Computer
Sciences
Department

Time-Shifted Modules: Exploiting Code
Modularity for Fine Grain Parallelization

Craig Zilles
Gurindar Sohi

Technical Report #1430

October 2001

UNIVERSITY OF

WlSCONSlN

M A D S O N

Time-Shifted Modules: Exploiting Code Modularity
for Fine Grain Parallelization

Craig Zilles and Guri Sohi
Computer Sciences Dept., University of Wisconsin-Madison
1210 West Dayton St., Madison, W1 53706
[zilles, sohi]@cs.wisc.edu

Abstract

Multi-threaded processors and chip-multiprocessors execute concurrent threads in close
physical proximity, potentially reducing the cost of synchronization and communication
significantly and enabling the parallelization of programs at a fine grain. In this paper, we explore
a source of fine-grain parallelism present in programs due to their modular nature. Concurrency
is derived from executing code within a module in parallel with the main program. Because this
technique exploits the modularity of code, rather than its regularity, it is applicable to irregular,
integer applications. Furthermore, because all of the synchronization is encapsulated within the
module, the process of parallelization is simplified—a programmer need only consider the
module’s code—and, once created, libraries of such modules can be used to create parallel
programs by programmers without having to reason about race conditions. We demonstrate the
technique in two case studies, achieving speedups of 26% and 39% over the single-threaded base

case on a simulated SMT processor.

1 Introduction

Due to the prevalence of thread-level parallelism (TLP) in server applications (e.g., databases,
web servers), many next generation server processors will concurrently execute multiple threads
in hardware [10, 11], using techniques like simultaneous multithreading (SMT) [30] and chip
multi-processing (CMP) [24]. Historically, technology developed for high-end processors has
been later deployed in commodity processors. Processor manufacturers often amortize design
costs by reusing an existing processor core in a new market segment when process technology
shrinks make it cost-effective to do so. Thus, we expect mainstream personal computer and work-

station processors to support the concurrent execution of multiple threads in the coming years.

The problem is that most existing interactive workloads do not have TLP to exploit. Previous

studies have shown that there are low levels of concurrency in most desktop applications [21] with

University of Wisconsin Technical Report - TR1430

much of the existing concurrency coming from work delegated to the GUI process [15]. Although
this lack of TLP in desktop applications can be partially attributed to the scarcity of multi-proces-
sor desktop machines to exploit it (a chicken and egg problem), the difficulty of manually parallel-
izing applications is probably the dominant factor. Although much progress has been made in
automatically parallelizing compilers, they cannot handle the irregularities of typical desktop
applications.

The process of manual parallelization typically involves identifying independent tasks within
the program and assigning these tasks to threads. These tasks generally access many of the same
data structures. These shared data structures must be manually identified and protected with locks
to avoid data corruption. This process is difficult and error prone because it requires an under-
standing of the whole program. Furthermore, because each program consists of a different set of
tasks, the process of parallelization must be repeated for each program parallelized. These two
factors make developing multithreaded programs expensive, resulting in multithreaded programs
being only developed for markets that are highly sensitive to performance (e.g., server work-
loads). In contrast, most desktop applications are purchased based on features, so most software

vendors perceive the cost of parallelization to outweigh its benefits.

In contrast, we explore an alternate approach, called Time-Shifted Modules (TSM), that struc-
tures module interfaces to derive TLP from parallelism already present in programs. Large pro-
grams are frequently written as a series of modules, where each module performs a portion of the
whole program’s functionality. This approach improves testability and maintainability [18]; by
providing all modules with well-defined interfaces and encapsulating their internal data, each can
be independently tested and debugged, and modules can be modified in isolation without impact-
ing the whole code base. Many (integer) programs perform a series of loosely-coupled computa-
tions at the granularity of hundreds or thousands of instructions, and frequently the boundaries
between these computations correspond to module boundaries in the source code.

TSM is a programming technique for multithreaded processors that does; not require the inclu-
sion of additional hardware features. Module code is modified so that manipulations of encapsu-
lated data can be performed safely in parallel with the main program. TSM uses 2 techniques
(discussed in detail in Section 2) to expose TLP from an otherwise sequential program: (1)
side-effect computations that are not needed immediately can be deferred using time-shifting

later, and (2) function results can be computed early using time-shifting earlier. TSM provides the

University of Wisconsin Technical Report - TR1430

appearance of a sequential execution by placing software synchronization at module interfaces to
avoid race conditions. Module computations are scheduled on available threads in software

(described in Section 3).

TSM has many benefits over traditional parallelization. TSM parallelization is simpler to per-
form because all of the inter-thread synchronization and communication occurs within a module;
a programmer no longer must reason about the whole program. Furthermore, once parallelized, a
module can be reused in other applications, amortizing the cost of parallelizing the module. In
fact, because the interfaces of the parallelized modules maintain sequential semantics, a library of
such modules could be created (much like the C++ standard template library (STL)) that could be
used by programmers without having to reason about concurrency. The programmer creates what
appears to be a sequential program, but the program executes faster when multiple thread contexts
are available. To use such a library the programmer need not learn a new programming model nor
a new programming language. For this reason, we think that TSM could be adopted on a large

scale.

The two main drawback of this technique, with respect to traditional parallelization, are its lim-
ited scalability and applicability. It is not scalable because programs do not generally interact with
enough modules to keep a large number of threads busy. This is not a major concern, however,
because desktop machines —— containing a single processor die with support for 2 to 4 threads —
will only be able to exploit small degrees of parallelism. Applicability is a greater concern; for
correctness this technique is restricted to modules that have limited interactions with other mod-
ules (discussed in Section 2.3). Despite this limitation, TSM can be applied to a number of impor-
tant primitive data structures to significantly improve performance as evidenced by our case

studies (Section 5).

This paper serves to demonstrate Time-Shifted Modules (TSM) and explore the performance
benefits achievable using this technique. Furthermore, application of this technique results in
workloads with fine-grain parallelism that push the envelope on synchronization and communica-
tion frequency. Because multithreaded processors and chip multiprocessors execute concurrent
threads in close physical proximity, the latency of synchronization and communication can poten-
tially be reduced to close to that of an L1 or L2 cache hit. This paper demonstrates that if archi-
tects provide high performance synchronization primitives, they can be used to achieve significant

speedups.

University of Wisconsin Technical Report - TR1430

The rest of the paper is organized as follows. In Section 2, we present a high level example of
the parallelism we intend to exploit, and discuss some of the implementation details in Section 3.
Using a simulated simultaneous multithreaded (SMT) processor (methodology is discussed in
Section 4), we demonstrate the performance benefits of our technique in two case studies

(Section 5). In Section 6, we discuss related work before concluding.

2 Time-Shifted Modules

Time-shifted modules enable concurrency by executing code from modules in parallel with
code from the main thread. The technique exploits that modules frequently use data encapsula-
tion; one of the module’s functions must be used to access the internal data. This means that data
structures encapsulated by the module can be in an inconsistent state until the module is accessed
by the main thread. This allows module computations to be performed in the background (i.e.,
time shifted with respect to the main thread), and by inserting synchronization into the interface
functions we can be assured that the module is consistent before it is accessed by the main thread.

Module functions perform one or more of: (1) modify the module’s state (i.e., a side effect), and
(2) return some data to be used outside of the module. These operations correspond to the two
types of time shifts discussed in the next two sub-sections. In Section 2.3, we discuss the correct-

ness requirements of this technique.

2.1 Time shifting later

In a sequential program, all of the side effects associated with a function are performed before
the function returns, but this is not always necessary. It is not uncommon for functions to perform
only side effects (when no value is returned) or for side effects to be independent of the return
value (when an invariant is maintained or bookkeeping is performed). When this is the case, side
effects need only be completed before their results are requested by the main thread.

In these instances, the side effects can be deferred, allowing the function to return earlier and the
main thread to execute the rest of the program. The deferred side effects can be performed by a
separate thread in the background. Because the module’s data is encapsulated, synchronization
can be employed on all functions that manipulate the module to ensure the side effect has been

completed.

University of Wisconsin Technical Report - TR1430

Figure 1. Time-shifting later delegates computing side-effects to a separate thread. (a) the original
priority queue code executes the queue sort computation inline, (b) time-shifting later allows the
main thread to execute block C while the sort is performed by another thread, (c) software
synchronization is used to stall the main thread if it tries to remove an element before the sort is
completed, but assuming sufficient buffering (d) the main thread never needs to stall on insertions.

@Ag @AS OAS (d AS

Insertion, '
B @ Queue Sort C C B C B

c DY D¢ .
3

? Queue

Removal D ?
% E %

Figure 1 pictorially demonstrates how this technique can be employed on a priority queue mod-

D
E

ule. A priority queue is a data structure that supports two main operations: insertion of an item
with an arbitrary priority and removal of the highest priority item. Typically this data structure is
implemented by keeping the queued items sorted — performing an insertion sort for each inserted
item at the time of insertion — so that removals need only grab the item at the head of the sorted

structure as is shown in Figure 1.a

As discussed above, the sort need not occur at the time of the insertion, but merely before the
next removal. This allows us to delegate the sort to a second thread, performing it in the back-
ground, in parallel with other code executed by the main thread (Figure 1.b). Because we cannot
be assured that the sort has completed by the time we want to remove the highest priority item,
synchronization is used to indicate when it is safe for the main thread to perform the removal. If
the priority queue is not ready when the main thread arrives, the main thread stalls on the lock
(Figure 1.c). The main thread need never stall on insertions, assuming there is sufficient buffering
to store the messages to the sorting thread (Figure 1.d).

This technique is commonly used in graphical user interfaces (e.g., X Windows), where some
display computations are delegated — through sockets —to the X server thread. It is also amena-

ble to other output streams and to any module which requires maintenance computation, including

University of Wisconsin Technical Report - TR1430

Figure 2. Time shifting earlier predicts that a computation will be required and pre-computes it: (a)
stream producers, like a random number generator, have trivially predictable function call patterns,
but sequential code must execute them inline, (b) by time shifting the code earlier, the random numbers
can be generated in parallel with other code, (c) less predictable modules, like a hash table, will likely
necessitate hints to enable results to be pre-computed.

e A g QA g Bré Q g hint
B é random () B’

C) Hash Table
o é Prefetch
C B
D % = (memo stored)
B’ % random () % Hash Lookup

memo retrieved

sorted structures, memory allocators, red-black trees, etc. In these structures, the maintenance

computation can potentially be over-lapped with unrelated computation.

2.2 Time shifting earlier

To complement deferring the computation associated with side effects, we’d like to reduce the
time it takes to compute the results returned by module functions. This can be accomplished by
executing the function before it is called by the main thread so that its results can be quickly
retrieved when the function is called. Clearly this requires that the function called and its argu-

ments are predictable.

One set of modules which are trivially predictable are those that generate a stream of data (i.e.,
modules that have one major method: “get next object”). Examples of such modules are random
number generators, iterators, or any transformation applied to an input stream (e.g., tokenizers,
uncompressors, decryptors, filters, etc.). Such modules can be speculatively iterated, enabling
generating the stream to be overlapped with processing the stream. We use a software queue (0

decouple the producer and consumer, iterating the producer while the queue is not full.

Figure 2 demonstrates this technique for a random number generator. Generating high quality
random numbers can be computationally intensive, but only the previously computed random
number and a set of constants is required to compute each random number. In a sequential pro-
gram, the computation of a random number must be performed inline (Figure 2.a), but clearly the

stream of random numbers can be pre-computed and buffered. This pre-computation can be done

University of Wisconsin Technical Report - TR1430

in a separate thread, in parallel with the main computation (Figure 2.b). When a random number

is needed by the main thread it simply grabs the first one from the buffer.

Pre-computed results can be speculative in nature, in which case “architected” module state
must be maintained and restored if a prediction was incorrect. In the random number generator
example, if the random seed is updated, the pre-computed results are invalid. Because the current
seed (i.e., the last number generated) is the module’s only state and this state is replaced by the
new seed, no architected state needs to be maintained. The recovery consists of invalidating the

pre-computed results.

The applicability of the time-shifting earlier technique can potentially be extended to more gen-
eral modules by employing hints to instruct the module what result should be pre-computed. Such
hints would indicate which function is likely to be called and what the parameters are likely to be.
Hints can be inserted manually by the programmer, automatically by the compiler as a result of
static analysis or profile-driven feedback, or by a dynamic/hardware mechanism like pre-execu-
tion [27].

Hints of this nature are frequently used to perform memory pre-fetching; constructing a module
to execute speculatively enables the hints to be used for general pre-computation. For example, a
lookup in a hash table typically requires key generation, a primary lookup into the hash table, and
potentially a variable number of secondary lookups (either by walking buckets or by use of a sec-
ondary key). This process is impossible to prefetch using traditional means, but can be potentially
performed in the background by a separate thread (Figure 2.c). The result could be stored in a
buffer in the module, from where it could be collected by the main thread, much in the way that
memoization can be used to avoid re-computation. The correctness of these predicted memoiza-
tions must be maintained (e.g., when items are removed from the hash table, corresponding

memoized entries must be invalidated). Evaluation of such modules is left for future work.

2.3 Module Requirements

The computations performed by time-shifted modules do not occur when they would in a
sequential program. To ensure that sequential semantics are maintained (i.e., the execution is
equivalent to a sequential execution), we prevent multiple threads from accessing the same data
structures simultaneously. This prevents a time-shifted computation from accessing another mod-

ule, unless that module is completely encapsulated within the time-shifted module (and hence

University of Wisconsin Technical Report - TR1430

cannot be accessed asynchronously by the main thread) or the module is independently synchro-
nized and its behavior does not depend on access order (like a memory allocator). Note that bene-
fit can be achieved by time-shifting a subset of a module’s functions, when some functions
preclude the optimization of the whole module. This restriction does limit the technique, but we
have found it to be applicable to a number of important primitive data structures where programs

spend significant amounts of time.

3 Implementation Details

The grain size of parallelism that can be exploited with our technique depends partly on the
overhead of synchronization and scheduling. In this section we describe the structure of the paral-
lelized modules and explore these overheads. Note that our implementation is intended for a SMT
processor and assumes that the L1 cache is shared by the cooperating threads and hence does not
perform prefetches to tolerate inter-cache transfer latencies. An implementation that efficiently
supports chip multiprocessors is an area of future research. The overhead has 3 main components:
(1) acquiring/releasing locks, (2) fine-grain scheduling of available computations on threads, and
(3) evaluating state of the module. We discuss these overheads in this section and quantify them in
our case studies.

Generally, the parallelization of a module extends its data footprint to include a communication
region. This communication region is used by the main thread to deposit “commands” for the
module or collect pre-computed results from it. The communication region and the rest of the
module are protected by separate locks to enable the main thread to communicate with the module
while it is being manipulated by another thread. A typical lock acquire/release sequence is shown

in Figure 3.a. The instruction overhead of this sequence is 6 instructions if the acquire succeeds.

Because there can be more modules than there are threads available, it is necessary to schedule
the modules on to the available threads. We do this using a centralized work list. When the main
thread desires to delegate work, it sets a “dirty bit” in the module and posts the module to the
work list. Available threads monitor the work queue, and when work is posted, remove an assign-
ment from the queue. When the work is completed, the dirty bit is cleared. The dirty bit is used to
prevent the same module from being posted to the work list multiple times. The code sequences to
post/retrieve a module to/from the work list are shown in Figure 3.c. The post and retrieve code

sequence are 11 and 30 dynamic instructions, respectively.

University of Wisconsin Technical Report - TR1430

Figure 3. Synchronization and scheduling instruction overhead: (a) code sequences for successfully
acquiring and releasing lock, (b) global structure definition for requests for background processing
(our implementation reserves the zero offset of a time-shifted module for the helper thread function,
allowing a single address to specify both the module’s address and the function to be called), (c) C
code for main thread inserting a request into the queue, and the main helper thread event loop, where
helper threads arbitrate for entries in the request queue, wait for requests, and process the request.

e acquire: request:
1d1_1 t0, 0(al) 3 if (rg->head <
blbs t0, failed (rg->tail + QUEUE_SIZE-3)) {
bis t0, Oxl, tO rg->data[head & QUEUE_MASK]} = object;
stl_c t0, 0(ad) rg->head ++;
beqg t0, failed }
release: helper thread event loop:
stl zero, 0(a0) while (1) |
G get_lock_Q(rg->lock);
typedef void (*func) (void *); int my_entry = rg->tail;
rg->tail = my_entry + 1;
struct request_gueue_t { release_lock(rg->lock);
func *data[QUEUE_SIZE]; volatile func **d = (volatile func **)
int head; /* producer */ &rqg->datalmy_entry & QUEUE_MASK];
int tail; /* consumer */ QuiesceWhileEqualQ(*d, 0);
int lock; func *data = *d
}; func £ = *data;
*d = (func *)0; /* clear entry */
struct example TSM_t { £ ((void *)data);
func helper_function; }
}i

When the main thread has delegated work to another thread and desires to access the module
again (in a manner that requires the delegated work to be completed) it waits for the other thread
to complete its work. Because the delegated work may not yet have been begun by another thread
(either because the other threads are busy with other work, or because no other threads are cur-
rently available) the main thread first checks to see if the work is in progress (by trying the lock on
the module proper) If the work is not in progress, the main thread first performs the deferred
work and then manipulates the object in originally desired manner.

When a computation is delegated to another thread, that thread has to collect information from
the command region and determine what manipulation needs to be performed on the module. The

overhead incurred in evaluating the state of the module will differ for each parallelized module.

University of Wisconsin Technical Report - TR1430

4 Methodology

We perform our performance analysis on a simulated SMT processor configured to approximate
our expectations for the upcoming Alpha 21464, extrapolating from the design of the 21264 [20]
and what has been announced about the 21464 [14]. Details can be found in Table 1. The rest of
this section discusses the quiesce instruction, efficient synchronization, and issues relating to par-

allelization on SMT and CMPs.

Quiesce. Our implementation includes the quiesce instruction, as described in [14]. This instruc-
tion prevents threads from consuming execution resources while waiting for a synchronization
event (i.e., spinning on locks, semaphores, and barriers). The quiescing thread specifies the mem-
ory address it is waiting on, and is put to sleep until that memory location is modified. All of our

synchronization primitives quiesce if the desired lock is not available.

Efficient Synchronization. The main deviation our simulation model makes from our expectations
of the 21464 is in support for synchronization. The Alpha supports a relaxed memory ordering
model that requires software barriers to indicate when ordering is required. Historically, because
threads synchronized infrequently, barriers could be implemented as costly operations, stalling

the pipeline for many cycles [20].

Table 1. Simulation parameters approximating expectations for the Compaq Alpha 21464.

Front A 64KB 2-way set associative instruction cache, a 64Kb YAGS [13] branch predictor, a 32Kb
End cascading indirect branch predictor [12], and a 64-entry return address stack. The front end can
fetch past taken branches. A perfect BTB is assumed for providing target addresses, which are
available at decode, for direct branches. All nops are removed without consuming fetch band-

width.
Execution | 8-wide (fetch, decode, execute, retire) machine with a 128-entry instruction window, a full com-
Core plement of simple integer units, 4 load/store ports, and 3 complex integer units, all fully pipe-

lined. The pipeline depth (and hence the branch misprediction penalty) is 14 stages. For
simulation simplicity, scheduling is performed in the same cycle in which an instruction is exe-
cuted. This is equivalent to having a perfect cache hit/miss predictor for loads, allowing the
scheduler to avoid scheduling operations dependent on loads that miss in the cache.

Caches The first-level data cache is a 2-way set-associative 64KB cache with 64 byte lines and a 3-cycle
access latency, including address generation. The L2 cache is a 4-way set-associative 2MB uni-
fied cache with 128-byte lines and a 6-cycle access. All caches are write-back and write-allocate.
All data request bandwidth is modeled, although writeback bandwidth is not. Minimum memory
latency is 100 cycles.

Prefetch | In parallel with cache accesses, a 64-entry unified prefetch/victim buffer is checked on all
accesses. A hardware stream prefetcher detects cache misses with unit stride (positive and nega-
tive) and launches prefetches. In addition, when bandwidth is available, sequential blocks are
pretetched (before a stride is detected) to exploit spatial locality beyond 64 bytes.

10

University of Wisconsin Technical Report - TR1430

In order to benefit from fine-grain parallelism, the cost of synchronization must be low. Making
synchronization cheap has two requirements: maintaining a specified memory ordering must be
cheap, and synchronization primitives (e.g., load-locked, and store-conditional) must be imple-
mented efficiently. Existing processors with stronger memory ordering models [33, 19] have
already demonstrated that memory ordering can be implemented efficiently. We believe that there
is no fundamental problem with efficient implementation of synchronization primitives (assuming

they have been correctly architected).

Our implementation of synchronization primitives is aggressive and is natural extension of
existing load/store queues. Our processor implements Total Store Ordering (TSO) [32] as its con-
sistency model. Retired stores are written into a write buffer from which they are made architec-
turally visible in program order. On a coherency event (including a store leaving another thread’s
write buffer) all in-flight loads (that have received their value) are snooped. If one has received a

stale value, the instruction is replayed by squashing the thread at that point.

Parallelization and SMT. Because all threads in an SMT processor share the same pool of execu-
tion resources, parallelization should not be performed naively. If a program (e.g., a regular, com-
putation-bound scientific program) can effectively utilize most of the processor’s resources, the
overhead of synchronization and communication might make a parallelized version of the pro-

gram slower. For the irregular, integer programs we are considering, this is less of a concern.

SMT vs. CMP. The benefit of parallelization for SMT differs widely from the benefit for a CMP.
In an SMT processor, a single thread can use all of the available resources, but may not use them
efficiently. A single thread cannot tolerate control-flow mispredictions or instruction cache
misses, and the finite instruction window limits the amount of memory latency it can tolerate.
When multiple threads are running, the processor need not speculate as much, reducing the cost of
misspeculations (like branch mispredictions), and other threads can continue to make progress
when one thread is stalled on an instruction or data cache miss. In addition, multiple threads might
have more independent operations from which to schedule and better tolerate engineering design

constraints (e.g., clustered register file).

On a CMP, parallelization provides the program access to additional execution resources.
Although these additional resources creates the potential for a larger speed-up, the cost of com-

municating and synchronization is likely to be higher than for an SMT. Typically, CMP’s don’t

11

University of Wisconsin Technical Report - TR1430

share their L1 data caches, necessitating the cache coherence mechanism to be involved in all

inter-thread interactions.

5 Case Studies

In this section, we discuss two instances where we used TSM: an example of each of time-shift-
ing later and earlier. In Section 5.1, we discuss parallelizing the heap data structure (a priority
queue) in the SPEC2000 integer benchmark vpr. Section 5.2 presents the parallelization of
1ibexo (a library for packing/unpacking data structures to/from persistent storage) used by the

pervasive micro-architectural simulator SimpleScalar [0].

In both cases, we compare our modified code to the original code, so we attempted to avoid
changes to the code (other than those required for parallelization) that might affect its perfor-
mance. Each case study took on the order of a week to analyze the code, parallelize it, and per-
form rudimentary tuning by a programmer with limited experience writing multithreaded

applications.

5.1 Priority queues (VPR)

The SPEC2000 integer benchmark vpr is a CAD tool for automatically placing and routing
electrical circuits on field-programmable gate arrays (FPGA). In the routing phase, the set of cur-
rently reachable wire segments are tracked along with an associated “cost” value which estimates
the congestion of the wire segment [3]. A priority queue is used to select wire segments in order to
find a route which minimizes congestion. The priority queue’s order is maintained using a heap
sort [8]. A heap requires a “heapify” operation to be performed after both insertions and removals
to maintain the heap invariant. In vpr, the queue is frequently accessed and often contains hun-
dreds or thousands of elements, causing this heapify operation to be responsible for approxi-
mately half ol the instructions executed by the program. The average heapify operation takes over

a hundred instructions and frequently causes branch mispredictions and cache misses.

5.1.1 Implementation

As was demonstrated in the example in Section 2.1, this sort can be performed in the back-
ground. For this case study, we refactored the heap code to include a pair of queues to decouple
sorting the heap from the main thread. We undertook two implementations. The first, which we’ll

call simple, was a minor modification of the original code which defers heapify operations, but

12

University of Wisconsin Technical Report - TR1430

requires them to be complete before the next removal from the heap. The second implementation,
which we’ll call enhanced, increases the concurrency by exploiting the fact that only the head of

the priority queue must be known in order to perform a removal.

Both implementations include an insertion queue that holds pending insertions. The main thread
can asynchronously place values to be inserted in this queue, while the background thread per-

forms the insertions and their associated heapify’s.

In the simple implementation, before a remove is performed all pending heapify’s must be com-
pleted. The remove takes the element from the head of the heap, deferring the associated heapify.
The enhanced implementation adds a second queue to hold the head (up to 8 elements) of the pri-
ority queue in sorted order. By ensuring that the head queue is always valid, the main thread can
remove an item while insertions are still pending. Ensuring validity requires comparing inserted
elements to the tail of the head queue, and performing an insertion sort into the head queue if the

element’s priority necessitates it.

5.1.2 Results

We evaluated our modified version of vpr using the ref input parameters modified to reduce exe-
cution time (net.in arch.in place.in route.out -nodisp -route_only -route_chan_width 25
-pres_fac_mult 2 -acc_fac 1 -first_iter_pres_fac 100 -initial_pres_fac 1000). Our simulations skip
over the first 575 million instructions (where the two programs are exactly the same) and then run

to completion (about 7 billion instructions in the base case).
Despite the fact that the parallelized binary executes more instructions, its multithreaded nature

provides latency tolerance, enabling 8% and 26% speedupsl for the simple and enhanced cases
respectively. As can be seen in Table 2, the parallelized versions are able to achieve aggregate
IPCs 31% and 63% greater than the sequential version, outweighing the 20% and 26% additional
instructions these versions require. All versions have pretty equivalent numbers of L1 cache
misses, but the parallelized versions have significantly more branch mispredictions. Many of these

additional mispredictions are due to inter-thread communication, either from synchronization

1. Additional instructions incurred from spinning are included in both IPCs and retired instructions, but because all
of our synchronization primitives use quiesce, very little “spinning” takes place. Running the benchmarks to com-
pletion allows execution performance to be meaningfully compared.

13

University of Wisconsin Technical Report - TR1430

primitives themselves or the additional unpredictability induced by asynchronous threads modify-

ing the same data structure.

Table 2. Statistics for original, simple parallel, and enhanced parallel versions of vpr. The parallel
cases have some statistics broken down by thread using the notation [main thread/helper thread].

original simple enhanced
cycles (billions) 4.3 4.0 34
instructions retired (billions) 7.0 8.4([5.2/3.2] 8.8[4.4/4.4]
total instructions fetched (billions) 18.7 20.0 18.8
IPC (instructions/cycle) 1.6 2.1[1.3/0.8] 26[1.3/1.3]
branch mispredictions (millions) 47 65 [31/34] 61 (32/29]
L1 misses (millions) _ 131 130 147
synchronization overhead (millions of instructions.) | 0 295 408
scheduler overhead (millions of instructions.) 0 410 (164 /246] | 86 [65/21]

We have attempted to estimate the synchronization and scheduler overheads observed by the
parallelized versions, by measuring the dynamic frequency of static instructions involved in syn-
chronization and scheduling. Since these instruction categorizations were done by hand, these
results are approximate. In both cases, the combined synchronization/scheduling instruction over-
head is less than 10%. Because the enhanced case is more decoupled than the simple case, its
helper thread can keep itself busy managing the heap for long stretches of execution, requiring
less scheduling but increasing the contention for locks. The remaining discrepancy in instructions
counts can be attributed to overhead necessary to evaluate the module’s current state and for
additional address generation and memory operations due to inter-thread communication being

performed through memory.

5.2 File output (Libexo)

Libexo is library which enables arbitrary tree-like data structures to be stored persistently (i.e.,
on disk as exo files) and loaded back into memory. Data is stored in ASCIL, enabling the data
structures to be passed between architectures. Libexo is used in the simplescalar microarchitec-
ture simulator to provide the External I/O (EIO) functionality to store checkpoints and log syscall
interactions. EIO enables repeatable simulations, running on platforms that cannot emulate Unix

system calls, starting from checkpoints, and sampling.

14

University of Wisconsin Technical Report - TR1430

5.2.1 Implementation.

Libexo consists of two parts: routines for reading exo files and those for writing them. For this
case study, we parallelized the routines for reading exo files because this is the more common
operation; the routines for writing exo files are also parallelizable. Reading an exo file consists of
two main steps (shown in Figure 4): 1) the lexical analysis of the file’s contents, and 2) the con-
struction of exo objects. In the original code, these steps were performed by different modules; the
lexical analyzer was automatically generated using flex [1], and the exo object constructor con-
sisted of about 10 hand-written functions. In our parallelized version of the code, we maintain

these module boundaries, but modify the interfaces slightly.

Both modules produce streams of data: the lexical analyzer (exolex) produces a stream of
tokens and their associated text, and the object constructor produces a stream of exo objects. On
average, it takes exolex roughly 70 instructions to generate a token, and 1ibexo close to a mil-
lion instructions to generate an exo object. The average exo object consists of thousands of

tokens.

We modified the modules to allow their streams to be produced and consumed concurrently, by
using queues to buffer the communication. The resulting execution is a pipeline of 3 threads: the
exolex module produces tokens, the libexo module converts these tokens to exo objects, and the
exo objects are used by the main thread. This transformation was very straightforward for the
object construction routines, but more complicated for the lexical analyzer. The code which flex
generates uses globals extensively and prevents concurrency by temporarily modifying the input
text buffer (by null terminating the token’s string) and exposing it as part of the interface. We
rewrote the code to encapsulate the global data and copy the token text to a separate buffer.

Figure 4. Parallelized code contains two nested time-shifted modules. An input file is lexically
analyzed by the exolex module and the resulting tokens are exported through a queue. The libexo
module uses these tokens to construct exo objects, which it exports through a queue to external I/0
(eio) functions. Because the exolex module is completely encapsulated in libexo, libexo is free to
access it speculatively.

Main program

eio_read_chkpt() : : l exolex| -

input file

= = m = module boundary

queue

exo_objects tokens

15

University of Wisconsin Technical Report - TR1430

Unlike a true stream producer, the lexical analyzer’s interface includes more than a simple “get
next” function. The other functions query the token stream, and were rewritten to access pre-com-

puted tokens in the buffer.

5.2.2 Results

We evaluated our modified version of libexo using sim-eio, a functional simulator. Because
we only modified code related to loading the checkpoint, we configured our simulations so that
this portion of the code dominates the execution (Sim-eio is instructed to execute only 1000
instructions after loading the checkpoint for the SPEC2000 benchmark gcc) . This allows us to
simulate the benchmark to completion. Clearly, this is only one phase of the program’s execution;

the other phases would have to be parallelized independantly.

Again, the parallelized version is able to achieve a much higher aggregate IPC (up 65%) at the
cost of increasing the instruction count (up 19%), resulting in a 39% speedup (as shown in
Table 3). The 1ibexo module performs most of the computation, with the main and exolex (the
lexical analyzer) threads periodically quiescing when buffers are empty and full respectively.
Unlike vpr, because the communication is much more regular (each thread is simply reading a
result out of a queue), there is not a substantial increase in the number of branch mispredictions.
This, coupled with SMT’s ability to tolerate branch mispredictions (because it speculates less),
allows the parallelized version of libexo to fetch significantly fewer instructions than the
non-parallelized version. Because the 1ibexo thread is kept busy (i.e., it always has free buffers
into which it can write) it never needs to reschedule. Periodically, the exolex module fills its
buffer, quiesces, and then must be rescheduled by the 1ibexo thread when the token buffer is
empty. This happens rarely enough that the scheduling overhead is small (less than 0.1 percent).

Table 3. Statistics for original, simple parallel, and enhanced parallel versions of sim-eio. The parallel
cases have some statistics broken down by thread using the notation [main / exolex / libexo].

original parallel
cycles (millions) 228 164
instructions retired (millions) 843 1000 [93 / 367 / 540]]
total instructions fetched (millions) 1,812 1,309
IPC (instructions/cycle) 37 6.1[0.6/2.2/3.3]
branch mispredictions (millions) 1.8 -1 1.9[0.0/0.0/1.9]
L.1 misses (millions) 0 0 -
synchronization overhead (millions of instructions.) | O 26.3{0.0/11.0/15.3]
scheduler overhead (millions of instructions.) 0 0.85[0.23/0.62/0.0]

16

University of Wisconsin Technical Report - TR1430

The synchronization overhead comes almost exclusively from reading and writing the token

queue, as very few exo objects are produced.

6 Related Work

The concept of module-based parallelization has previously been explored in other contexts. For

the most part, these other contexts can exploit more general classes of parallelism, but require the
programmer to change their programming model. Hardware schemes to exploit this parallelism
(through speculative parallelization) are similarly more widely applicable, but require non-trivial
hardware mechanisms to verify the correctness of the speculation.

Probably the closest related work is the concept of a future [16]. Futures allow closures, proce-
dures with arguments, to be handed to a runtime system, which can schedule them for parallel
execution if execution resources are available. When the original thread needs the value of a
future, it either waits until the value is computed or computes the value itself if nobody else has
started working on the task. Futures were originally proposed in the context of functional lan-
guages (MultiLisp), but can be implemented in a message passing fashion in imperative languages
like C and Fortran with Linda [7]. A related concept are the continuations implemented in Cilk
[4], which allow incomplete closures to be created; when a closure is later completed it becomes

available for scheduling by the runtime.

In the era of massively parallel computers, there was a lot of work done in the PL community
exploring how languages should support parallelism. One proposal, Actors, advocates that objects
should be independent entities that communicate with each other asynchronously through mes-
sages [2]. In such a system, the computations performed by different actors can be executed in
parallel.

There has been extensive work in functional languages to automatically extract task-level paral-
lelism [17]. These techniques can likely exploit the same parallelism exploited by TSM for pro-
grams written in functional languages, but are not applicable to imperative languages like
C/C++/Java.

Although these approaches are scalable ways of expressing parallel computations, each require

learning a different programming model. In contrast, TSM libraries can be used by programmers

17

University of Wisconsin Technical Report - TR1430

only familiar with a sequential programming mindset. This accessibility comes at the cost of lim-

ited scalability and applicability.

Another approach to deferring side-effect computation is proposed in [25] where the reference
counting computation for a garbage collector is performed in a parallel thread. This parallel thread
executes a reduced version of the original program (created through program slicing) that period-

ically reads results logged by the main thread.

The decoupled access-execute architecture [28] decomposes a single sequential program into
two threads: one responsible for generating memory addresses (the access stream) and one manip-
ulating the loaded values (the execute stream). In programs where address generation is largely
decoupled from other computation, these two streams could slip with respect to each other,
enabling memory latency to be tolerated. TSM also decouples loosely coupled computations, but

does so at a larger granularity and is not limited to address computations.

Multiscalar [29] (and other speculative multithreading proposals) exploits the parallelism in
sequential programs by speculatively parallelizing them. The hardware must buffer all specula-
tively modified memory state and detect any memory ordering violations. Time-shifted modules
avoid this additional hardware at the expense of some additional programmer effort; they exploit
the encapsulation of data (and hence are only applicable when such encapsulation exists) and
explicit synchronization to ensure memory violations will not occur. A previous proposal for soft-
ware-only speculative parallelization exploits stride-predictable memory access patterns in scien-
tific codes to make detection of memory ordering violations feasible [5].

Speculative Data-driven Multithreading (DDMT) [27] is an enhancement to an SMT core that
allows portions of a program to be speculatively computed early (in data-driven threads) and if the
speculation was correct the results of the computation can be used by the main thread. Although
this technique avoids the main thread from having to execute the computation, the computation
must still be fetched by the main thread (in order to verify that the speculation was correct) which
limits the speedup achievable. Time-shifted modules have instruction overhead in the form of
explicit synchronization, but if a computation is correctly speculated it is only fetched and exe-
cuted once. The fixed overhead of TSM make it most applicable for larger computations, whereas
data-driven threads (which need not be contiguous) are more suited for smaller, high-impact code

fragments like slices of cache missing loads and mispredicting branches.

18

University of Wisconsin Technical Report - TR1430

Previous studies exploring the performance of multithreaded code with SMT include: databases
[22], web serving [26], SPLASH [23], and fine-grain scientific programs [31]. To our knowledge

this paper includes the first analysis of fine-grain integer programs on an SMT.

7 Conclusion

In this paper, we have explored a technique to exploit the thread-level concurrency that will be
available in next generation processors. This technique exploits the modularity of programs and
data encapsulation to enable portions of otherwise sequential programs to be delegated to other
threads. Our technique has two main advantages over traditional parallelization techniques: (1) it
is simpler to perform because only code within the parallelized module need be considered, and
(2) once parallelized a module can be reused in other programs. These advantages come at a cost
of reduced scalability and the need for efficient synchronization. These characteristics make the
technique a good fit for multithreaded processors and chip multiprocessors, which execute a small
number of threads in close physical proximity.

We demonstrated the technique through two case studies, one for each class of “time shift.” The
priority queue example demonstrated how side-effects can be deferred using the “time shift later”
technique. The libexo (file parsing) example showed how results can be pre-computed using the
“time shift earlier” technique. Our simulations of a simultaneous multithreading (SMT) processor
indicate that speedups of 26% and 39% can be achieved through the use of this technique, without
any additional hardware. In fact, we may be under-estimating the performance benefit; our simu-
lations do not model many engineering details of the processor that potentially prevent a single

thread from achieving high performance [9], but that can be tolerated through multithreading.

Although not all programs will benefit from this technique (nor perhaps even all phases of the
programs that do benefit), we believe that it is a source of parallelism that programmers and archi-
tects alike should consider. As the number of transistors on a chip continues to increase, micro-
processor designers will continue to incorporate techniques like multithreading and chip
multiprocessing in there designs. In as little as five years timé, it may be difficult to buy a true uni-
processor. The current state of software does not effectively exploit concurrency. Time-shifted

modules is an evolutionary technique that can potentially help bridge the gap.

19

University of Wisconsin Technical Report - TR1430

8 References

[1] Flex: a fast lexical analyzer generator. http://www.gnu.org/software/flex/flex.html.
[2] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, 1986.

[3] V. Betz and J. Rose. VPR: A New Packing, Placement and Routing Tool for FPGA Research. In Seventh Interna-
tional Workshop on Field-Programmable Logic and Applications, pages 213 - 222, Sept. 1997.

[4] R. D. Blumofe, C. F. Joerg, C. E. Leiserson, K. H. Randall, and Y. Zhou. Cilk: An Efficient Multithreaded Runt-
ime System. In 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP '95),
pages 207-216, July. 1995.

[5] D. Bruening, S. Devabhaktuni, and S. Amarasinghe. Softspec: Software-based Speculative Parallelism. In 3rd
ACM Workshop on Feedback-Directed and Dynamic Optimization (FDDO-3), Dec. 2000.

(6] D. Burger and T. Austin. The SimpleScalar Tool Set, Version 2.0. Technical Report CS-TR-97-1342, University
of Wisconsin-Madison, Jun. 1997.

[7] N. 1. Carriero and D. H. Gelernter. Linda in Context. Communications of the ACM, 32(4), Apr. 1989.
[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. [ntroduction 10 Algorithms. The MIT Press, 1990.

[9] R. Desikan, D. Burger, and S. W. Keckler. Measuring Experimental Error in Microprocessor Simulation. In Proc.
28th International Symposium on Computer Architecture, July 2001.

[10] K. Diefendortf. Compaq chooses SMT for Alpha. Microprocessor Report, 13(16), Dec. 1999.
[11] K. Diefendorff. Power4 Focuses on Memory Bandwidth. Microprocessor Report, 13(13), Oct. 1999.

[12] K. Driesen and U. Hoelzle. The Cascaded Predictor: Economical and Adaptive Branch Target Prediction. In
Proc. 3lst International Symposium on Microarchitecture, pages 249-258, Dec. 1998.

[13] A. Eden and T. Mudge. The YAGS Branch Prediction Scheme. In Proc. 31nd International Symposium on
Microarchitecture, pages 69-77, Nov. 1998.

[14] J. Emer. Simultaneous Multithreading: Multiplying Alpha Performance. Microprocessor Forum, Oct. 1999.

[15] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge. Thread Level Parallelism and Interactive Performance of
Desktop Applications. In Proc. 9th International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 129-138, Nov. 2000.

[16] R. H. Halstead. Implementation of Multilisp: Lisp on a multiprocessor. In Proc. of the 1984 ACM Symposium on
Lisp and Functional Programming, pages 9-17, Aug. 1984.

[17] K. Hammond. Parallel Functional Programming: An Introduction. In First International Symposium on Parallel
Symbolic Computation (PASCO’94), Sept. 1994.

[18] A. Hunt and D. Thomas. The Pragmatic Programmer. Addison Wesley, 2000.
[19] K Hurd et al A 600MHz PA-RISC Microprocessor. lnternational Solid-State Circuits Conference, Jan. 2000.
[20] R. Kessler. The Alpha 21264 Microprocessor. [EEE Micro, 19(2), Mar./Apr. 1999.

[21]1D.C. Lee, P. J. Crowley, J.-L. Baer, T. E. Anderson, and B. N. Bershad. Characteristics of Desktop Applications
on Windows NT. In Proc. 25th International Symposium on Computer Architecture, Jun. 1998.

[22] J. Lo, L. Barroso, S. Eggers, K. Gharachorloo, H. Levy, and S. Parekh. An Analysis of Database Workload Per-
formance on Simultaneous Multithreaded Processors. In Proc. 25th International Symposium on Computer Architec-
ture, pages 39-50, Jun. 1998.

[23] 1. Lo, S. Eggers, J. Emer, H. Levy, R. Stamm, and D. Tullsen. Converting Thread-level Parallelism into Instruc-
tion-level Parallelism via Simultaneous Multithreading. ACM Transactions on Computers, 15(2), Aug. 1997.

[24] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K.-Y. Chang. The Case for a Single-Chip Multipro-
cessor. In Proc. 7th International Conference on Architectural Support for Programming Languages and Operating
Systems, Oct. 1996.

20

University of Wisconsin Technical Report - TR1430

[25] M. Plakal and C. N. Fischer. Concurrent Garbage Collection Using Program Slices on Multithreaded Processors.
In The International Symposium on Memory Management (ISMM), Oct. 2000.

[26] J. A. Redstone, S. J. Eggers, and H. M. Levy. An Analysis of Operating System Behavior on a Simultaneous
Multithreaded Architecture. In Proc. 9th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 245-256, Nov. 2000.

[27] A. Roth and G. Sohi. Speculative Data-Driven Multi-Threading. In Proc. 7th International Symposium on High
Performance Computer Architecture, Jan. 2001.

[28] J. Smith. Decoupled Access/Execute Computer Architecture. In Proc. 9th International Symposium on Com-
puter Architecture, Jul. 1982.

[29] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar Processors. In Proc. 22nd International Symposium on Com-
puter Architecture, pages 414425, Jun. 1995.

[30] D. Tullsen. S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm. Exploiting Choice: Instruction Fetch and Issue on
an Implementable Simultaneous Multithreading Processor. In Proc. 23rd International Symposium on Computer
Architecture, pages 191-202, May 1996.

[31] D. M. Tullsen, J. L. Lo, S. J. Eggers, and H. M. Levy. Supporting Fine-Grained Synchronization on a Simulta-
neous Multithreading Processor. In Proc. Sth International Symposium on High Performance Computer Architecture,
Jan. 1999.

[32] D. L. Weaver and T. Germond, editors. SPARC Architecture Manual (Version 9). PTR Prentice Hall, 1994.
[33] K. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, Apr. 1996.

21

University of Wisconsin Technical Report - TR1430

