which it was collected or becau

This work is supported in part by Department of Energy
Grant DE-FG02-93ER25176, Lawrence Livermore National
Lab grant B504964, and NSF grants CDA-9623632 and
EIA-9870684. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes not-
withstanding any copyright notation thereon.

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior
specific permission and/or a fee.

SC’03, November 15-21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0011...$5.00

in

p-
d

og-

nt
a
an
re

n
]).
ll-
el

t
n

o
et
ys-
li-
d

t-
t-

,
uc-
o
n
ers
e

the analysis is centralized. There is a communication
cost for transferring control requests and responses
within the tool system. Tools with a parallelized anal-
ysis incur a communication cost for exchanging data
between analysis components. Finally, if a tool’s
analysis and user interface activities are not imple-
mented in the same tool component, there is a com-
munication cost to transfer analysis results to the user
interface component for display.

• Storage.Tools that do not analyze data when it is col-
lected (often calledpost mortem tools) must store the
data for later analysis. These tools pay a storage cost
wherever the data is stored. For examples, some tools
leave the data on storage local to the nodes where it
was collected, while others transfer the data to a cen-
tralized file server.

Different types of tools pay these costs at different
times. We can characterize a tool based on when it per-
forms the bulk of its data analysis. Anon-line toolana-
lyzes data while the monitored system or application is
running. Consequently, such a tool pays the communi-
cation cost for transferring data for analysis as the sys-
tem or application runs. On-line tools are usually
closed-looptools that dynamically control the applica-
tion or system based on their analysis. A tool may also
use an on-line analysis to avoid the cost of storing data
between collection and analysis. In contrast, a post mor-
tem tool stores the collected data in files or in a database
for off-line analysis. Depending on where the data is
stored and where it must be for the analysis, such a tool
may incur a pre-analysis communication cost as the data
is being collected, after all data is collected, or not at all.

MRNet is a parallel tool infrastructure that reduces
the cost of many of these important tool activities.
MRNet-based tools incorporate a tree of processes

between the tool’s front-end and back-ends as shown
Figure 1b. MRNet uses theseinternal processesto dis-
tribute tool activities, reducing analysis time and kee
ing tool front-end loads manageable. MRNet-base
tools send data between front-end and back-ends on l
ical flows of data calledstreams. MRNet internal pro-
cesses usefilters to synchronize and aggregate data se
to the tool’s front-end. Using filters to manipulate dat
in parallel as it passes through the network, MRNet c
efficiently compute averages, sums, and other mo
complex aggregations on back-end data.

This type of communication structure has bee
examined previously (e.g., [3,11,17,20,21,25,28
However, several features make MRNet especially we
suited as a general facility for building scalable parall
tools:
• Flexible organization. MRNet does not dictate the

organization of MRNet and tool processes. MRNe
process organization is specified in a configuratio
file that can specify common network layouts likek-
ary andk-nomial trees, or custom layouts tailored t
the system(s) running the tool. For example, MRN
internal processes can be allocated to dedicated s
tem nodes or co-located with tool back-end and app
cation processes. Furthermore, MRNet can off-loa
all data aggregation processing from a tool’s fron
end by using a single connection between the fron
end and the top-most MRNet internal process.

• Scalable, flexible data aggregation.MRNet’s built-
in filters provide efficient computation of averages
sums, concatenation, and other common data red
tions. Custom filters can be loaded dynamically int
the network to perform tool-specific aggregatio
operations. For example, Paradyn uses custom filt
to implement a scalable algorithm for detecting th

(a) (b)

Figure 1: The components of a typical parallel tool (a) and an MRNet-based parallel tool (b).
Shaded boxes show potential machine boundaries.

User Interface

Analysis and Control

Back-End 0

Process 0

Back-End 1

Process 1

Back-End n-1

Process n-1

...

...

User Interface

Analysis and Control

Back-End 0

Process 0

Back-End 1

Process 1

Back-End n-1

Process n-1

...

...

......... ...

... ...

M
R

N
et Internal

P
rocesses

...
2

nd
at
of
m
le
ble
e

e
re-
ess

b-
o-
the

gy
d by
-
gy
te
ify
s-

,
s
-
s
-
e
d.
d
ly
s,
tly
t
e

e
l-

s
d

nds

m.
-
m-
,
ol
n

re-
es
clock skew between the tool front-end and each Para-
dyn daemon. Paradyn also uses a custom histogram
filter to place its back-ends into equivalence classes
based on the program resources (e.g. functions) dis-
covered by each back-end.

• High-bandwidth communication. MRNet transfers
data within the tool system using an efficient, packed
binary representation. Zero-copy data paths are used
whenever possible to reduce the cost of transferring
data through internal processes.

• Scalable multicast. As the number of back-ends
increases, serialization when sending control requests
limits the scalability of existing tools. MRNet sup-
ports efficient message multicast to reduce the cost of
issuing control requests from the tool front-end to its
back-ends.

• Multiple concurrent data channels. MRNet sup-
ports multiple logicalstreamsof data between tool
components. Data aggregation and message multicast
takes place within the context of a data stream, and
multiple operations (both upward and downward) can
be active simultaneously.

MRNet is part of a larger effort to improve the scal-
ability, reliability, and resiliency of parallel performance
and system administration tools. MRNet addresses the
problem of non-scalable global data processing and
non-scalable global command and control.Global data
processingis the aggregation of data taken from all pro-
cesses in an application or nodes in a system, whereas
local data processingis the collection and analysis of
data taken from a single process or system node. Other
aspects of our scalability work involve a distributed
strategy for automatically finding application perfor-
mance problems, distributed performance data manage-
ment, and scalable visualizations of performance
analysis results. This paper introduces MRNet and eval-
uates its scalability; its reliability and resiliency charac-
teristics will be addressed in future work. The context
for our work is Paradyn [23], a parallel performance tool
supporting automated application performance problem
searches.

In the next section, we detail MRNet concepts,
implementation, and API. Section 3 describes our expe-
rience integrating MRNet into the Paradyn performance
tool. Section 4 presents a quantitative analysis investi-
gating MRNet’s impact on tool scalability. We discuss
how MRNet relates to previous work in this area in
Section 5.

2 The Multicast/Reduction Network
MRNet is a customizable, high-throughput commu-

nication software infrastructure for parallel tools.
MRNet has two main components:libmrnet, a library
that is linked into a tool’s front-end and back-end com-
ponents, andmrnet_commnode, a program that runs on

intermediate nodes interposed between the front-e
and back-ends. The MRNet library exports an API th
enables interaction between the front-end and groups
back-ends via MRNet. The mrnet_commnode progra
distributes data processing functionality across multip
computer hosts and implements efficient and scala
group communications. We present an overview of th
MRNet architecture, followed by discussions of th
interface, internal process implementation, data agg
gation mechanisms, system instantiation, and proc
network topology issues.

2.1 MRNet Overview
The MRNet library, libmrnet, allows a tool to use a

network of internal processes as a communication su
strate between the tool’s front-end and back-end pr
cesses. The internal processes are instances of
mrnet_commnode program. The connection topolo
and host assignment of these processes is determine
a configuration file, thus the geometry of MRNet’s pro
cess tree can be customized to suit the physical topolo
of the underlying hardware. While MRNet can genera
a variety of standard topologies, users can easily spec
their own topologies. See Section 2.6 for further discu
sion on MRNet process topologies.

MRNet usescommunicatorsto represent groups of
network end-points. Like communicators in MPI [22]
MRNet communicators provide a handle that identifie
a set of end-points for point-to-point, multicast or broad
cast communications. In contrast to MPI application
that typically have a non-hierarchical layout of poten
tially identical processes, MRNet enforces a tree-lik
layout of all processes rooted at the tool front-en
Accordingly, MRNet communicators are created an
managed by the front-end, and communication is on
allowed between a tool’s front-end and its back-end
i.e. back-ends cannot interact with each other direc
via MRNet. This limitation reflects the design of curren
run-time tools but might be relaxed in the future if ther
appears to be a demand for such interaction.

A stream is a logical channel that connects th
front-end to the end-points of a communicator. All too
level communication via MRNet uses streams. Stream
carry data packets downstream, from the front-en
toward the back-ends, and upstream, from the back-e
toward the front-end. Each stream has a uniquestream
id that is used to identify packets sent on that strea
MRNet uses this stream id to support multiple, simulta
neous streams of communication among the same co
ponents within a tool instance. However
communication via MRNet between separate to
instantiations is not supported; each tool has its ow
MRNet network instantiation.

Data packets carry typed data, enabling data agg
gation operations to be associated with a stream. Typ
3

e
ch

ia

re-
the
int

i-
o-
s
-
per-
as
in
or

ts

am
am
e
on
ger

ion
ss
ti-
on
e
ser
.
r-
in
d,

hed
e
e
re
a

are specified using a format string similar to that used by
C formatted I/O primitivesprintf and scanf . For
example, a packet whose data is described by the format
string “%d %f %s” contains an integer, float, and char-
acter string. MRNet also adds specifiers for arrays of
simple data types.

Data aggregation is the process of transforming
multiple input data packets into one or more output
packets. Though it is not necessary for aggregation to
result in less data or even different data, aggregations
that reduce or modify data values are most common.
MRNet usesfilters to aggregate data packets. A filter
may be bound to a stream when the stream is created,
thus specifying the aggregation operation to perform
and the expected type(s) of the data sent on the stream.
MRNet uses two types of filters: synchronization filters
and transformation filters. Synchronization filters orga-
nize data packets from downstream nodes into synchro-
nized waves of data packets. Transformation filters
operate on input data packets flowing either upstream or
downstream, yielding one or more output packets.

2.2 MRNet Interface
The MRNet API consists of network, end-point,

communicator, and stream C++ objects that a tool’s
front-end and back-end use for communication. The net-
work object is used to instantiate the MRNet network
and access end-point objects representing available tool
back-ends. The communicator object is a container for
groups of end-points, and streams are used to send data
to the end-points in a communicator.

Simplified code for an example tool front-end and
back-end is shown in Figure 2. In the front-end code,
after the variable definitions in lines 1-4, an instance of
the MRNet network is created in line 5 using the topol-
ogy specification fromconfig_file . At line 6, the
newly created network object is queried for an auto-gen-
erated broadcast communicator that contains all avail-
able end-points. In line 7, this communicator is used to
build a stream that will use a “floating point maximum”
filter to find the maximum value of floating point data
sent upstream. The front-end then might send one or
more initialization messages to the back-ends; on line 9
of our example code, we broadcast an integer initializer

and await the single floating point value result. Th
back-end code reflects the actions of the front-end. Ea
tool back-end first connects to the MRNet network v
the init_backend call in line 3. In contrast to the
front-end’s stream-specificrecv call, the back-ends
call a stream-anonymousrecv that returns both the
integer sent by the front-end and a stream object rep
senting the stream that the front-end used to send
data. Finally, each back-end sends a scalar floating po
value upstream toward the front-end.

2.3 MRNet Internal Processes
While libmrnet provides access to MRNet capabil

ties, it is the internal processes of a MRNet tree that pr
vide the core functionality. MRNet internal processe
implement logical channels for the flow of control mes
sages and data between the tools components and
form data aggregation or reduction operations
appropriate. Consequently, an internal process’ ma
task is to create and manage these logical channels
streams and correctly control the flow of packe
through the system.

Internal processes use astream managerobject to
manage control flow and route packets. When a stre
is established, an internal process creates a new stre
manager and initializes it with the set of end-points to b
associated with the stream and the filter(s) to be used
data packets sent on the stream. The stream mana
also maintains an appropriate list ofchildren nodesfor
the stream; a child node object represents a connect
directly to an end-point or to another internal proce
through which at least one end-point in the set can ul
mately be reached. Figure 3 illustrates the organizati
of the functional layers within an internal process. W
describe these layers by discussing the path that u
data packets take on upstream and downstream flows

Upstream data flow exercises all the layers of inte
nal process functionality bounded by the dashed line
Figure 3. Packets must be unbatched, demultiplexe
synchronized, perhaps aggregated, and re-batc
before continuing their upstream journey toward th
front-end. Incoming packet buffers must first b
unbatched into individual packets. Data packets a
batched into packet buffers, which logically represent

front_end_main(){

1. MR_Network * net;
2. MR_Communicator * comm;
3. MR_Stream * stream;
4. float result;
5. net = new MR_Network(config_file);
6. comm = net->get_broadcast_communicator();
7. stream = new MR_Stream(comm, FMAX_FIL);
8. stream->send(“%d”, FLOAT_MAX_INIT);
9. stream->recv(“%f”, result);
}

back_end_main(){

1. MR_Stream * stream;
2. int val;
3. MR_Network::init_backend();
4. MR_Stream::recv(“%d”, &val, &stream);
5. if(val == FLOAT_MAX_INIT){
6. stream->send(“%f”, rand_float);
 }
}

Figure 2: MRNet front-end and back-end sample code.
4

ck-
ly

;
s
d

to
er.

of

or
re
ta
ets
g
e.
ut

ng
ns-

d
es
l-
fil-
er
a
n
:

d
ch
ach
r,

r
ks

e
d
-
ion
ed
series of communications destined for the same process,
to allow for fewer larger messages to be sent over busy
connections, reducing overall communication costs.
Each packet is tagged with its stream id that is used to
demultiplex the packets into their appropriate streams.
At the demultiplexing phase, packets are passed to the
appropriate stream manager instance that delegates con-
trol to filter objects for synchronization and aggregation.
After aggregation, packets destined for the upstream
node are re-batched into a single packet buffer that is
then scheduled for transmission to the upstream node in
the tree. Note that packets are manipulated by reference
whenever possible as they are passed between the layers
shown in Figure 3 to avoid unnecessary copying.

Downstream data flow is identical to upstream data
flow except in two respects. First, synchronization filters
are not supported for downstream data flows. Second, a
data packet flowing downstream may be placed in multi-
ple output packet buffers because the packet may be
destined for multiple back-ends. Like the upward path,
packets are buffered by reference to avoid copying.

2.4 Filters
Filters operate on data flowing throughout the net-

work. Synchronization filters receive packets one at a
time and do not output any packets until the specified
synchronization criteria has occurred. Transformation
filters input a group of packets, perform some type of
data transformation on the data contained in the packets
and output one or more packets. A distinction between
synchronization and transformation filters is that syn-
chronization filters are independent of the packet data
type, but transformation filters operate on packets of a
specific type.

Synchronization filters provide a mechanism to deal
with the asynchronous arrival of packets from children
nodes; the synchronization filter collects packets and
typically aligns them into waves, passing an entire wave
onward at the same time. Therefore, synchronization fil-

ters do no data transformation and can operate on pa
ets in a type-independent fashion. MRNet current
supports three synchronization modes:
• Wait For All: wait for a packet from every child node
• Time Out: wait a specified time or until a packet ha

arrived from every child (whichever occurs first); an
• Do Not Wait: output packets immediately.
Synchronization filters use one of these three criteria
determine when to return packets to the stream manag
Although we do not anticipate a need for it, new types
synchronization filters can be added by the user.

Transformation filters combine data from multiple
packets by performing an aggregation that yields one
more new data packets. Since transformation filters a
expected to perform computational operations on da
packets, there is a type requirement for the data pack
to be passed to this type of filter: the data format strin
of the stream’s packets and the filter must be the sam
Transformation operations must be synchronous, b
can carry state from one transformation to the next usi
static storage structures. MRNet provides several tra
formation filters that should be of general use:
• Basic scalar operations: min, max, sum and average

on integers or floats.
• Concatenation: operation that inputsn scalars and

outputs a vector of lengthn of the same base type.
MRNet is designed to allow tool developers to ad

new filters to the provided set. This discussion focus
on transformation filters; however, synchronization fi
ters share the same basic design with transformation
ters and may be added using similar techniques. In ord
to establish a new filter, a tool developer must provide
filter function that implements the data transformatio
operation. Filter functions have the following signature

The filter function takes a vector of data packets an
outputs a vector of data packets of arbitrary size. Ea
packet contains an array of data elements, where e
element consists mainly of a C union of type intege
float, character, or a pointer to arrays of these types.

Filter functions implemented by the tool develope
must be named and made known to MRNet. Both tas
are accomplished using theload_filterFunc func-
tion provided by the MRNet API. The
load_filterFunc function takes the name of a fil-
ter function to be used by the filter and the name of th
shared object file that contains the filter function, an
returns an id that identifies the new filter. MRNet front
end and internal processes access the filter funct
using the operating system’s API for managing shar
objects (e.g.,dlopen anddlsym on UNIX systems).

Figure 3: Functional layers within an MRNet
internal process.

Data Encoding

Data Transformation Operation

Data Decoding

Data-Specific Aggregation

Packet Synchronization

Packet Batching/Unbatching

Packet Batching/Unbatching

void filter_func(std::vector<Packet*>& inPackets,
std::vector<Packet*>& outPackets,
void** clientData);
5

nd
ng
n

y
use

t-
e
ur
to

l-

n
er:
ed
he
res
-
he
cy
m
;
re-
l

n
t
ame
et-
ted
as
es
d

he
s
al-
eir
is

e
a-
al
ose
of

on
es,
e
ble

an
y.
ve
-

2.5 MRNet Instantiation
While conceptually simple, creating and connecting

the MRNet process network is complicated by interac-
tions with the various job management systems. In the
simplest environments, we can launch jobs manually
using facilities likershor ssh.In more complex environ-
ments, it is necessary to submit all requests to a job
management system. In this case, we are constrained by
the operations provided by the job manager (and these
vary from system to system). We currently support two
modes of instantiating MRNet-based tools.

In the first mode of process instantiation, MRNet
creates the internal and back-end processes, using the
specified MRNet topology configuration to determine
the hosts on which the components should be located.
First, the front-end consults the configuration and uses
rsh or ssh to create internal processes for the first level
of the communication tree on the appropriate hosts.
Each newly created process establishes a connection to
the process that created it. The first activity on this con-
nection is a message from parent to child containing the
portion of the configuration relevant to that child. The
child then uses this information to begin instantiation of
the sub-tree rooted at that child. When a sub-tree has
been established, the root of that sub-tree sends a report
to its parent containing the end-points accessible via that
sub-tree. Each internal node establishes its children pro-
cesses and their respective connections sequentially.
However, since the various processes are expected to
run on different compute nodes, sub-trees in different
branches of the network are created in concurrently,
maximizing the efficiency of network instantiation.

In the second mode of process instantiation, MRNet
relies on a process management system to create some
or all of the MRNet processes. This mode accommo-
dates tools that require their back-ends to create, moni-
tor, and control the application processes. For example,
IBM’s POE uses environment variables to pass informa-
tion, such as the process’ rank within the application’s
global MPI communicator, to the MPI run-time library
in each application process. In cases like this, MRNet
cannot provide back-end processes with the environ-
ment necessary to start MPI application processes. As a
result, MRNet creates its internal processes recursively
as in the first instantiation mode, but does not instantiate
any back-end processes. MRNet then starts the tool
back-ends using the process management system to
ensure they have the environment needed to create
application processes successfully. When starting the
back-ends, MRNet must provide them with the informa-
tion needed to connect to the MRNet internal process
tree, such as the leaf processes’ host names and connec-
tion port numbers. This information is provided via the
environment, using shared filesystems or other informa-
tion services as available on the target system.

2.6 MRNet Process Layout
MRNet allows a tool to specify a node allocation

and process connectivity tailored to its computation a
communication requirements and to the system runni
the tool. Choosing an appropriate MRNet configuratio
can be difficult due to the complexity of the tool’s own
activity and its interaction with the system. We briefl
discuss the issues related to process layout, but beca
our current work focuses on tool scalability a full trea
ment of optimal MRNet configurations is beyond th
scope of this paper. The configurations we used for o
experiments in Section 4 were chosen for their ability
show MRNet’s effect on tool scalability. We anticipate
future research will examine the issue of MRNet topo
ogy in more detail.

When choosing the process configuration for a
MRNet-based tool, there are two key issues to consid
whether the MRNet internal processes are co-locat
with the application processes under study, and how t
internal processes are connected. Our primary measu
of a configuration’s quality are its: (1) latency for a sin
gle broadcast operation, measured from initiation by t
front-end to the last receipt by a back-end; (2) laten
for a single data aggregation operation, measured fro
initiation by the back-ends to receipt by the front-end
(3) throughput for streams of broadcasts and data agg
gations; and (4) CPU utilization of the MRNet interna
processes.

The first issue to consider when choosing a
MRNet configuration is whether to co-locate MRNe
internal processes and application processes on the s
nodes. While the literature on broadcast/reduction n
works assumes that internal processes will be co-loca
with application processes, we believe this approach h
serious flaws in practice. First, the internal process
would contend with application processes for CPU an
network resources, perhaps seriously impacting t
application’s performance. Second, differing load
across MRNet internal processes could create an imb
ance among the application processes, skewing th
performance. Because a parallel program’s speed
often limited by its slowest process, this performanc
skew would increase the tool’s impact on the applic
tion. As a result, we recommend that MRNet’s intern
processes be located on resources distinct from th
running the application processes. Regardless
whether the MRNet internal processes and applicati
processes are co-located or are run on distinct nod
their overall resource usage is similar. Therefore, w
advocate separate location to achieve more predicta
and understandable application behavior.

The second issue to consider when choosing
MRNet configuration is the internal process topolog
Both balanced and unbalanced tree topologies ha
attractive properties for MRNet configurations. The lit
6

ol-
h
is
ol-
nd
.
up
t

ri-
n-

l-
n
o
e
e-
to
he
ce
n

ay
en
or

ion
nc-
t
e
a

ing
t-
s-
ted
n
rs

nt-

t-

ss
erature on parallel collective communication algorithms
argues for unbalanced tree topologies in many situa-
tions. For example, Bernaschi and Iannello [5] show that
the optimal communication tree for broadcast is some-
where between a single-level flat tree and a binomial
tree, depending on the latency for transferring messages
between processes and the minimum interval between
message send operations in a process. Similarly, optimal
algorithms for several broadcast and data aggregation
problems evaluated under the LogP [8,16] and
LogGP [3] models use unbalanced communication
trees. Unfortunately, this literature assumes all pro-
cesses involved in the operation are data sources (for
reductions) or sinks (for broadcasts), which is not the
case for MRNet’s internal processes.

Balanced tree topologies provide several attractive
advantages over unbalanced tree topologies for our
work. Their regularity makes them easier to analyze
when choosing the most appropriate size and shape for
the MRNet internal process tree. Also, although the
latency of individual collective communication opera-
tions may be worse with balanced trees than unbalanced
trees, they can provide better throughput for sequences
of collective communication operations. For example,
consider the MRNet tree topologies shown in Figure 4
connecting a tool front-end to sixteen tool back-ends.
Assuming a LogP model with a minimum gapg
between successive send operations in a process, an
overheado for each send and receive, and a message
transfer latencyL, the time required to complete a
broadcast operation to all sixteen back-ends using the
balanced tree topology shown in Figure 4a is
8g+4o+2L, but the tool can start a new broadcast each
4g cycles. A comparable unbalanced tree topology
reaching sixteen back-ends is shown in Figure 4b. This
topology is constructed from a binomial tree with four
nodes providing low-latency broadcast to each binomial
tree node, with four MRNet back-ends attached to each
binomial tree node. Depending on the relative values of
g, o, andL, a single broadcast operation using this topol-
ogy may complete before the balanced tree’s broadcast,
but a tool using this topology needs at least6g cycles
between each broadcast operation due to the larger fan-
out at the tree’s root. Furthermore, if the tool supports
six-way fan-out as is being used at the root of the unbal-

anced tree topology, then it could use a balanced top
ogy with a six-way fan-out throughout the tree to reac
far more than sixteen tool back-ends. Therefore, in th
paper we chose to experiment using balanced tree top
ogies, leaving an examination of unbalanced trees a
optimal communication topologies for future work
Because the ability of each internal process to keep
with its upward and downward data flow, the fan-out a
each internal process is limited. Therefore, our expe
ments use multi-level balanced trees with moderate fa
outs of four and eight.

3 A Real-World Tool Example
To evaluate MRNet’s usefulness for building rea

world scalable parallel tools, we modified the Parady
parallel performance tool to use MRNet. There are tw
main ways that Paradyn can use MRNet: to simplify th
complex interactions between front-end and tool da
mons during process start-up and initialization, and
off-load the performance data processing tasks from t
Paradyn front-end. Here we report on our experien
using MRNet within Paradyn. A quantitative evaluatio
of this use is presented in Section 4.2.

3.1 Scalable Tool Start-Up
Tools such as debuggers and performance tools m

transfer large amounts of data during tool start-up wh
they create or attach to an application’s processes. F
example, a debugger that sets breakpoints by funct
name might deliver the names and addresses of all fu
tions to the tool’s user interface. In parallel tools tha
follow the process organization shown in Figure 1a, th
front-end becomes a bottleneck when connected to
large number of application processes. Besides reduc
tool interactivity, the start-up latency caused by this bo
tleneck may create problems for parallel runtime sy
tems that fail if the application processes are not crea
in a timely fashion. Our modified version of Parady
uses both built-in and custom MRNet aggregation filte
for all activities involving the tool’s daemons (i.e., its
back-ends) during the tool start-up phase, including:
• reporting data about Paradyn daemons to the fro

end;
• distributing data about known performance data me

rics to all daemons;
• detecting clock skew between the front-end proce

(a) (b)

Figure 4: Comparable MRNet internal process topologies with the same number of back-ends.
The latency of a single broadcast or aggregation operation might be better with the unbalanced

topology (b), but the balanced topology (a) has better throughput for pipelined operations.
7

t-
et-

n
ck
rst
on

k
ro-
n
ists
to
i-

es
t
m
ed
-

k
By
n

he

n
nds
h
ch
ples
and
a
er-
a

es,
ross
ce.
n-
ing
nd,
ign
ro-
es
e-

as

rt
the
re-
as
es
n

and each daemon process; and
• reporting data about application processes to the

front-end.
Although most of these activities manipulate Paradyn-
specific data, our techniques for using MRNet to imple-
ment them are applicable to many activities commonly
performed by parallel tools.

During Paradyn start-up, most of the data trans-
ferred within the tool system can be placed into one of
two categories: data describing the daemon and applica-
tion processes sent from the back-ends to the front-end,
and configuration data sent from the front-end to all
back-ends. At tool start-up, the Paradyn back-ends
examine application processes to identify the relevant
parts of the program, such as modules, functions, and
process ids. Such items are calledresourcesin Paradyn
terminology. Once the back-ends have identified appli-
cation resources, they are reported to the front-end along
with statically-determined call-graphs for all application
processes. The bulk of the start-up information sent
from the front-end to the back-ends is a collection of
performance metric definitions that specify how to
instrument processes to collect performance data.

Paradyn uses MRNet in two ways to reduce the cost
of reporting data from daemons to the front-end. The
method used depends on whether the data is likely to be
the same across a significant number of processes (e.g.,
function names and their addresses) or is likely to be
different across processes (e.g., process ids and host
names). If the data is likely to be the same across a sig-
nificant number of processes, then most of the data
transferred during tool start-up is redundant (especially
if the application processes are created from a small
number of executables and run on a collection of homo-
geneous hosts). To report this data, each Paradyn dae-
mon first computes a summary of the data (i.e., a
checksum). Next, the daemons write the checksums to
an MRNet stream created to use a custom binning filter.
This filter partitions the daemons into equivalence
classes based on their checksum values. When the front-
end receives the final set of equivalence classes, it
requests complete function resource information only
for each class’ representative process. Unlike function
names, data like process identifiers and host names are
likely to be different across hosts. Nevertheless, Paradyn
also leverages MRNet for reporting this data. Paradyn
uses a parallel concatenation aggregation to construct
larger resource report messages that are more efficiently
delivered by the underlying communication subsystem
than many small resource report messages.

Paradyn uses MRNet to deliver configuration data
efficiently from the front-end to all back-ends. In Para-
dyn, metric definitions describing how to instrument
processes to collect metric performance data are pro-
vided to the front end in a configuration file written in

the Paradyn Metric Definition Language [15]. The fron
end uses simple broadcast operations to deliver the m
ric definitions to all tool back-ends.

Clock skew detection is the only start-up activity
that does not fall neatly into the two communicatio
paradigms mentioned earlier. The MRNet-based clo
skew detection scheme occurs in two phases. The fi
phase consists of repeated broadcast/reduction pairs
a special stream reserved for finding clock “local” cloc
skew between each process and the downstream p
cesses to which it is directly connected (i.e., its childre
in the MRNet process tree). The second phase cons
of a single broadcast to all daemons requesting them
initiate the collection of skew results. Each daemon in
tializes its “cumulative skew” value to zero, and pass
it upstream into the MRNet network. When an MRNe
internal process receives a cumulative skew value fro
one of its downstream connections, it adds its observ
local clock skew value for that connection to the cumu
lative value, thereby computing the skew of its cloc
with each daemon reachable along that connection.
induction, when the algorithm finishes the Parady
front-end holds the skews between its clock and t
clocks of each tool back-end.

3.2 Distributed Performance Data Aggregation
Like many parallel performance tools, Parady

aggregates performance data collected by its back-e
to examine an application’s global behavior. For eac
global performance measure being monitored, ea
Paradyn back-end produces a sequence of data sam
representing the measure’s value for the processes
threads that it controls. For example, to obtain
sequence of samples representing an application’s ov
all CPU utilization, each Paradyn back-end collects
sequence of CPU utilization samples for its process
and Paradyn aggregates corresponding samples ac
all sequences into a single global sample sequen
Ordinal aggregation is a common technique for co
structing a global sample sequence; that is, aggregat
the first sample from each sequence, then the seco
and so on as shown in Figure 5a. The Paradyn des
recognizes that its back-ends collect data asynch
nously, so ordinal aggregation may combine sampl
representing different intervals of the application’s ex
cution. As a result, Paradyn represents a data sample
{v,i} , wherev is the sample’s value andi is the time
interval to which the value applies. The interval’s sta
and end timestamps are set by the back-ends when
sample is collected. Paradyn’s performance data agg
gation takes into account each sample’s time interval
well as its value, so that aggregation is done with valu
over comparable time intervals as illustrated i
Figure 5b.
8

he
nt
t-
ta

le
-
d)
he
put

ga-
n-
d
of

ach
tart
ed
e
-
oes
ta-
e
all

ce
ith
ur
ol

ip
n,
o-
m-

ned
l

Without MRNet, Paradyn aggregates data samples
entirely within its front-end. The computation and com-
munication cost of aggregation causes the front-end to
become a scalability barrier when Paradyn monitors glo-
bal performance measures on a large number of nodes.
Using MRNet, Paradyn distributes its aggregation activ-
ity to filters running throughout the MRNet network,
reducing its front-end data processing load. Paradyn’s
distributed data aggregation scheme uses a custom Per-
formance Data Aggregation filter within each MRNet
internal process that aligns data samples from all its
inputs and then reduces them to form a single output
sample. Collectively, these filters produce a single
aggregated sample for the tool’s front-end.

Paradyn’s Performance Data Aggregation filter col-
lects data samples on all of its inputs, aligns the data
samples, and then reduces them. To determine how to
align the samples and when to deliver the aligned sam-
ples to the aggregation filter, the filter maintains the
notion of an output sample interval. This interval
defines the start and end times for the aligned data sam-
ples, and therefore the start and end time for the aggre-
gated output sample. Consider the example illustrated in
Figure 6, showing the Performance Data Aggregation
filter in an internal process with four input connections.
Samples have already arrived for some of the input con-
nections (Figure 6a). When a sampleS arrives on an
input connection, the filter places it on a queue associ-
ated with that input connection (Figure 6b). The filter
then checks to see whether the interval of the newly-
arrived sample overlaps with the current output sample
interval. If so, it attributes a percentage ofS’s value to
the input connection’s current output sample, leaving
the remainder inSand adjusting its interval start time to

remove the overlap (Figure 6c). Note that because t
sample’s value is attributed proportionally to the curre
output interval, and the remainder used in the next ou
put sample interval, there is no lost performance da
due to round-off issues. IfS’s arrival caused the current
output sample interval to be full (i.e., to have samp
data from all input connections over all input connec
tions), the filter reduces the aligned samples (Figure 6
and advances its output sample interval (Figure 6e). T
output sample uses the same interval as the aligned in
samples.

Paradyn’s MRNet-based performance data aggre
tion scheme exhibits a common trade-off between ce
tralized and distributed algorithms. The centralize
aggregation scheme has complete knowledge of all
the samples to be aggregated, so it only considers e
sample once when finding the aggregated sample’s s
and end times. On the other hand, the distribut
scheme performs multiple alignments throughout th
network, leading to more overall work in the tool sys
tem. Nevertheless, because distributed scheme d
these alignments in parallel and reduces the compu
tion cost for data aggregation in the tool’s front-end, th
MRNet-based distributed scheme exhibits better over
scalability than the centralized scheme.

4 Evaluation
To evaluate MRNet, we measured its performan

alone within a test harness and then integrated w
Paradyn, a real-world parallel performance tool. O
micro-benchmark experiments with the test harness to
measured MRNet’s start-up latency, the round-tr
latency of a single broadcast followed by a reductio
and MRNet’s reduction throughput using several pr
cess tree topologies. Our Paradyn experiments co

(a) (b)

Figure 5: Performance data aggregation using ordinal aggregation (a) and time-aligned aggregation (b).
In both examples, four sample data streams DS0..3 are being aggregated into one output sample stream ODS.

Ordinal aggregation aggregates the first sample from each stream, then the second, and so on. Time-alig
aggregation considers the samples start and end times to aggregate data taken from the same interva

during the program’s execution.

DS0

DS1

DS2

DS3

ODS

Time

1 2 3

5

4

1 2 3 4

1 2 3 4 5

1 2 3

1 2 3

5

4

4

DS0

DS1

DS2

DS3

ODS

Time

1 2 3

5

4

1 2 3 4

1 2 3 4 5

1 2 3

2 3

5

4

41

interval i i+1 i+2 i+3
9

he
of
nd
ta
wn

e
-
y
y
e
za-
on

d
ess
c-
of

ed
s-

d to
of
e

ciated
to
he
pared the performance of both start-up and performance
data aggregation activities with and without MRNet.
Our experiments were run on the ASCI Blue Pacific
system [19] at Lawrence Livermore National Labora-
tory. Blue Pacific contains 280 nodes (256 compute
nodes) connected by an IBM SP switch interconnect.
Each node contains four 332 MHz PowerPC 604e pro-
cessors, 1.5 GB RAM, and runs AIX 5.1 with Parallel
System Support Programs version 3.4. Our results show
that MRNet significantly improves the scalability of key
activities in parallel performance and system adminis-
tration tools.

4.1 Micro-benchmark Results
We began by measuring the low-level performance

of MRNet within a minimal test harness. For each run of
our test harness tool, we requested an appropriately-
sized partition from the Blue Pacific batch scheduling
system. Once we were given our partition, we deter-
mined the partition nodes’ host names and used an auto-
matic configuration generator program to build an
MRNet configuration file with the desired topology
within the partition. We then executed the tool’s front-
end program, passing the configuration file’s name as an
argument. During each run of the test harness, we mea-

sured three MRNet performance characteristics: t
latency to instantiate the MRNet network, the latency
a broadcast operation followed by a data reduction, a
the MRNet’s throughput during a sequence of da
reductions. The results of these experiments are sho
in Figure 7.

Our micro-benchmark measurements show th
necessity of infrastructure like MRNet for building scal
able parallel tools. Using a flat, single-level topolog
(which closely approximates the architecture of man
parallel tools), instantiation latency grows quickly as th
number of tool back-ends increases due to the seriali
tion of the process creation operations. The instantiati
latency grows quite slowly when using MRNet with
fully-populated balanced tree topologies with four- an
eight-way fan-outs because MRNet creates the proc
tree in parallel. The round-trip latency and data redu
tion throughput measurements also show the benefits
MRNet to parallel tools. In the flat topology, each
broadcast or reduce is implemented using serializ
point-to-point message transfers. Although each me
sage transfer is less time-consuming than the rsh use
create processes during tool instantiation, the effect
serialization is similar: the latency grows rapidly as th

(a) (b) (c)

(d) (e)

Figure 6: Distributed data aggregation using Paradyn’s custom MRNet filter.
The initial situation with four sample data streams (a). When a sample arrives, it is placed on a queue asso

with its input connection (b). If the sample’s interval overlaps the current output sample interval, it is split
attribute the overlap to the output sample interval (c). If the newly-arrived sample completes the data for t

output sample interval, the samples are reduced (d), and the output sample interval is advanced (e).

Output Sample Interval

Timet0 t1

Output Sample Interval

Timet0 t1

Output Sample Interval

Timet0 t1

Output Sample Interval

Timet0 t1

Output Sample Interval

Timet1 t2
10

s
res
ar-

e
se

d
gle-
r
ilding
number of back-ends increases. Also, the tool front-end
is involved in every message transfer, so it cannot start a
subsequent reduction before the previous operation
completes. Multi-level MRNet process configurations
allow MRNet to perform point-to-point message trans-
fers in parallel. Furthermore, the moderate fan-outs at
each MRNet process allows data reductions to be pipe-
lined as they pass through the network, keeping reduc-
tion throughput high as application size increases. The

trends in MRNet’s micro-benchmark scalability studie
are perhaps to be expected; previous tool infrastructu
using a hierarchy of processes such as the Ladebug p
allel debugger [4] and Lilith [11] show similar scalabil-
ity trends.

4.2 Integrated Performance Results
To evaluate MRNet’s real-world performance, w

modified the Paradyn parallel performance tool to u

(a) start-up latency (b) round-trip latency

(c) reduction throughput

Figure 7: MRNet micro-benchmark experiment results.
Tool instantiation latency (a), round-trip latency of a single broadcast followed by a single reduction (b), an

data reduction throughput (c) using single- and multi-level MRNet topologies. Compared to the “flat” (i.e., sin
level) topology commonly found in parallel tools, multi-level MRNet topologies exhibited dramatically bette

scalability and overall performance, showing the necessity of multi-level process networks like MRNet for bu
scalable parallel tools.

0 100 200 300 400 500 600

Back-Ends

0

100

200

300

400

500

600

700

800

900
T

im
e(

se
c)

Flat
4-way Fanout
8-way Fanout

0 100 200 300 400 500 600

Back-Ends

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e(
se

c)

Flat
4-way Fanout
8-way Fanout

0 100 200 300 400 500 600

Back-Ends

0

10

20

30

40

50

60

70

80

T
hr

ou
gh

pu
t

(o
ps

/s
ec

)

Flat
4-way Fanout
8-way Fanout
11

re

ont

e-
m

ort

w

i-
to

ses
ll

out
d,
ed
ae-
ld
all

the
o-

,
nd

ctivity.
MRNet as described in Section 3. We evaluated
MRNet’s performance during tool start-up and while the
tool was collecting and processing performance data.

4.2.1 Tool Start-Up Performance Results

Paradyn’s start-up protocol was already highly
tuned to reduce redundant data transfer. For several data
transfers from tool daemons to the front-end, it used a
technique whereby each tool daemon computes a check-
sum over its own data, the front-end partitions the dae-
mons into equivalence classes based on the checksum
values, and then requests the complete data from only a
single representative of each equivalence class. We mea-
sured the latency of Paradyn’s start-up activities when
preparing to monitorsmg2000 [6], a parallel linear
equation solver. Thesmg2000 executable is relatively
small, containing approximately 434 functions in a
290 KB executable. We started the timer when all dae-
mons were known to have been started (but not yet
reported themselves to the tool front-end), and stopped
the timer after the daemons had reported information
about themselves and the application processes they cre-
ated, and were ready to run the application.

The results of our scalability study with several
MRNet topologies are shown in Figure 8a. Without
MRNet, serialization of the communication between
Paradyn’s front-end and daemons causes overall start-up
latency to rise exponentially as the number of daemons
increases. Using MRNet and process topologies with
moderate fan-outs, the start-up latency curves are much
flatter and growth is nearly linear, indicating a signifi-
cant improvement in overall tool scalability. To investi-
gate how much of the overall start-up latency that
MRNet could affect, we measured the latency of indi-
vidual start-up activities with and without MRNet for

our largest experimental configuration; these results a
shown in Figure 8b. The individual activities shown in
the figure are:
• ReportSelf: Using an MRNet concatenation filter,

each daemon reports basic characteristics to the fr
end such as the host on which it is running;

• ReportMetrics: The front-end broadcasts Metric
Definition Language data to all daemons; the da
mons respond using the equivalence class algorith
described above to report all metrics that they supp
(including internal metrics not specified in the MDL
data);

• Find Clock Skew: The front-end finds its clock skew
with respect to each daemon using the clock ske
detection algorithm described in Section 3;

• Parse Executable:Each daemon examines the appl
cation executable and the shared libraries it uses
find names and addresses of all functions, and par
the code to discover the application’s static ca
graph;

• Report Process:After creating or attaching to an
application process, each daemon reports data ab
the process to the front end including its process i
its command-line arguments, whether it was creat
by the daemon or was already created when the d
mon attached to it, and whether the front-end shou
issue the command to resume the process when
start-up activities are complete;

• Report Machine Resources:Using a concatenation
filter, each daemon defines Paradyn resources for
host, process, and initial thread of its application pr
cesses via Paradyn’s resource definition protocol;

• Report Code Eq Classes and Report Code
Resources:Using the equivalence class algorithm
the daemons define resources for all functions a

(a) (b)

Figure 8: Paradyn start-up latency for increasing numbers of daemons (a) and by activity for 512 daemons (b).
In (b), bold activity names indicate use of MRNet for data aggregation or concatenation for some part of the a

0 100 200 300 400 500 600

Daemons

0

10

20

30

40

50

60

70

L
at

en
cy

 (
se

c)

No MRNet
4-way Fanout
8-way Fanout
16-way Fanout

0 5 10 15 20 25

Time (sec)

Report Self

Report Metrics

Find Clock Skew

Report Process

Report Machine Resources

Report Code Eq Classes

Report Callgraph Eq Classes

Report Done

No MRNet
8-way Fanout

Parse Executable

Report Code Resources

Report Callgraph
12

l
o-
as
ly-
e

as
rs
4,
ct
’s
a-
ly

r-
red
ol-
ae-
d
f

for
fy
lel
e
he
the
’s

e
en

o-
re

for
d
ate
ce
ted

ed
re
at

ot
e
lue
up
e-

n
g

n
or
of
’s
modules in the application executable;
• Report Callgraph Eq Classes and Report

Callgraph: Using the equivalence class algorithm,
the daemons report their static call-graph information
(built during the “Parse Executable” activity
described above) to the front-end; and

• Report Done: The daemons indicate the end of the
start-up phase.

Each activity that used MRNet to communicate with all
daemons showed a significant latency reduction by
using MRNet. The activities that did not show a signifi-
cant improvement from using MRNet are activities that
consist either of work done entirely in parallel by the
daemons (“Parse Executable”) or point-to-point com-
munication between a small number of daemons and the
front-end (“Report Code Resources”, “Report
Callgraph”). In fact, the point-to-point communication
activities transferred data via MRNet; the additional
overhead of passing through intermediate MRNet pro-
cesses was observed to be negligible. Overall, the bene-
fit of using MRNet increased as we increased the
number of tool daemons. With our largest configuration
of 512 back-ends, the latency for performing all start-up
activities was 3.4 times faster with MRNet and a bal-
anced, fully-populated tree configuration with eight-way
fan-out than without MRNet. Based on our investigation
of MRNet’s benefit for each individual activity during
Paradyn start-up, we expect this trend to continue with
configurations significantly larger than 512 daemons.

Clock skew detection was the Paradyn start-up
activity that benefitted most from using MRNet, because
it uses repeated broadcast/reduction operations to dis-
tribute and collect clock samples and intermediate skew
results whereas the other activities perform only one or
two collective operations. We evaluated the clock skews
computed by the MRNet-based clock skew detection
algorithm by comparing them to skews computed using
Blue Pacific’s SP switch clock (a globally-synchronous
clock) and to skew results computed using a commonly-
used direct-communication scheme. To compute its
clock skew with respect to a given daemon under the
direct communication scheme, the front-end sends a
small amount of data to the daemon. The daemon sam-
ples its clock when it receives the data and sends this
sample to the front-end. When the front-end receives the
daemon’s sample, it samples its own clock and com-
putes the round-trip latency of the sends and receives.
The front-end approximates the one-way latency from
the round-trip latency, adds the one-way latency to the
daemon’s clock sample, and uses the difference between
this value and the front end’s receive timestamp as the
clock skew. In our experiments, the front-end measured
the skew using the direct communication scheme 100
times and used the observed skew with the smallest
absolute value as the actual clock skew. Using a 64-dae-

mon topology with four-way fan-out (a three-leve
topology), the MRNet-based clock skew detection alg
rithm produced skews with an average error of 10.5%
compared to the skews computed using the global
synchronous switch clock, while the average error in th
skews produced by the direct-connection method w
17.5%. However, the standard deviation of the erro
produced by the MRNet-based algorithm was 80.
slightly higher than the standard deviation in the dire
connection method’s errors at 78.9. In short, MRNet
clock skew detection algorithm produced results comp
rable to the direct-connection method but is significant
more scalable.

4.2.2 Tool Data Aggregation Performance Results

To assess the impact of MRNet on Paradyn’s pe
formance data processing capabilities, we measu
how well Paradyn could consume and process the v
ume of performance data samples generated by its d
mons in a variety of configurations. We varied the loa
placed on the tool’s front-end by varying the number o
daemons and the number of performance metrics
which data was collected by each daemon. To simpli
the evaluation, we ran Paradyn on a synthetic paral
application with known behavior and easily-controllabl
run time. To keep the data rate high, we configured t
Paradyn daemons to use a fixed sampling rate for
duration of the experiments. We fixed each daemon
sampling rate to Paradyn’s default initial rate of fiv
samples per second per metric. Therefore, for a giv
number of daemonsD and metricsM, the overall rate at
which samples are generated within the tool is5DM
samples per second.

The results of our integrated performance data pr
cessing experiments are shown in Figure 9. Each figu
shows Paradyn’s performance when collecting data
up to 32 metrics for configurations with between 4 an
256 daemons. Each data point marks the ratio of the r
at which the Paradyn front-end processed performan
data samples to the rate at which the daemons genera
the samples. This ratio represents the fraction of offer
load processed by the Paradyn front-end. While the
were minor start-up transients, the steady-state rate
which the front-end consumed performance data did n
fluctuate significantly. Therefore, we report only th
steady-state ratio. In these figures, a level curve at va
1.0 indicates the Paradyn front-end was able to keep
with the performance data volume generated by its da
mons as the number of daemons was increased.

Our results show that when Paradyn relies o
MRNet for some of its performance data processin
activity, it scales significantly better with increases i
the number of tool daemons and number of metrics f
which data is collected. When increasing the number
metrics for which data is being collected, Paradyn
13

he

st
r
-
l-
nd

e-

,
-
ent

curves
the
 allows

en-way
ability to process the offered performance data sample
load degraded quickly. For example, when collecting
data from only 64 daemons for 32 metrics per daemon
without MRNet, the Paradyn front-end processed the
data at only about 60% of the rate at which it was gener-
ated. With 256 daemons and 32 metrics, the front-end
processed data at a rate of less than 5% of the offered
load. Note that as the number of metrics per daemon
increases, Paradyn increases the size of its messages
containing performance data rather than the number of
messages.

Using MRNet allowed the Paradyn front-end to
scale much better as the number of daemons and metrics
were increased. With four-, eight-, and sixteen-way

MRNet fan-outs, the front-end was able to process t
entire offered load for all configurations we tested.

5 Related Work
MRNet provides data aggregation and multica

services for building scalable parallel tools. Simila
functionality has been found previously in software
based collective communication infrastructure for para
lel tools and applications, and in parallel databases a
overlay networks.

MRNet, Lilith [11], and Ygdrasil [3] are parallel
tool infrastructures providing multicast and data aggr
gation functionality. MRNet differs from Lilith and
Ygdrasil in its communication model, tool architecture
and software engineering trade-offs. In Lilith’s commu
nication model, synchronous waves of messages are s

(a) 1 Metric (b) 8 Metrics

(c) 16 Metrics (d) 32 Metrics

Figure 9: Fraction of offered load serviced by the Paradyn front-end.
When not using MRNet and increasing the number of metrics for which data is being collected (shown by the

labelled “flat”), Paradyn’s ability to process the offered performance data sample load degrades quickly as
number of daemons increases. However, using MRNet to off-load some of the performance data processing
Paradyn to scale much better as the number of daemons and metrics increases with four-, eight-, and sixte

MRNet fan-outs.

0 100 200 300 400 500 600

Daemons

0.0

0.2

0.4

0.6

0.8

1.0
F

ra
ct

io
n

of
 O

ff
er

ed
 L

oa
d

Flat
4-way Fanout
8-way Fanout
16-way Fanout

0 100 200 300 400 500 600

Daemons

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 O
ff

er
ed

 L
oa

d

Flat
4-way Fanout
8-way Fanout
16-way Fanout

0 100 200 300 400 500 600

Daemons

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 O
ff

er
ed

 L
oa

d

Flat
4-way Fanout
8-way Fanout
16-way Fanout

0 100 200 300 400 500 600

Daemons

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 O
ff

er
ed

 L
oa

d
Flat
4-way Fanout
8-way Fanout
16-way Fanout
14

ew
le-
to
de
7]
-
-
ss
r

a
l
m
n
lts,
I

PI
n-
e

-
e
re

of

io,
ses,
nd
cess
ro-
-
I
b-
t

y
rch
d
.
-

elp
.

,

.
ry

d
s

er

-
r

to or from the tool’s front-end at the root of the process
tree [12]. Generalizing the multicast/reduction capabili-
ties of the Ladebug [4] parallel debugger, Ygdrasil is
best suited to a synchronous request/response model for
tools like parallel debuggers. In contrast, MRNet’s com-
munication model supports multiple simultaneous asyn-
chronous collective communication operations. Tools
built with MRNet and Ygdrasil share a similar architec-
ture with internal processes distinct from the tool’s
back-ends. Lilith’s architecture allows tool back-end
code at each process throughout the Lilith process net-
work. For tool extensibility, both Lilith and Ygdrasil are
implemented in Java and take advantage of that lan-
guage’s natural ability to load code dynamically. MRNet
trades this ease of extensibility for the higher potential
data throughput of C++-based data serialization.

A network of processes as is used in MRNet is
often called anoverlay networkbecause it defines a log-
ical network that overlays a physical network. Several
overlay network projects have data aggregation func-
tionality similar to MRNet. Ganglia [21] defines a hier-
archical overlay network like MRNet’s in an
infrastructure for monitoring clusters and federations of
clusters, and Supermon [25] servers can be organized
into a hierarchical infrastructure for data aggregation.
Neither of these systems is designed to support high
throughput, and would be ill-suited for collecting and
manipulating application performance data sampled
with high frequency. Also, Ganglia relies on the avail-
ability of IP multicast within clusters which may not be
enabled for all target systems.

Data aggregation has also been studied in the con-
text of parallel databases. Shatdal and Naughton [24]
suggest several algorithms for efficient data aggregation
in parallel databases. Gray et al [14] suggest ways for
efficiently implementing their “data cube” aggregation
operator. Neither approach uses a separate network of
aggregator processes as is used in MRNet. Like a paral-
lel database, TAG [20] provides a SQL-based interface
for expressing data aggregation queries, and a relational
database model for representing aggregation results col-
lected from wireless sensor networks. Similar to
MRNet, TAG supports multiple simultaneous aggrega-
tion operations and supports streams of aggregated data
in response to an aggregation request. However, TAG
only supports ordinal data aggregation, whereas
MRNet’s flexibility allows filters that align and aggre-
gate timestamped data. TAG uses a SQL/relational inter-
face, in contrast to our RPC-style interface. Also, TAG
organizes its sensors with an ad-hoc routing tree,
whereas MRNet’s network configuration is specifieda
priori via a configuration file.

Most work in software-based collective communi-
cation has focused on providing multicast and data
aggregation support for applications. The Message Pass-

ing Interface [22] standard defines broadcast and a f
data reduction operations. Whereas some MPI imp
mentations use serialized point-to-point operations
implement these collective operations, others provi
optimized implementations. For example, MagPIe [1
provides MPI collective communication primitives opti
mized for applications run in a geographically-distrib
uted environment like the Grid. MagPIe uses a proce
tree consisting of a flat, single-level tree at the root fo
efficient communication across a WAN, followed by
binary tree for efficient communication within the loca
network. As another example, the ACCT [27] syste
automatically tunes its MPI collective communicatio
algorithms based on modelling and experimental resu
tailoring the algorithms to the system on which the MP
application runs. Unfortunately, because optimized M
implementations are not universally available, we ca
not depend on the availability of a high-performanc
MPI layer for efficient collective communication in par
allel tools. Also, MPI reductions are more restrictiv
than MRNet’s data aggregations because they a
applied ordinally to the operands. Finally, a tool’s use
MPI may conflict with MPI use in the monitored appli-
cation. For example, in a common tool start-up scenar
a process manager creates tool back-end proces
which then create application processes. The back-e
processes are supposed to be transparent to the pro
manager, but may not be if they are also MPI-based p
grams. MRNet does not use MPI for collective commu
nication, so it is safe to use in tools that monitor MP
applications. We would advocate using MRNet as a su
stitute for MPI’s implementation for efficient broadcas
and data reduction support.

Acknowledgments
This paper benefited from the hard work of man

past and present members of the Paradyn resea
group. We especially wish to thank Victor Zandy an
Bryan Wylie for several fruitful discussions on the topic
We also thank John Gyllenhaal, Jeff Vetter, Chris Cham
breau, Barbara Herron, and Charlie Hargreaves for h
with the computing environment on ASCI Blue Pacific

References
[1] Advanced Simulation and Computing program

National Nuclear Security Administration, United
States of America Department of Energy
<http://www.nnsa.doe.gov/asc/home.htm>, Februa
6, 2003.

[2] A. Alexandrov, M.F. Ionescu, K.E. Schauser, an
C. Scheiman. LogGP: Incorporating Long Message
into the LogP Model. Journal of Parallel and
Distributed Computing44, 1, July 1997, pp. 71–79.

[3] Susanne M. Balle. Personal communication, Novemb
2002.

[4] S.M. Balle, B.R. Brett, C.-P. Chen, and D. LaFrance
Linden. A New Approach to Parallel Debugge
15

I

.

f

i

ge

n

l

,

.
.
g

.

Architecture. Sixth International Conference PARA
2002, Espoo, Finland, June 2002. Published asLecture
Notes in Computer Science2367, J. Fagerholm et al
(Eds), Springer, Heidelberg, June 2002, pp. 139–149.

[5] M. Bernaschi and G. Iannello. Collective
Communication Operations: Experimental Results vs.
Theory.Concurrency: Practice and Experience10, 5,
April 1998, pp. 359–386.

[6] P.N. Brown, R.D. Falgout, and J.E. Jones.
Semicoarsening Multigrid on Distributed Memory
Machines.SIAM Journal on Scientific Computing21,
5, 2000, pp. 1823–1834.

[7] Center for Computational Research, University at
Buffalo, The State University of New York.
<http://www.ccr.buffalo.edu>, February 6, 2003.

[8] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay,
E. Santos, K.E. Schauser, R. Subramonian, and
T. von Eicken. LogP: A Practical Model of Parallel
Computation.Communications of the ACM39, 11,
November 1996, pp. 78–85.

[9] Earth Simulator Center.
<http://www.es.jamstec.go.jp>, February 6, 2003.

[10] Etnus LLC, “TotalView User’s Guide”, Document
version 6.0.0-1, January 2003.
<http://www.etnus.com>

[11] D.A. Evensky, A.C. Gentile, L.J. Camp, and R.C.
Armstrong. Lilith: Scalable Execution of User Code for
Distributed Computing. Sixth IEEE International
Symposium on High Performance Distributed
Computing (HPDC ‘97), Portland, Oregon, August
1997, pp. 306–314.

[12] D.A. Evensky. Personal communication, November
2001.

[13] Forecast Systems Laboratory, National Oceanic and
Atmospheric Administration.
<http://hpcs.fsl.noaa.gov>, Feb 6, 2003.

[14] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D.
Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh.
Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals.
Data Mining and Knowledge Discovery1,1, April
1997, pp. 29–53.

[15] J.K. Hollingsworth, B.P. Miller, M.J.R. Goncalves, O.
Naim, Z. Xu, and L. Zheng. MDL: A Language and
Compiler for Dynamic Program Instrumentation.
International Conference on Parallel Architectures and
Compilation Techniques (PACT’97), San Francisco,
California, November 1997, pp. 201–213.

[16] R.M. Karp, A. Sahay, E.E. Santos, and K.E. Schauser.
Optimal Broadcast and Summation in the LogP Model.
Fifth ACM Symposium on Parallel Algorithms and
Architectures, Velen, Germany, June 1993, pp. 142–
153.

[17] T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat,
R.A.F. Bhoedjang. MagPIe: MPI’s Collective
Communication Operations For Clustered Wide Area
Systems.ACM SIGPLAN Notices34, 8, August 1999,
pp. 131–140.

[18] Lawrence Livermore National Laboratory.
Multiprogrammatic Capability Cluster.

<http://www.llnl.gov/linux/mcr>, February 6, 2003.
[19] Lawrence Livermore National Laboratory. Using ASC

Blue Pacific.
<http://www.llnl.gov/asci/platforms/bluepac>,
February 13, 2003.

[20] S. Madden, M.J. Franklin, J.M Hellerstein, and W
Hong. TAG: a Tiny AGgregation Service for Ad-Hoc
Sensor Networks.Fifth Symposium on Operating
Systems Design and Implementation (OSDI), Boston,
Massachusetts, December, 2002.

[21] M.L. Massie, B.N. Chun, and D.E. Culler. The Ganglia
Distributed Monitoring System: Design,
Implementation, and Experience. University o
California, Berkeley Technical Report,
<http://ganglia.sourceforge.net/talks/parallel_comput
ng/ ganglia-twocol.pdf>, February 2003.

[22] Message Passing Interface Forum. MPI: A Messa
Passing Interface Standard.International Journal of
Supercomputing Applications8, 3/4, Fall/Winter 1994.

[23] B.P. Miller, M.D. Callaghan, J.M. Cargille,
J.K. Hollingsworth, R.B. Irvin, K.L. Karavanic,
K. Kunchithapadam, and T. Newhall. The Parady
Parallel Performance Measurement Tool.IEEE
Computer28, 11, November 1995, pp. 37–46.

[24] A. Shatdal and J.F. Naughton. Adaptive Paralle
Aggregation Algorithms.ACM SIGMOD Record24, 2,
May 1995, pp. 104–114.

[25] M.J. Sottile and R.G. Minnich. Supermon: A High-
Speed Cluster Monitoring System.Cluster 2002,
Chicago, Illinois, September 2002.

[26] UoE HPCX Ltd. <http://www.hpcx.ac.uk>, February 6
2003.

[27] S.S. Vadhiyar, G.E. Fagg, and J. Dongarra
Automatically Tuned Collective Communications
2000 ACM/IEEE Conference on Supercomputin
(SC2000), Dallas, Texas, November 2000.

[28] A. Waheed, D.T. Rover, and J.K. Hollingsworth
Modeling and Evaluating Design Alternatives for an
On-Line Instrumentation System: A Case Study.IEEE
Transactions on Software Engineering24, 6, June
1998, pp. 451–470.
16

	MRNet: A Software-Based Multicast/Reduction Network for Scalable Tools
	Philip C. Roth, Dorian C. Arnold, and Barton P. Miller
	Computer Sciences Department
	University of Wisconsin, Madison
	1210 W. Dayton St.
	Madison, WI 53706-1685 USA
	{pcroth,darnold,bart}@cs.wisc.edu
	Abstract
	1 Introduction
	Figure�1: The components of a typical parallel tool (a) and an MRNet-based parallel tool (b). Sha...

	2 The Multicast/Reduction Network
	2.1 MRNet Overview
	Figure�2: MRNet front-end and back-end sample code.

	2.2 MRNet Interface
	2.3 MRNet Internal Processes
	Figure�3: Functional layers within an MRNet internal process.

	2.4 Filters
	2.5 MRNet Instantiation
	2.6 MRNet Process Layout
	Figure�4: Comparable MRNet internal process topologies with the same number of back-ends. The lat...

	3 A Real-World Tool Example
	3.1 Scalable Tool Start-Up
	Figure�5: Performance data aggregation using ordinal aggregation (a) and time-aligned aggregation...

	3.2 Distributed Performance Data Aggregation
	Figure�6: Distributed data aggregation using Paradyn’s custom MRNet filter. The initial situation...

	4 Evaluation
	Figure�7: MRNet micro-benchmark experiment results. Tool instantiation latency (a), round-trip la...
	4.1 Micro-benchmark Results
	Figure�8: Paradyn start-up latency for increasing numbers of daemons (a) and by activity for 512 ...

	4.2 Integrated Performance Results
	4.2.1 Tool Start-Up Performance Results
	4.2.2 Tool Data Aggregation Performance Results
	Figure�9: Fraction of offered load serviced by the Paradyn front-end. When not using MRNet and in...

	5 Related Work
	Acknowledgments

	References
	[1] Advanced Simulation and Computing program, National Nuclear Security Administration, United S...
	[2] A.�Alexandrov, M.F.�Ionescu, K.E.�Schauser, and C.�Scheiman. LogGP: Incorporating Long Messag...
	[3] Susanne M. Balle. Personal communication, November 2002.
	[4] S.M. Balle, B.R. Brett, C.-P. Chen, and D. LaFrance- Linden. A New Approach to Parallel Debug...
	[5] M. Bernaschi and G. Iannello. Collective Communication Operations: Experimental Results vs. T...
	[6] P.N. Brown, R.D. Falgout, and J.E. Jones. Semicoarsening Multigrid on Distributed Memory Mach...
	[7] Center for Computational Research, University at Buffalo, The State University of New York. <...
	[8] D.E.�Culler, R.M.�Karp, D.A.�Patterson, A.�Sahay, E.�Santos, K.E.�Schauser, R.�Subramonian, a...
	[9] Earth Simulator Center. <http://www.es.jamstec.go.jp>, February 6, 2003.
	[10] Etnus LLC, “TotalView User’s Guide”, Document version 6.0.0-1, January 2003. <http://www.etn...
	[11] D.A. Evensky, A.C. Gentile, L.J. Camp, and R.C. Armstrong. Lilith: Scalable Execution of Use...
	[12] D.A. Evensky. Personal communication, November 2001.
	[13] Forecast Systems Laboratory, National Oceanic and Atmospheric Administration. <http://hpcs.f...
	[14] J.�Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. ...
	[15] J.K. Hollingsworth, B.P. Miller, M.J.R. Goncalves, O. Naim, Z. Xu, and L. Zheng. MDL: A Lang...
	[16] R.M.�Karp, A.�Sahay, E.E.�Santos, and K.E.�Schauser. Optimal Broadcast and Summation in the ...
	[17] T. Kielmann, R.F.H.�Hofman, H.E.�Bal, A.�Plaat, R.A.F.�Bhoedjang. MagPIe: MPI’s Collective C...
	[18] Lawrence Livermore National Laboratory. Multiprogrammatic Capability Cluster. <http://www.ll...
	[19] Lawrence Livermore National Laboratory. Using ASCI Blue Pacific. <http://www.llnl.gov/asci/p...
	[20] S. Madden, M.J. Franklin, J.M Hellerstein, and W. Hong. TAG: a Tiny AGgregation Service for ...
	[21] M.L. Massie, B.N. Chun, and D.E. Culler. The Ganglia Distributed Monitoring System: Design, ...
	[22] Message Passing Interface Forum. MPI: A Message Passing Interface Standard. International Jo...
	[23] B.�P.�Miller, M.�D.�Callaghan, J.�M.�Cargille, J.�K.�Hollingsworth, R.�B.�Irvin, K.�L.�Karav...
	[24] A. Shatdal and J.F. Naughton. Adaptive Parallel Aggregation Algorithms. ACM SIGMOD Record 24...
	[25] M.J. Sottile and R.G. Minnich. Supermon: A High- Speed Cluster Monitoring System. Cluster 20...
	[26] UoE HPCX Ltd. <http://www.hpcx.ac.uk>, February 6, 2003.
	[27] S.S. Vadhiyar, G.E. Fagg, and J. Dongarra. Automatically Tuned Collective Communications. 20...
	[28] A. Waheed, D.T. Rover, and J.K. Hollingsworth. Modeling and Evaluating Design Alternatives f...

