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Abstract

We present the design, implementation, and evaluation of a Mi-
gratory File Service (MFS), a system designed to exploit seman-
tic knowledge of workloads and user expectations to improve
performance and handle failures effectively in wide-area batch
scheduling systems. We discuss Hawk, a prototype MFS sys-
tem which has two novel components: migratory proxies, which
cache data at remote clusters, and a workflow manager, which
manages the workflow of the system. Hawk integrates aggressive
caching and IO filtering to reduce wide-area traffic, proactively
replicates data to avoid regeneration due to failure, and per-
forms fine-grained rollback and recovery to minimize the effort
required to recover from failure. Through a case study of data-
intensive applications, we demonstrate the benefits of Hawk over
traditional approaches, delivering a two to three orders of mag-
nitude increase in performance for jobs that are deployed across
a wide-area batch scheduling environment.

1 Introduction

Knowledge is the key to building effective computer sys-
tems. Both a sophisticated understanding of the offered
workload and a solid comprehension of user expectations
are central to the successful construction of a system that
satisfies those who use it. Unfortunately, in many systems,
such knowledge is hard to come by; the resulting “curse
of generality” has long plagued systems developers, who
then must build systems that attempt to satisfy all users at
all times under a variety of metrics of success — a difficult
if not impossible proposition [7, 19, 61].

If developers could obtain more knowledge of specific
workloads and user expectations, they could improve their
systems, engineering them to achieve the stated expec-
tations at minimal cost. For example, if a CPU sched-
uler has reasonable estimates of job completion times, it
can perform much more intelligent scheduling than one
that does not [45]; if a file server is aware that consistent
throughput is what its workload demands, it can be tai-
lored to deliver the required level of performance at low
cost [9].

While such knowledge may be difficult to obtain in
a general-purpose interactive computing environment, an
increasing number of “batch” workloads present systems
with an opportunity for enhanced comprehension of work-
load and user demands. Batch workloads minimally

present the system with the set of jobs that need to be
run and perhaps some ordering among them. Further,
in these environments, user satisfaction is determined di-
rectly by throughput of the jobs. While these batch work-
loads were formerly relegated to a few specialized scien-
tific workloads [6], they now are common across a broad
range of important and often commercially viable appli-
cation domains, including genomics [3], video produc-
tion [62], simulation [11], document processing [18], data
mining [2], electronic design automation [17], financial
services [49], and graphics rendering [38].

Batch workloads are typically run in controlled local-
area cluster environments [41, 67]. However, organiza-
tions that have large workload demands increasingly need
ways to share resources across the wide area, to lower
costs and increase productivity. An obvious solution is
to simply run an existing batch scheduling system across
machines in the wide area; like many obvious solutions,
this approach is fraught with difficulty.

The prime limitation in running one of the many extant
batch scheduling systems across the wide-area is found
in how they typically handle the input/output demands of
applications. These CPU-centric systems treat I/O as a
second class citizen, often redirecting all of the input and
output of jobs back to the home node of the user [24, 40].
As data demands grow, such a “remote 1/0” approach
severely limits the types of jobs these systems can effec-
tively process.

To address these problems and make I/O a first class cit-
izen in a wide-area CPU sharing environment, a new file
service paradigm is required. Such a service should take
a holistic view of applications and the system, taking into
account available knowledge of applications to improve
performance. Such a service must handle the failures that
are common in these environments in an efficient manner.
Finally, such a service must manage itself, as there is no
system manager to ensure that jobs at the remote site are
running smoothly.

In this paper, we introduce a service that meets the
aforementioned criteria. We call such a system a migra-
tory file service, as it migrates the I/O environment of a
user or application to the remote CPU site. A migratory
file service relies upon a single primitive that is common
to all CPU sharing environments, namely the ability to




launch a job on a remote site, to dynamically instantiate a
virtual batch system overlay in the remote execution en-
vironment. The virtual batch system is used to create an
automatically managed computational and storage envi-
ronment for the remotely run jobs, which is tailored on-
the-fly to the demands of the running applications.

We describe our prototype migratory file service known
as Hawk, which is designed to take advantage of work-
load knowledge in two primary ways. First, Hawk im-
proves performance through the use of self-organizing
peer-to-peer migratory proxies. These proxies first clas-
sify and then treat the different types of I/O common
in batch workloads accordingly. Hawk proxies aggres-
sively cache input data cooperatively [16, 20] across re-
mote nodes so as to reduce wide-area communication and
improve file access latency. Further, Hawk proxies care-
fully filter output traffic from remotely-run processes, mi-
grating only the needed files back to the home file server
of the user. Both knowledge-driven optimizations serve to
reduce wide-area network transfers substantially and en-
able the deployment of data-intensive applications.

Second, Hawk gracefully handles failures through an
intelligent workflow manager. Both migratory proxies
and jobs can fail at the remote site. The workflow manager
uses logging and transactional techniques [27] to perform
fine-grained rollback and recovery, ensuring progress de-
spite sporadic availability of remote resources. Further,
when a migratory proxy fails, it may hold “dirty” data
from a job that recently completed, i.e., data that has
not yet been committed to the home node of the user.
Whereas data loss is viewed as catastrophic in typical file
services, the workflow manager understands how to re-
generate a given file (i.e., by re-running the job that gen-
erated the file). In addition, if a file is costly to regenerate,
Hawk replicates the file proactively, reducing the likeli-
hood that the job needs to be run again and improving
overall throughput.

To achieve high throughput for batch workloads in
failure-prone environments, Hawk does not view failure
and performance in isolation. Rather, Hawk takes an end-
to-end perspective [57], understanding that the true mea-
sure of success in batch systems is delivered job through-
put. By combining knowledge of the workload (e.g.,
which files are important) with knowledge of user expec-
tations (e.g., high throughput for jobs), Hawk handles per-
formance and failure in an integrated and unified manner.

We study Hawk through controlled microbenchmarks
as well as by running a suite of demanding scientific appli-
cations. Through microbenchmarks, we demonstrate that
caching of input data is crucial for performance, and that
localization of ephemeral /O greatly reduces wide-area
1/O traffic. We also demonstrate how Hawk reacts to fail-
ure with fine-grained rollback and recovery, and the need
for replication of output data that is crucial to performance
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Figure 1: The Target Environment. The figure presents
a depiction of a typical CPU sharing environment. The
user has their important data stored on a file server in
their home cluster, and is running jobs on machines at
geographically-dispersed clusters. Each box represents a
machine, and shaded boxes are machines upon which the
user is currently running jobs.

in some scenarios. Finally, through an application study
of data-intensive scientific codes, we show that Hawk im-
proves the throughput of these applications by two to three
orders of magnitude over traditional approaches.

The rest of this paper is structured as follows. We de-
scribe background in Section 2, and give an overview of
Hawk in Section 3. Then, in Sections 4 and 5, we de-
scribe the performance optimizing and failure handling of
Hawk. We present our application study in Section 6, re-
lated work in Section 7, and conclude in Section 8.

2 Background

In this section, we describe the setting for migratory file
services. We first discuss the environment where such a
service will likely be deployed, and then present an ex-
ample from the perspective of a user. We conclude with a
discussion of the expected structure of batch workloads.

2.1 Environment
Although wide-area sharing of untrusted and arbitrary
personal computers is certainly a possible platform for
batch workloads [63], we believe that the primary plat-
form for these types of throughput intensive workloads
will be clusters of managed machines, spread across the
wide area. We assume that each machine within a cluster
has processing, memory, and local disk space available for
remote users. Figure 1 presents a typical environment.
We further assume that each cluster exports their re-
sources through some type of CPU sharing system, and
that each site that participates has local autonomy over
their resources. Although a user may be able to use re-
mote resources at a given time, they may be taken away
at a moment’s notice, perhaps to be given to a “more im-
portant” local user. Thus, a system that is built to exploit



remote resources must be able to tolerate unexpected re-
source “failure”, i.e., actual hardware or software failure,
or simply a prioritized preemption by the owning site.
We sometimes refer to this more organized, less hostile,
and well managed collection of clusters as c2c¢ (cluster-
to-cluster) computing, in obvious contrast to widely pop-
ular peer-to-peer (p2p) systems. Although the p2p envi-
ronment is appropriate for many uses, there is likely to
be a more organized effort to share computing resources
within corporations or other organizations; thus basic as-
sumptions about machine behavior, including stability,
performance, and trust, are different. That said, we be-
lieve that much of the p2p systems technology that devel-
ops is directly applicable to the c2c domain; indeed, our
migratory proxies self-organize and manage themselves in
a manner reminiscent of peer-to-peer file systems [37, 56].

2.2 Example Usage

We now consider a user who wishes to run a data-
intensive, high-throughput workload. After the user has
developed and debugged the application on their home
system, they are ready to run hundreds or thousands in-
stances of their application on all available computing re-
sources, using a remote batch execution system such as
Condor [40], LSF {67], PBS [65], or Grid Engine [64].

Each instance of their application is expected to use
much of the same input data, while varying parameters
and other small inputs. The necessary input data begins
on the user’s home storage server (e.g., an NFS server),
and the output data, when generated, should eventually be
committed to this home server.

The state of the art solution presents a user with two
options for running their workload. The first option is to
simply submit their workload to the remote batch system.
With this option, input and output occur on demand back
to the home storage device as the jobs run. While this ap-
proach is simple for the user, the performance of a data-
intensive application will not be acceptable for two rea-
sons. First, wide-area network bandwidth and latency lim-
itations is not sufficient to handle simultaneous requests
from many data-intensive applications running in parallel.
Second, all /O from the application is directed back to the
home site, including temporary data that is not needed af-
ter the computation is complete.

The second option is for the user to manually config-
ure their systemn to replicate their data sets in the remote
environment. This requires the user to identify the neces-
sary input data, transfer the data to the remote site using a
tool such as FTP, log into the remote system, unpack the
data in an appropriate location, configure the application
to recognize the correct directories, submit the jobs, and
deal with any failures that occur. The entire process must
be repeated whenever more data needs to be processed,
new batch systems become available, or existing systems
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Figure 2: A Batch-Pipelined Workload. A typical batch-
pipelined workload is depicted. A single pipeline repre-
sents the logical work that a user wishes to complete, and
is comprised of a series of processes. Users often assem-
ble many such pipelines into a batch to explore variations
on input parameters or other input data.

no longer have capacity to offer to the user. As is ob-
vious from the description, the process is labor-intensive
and error-prone (and yet many users of such systems go
to these lengths simply to run their jobs!).

A migratory file service solves these problems by cre-
ating a personal data-intensive computing environment on
the basic substrate of one or more batch systems. The
MEFS is responsible for deploying a task force of services
that identify the combined compute and storage resources
in a cluster and export them in manner that hides the un-
derlying complexity and faulty behavior. We discuss the
details of Hawk, our prototype MFS, in Section 3.

2.3 Workloads

We now define the expected data-intensive, high-
throughput workload in more detail. As illustrated in Fig-
ure 2, these workloads are composed of multiple inde-
pendent pipelines; each pipeline contains sequential pro-
cesses that communicate with the preceding and succeed-
ing processes via private data files. Thus, we refer to
this class of workloads as batch-pipelined. A workload
is generally submitted in large batches with all of the
pipelines incidentally synchronized at the beginning, but
each pipeline is logically distinct and may correctly exe-
cute faster or slower than its siblings.

The key difference between a single application and
that of a batch-pipelined workload is the file sharing be-
havior. For example, when many instances of the same
application are run, the same executable and potentially
many of the same input files are used. We characterize the
sharing that occurs in the workloads, by breaking I/O ac-
tivity into three categories: endpoint, which represents the
input and final output, pipeline-shared, which is shared
in a write-then-read fashion within a single pipeline, and
batch-shared, which is comprised of input I/O that is
shared across multiple pipelines.
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Figure 3: The Hawk Migratory File Service. The com-
ponents of the Hawk MFS are presented. A workflow man-
ager resides at the user’s home and manages execution
based on the workflow description. Remote proxies serve
and cache data requests for jobs running on remote nodes.
Job I/0 requests are redirected by an interposition agent
to the proxies.
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Figure 4: Deploying a Virtual Batch System. The fig-
ure depicts a virtual batch overlay. Six nodes are in the
cluster of interest, three of which have been assigned to
the user. Hawk uses the ability to launch a job on these
nodes to instantiate it’s own virtual batch system, includ-
ing migratory proxies to handle I/0 and a VM to run it’s
jobs.

3 Hawk Overview

In this section, we present the key components of Hawk,
our implementation of a migratory file service. Hawk
combines the advantages of a distributed file system with
those of traditional batch systems to meet the semantic
and performance needs of high throughput applications.

An overview of Hawk is shown in Figure 3. Both data
traffic (solid lines) and information and control (dashed
lines) are shown. From this figure, we see that the nodes
in the remote cluster run both user applications and mi-
gratory proxies, whereas the home storage server for these
applications is located across the wide area.

Our description of Hawk focuses on three major com-
ponents. First, we describe how Hawk can be deployed
as a virtual batch system on top of an autonomous remote
system which exports an arbitrary batch execution envi-
ronment. Second, we give an overview of the mechanisms
required to efficiently support I/O in a remote setting, fo-
cusing primarily on the Hawk migratory proxies. The role
of the migratory proxies is to aggressively cache and share
data in a cooperative fashion, avoiding as many costly in-
teractions with the user’s home storage server as possi-
ble. Third, we discuss the Hawk workflow manager. The
role of the workflow manager is to track the dependencies
across jobs and data so that the only essential output data

is sent back to the user’s home, to perform fine-grained
rollback and recovery transparently in the face of job or
proxy failure, and to replicate output data that would be
costly to otherwise regenerate.

At the end of the section, we present an argument as
to why a more traditional distributed file service is not
the correct solution for this type of workload and envi-
ronment, and discuss other issues that are germane to the
design and implementation of a migratory file service.

3.1 The Virtual Batch System

Hawk must be able to run on autonomous remote sites,
with no intervention required by administrators or users.
The implication is that Hawk cannot assume that it has
any particular software packages installed or special priv-
ileges on the remote site. The only assumption made by
Hawk is that the remote site runs a simple host batch sys-
tems, such as Condor, LSF, PBS, or Sun’s Grid Engine.
Because these systems differ in the services they offer,
Hawk assumes only the most basic functionality: the abil-
ity of the host batch system to queue, run, and (if needed)
halt running executables.

To establish the necessary control over the remote site,
Hawk does not use the host batch system directly, but
instead establishes a virtual batch system as an overlay
across the host systems; this approach is similar in spirit



to that which has been applied to virtual machines [22]
and networks [4]. With this approach, glide-in jobs are
submitted to the host batch system [25]; the glide-in jobs
are not user applications, but a package of executables and
configuration files to instantiate the virtual batch system.
Hawk currently employs Condor [40] as its virtual batch
system, but could use any fault-tolerant, opportunistic dis-
tributed system in its place. By dynamically instantiating
a virtual batch system on top of the extant physical batch,
Hawk ensures that it has the control over remote resources
that it requires.

Note that the scheduling of the glide-in jobs is at the
discretion of the host scheduling policy; these jobs may
be interleaved in time and space with jobs submitted by
other users. Regardless of whether the host system man-
ages a cycle-scavenging pool or a highly available cluster,
the glide-in jobs may be terminated without notice (e.g.,
the jobs may be preempted by a higher priority user, the
user’s allocation may be exhausted, or the execution ma-
chine itself may simply fail). The host system may restart
the glide-in job or it may not; Hawk handles both cases by
keeping a supply of virtual batch jobs in the host queue.

Figure 4 depicts how the virtual batch system is built.
The glide-in jobs submitted to the host batch queue are a
package of three executables: a master, virtual machine,
and migratory proxy. The master process completes the
configuration and starts the other two processes. The vir-
tual machine, a direct component of Condor, exports the
resources of the machine. This process accepts and exe-
cutes program binaries, periodically reporting back vital
statistics about the execution, and at the completion of an
application, reports the final state, transfers output files,
and cleans up resources. Finally, the migratory proxy ex-
ports the storage resources found on that machine to the
jobs running on the cluster; this important component of
Hawk is described in more detail in the next section.

There are two additional components within Condor
that are used by Hawk: the matchmaker and the user’s vir-
tual batch queue. The matchmaker is a dynamic catalog of
the participants in the system, introducing compatible par-
ties to each other. The ClassAd [50] resource description
language is used to accept advertisements from the virtual
machines and proxy caches as well as to specify that jobs
prefer or require machines with certain qualities, such as
an amount of memory or particular CPU type. The virtual
batch queue persistently stores a user’s jobs; if the queue
crashes, any running jobs fail, but the queue state will be
recovered and failed jobs will be restarted automatically.

3.2 The I/O Subsystem

The I/O portion of Hawk has the core responsibility of vir-
tualizing the storage resources of the remote site. Through
these components, Hawk implements the essential mech-
anisms for providing transparent access to private names-
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Figure 5: Interaction of the Agent and Proxy. /n the fig-
ure, a job opens two files that are a part of its namespace.
1/0 requests are redirected by an interposition agent to the
local proxy, which may either directly service the request,
request the given data from a peer proxy, or fetch the data
from the home server.

paces, caching data files to improve performance, and the
underlying mechanisms for dealing with storage failure.
Figure 5 presents the interaction of the /O components.

3.2.1 Migratory Proxies

The most important component of the Hawk I/O infras-
tructure is the migratory proxy. Each proxy exports the
storage resources of the node upon which it runs. Mi-
gratory proxies provide two important abstractions: the
cooperative cache and leased containers.

The cooperative cache is a global read-only cache man-
aged by the group of proxies. The portion of the co-
operative cache within each proxy is a demand-paged
cache with LRU replacement. Unlike previous cooper-
ating caching schemes that manage cluster memory in a
global fashion [16, 201, the Hawk cooperative cache stores
data in the local disks of each remote node, thus avoiding
costly fetches from the home storage server.

Upon a request from a client, the proxy fetches the re-
quested data blocks, preferably from its peer proxies but
from the home server if necessary. Several variations on
cooperative caching are possible [16]; the Hawk algo-
rithm works as follows. Each proxy in a group is responsi-



ble for an equal share of the data available to clients. Upon
request from a client, a proxy checks to see if it contains
the needed data. If it does not, the proxy applies a hash
function to the filename and block number, yielding a lin-
ear hash index. This map transforms the index into the
name of a peer proxy, which is then queried for the data.
If the peer has the data, it is returned; otherwise the peer
performs a read request to the archive. In the future, it
may be interesting to investigate whether more sophisti-
cated hashing schemes could be applied [47]; however, as
we will see in Section 4, this simple hash-based scheme
achieves much of the possible benefit.

In order to cooperate, proxies must agree on their orga-
nization. To do so, each proxy first bootstraps itself into a
group by contacting the archive server, registering itself as
a proxy, and requesting the list of available proxies; other
techniques, such as expanding ring multicasts or the use
of a known global data file, could be used as well. Proxies
then self organize to select their coordinator by using the
eldest proxy known to the archive server. Once the co-
ordinator is selected, each proxy contacts the coordinator,
which maintains the list of current peers and assigns each
a position in the hash map. New proxies register with this
coordinator, who monitors their health and pushes new
hash maps for each join and leave operation. If the coor-
dinator fails, the proxies fall back to the bootstrap protocol
with the archive server.

The second abstraction implemented by the proxies is
the leased container. A leased container is scratch space
used for storing application output and other temporary
files. Containers are created by the workflow manager and
are cleaned up either by the workflow manager when fin-
ished or by the migratory proxy when the lease expires. A
transactional interface is used to name and create contain-
ers, which simplifies recovery in the event of failure.

3.2.2 Interposition

The remaining portion of the Hawk I/O subsystem pro-
vides connectivity between clients and migratory proxies.
Specifically, user jobs connect to nearby proxy caches by
using an interposition agent [34]. Our interposition agent
inserts a library into an unmodified executable to redi-
rect I/O operations to their proper destination; thus, no
source code modifications are required. Upon I/O oper-
ations, the agent maps the pathnames used by the appli-
cation into the physical names used by the proxies. This
is performed by consulting a mount list, programmed by
the workflow manager as described below; in this manner,
each instance of the application can transparently operate
in its own private namespace.

Interposition agents and leased containers combine al-
low the /O system of Hawk to cleanly differentiate fail-
ures from errors. When an agent contacts a proxy, it is
able to tell the difference between a missing container

job a a.condor
job b b.condor ( vl )
job ¢ c.condor
job d d.condor
parent a child b
parent ¢ child d
volume vl
ftp://home/mydata
volume v2 scratch
volume v3 scratch
mount vl /mydata
mount vl /mydata
mount v2 /tmp
mount v2 /tmp
mount v3 /tmp
mount v3 d /tmp
extract v2 x
ftp://home/out.1l
extract v3 x
ftp://home/out.2

v2 v3

N oo 0

mydata

Home
Storage

Figure 6: Workflow Language and Schematic. An ex-
ample workflow is depicted. A directed graph of jobs is
constructed via the job and parent keywords, and the

file system namespace presented to jobs is configured via

volume and mount directives. The extract keyword
indicates which volumes must be committed to stable stor-
age at the home storage server upon job completion.

and a missing file in a valid container. The former in-
dicates a failure of some kind (e.g., a crashed proxy, an
expired lease, or a deliberate cleanup). In this case, the
agent forces the process to exit with a signal indicating
an 1/0 error; this signal propagates back to the workflow
manager, which must then recover from the failure. The
latter indicates that the job is looking for a file that does
not exist and should be passed a “file not found” error.

3.3 Workflow Manager

The final task that Hawk must handle is to manage
the flow of batch execution, incorporating knowledge of
the user’s workload to improve performance and recover
cleanly from failures. Two types of information are use-
ful. First, information about which files are temporary
allows Hawk to avoid copying output files over the wide-
area to archival storage. Second, information about which
jobs produce or consume each files allows Hawk to recre-
ate output which is lost due to a node failure.

In Hawk, these responsibilities are that of the workflow
manager. The manager accepts a workflow description
of a large set of work to be done, discovers storage and
execution resources on which to carry it out, and then ex-
ecutes the plan, taking failures into account.

3.3.1 Workflow Description

Figure 6 shows an example and a schematic rendering of
the workflow language. The keyword job declares an ab-
stract job name and binds it to a job description file suit-
able for the virtual batch system. In this example, job
a is bound to the job description file a. condor, which



names the executable, input and output files, architec-
ture constraints, and environment variables. The parent
keyword indicates an ordering between two jobs. In this
example, a must execute before b and ¢ before d.

More interesting is the manner in which the local
namespace of a job is constructed. The volume and
mount directives establish the binding between data
sources to the private name space in each job. For ex-
ample, the declaration of volume v1 is used to establish
the binding from /mydata to the nearby proxy cache;
the mount commands specify that jobs a and b share the
same /tmp directory.

Finally, the workflow provides a way for jobs to differ-
entiate between scratch data space (which is used either
privately by a single process or as a method of communi-
cation between jobs in a pipeline) and output that must be
committed reliably to the home storage server. The ex-
t ract command specifies which files in which volumes
should be written home when the job is complete.

We note that users running a large number of inter-
dependent jobs must always express these types of de-
pendencies. To successfully execute thousands of jobs,
one must create an organized directory structure and de-
termine which jobs use data created by others. Many
users currently specify these dependencies by writing
shell scripts and makefiles that explicitly control execu-
tion order. A workflow language has the advantage that it
effectively abstracts what operations need to be done from
how that those operations are performed, much in the way
that relational queries separate what the user wants from
how it gets computed [13]. This abstraction allows users
to be blissfully unaware low-level system details (e.g.,
how failures are handled), while giving the system power-
ful information about jobs and data.

3.3.2 Basic Operation

The workflow manager operates as follows. First, the
manager scans the workflow for ready but unassigned jobs
and volumes and assigns them to resources. When there
is no work left to be assigned, the manager waits to be no-
tified of changes in job state by the batch queue. As jobs
complete, children may be dispatched and any unneeded
resources cleaned up. Periodically, the workflow manager
refreshes is model of the system by querying the match-
maker for a list of resources.

With the information expressed in the workflow, the
task of determining which output files are temporary and
can be cached by the proxies locally is straightforward.
By defaul, all files are kept only within the Hawk prox-
ies; only when a file is explicitly extracted is the output
file sent to archival storage.

3.3.3 Handling Failures
A key component of the workflow manager is found in
how it makes Hawk robust to failures. The workflow man-

ager can handle failures of the matchmaker, job queue,
storage containers, and the manager itself. To accomplish
this, it keeps a log in persistent storage and uses a trans-
actional interface to the job queue and storage containers.
If the manager fails, it recovers from the log and resumes
operation without losing jobs or storage containers.

Hawk handles jobs and storage failures by waiting for
passive indications, and then conducting active probes as
necessary. For example, if a job returns to the workflow
manager with an abnormal exit code indicating an I/O fail-
ure (generated by the interposition agent), it suspects that
the proxy servers housing one or more of the containers
assigned to the job is faulty. The manager then probes the
proxy caches to check for the containers. If all containers
are healthy, then it is assumed the job encountered tran-
sient communication problems and is simply resubmitted.
However, if the containers have failed or are unreachable
for some period of time, the containers are assumed lost.

When a container is lost, the workflow manager deletes
the container and checks all processes that have or will
interact with volumes in that container. Clearly, currently
running processes that rely on that volume for input data
must be stopped; these processes will be restarted later
when their input data is restored. However, the processes
that wrote to this volume may also need to be restarted;
that is, Hawk needs to restart the jobs that created the lost
files needed by the stopped jobs. To determine this set
of “creation processes”, the manager durably records the
file dependencies that occur during execution. Of course,
these restarts may be recursive; the creation processes
may in turn rely upon input data that has been lost and
must be recreated as well.

In order to avoid these expensive restarts of a work-
flow, Hawk supports replication of volumes across prox-
ies. Given that the importance of replicating a volume
depends upon both the probability of failure and the exe-
cution time of the jobs creating this data, Hawk performs
a cost-benefit analysis at run-time to determine when a
volume should be replicated.

Note that a Hawk does not handle permanent failures
of the home storage server. This non-trivial but well-
understood problem can be managed through backup [33]
and replication [8, 48]. Temporary disconnection to the
home storage node however can be tolerated and progress
can continue as long as the necessary input data can be
found in the migratory file service and there is sufficient
capacity for the outputs.

3.3.4 Workflow Management and Transactions

In many ways, the workflow manager draws on techniques
from the field of database management, and in particu-
lar, transaction processing and ACID properties [27]. A
pipeline can be thought of as a transaction, and each job
within a pipeline as an atomic operation. Each namespace




provides isolation among the processes of a workflow, to
the degree required by the application. Consistency is
managed according to application desires by controlling
execution in the directed graph of computation; if a job
should not access a file until another job is finished writing
it, the exact dependency should be specified in the work-
flow. Finally, when a file is extracted from a volume and
committed to the home server, the results of the job are
thus made durable.

3.4 Why Not A Distributed File System?
One might initially assume that data-intensive applica-
tions in a distributed environment are well served by
a distributed file system (DES) [60]. A DFS is a
well-understood abstraction providing a coherent names-
pace and uniform data accessibility (modulo permissions)
across a set of physically distributed machines. However,
a DFS is not appropriate for personal wide-area data ac-
cess in the presence of failures. Beyond the non-trivial
technical and social barriers of deploying a DFS across
geographically-dispersed clusters of machines, there is an
underlying structural reason:

Distributed file systems provide an unnecessarily
strong abstraction that is expensive to provide in a
fault-prone, wide-area environment.

A migratory file service differs from a traditional dis-
tributed file system in the following important respects:

Namespaces. Traditional file systems provide partic-
ipants with access to the entire namespace implemented
by the system (modulo permissions), and allow for all to
consistently read and write the same data (by some def-
inition of consistency). In contrast, an MFS allows each
participant to construct its own private namespace, with
both global and local components. Only those compo-
nents needed by a job are stitched into its namespace.

Consistency. Much of what complicates distributed file
system design and implementation revolves around cache
consistency [5, 12, 44]. In an MFS, in contrast, the re-
sponsibilities of coherence and consistency are specified
in the workflow description, which greatly reduces imple-
mentation complexity while providing the expected bene-
fits of caching.

Selective commit. Traditional file systems assume that
all newly created data has high value and must be forced
to stable storage at specific times [31, 42] or at least within
small bounded intervals {53, 58]. In contrast, an MFS rec-
ognizes that the vast majority of data is ephemeral and ex-
pensive to move, and thus accounts for the different types
of /O in its design. By doing so, an MFS can optimize
data movement aggressively and thus achieve excellent
performance via workload knowledge.

Fault tolerance. Traditional file systems have limited
recourse for dealing with failed clients. Those that en-
force immediate commit of newly-written data will not

lose data, but also cannot continue to operate in the face
of failures. Those that permit delayed write-back can op-
erate through failures, but then must appeal to system ad-
ministrators for reconciliation [36], or simply accept the
possibility of inconsistent data [35]. Through the use of
private namespaces and selective commit, an MFS is able
to understand the overall structure of a workload and de-
termine the precise consequences of a'failed compute or
storage element. This allows an MFS to reap the per-
formance and availability benefits of delayed write-back
while maintaining transparent failure recovery.

3.5 Other Issues

One of the main other issues that needs to be addressed
in any wide-area system is that of security. Hawk cur-
rently uses the Grid Security Infrastructure (GSI) [23] for
all of its interactions, GSI is a public key system that del-
egates authority to remote processes through the use of
time-limited proxy certificates. To bootstrap the system,
the submitting user must enter a password to unlock the
private key at his/her home node and generate a proxy cer-
tificate with a user-settable timeout. This proxy certificate
is transported to the remote batch system along with the
glide-in job and serves as the credential for the proxies
and virtual machines. As the components communicate
with each other, the home storage server, and other com-
ponents at the user’s home site, they perform user-to-user
authentication and present themselves as the submitting
user in the limited role of “proxy.”

This system requires that the user trust the host batch
system to protect the proxy credentials from exposure
while in transit to the system, while idle in the batch
queue, and while in use on an execution node. If stolen,
the credentials can be used to impersonate the user in the
role of proxy. This danger is not particular to Hawk, but
is present in any system where delegation of credentials
is performed. If the user does not place a great degree
of trust in the host system (although we believe that they
commonly might), the power of the credential can be lim-
ited to bound the damage from a stolen proxy, by either
limiting its lifetime, delegating a proxy role which is only
authorized to perform the tasks necessary to the workload,
or limiting authorization of the credential to a certain set
of known hosts.

4 Exploiting Knowledge for

Performance

In this section, we explore how the Hawk migratory file
service exploits its knowledge of the workload to optimize
job throughput. In this set of experiments, we assume an
idealized system in which no failures occur and show that
Hawk aggressively caches and filters I/O to reduce com-
munication and improve performance. In the next sec-
tion, we assume (realistically) that failures are common
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Figure 7: The Costs of Remote I/O. The experiment mea-
sures job completion time for the three synthetic work-
loads, run either in a local cluster or in a remote cluster
across an emulated wide-area link.
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Figure 8: Caching Batch I/O. This experiment measures
job completion time when batch I/O caching is utilized.
Performance with both non-cooperative and cooperative
proxies is shown.

and demonstrate how Hawk integrates performance and
failure management to improve job throughput.

4.1 Experimental Setup

In the experiments in this and the next section, we assume
the user’s input data is stored on a home file server. After
all jobs have run and all output data is safely stored back
at the home file server, the workload is complete. The
metric of success is simply job throughput.

We assume that the jobs are run on a distant cluster of
machines, accessible from the user’s home via a wide-area
link. To emulate this scenario, we limit the bandwidth to
the home file server to 800 KB/s via a simple network de-
lay engine similar to DummyNet [52]. All /O between
the remotely run jobs and the home file server must tra-
verse this slow link. The cluster itself is comprised of 32
550-MHz PIII Katmai processors with 1 GB of physical
memory; each machine is connected to one another via a
100 Mbit/s Ethernet switch.

To explore the performance of Hawk under a range
of workload scenarios, we utilize a parameterized syn-
thetic batch application. In each scenario, we measure
the job completion rate of a synthetic workload with 128
pipelines, each with a depth of two jobs for a total of 256
jobs. Across scenarios, we vary the relative amounts of
batch I/O and pipeline /O, while holding the amount of
endpoint I/O constant. Recall that batch input is shared
across multiple pipelines, whereas pipeline I/O is tempo-
rary and used for communication within a single pipeline.
The remaining component is endpoint /O, which is com-
prised of non-shared input data and all final output data.
As is common in these workloads, the amount of endpoint
/0O is small; for all experiments below, we set endpoint
/O to 1 KB of input and 1 KB of output per pipeline.

4.2 Local versus Remote

We first establish the baseline performance of running
jobs remotely versus in an idealized local setting (i.e., one
in which the home file server is a locally-accessible ma-
chine). Results of our experiment are shown in Figure 7.
For both the local and the remote case, we present the re-
sults from three different workloads: batch intensive, in
which the amount of batch I/O is set to 10 MB and there
is no pipeline I/O, pipeline intensive, in which there is
10 MB of pipeline /O and no batch I/O, and mixed, with
5 MB of both batch and pipeline I/O.

In this and subsequent graphs, we increase time along
the x-axis and plot the cumulative number of jobs com-
pleted along the y-axis. The slope thus represents the
throughput. From the graph, we observe the high cost of
performing 1/O across wide-area links. In the remote case,
all input and output traffic travels across the slow link, and
thus performance suffers dramatically, with jobs finishing
roughly six times slower than in the local setting. Because
the naive remote system does not discriminate across the
types of I/O, the only factor that influences performance
is the bandwidth to the home file server.

4.3 Caching Batch Input

Having established a baseline for both best-case (local)
and worst-case (remote) performance, we now apply our
semantic understanding of the I/O characteristics to im-
prove performance while running in a remote environ-
ment. We concentrate first on batch I/O.

Figure 8 shows how Hawk performs when caching
batch data in migratory proxies. With batch caching
enabled, remotely-run jobs can approach “local” perfor-
mance levels for batch-intensive workloads. We exam-
ine both individual caching by each migratory proxy and
cooperative self-organized caching across all migratory
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Figure 9: Localizing Pipeline VO. This experiment mea-
sures the performance of Hawk when knowledge of the
workload is applied in order to localize pipeline 1/O. In
the experiments labeled “collocated”, the workflow man-
ager places jobs and pipeline data on the same node.
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Figure 10: Putting It Al Together. This experiment
shows how Hawk performs at local rates regardless of
the ratio between batch and pipeline I/O, by localizing
pipeline I/O and cooperatively caching batch data. The
pipeline localization utilizes the collocation variant.

proxies. Because each migratory proxy has enough ca-
pacity to completely cache the batch data, the rate of job
completion for each approach is similar. The only differ-
ence between the two approaches occurs during initializa-
tion: cooperative migratory proxies share batch data and
thus avoid multiple trips to fetch the same data from the
home node, whereas the individual (non-cooperative) mi-
gratory proxies contend for wide-area bandwidth and the
home file server and are therefore not able to to fetch the
batch data as quickly.

The cooperative batch caches can even outperform lo-
cal job execution. With a cache proxy running on every
node of the cluster, each job has a dedicated proxy; due to
this parallelism, each job obtains a higher I/O bandwidth
than when each job contends for the same server.

4.4 Localizing Pipeline /O

We now turn our attention to pipeline I/O. All pipeline
I/O is private per pipeline; thus, if Hawk has knowledge
of its ephemeral nature, it can avoid moving any of the
private pipeline /O across the wide area. Further, if the
workflow manager can collocate jobs of a pipeline with
their pipeline inputs and outputs, the local-area traffic in
the cluster can also be reduced.

As one can see in Figure 9, when Hawk keeps all
pipeline I/O in the cluster (and thus avoids the WAN link),
both the pipeline-intensive and mixed workloads bene-
fit, the former more than the latter. The batch work-
load does no better with this optimization since it con-
tains no pipeline I/O. The figure also shows that the dif-
ference between the collocated and non-collocated ap-
proaches is quite small; with copious bandwidth available
in the remote cluster’s LAN, the coordinated placement of
pipeline data and jobs is not important.

4.5 Putting It All Together

Finally, we demonstrate how the combination of cooper-
atively caching batch data and localizing pipeline I/O in
the migratory proxies transforms a remote cluster into a
“local” system from the standpoint of performance. Fig-
ure 10 runs the same synthetic workloads, with all opti-
mizations enabled. The graph shows that regardless of the
job type (batch-intensive, pipeline-intensive, or mixed),
performance is excellent, quite similar to the situation
where all of the jobs are run locally, and sometimes bet-
ter. As shown in Figure 11, the key to the success of Hawk
is that it reduces the amount of network communication,
particularly to the home file server.

5 Exploiting Knowledge to

Handle Failure

In this section, we explore how Hawk employs high-level
workload knowledge to recover from failures without op-
erator intervention.

Hawk requires a transactional interface to the batch
queue and the proxy caches, as well as a persistent log
to record remote actions and recover from failures. In the
case of the job queue, a begin message is used to request
a new unique job ID. This ID is immediately recorded in
the manager’s log for crash recovery. The manager pro-
vides the details of the job, and then logs and issues a
commit to release it for execution. When the job com-
pletes, the queue informs the manager, which may then
extract the necessary details such as the exit code and re-
source consumption statistics. Once satisfied, the man-
ager may issue a delete to remove the record of the job.
A similar discussion applies to the creation and manage-
ment of leased containers.

10



Total Network Traffic

Network Traffic (MB)

3000 T 1T L T Tt T
Baich reducing Pipeline reducing WAN  suesummen
f VLAN  wmasir
2500 r b
2000 4
1500 f i
1000 | | “
500 - Combined
N o
n il ©
2 835 885 QFE 8%% B8S
oXw a2 d a2« o= o X w
E =m 20 o = o
o Non-coop Cooperative Non-colloc  Collocated MFS

Figure 11: Network Traffic Summary. This bar graph
confirms that the performance improvements of the var-
ious schemes is due to a corresponding total amount of
network traffic incurred by the home file server.

The workflow manager is not immediately aware of
most external failures in the system. Although it would
be possible to continuously probe the job queue and proxy
caches for their status, this task could quickly grow to oc-
cupy the manager’s time as well as waste resources useful
to others. Instead, the manager waits for passive indica-
tions of failure, and then performs selected active probes
to determine the extent of the damage. There is a key
interaction between the failure of jobs and volumes that
must be observed. If a job fails, the volumes it depends
upon must be verified. If any of these are corrupt, any jobs
that produced data they contain must also be rolled back,
even if they have already completed.

Figure 12 demonstrates the behavior of Hawk in a
faulty environment. The figure is a timeline of a workflow
executing on a cluster in which an outage of 15 machines
was induced about 700 seconds into the run. Such failures
happen in real clusters for a variety of reasons, includ-
ing preemption by other users, scheduled maintenance or
software installation, or correlated failures of software or
hardware.

After the failure, the number of jobs in the “working”
state declines slowly as the workflow manager passively
discovers the failure, and then actively probes the system
to see what proxy caches have failed. This has two effects
on the running workload. First, running jobs that were
directly affected by the failure roll back to an “idle” state.
Second, jobs that were already “complete” must also roll
back to an idle state if they are needed to reconstruct a lost
volume. Thus, the total number of jobs completed dips
slightly before resuming its upward course. The machines
are restored at approximately 1200 seconds and become
available to Hawk.

The workload manager may attempt to provide some
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Figure 12: Failure Timeline. This figure is a trace of
Hawk executing a workload in a faulty environment. 15
machines were removed from the cluster at about 700 sec-
onds, and replaced at about 1200 seconds.

insurance against cascading failures, which become quite
costly in the case of long pipelines. This can be done sim-
ply by checkpointing the state of a container at another
node between job executions. If a proxy cache should
fail and take a container with it, the pipeline may be re-
sumed from the backup copy. Of course, the creation of
the backup copy may come at a significant cost. While
many checkpointing systems must ask the user for advice
on checkpoint frequency, the manager has a very easy de-
cision: it can monitor the cost of previous backups, record
the frequency of job and storage failures, and it knows ex-
actly how much effort was expended to create an existing
storage container. Thus, it can easily perform an accu-
rate cost/benefit analysis to determine whether a workload
should checkpoint in a given locale.

Choosing an optimal checkpoint interval is an old prob-
lem, and Figure 13 demonstrates the continued impor-
tance of this decision. Two workloads, consisting of one
minute jobs with varying pipeline lengths (1), checkpoint
sizes (c), and failure rates were run in our test cluster. The
cost/benefit analysis checkpointing policy is compared
against always and never checkpointing. When the mean
time to failure (MTTF) is low, not checkpointing can lead
to slow progress. When the MTTF is high, checkpointing
unnecessarily has a significant performance penalty. By
applying its knowledge of the workload, the manager can
make an appropriate choice.

6 Application Experience

We conclude with a demonstration of Hawk used with
a series of real applications that are candidates for high
throughput execution on distributed systems. Figure 14
summarizes the I/O behavior of these applications. Each
is composed of a number of executable programs that




Workflow
d=10; c=1MB; | d=2; ¢c=1024MB;
Policy | MTTF=1 hour MTTF=1 day
Always 1629 s 1558 s
Cost/Benefit 1835 s 449 s
Never 2030s 275s

Figure 13: Replication Policies. This figure shows the
run time of two distinct workflows under three replica-
tion policies. Due to its fluctuating estimates of system
behavior, cost/benefit is rarely optimal, but always avoids
disaster.

form a pipeline, passing data from one stage to the next
through the filesystem. In addition, most read data from a
fixed set that is shared across many runs. Note that since
Hawk migrates executable and library files, their size is
included as batch data.

BLAST [3] searches a genomic database for matching
proteins and nucleotides. CMS [30] is a simulation of
a high energy physics experiment to begin operation in
2006. Hartree-Fock (HF) [14] is a simulation of the non-
relativistic interations between atomic nuclei and elec-
tions. AMANDA [32] is a simulation of an experimental
gamma-ray telescope at the Earth’s south pole.

Although many batch scheduling systems do have
mechanisms for remote execution, these target applica-
tions have not been able to take advantage of them due
to their large I/O requirements. However, due to the low
ratios of endpoint /O as shown in Figure 14, most of
this 1/0 could be confined within a migratory file service.
Further, these applications present a wide range of pro-
gram behavior and demonstrate the importance of each
of Hawk’s three main features of cooperative caching,
pipeline containment and fault tolerance. BLAST is a sin-
gle staged workload that benefits only from cooperative
caching. Conversly, HF has heavy pipeline sharing but
only very little batch sharing beyond its executable file.
AMANDA, with multiple stages and a great deal of batch
and pipeline sharing, benefits from all three features.

To measure the throughput for these applications both
in remote environments and in Hawk, we used the same
configuration as in Section 4 to emulate a local area net-
work of compute nodes and a remote home server. For
each application, we compare the throughput of a remote
execution system to that of a migratory file service. For
all measurements we express throughput as the harmonic
mean of the job completion times within that workload.

As one can observe from Figure 15, applications that
use Hawk versus the traditional remote I/O solution com-
plete two to three orders of magnitude more jobs per hour.

7 Related Work

Hawk draws on related work from a number of distinct
areas. Workflow management has historically been the

/O Traffic (MB)
Name | Steps Endpoint Pipeline Batch  Total
blast 1 0.12 0.00 35543 355
cms 2 63.56 12.99 375552 3832
hf 3 1.96 4654.34 1.89 4658
amanda 4 522 264.31 53396 803

Figure 14: Application Summary. This figure summa-
rizes 1/0 needs of four representative scientific applica-
tions. The large amount of batch and pipeline traffic I/O
for CMS and HF, respectively, are due to multiple reads
of shared data of size 120 and 667 MB, respectively.

concern of high-level business management problems in-
volvoing multiple authorities and computer systems in
large organizations, such as approval of loans by a bank
or customer service actions by a phone company [26].
Hawk’s workflow manager works at a lower semantic
level than such systems; however, it borrows several
lessons from such systems, such as the integration of pro-
cedural and data elements [55]. The automatic manage-
ment of dependencies for both performance and fauit tol-
erance is found in a variety tools [10].

Many other systems have also managed dependencies
among jobs. A most basic example is found with the unix
tool make. More sophisticated dependency tracking has
been explored in Vahdat and Anderson’s work on trans-
parent result caching [66]; in that work, the authors build
a tool that tracks process lineage and file dependency au-
tomatically. Our workflow description is a static encoding
of such knowledge.

The manner in which the Hawk workflow manager
constructs private namespaces for running applications is
reminiscent of database views [29]. However, a private
namespace is simpler to construct and maintain; views, in
contrast, present systems with many implementation chal-
lenges, particularly when handling updates to base tables
and their propagation into extant materialized views.

The data distribution techniques within the Hawk co-
operative cache are quite similar to the distributed hash
tables described by Litwin et al. [39], and Gribble et
al. [28]. However, in our implementation, writes are not
allowed and thus many of the difficult issues of decentral~
ized update are avoided [51].

There has been much recent work in peer-to-peer stor-
age systems [1, 15, 37,43, 54, 56]. Although each of these
systems provides interesting solutions to the problem do-
main for which they are intended, each falls short when
applied to the context of batch workloads, for the same
reasons that distributed file systems are not a good match.
However, many of the overlays developed for these en-
vironments, such as Chord and Pastry, may be useful for
communication between clusters.

There has also been a fair amount of recent work on mi-
grating virtual machines. For example, both Zap [46] and
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Throughput (jobs/heur)

Name | Remote MES
blast 4.67 747.40
cms 33.78 1273.96

hf 40.96 3187.22
amanda X X

Figure 15: Application Throughput. This figure shows
the end-to-end application throughput for traditional re-
mote I/O and a migratory file service both constrained
to 800 KB/s bandwidth to the home server. [Note: The
AMANDA results are in progress.]

VMWare [59] allow for the checkpointing and migration
of either processes or entire operating systems. Hawk cre-
ates a remote virtual environment for jobs, but at the much
higher level of a batch system.

Work in mobile computing also bears similarity to our
work on Hawk. For example, Flinn et al. discuss the pro-
cess of data staging on untrusted surrogates for PDAs and
other mobile devices [21]. In many ways, such a surrogate
is similar to our migratory proxy; the major difference
is that the surrogate is primarily concerned about trust,
whereas our migratory proxies are primarily concerned
about scale and performance. Earlier work on Coda also is
applicable [36]. Coda uses caching for availability, keep-
ing important files on the local disk of a mobile device so
as to avoid unavailability during periods of disconnection.
In Hawk, a migratory proxies serve a similar role, caching
data so as to avoid downtime when the wide-area link to
the home node fails.

8 Conclusions

We have introduced Hawk, an instance of a migratory
file service. By achieving several orders of magnitude
improvement over remote execution, migratory file ser-
vice offers a fundamentally new way to utilize remote
resources. No longer must distributed computing be the
sole province of CPU bound jobs with insignificant /O
requirements; using semantic application knowledge and
guided by user expectations, a migratory file service recre-
ates the home storage environment of the user on a remote
cluster, both in appearance and performance.
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