Computer

Sciences
Department

Better Slicing of Programs
With Jumps and Switches

Sumit Kumar
Susan Horwitz

Technical Report #1429

Revised July 2001

UNIVERSITY OF

WISCONSIN

M A DI § O N

Better Slicing of Programs with Jumps and Switches

Sumit Kumar® and Susan Horwitz!?

! University of Wisconsin
2GrammaTech, Inc.

Abstract

Program slicing is an important operation that
can be used as the basis for programming
tools that help programmers understand, de-
bug, maintain, and test their code. This pa-
per extends previous work on program slic-
ing by providing a new definition of “correct”
slices, by introducing a representation for C-
style switch statements, and by defining a new
way to compute control dependences and to
slice a program-dependence graph so as to com-
pute more precise slices of programs that in-
clude jumps and switches. Experimental re-
sults show that the new approach to slicing can
sometimes lead to a significant improvement in
slice precision.

1 Introduction

Program slicing, first introduced by Mark
Weiser in [11], is an important operation that
can be used as the basis for programming
tools that help programmers understand, de-
bug, maintain, and test their code. Slicing
was defined by Weiser as the solution to a
dataflow problem specified using the program’s
control-flow graph (CFG). Ottenstein and Ot-
tenstein [8] provided a more efficient algorithm
(reviewed below in Section 2.1) that uses the
program-dependence graph (PDG) [4].

This paper makes the following four contri-
butions in the area of program slicing:

Defining Correct Slices: Weiser defined a
correct slice of a program P to be a projection
of P with certain properties (see Section 3).
Podgurski and Clarke [9] defined a notion of
semantic dependence that can also be used as
the basis for a definition of a correct slice; how-
ever, their definition did not take jump state-
ments (goto, break, etc.) into account.

We give an example to illustrate a short-
coming of Weiser's definition, and offer a new
definition, similar to the one for semantic de-
pendence, that overcomes the problem with
Weiser’s definition, and also makes sense for
programs with jump statements.

Language Extension: We discuss how to
represent C-style switch statements in the CFG
and the PDG. To our knowledge, this is the first
time switch statements have been discussed as
such, rather than assuming that they have been
implemented at a low level using gotos. Han-
dling switch statements is important because
many slicing applications involve displaying the
result of a slice to the programmer, or using
the results to create new source code. Thus,
for those applications, if a slice includes code
from a switch, it needs to be displayed / repre-
sented in the new code as a switch rather than
in some low-level form. Representing and slic-
ing a switch in a low-level form and then map-
ping the results back to the source level may
lead to a final result that is less precise than
the one produced by working on the switch di-
rectly.

Improved Precision: Finding correct, mini-
mal slices is an undecidable problem, whether
correctness is defined according to Weiser,
Podgurski/Clarke, or using the new definition
proposed here. However, it is still a reason-
able goal to design a slicing algorithm that is
more precise than previous ones; i.e., to define
a new algorithm that is correct, and also pro-
duces smaller slices than previous algorithms.

In this spirit, we introduce some example
programs with jumps and switches for which
previous slicing algorithms produce slices that
include too many components. While the ex-
amples with jumps are sornewhat artificial, the
examples with switches are motivated by code
from real programs. We show that the reason
“extra” components are included in the slices
has to do both with how control dependences
are defined, and how slices are computed. We
then give a new definition of control depen-
dence and a new slicing algorithm that is more
precise than previous algorithms in the pres-
ence of jumps and/or switches.

Experimental Results: While it is possible
to produce artificial examples in which our new
approach to slicing provides arbitrarily smaller
slices than previous approaches, it is important
to know how well it will work in practice. We
provide some experimental results that show
that while in most cases slice sizes are reduced
by no more than 5%, there are examples of re-
ductions of up to 35%.

2 Background
2.1 Slicing using the PDG

Informally, the slice of a program from state-
ment S is the set of program components that
might affect S, either by affecting the value of
some variable used at S, or by affecting whether
and how often S executes. More precise defi-
nitions have been proposed, and are discussed
below in Section 3.

Slicing was originally defined by Weiser [11]
as the solution to a dataflow problem spec-
ified using the program’s control-flow graph
(CFG). Ottenstein and Ottenstein (8] pro-
vided a more efficient algorithm that uses the

program-dependence graph (PDG) [4]:

Algorithm 1 (Ottensteins’
building and slicing the PDG)

algorithm for

Step 1: Build the program’s CFG, and use it
to compute data and control dependences:
Node N is data dependent on node M
iff M defines a variable z, N uses =, and
there is an z-definition-free path in the
CFG from M to N. Node N is con-
trol dependent on node M iff N post-
dominates one but not all of M’s CFG
successors.*

Step 2: Build the PDG. The nodes of the
PDG@G are almost the same as the nodes of
the CFG: a special enter node, and a node
for each predicate and each statement in
the program; however, the PDG does not
include the CFG’s exit node. The edges
of the PDG represent the data and control
dependences computed using the CFG.

Step 3: To compute the slice from statement
(or predicate) S, start from the PDG node
that represents S and follow the data- and
control-dependence edges backwards in the
PDG. The components of the slice are all
of the nodes reached in this manner.

Example: Figure 1 shows a program that
computes the product of the numbers from 1
to 10, its CFG, and its PDG. The nodes in the
slice of the PDG from “print(k)” are shown
using bold font. (For the purposes of control-
dependence computation, an edge is added to
the CFG from the enter node to the ezit node;
to avoid clutter, those edges are not shown in
the CFGs given in this paper).

2.2 Handling Jumps

Early slicing algorithms (including Weiser’s
and the Ottensteins’) assumed a structured
language with conditional statements and
loops, but no jump statements (such as goto,
break, continue, and return). Both [2]
and [3] pointed out that if a CFG is used in

1By definition, every CFG node postdominates it-
self. Thus, if a node M has CFG successors m1 and
mg, then unless m; postdominates mg, m; is control-
dependent on M (and similarly for m2).

prod = 1;

k = 1;

while (k <= 10) {
prod = prod * k;
k++;

}

print (k) ;

print (prod);

(a) Example Program

dependence

Figure 1: Example program, its CFG, and its PDG. The PDG nodes in the slice from “print(k)”

are shown in bold.

which a jump statement is represented as a
node with just a single outgoing edge (to the
target of the jump), then no other node will
be control dependent on the jump, and thus it
will not be in the slice from any other node.
For example, Figure 2(a) shows a modified ver-
sion of the program from Figure 1, now in-
cluding a break statement. Figures 2(b) and
2(c) show the program’s CFG and the corre-
sponding PDG. Note that in this PDG, there
is no path from the break to “print(k)” or
to “print(prod)”, and therefore the break is
(erroneously) not included in the slices from
those two print statements even though the
presence of the break can affect the values that
are printed.

The solution proposed by [2] and [3] involves
using an augmented CFG, called the ACFG,
to build a dependence graph whose control-
dependence edges are different from those in
the PDG used by Algorithm 1. We will refer
to the new dependence graph as the APDG, to
distinguish it from the PDG.

Algorithm 2 (Building and Slicing the

APDG)

Step 1: Build the program’s ACFG. In the
ACFG, jump statements are treated as
pseudo-predicates. FEach jump statement
is represented by a node with two outgoing
edges: the edge labeled true goes to the tar-
get of the jump, and the (non-executable)
edge labeled false goes to the mode that
would follow the jump if it were replaced
by a no-op. Labels are treated as separate
statements; i.e., each label is represented
in the ACFG by a node with one outgoing
edge to the statement that it labels.

Step 2: Build the program’s APDG. Ignore
the non-ezecutable ACFG edges when com-
puting data-dependence edges; do mnot
ignore them when computing control-
dependence edges. (This way, the nodes
that are executed only because a jump is
present, as well as those that are not ex-
ecuted but would be if the jump were re-
moved, are control dependent on the jump
node, and therefore the jump will be in-

prod = 1;

k = 1;

while (k <= 10) {
if (MAXINT/k > prod) break;
prod = prod * k;
k++;

}

print (k);

print (prod);

(a) Example Program

enter

Figure 2: Example program with a break statement, its CFG, and its PDG.

cluded in their slices.)

Step 3: To compute the slice from node S,
follow data- and control-dependence edges
backwards from S as in Algorithm 1. A la-
bel L is included in a slice iff a statement
“goto L” is in the slice.

Example: Figure 3 shows the ACFG for the
program in Figure 2(a), and the correspond-
ing APDG. (The non-executable false edge out
of the break in Figure 3(a) is shown using a
dotted arrow.) Note that in Figure 3(b), there
are control-dependence edges from the break to
“prod = prod * k” and to “k++”; therefore,
the break is (correctly) included in every slice
that includes one of those two nodes.

3 Semantic Foundations for
Slicing

In his seminal paper on program slicing [11],
Weiser defined a slice of a program P from
point § with respect to a set of variables V
to be any program P’ such that:

e P’ can be obtained from P by deleting zero
or more statements.

e Whenever P halts on input I, P’ also halts
on input I, and the two programs produce
the same sequences of values for all vari-
ables in set V at point § if it is in the slice,
and otherwise at the nearest successor to
S that is in the slice.

One problem with this definition is that it
can be inconsistent with the intuitive idea that
the slice of a program from point S is the set of
program components that might affect S. For
example, Figure 4 shows a program, the slice
that a programmer would probably produce if
asked to slice the program from statement [6]
with respect to variable z, and another slice
that is correct according to Weiser’s definition,
but that does not match our intuition about
slicing. Furthermore, the requirement that a
slice be an executable program may be too re-
strictive in some contexts (e.g., when using slic-
ing to understand how a program works, or to
understand the effects of a proposed change).
In those cases, it might be more appropriate

@ile (k<=10D ,

F
T/k>prod)
F

T

(a) ACFG

enter

- Pprint (prod >

.
r oo,
o,

..........

(b) Corresponding APDG

Figure 3: ACFG and the corresponding APDG for the example with a break.

to define the slice of a program simply to be
a subset of the program’s components, rather
than an executable projection of the program.

Given these observations, we propose to de-
fine the slice of program P from component S
to be the components of P that might have a
semantic effect on S. But what does it mean
for a statement or predicate X to have a se-
mantic effect on another statement/predicate
57 To make that notion more precise, we con-
sider what happens when a new program P’ is
created by modifying X or removing it from
program P as follows:

X is a normal predicate: P’ is created by
replacing X with a different predicate
that uses the same set of variables as
X. (For example, in the program whose
ACFG is shown in Figure 3, the predicate
“MAXINT/k > prod” could be replaced by
any other predicate that uses only vari-
ables k and prod, such as: “k < prod”,
or “k != 0 && prod > 22".)

X is a pseudo-predicate (a jump statement):

P’ is created by removing statement X
from P.

X is a non-jump statement: P’ is created
by replacing X with a different statement
that uses and defines the same sets of vari-
ables as X. (For example, in the program
whose ACFG is shown in Figure 3, the
statement “prod = prod*k” could be re-
placed by any other statement that uses
only variables prod and k, and that de-
fines variable prod, such as: “prod = k +
prod”, or “prod = prod-k-4".)

Definition 0 (Semantic effect): X has a
semantic effect on S iff there is some pro-
gram P’ created by modifying or removing X
from P as defined above, and some input I such
that:

e Both P and P’ halt on I.

e The two programs produce o different se-
quence of values for some variable used at

S.

Note that the sequence of values produced for
a variable used at S can differ either because
the two sequences are of different lengths, or
because their k** values differ (for some k).

Program Intuitive Slice | Also Correct by Weiser’s Definition
(11 x = 2; [1] x = 2;
(2] y = 2; [21 y = 2;
[3] w=1x % y;
[4] x = 1; [4] x = 1;
(51 y = 3; [5]l y = 3;
6l z=x+y; |6l z2=x+y; | [6] z=x+y;

Figure 4: Example illustrating a shortcoming of Weiser’s definitions of a correct slice.

Definition 0 is similar to the definition
of finitely demonstrable semantic dependence
given by Podgurski and Clarke in [9]. However,
that definition did not take jump statements
into account: according to their definition, no
program component is ever semantically depen-
dent on a jump; therefore, if a correct slice
from S is defined to include all components on
which S is semantically dependent, jump state-
ments will never be included in a slice. This is
clearly contrary to one’s intuition, and there-
fore is a shortcoming of the Podgurski/Clarke
definition.

As usual with any interesting property of a
program, determining which components have
a semantic effect on a given component S, ac-
cording to Definition 0, is an undecidable prob-
lem. Therefore, we must say that a (correct)
slice of program P from component S is any
superset of the components of P that have a
semantic effect on S.

Note that using Definition 0, statements {4]
and [5] in the example program in Figure 4
(but not statements [1] and [2]) have a se-
mantic effect on statement [6]. Therefore, a
correct slice' from statement [6] must include
statements [4] and [5] (but not statements
(1] and [2]), which is consistent with our in-
tuition about that slice.

4 Representing Switch

Statements
Consider a C switch statement of the form:

switch (E) {

case el: S1; break;
case e2: 82; break;
case en: Sn; break;
default: S;

}

Clearly, “switch(E)” should be represented
in the CFG (and the ACFG) using a (normal)
predicate node with n + 1 outgoing edges: one
to each case including the default. If there
were no default, the n 4 1°* edge should go
to the first statement following the switch (be-
cause in C, if the value of the switch expression
does not match any case label, and there is no
default then execution continues immediately
after the switch).

Now consider how to represent the case la-
bels. One’s initial intuition might be that they
are similar to other labels in a program (the
targets of goto statements). However, there
is an important difference: if a program in-
cludes “goto L1”, then label L1 must be in the
program, or it is not syntactically correct. If
there is no “goto L1”, then it doesn’t matter
whether label L1 is in the program: its presence
or absence has no semantic effect. However,
these observations are not true of a case label.
Removing a case label from a program never
causes a syntax error, but can have a seman-
tic effect. For example, if expression E in the
code given above evaluates to e2, then state-
ment S2 will execute. However, if “case e2” is
removed, then statement S2 will not execute;
instead, statement S will execute. Therefore,
it makes sense for “case e2” to be in the slice
from S2 as well as in the slice from 8.

This suggests that, like jumps, case labels
should be represented using pseudo-predicates
in the ACFG. The target of the outgoing frue
edge from a case-label node should be the first
statement inside the case, and the target of
the outgoing false edge should be the node that
represents the default label if there is one, and
otherwise the first statement that follows the
switch (because if the case label is removed,
and the switch expression matches that value,
then execution proceeds with the first state-
ment after the switch). The target of the out-
going false edge from the default case should
always be the first statement that follows the
switch.

Example: Figure 5 shows the ACFG for the
switch statement given above (for n = 3).

Figure 5: ACFG for a switch statement.

5 Motivation for a New
Slicing Algorithm

Figure 6 gives three examples where Algo-
rithm 2 (see Section 2.2) produces slices that
include unwanted components. (In these ex-
amples, we assume that switch statements are
represented in the ACFG as discussed above in
Section 4.) The first column in Figure 6 gives
a code fragment, with one statement enclosed
in a box. The second column shows the ideal
slice from the boxed statement (according to
Definition 0 given above in Section 3). The
third column shows the slice computed using

Algorithm 2. The first two examples involve
switches, while the third example involves only
gotos.

Note that in the first example the slice from
83 should include the break from the previ-
ous case, because the presence/absence of that
break affects whether or not 83 executes. In
particular, consider what happens when ex-
pression E evaluates to e2. If the break is not
in the program, 83 executes, while if the break
is in the program, S3 does not execute.

In the second example, the slice from S
should include neither “if (P)” nor “return”.
Whatever the value of predicate P, statement
S will not execute (because either the return
or the break prevents execution from “falling
through” from “case el” to “case e2”). Sim-
ilarly, whether or not the return is in the pro-
gram makes no difference since it is followed by
the break (and thus S is always prevented from
executing).

In all three examples, extra components
are included in the slices computed using
Algorithm 2 because of a chain of control-
dependence edges. For instance, the APDG
for the second example includes the follow-
ing chain: case el — if (P) — return —
break — case e2 — S. Thus, since Algo-
rithm 2 follows all control-dependence edges
backwards, all of those components are in-
cluded in the slice from $2. In this example,
each individual control-dependence edge rep-
resents a possible semantic effect: “case el”
has a semantic effect on “if (P)”, which has
a semantic effect on “return”, which has a se-
mantic effect on “break”, which has a seman-
tic effect on “case e2”, which has a semantic
effect on S. However, the backwards closure of
the control-dependence relation starting from S
yields a superset of the components that have a
semantic effect on 8; i.e., the “semantic-effect”
relation is not transitive.

It is also possible to have an example in
which even an individual control dependence
(computed using the ACFG) does not reflect a
semantic effect, as illustrated in Figure 7. In
this example, the APDG includes a control-

2Furthermore, the entire backward closure from
predicate P of the control- and data-dependence rela-
tions will be included in the slice computed by Algo-
rithm 2, making it arbitrarily larger than the ideal slice.

Code Fragment [Ideal Slice | Slice computed using Algorithm 2 |
switch (E) { switch (B) | { |switch (B) | {
case el: S1; break; case el: S1; break; case el:| S1; |break;
case e2: S2; break; case e2: 32; [break;l case e2:| 52; |break;
case e3: break; [case eB:I S3; | break; case e3: I_S_B_,_I break;

1

}

}
switch (E) { switch (BE) | {

case el: if (P) return; case el: if (P) returnm;
break; |_Ereak; |break; !

|switch (B) | {

{case el: ‘if) | lreturn;

case e2: !case e2: l case e2: @J
} }

L1: [85] [L1:
L2: ... L2:] ...

L3: ... L3:

if (P1) goto L1; if (P1) l [goto Li;l if (P1)||goto L1;

if (P2) goto L3; if (P2) goto L3; if (P2)||goto L3;

goto L2;
Li:|[S;]
2:1 ...
L3:

Figure 6: Examples for which Algorithm 2 produces slices with extra components.

dependence edge from “if (P)” to S1 because
81 postdominates the true successor of the
if in the ACFG, but does not postdominate
its false successor (because the goto’s non-
executable false edge bypasses S1). However,
“if (P)” cannot in fact affect the execution of
S1; it always executes, regardless of whether P
evaluates to true or to false.

These examples motivate the need for a
new definition of control dependence to avoid
control-dependence edges like the one in Fig-
ure 7 that do not reflect a semantic effect.
They also motivate the need for a new way
to compute slices that does not involve taking
the transitive closure of the control-dependence
edges, since, as discussed above, the semantic-
effect relation is not transitive.

6 New Definition of
Control Dependence and
New Slicing Algorithm

Recall that the definition of control dependence
used in Algorithm 1 is as follows:

Definition 1 (Original control
dependence): Node N is control dependent
on node M iff N postdominates, in the CFG,
one but not all of M’s CFG successors.

To permit control dependence on jumps, Al-
gorithm 2 replaces “CFG” with “ACFG” in the
definition of control dependence:

Definition 2 (Augmented control depen-
dence): Node N is control dependent on
node M iff N postdominates, in the ACFG, one
but not all of M’s ACFG successors.

Unfortunately, as illustrated in Figure 7, Def-
inition 2 is too liberal; it can cause a spurious
control dependence of N on M due to the pres-
ence of an intervening pseudo-predicate. For
example, in the ACFG in Figure 7, node 81 fails
to postdominate the false successor of the if
only because of the non-executable edge from
“goto L1” to S2. Since the execution of S1 is
affected by the presence/absence of the goto it
should be considered to be control dependent
on the goto; however, (as noted previously), S1
will execute regardless of the value of predicate
P, and therefore it should not be considered to
be control dependent on the if. So in this case,

if (P) |

[L: S1;

}

else goto L;
S2;

Example Code

Corresponding ACFG Corresponding APDG

Figure 7: Example in which a control dependence does not reflect a semantic effect.

the actual influence of “goto L1” on statement
S1 causes an apparent (but spurious) influence
of “if (P)” on S1.

The solution to this dilemma is to re-
place only the second instance of “CFG” with
“ACFG” in Definition 1:

Definition 3 (Control dependence in the
presence of pseudo-predicates): Node N
is control-dependent on node M iff N post-
dominates, in the CFG, one but not all of M ’s
ACFQ@G successors.

We will refer to a dependence graph that in-
cludes control-dependence edges computed us-
ing Definition 3 as a PPDG (pseudo-predicate
PDG) to distinguish them from the PDGs
whose control-dependence edges are computed
using Definition 1, and the APDGs whose
control-dependence edges are computed using
Definition 2.

Example: The program and ACFG from Fig-
ure 7 are given again in Figure 8, with the cor-
responding PPDG. Note that neither label L
nor statement S1 is control dependent on “if
(P)”.

Definition 3 addresses the problem of
control-dependence edges that do not reflect se-
mantic effects. The next problem that needs to
be addressed is the fact that even when every
control-dependence edge does represent a se-
mantic effect, the backward closure of control-

dependence edges from a node S may include
nodes that have no semantic effect on S. For
example, consider again the PPDG in Figure 8.
If the slice from node S1 includes all nodes
reached by following control-dependence edges
backwards, then “if (P)” will (erroneously)
be in the slice because of the chain of control-
dependence edges: if (P) — goto L — Si.

To address this problem, we need the follow-
ing definition:

Definition 4 (IPD): The tmmediate post
dominator (IPD) of a set of ACFG nodes s
the node that is the least-common ancestor of
that set of nodes in the CFG’s postdominator
tree.

Consider a (normal or pseudo) predicate P,
with ACFG successors ni...ng, and let D =
IPD(nj...ng). Intuitively, P may affect the
execution of a program component S only if
there is a path in the CFG from one of P’s
ACFG successors to S that does not include
node D. (If there is such a path, we say that
S is controlled by P.) The value of P (for
a normal predicate), or its presence/absence
(for a pseudo-predicate) determines which of
its ACFG successors is executed. The execu-
tion of the nodes along the paths from those
ACFG successors to D are also affected by the
value (or presence/absence) of P. However,
since whenever P is executed, execution will al-

if (P) |

[L: S1;

}

else goto L;
S2;

Example Code

enter

Corresponding ACFG Corresponding PPDG

Figure 8: Example from Figure 7 with the corresponding PPDG.

ways reach D (barring an infinite loop or other
abnormal termination), the execution of nodes
“beyond” D are not affected by P.

As discussed above, following control-
dependence edges backwards from S in the
PPDG can cause “extra” nodes to be included
in the slice from S. In terms of the “is con-
trolled by” relation, this is because there may
be a chain of control-dependence edges in the
PPDG from a predicate P to S, yet S is not
controlled by P. However, we have proved the
following Theorem (the proof is given in the
Appendix):

Theorem: Node S is controlled by (normal or
pseudo) predicate P iff there is a chain of
control-dependence edges in the PPDG:

P->M1-+M2—->—>Mk~—>.5'

such that every M; in the chain is a normal
predicate node. (Note that there may also
be no M;’s at all; i.e., there may be a single
control-dependence edge P — S.)

This Theorem tells us that it is not necessary
to follow control-dependence edges back from a
pseudo-predicate; for any predicate P such that
there is a node S in the slice that is controlled
by P, P will be picked up by following chains
backwards only from normal predicates.

The new algorithm for building and slicing
the PPDG is given below.

10

Algorithm 3 (Building and the

PPDG)

Step 1: Build the ACFG as described above
for Algorithm 2.

slicing

Step 2: Build the PPDG: Ignore the non-
ezecutable ACFG edges when computing
daeta-dependence edges; compute control-
dependence edges according to Defini-
tion 3.

Step 3: To compute the slice from node S,
include S itself and all of its data-
and control-dependence predecessors in
the slice. Then follow backwards all
data-dependence edges, and all control-
dependence edges whose targets are not
pseudo-predicates; add each node reached
during this traversal to the slice. Include
label L in the slice iff a statement “goto
L” 18 in the slice.

Examples:

1. Using Algorithm 3, the slice from S1 of
the program in Figure 8 would include the
nodes for 81, “goto L”, L, and the en-
ter node. It would not include the node
for “if (P)” because, since “goto L” is
a pseudo-predicate, its incoming control-
dependence edge would not be followed
back to the if node.

switch (E) {
case el:
if (P)

return;
break;

case e2: §;

Example Code

Corresponding ACFG Corresponding PPDG

Figure 9: Example PPDG and its slice from S using Algorithm 3.

2. Figure 9 shows the code, ACFG, and
PPDG for the second example in Figure 6.
Bold font is used to indicate the nodes
that would be in the slice from statement
S computed using Algorithm 3. Note that
“case el”, “if (P)”, and “return” are
correctly omitted from the slice.

6.1 Pseudo-predicates with out-
going data dependences

Algorithm 3 (implicitly) assumed that pseudo-
predicates affect flow of control, but not flow
of values (i.e., that pseudo-predicates have no
outgoing data dependences). If this assump-
tion is violated, then the slice from node S may
include pseudo-predicate P not because P con-
trols the execution of S, but because P affects
the value of some variable used at S (or the
value of some variable used by another predi-
cate that does control the execution of S). This
can happen, for example, if statements of the
form “return exp” are represented using a sin-
gle pseudo-predicate node (rather than using
two nodes: an assignment to a special “return
value” variable, followed by an unconditional
jump to the end of the current procedure).
When a slice includes a pseudo-predicate
P because of its effect on the flow of val-
ues, it is necessary to include P’s control-
dependence parents in the slice (i.e., it is

11

necessary to follow control-dependence edges
back from P). Therefore, if a PPDG can in-
clude pseudo-predicates with outgoing data-
dependence edges, Step 3 of Algorithm 3 must
be modified: when a data-dependence edge
is followed backwards from some node n to
pseudo-predicate P, then P’s incoming control-
dependence edges should be followed back-
wards (as well as its incoming data-dependence
edges, if any).

6.2 Complexity

The time required for Algorithm 3 includes the
time to build the PPDG and the time to com-
pute a slice. Like previous slicing algorithms
that use a dependence graph, the time for slic-
ing itself is extremely efficient, requiring only
time proportional to the size of the slice (the
number of nodes and edges in the sub-PPDG
that represents the slice).

The only difference in the time required to
build the PPDG as compared to the time re-
quired to build the APDG is for the com-
putation of control dependences. Computing
control dependences can be done for both the
APDG and the PPDG in time O(E+C), where
E is the number of edges in the ACFG and C is
the number of control-dependence edges. How-
ever, C may be different for the APDG and
PPDG. For example, in Figure 9, the PPDG

includes edges from “switch (E)” to “if (P)”
and to S that would not be in the correspond-
ing APDG. Figures 7 and 8 illustrate control-
dependence edges that are in the APDG but
not in the PPDG.

7 Interprocedural Slicing

The Ottensteins’ algorithm for intraprocedural
slicing using the PDG was extended to in-
terprocedural slicing using the System Depen-
dence Graph (SDG) in [6]. The approach is as
follows:

1. Use interprocedural dataflow analysis to
determine what non-local variables might
be used or modified by each procedure; for
each procedure and procedure call, add an
explicit input parameter for each variable
that might be used or modified, and an ex-
plicit output parameter for each variable
that might be modified.

2. Build the PDG for each procedure (includ-
ing nodes to represent calls, input parame-
ters, and output parameters), and connect
the PDGs with edges that represent pro-
cedure calls and parameter passing.

3. Compute and add summary edges to rep-
resent the (transitive) effects that each
procedure’s input parameters might have
on its output parameters. This is done
essentially by performing intraprocedural
slices from the nodes that represent the fi-
nal values of the output parameters (an
iterative process is used to account for re-
cursion).

4. To compute the slice from node S, use a
two-phase approach: Phase 1 follows edges
backwards from S, including the interpro-
cedural edges that represent calls made to
S, but not those that represent calls made
from S. Phase 2 starts from all nodes
reached during Phase 1, and follows edges
backwards again; this time including the
interprocedural edges that represent calls
made from S, and ignoring those that rep-
resent calls made to S.

12

Extending that algorithm for interprocedu-
ral slicing to be consistent with the approach
presented here is quite straightforward:

o The control-dependence edges in the
PDGs should be computed using Defini-
tion 3.

e When the summary edges are computed
via intraprocedural slicing, the slices
should not follow control-dependence
edges whose targets are pseudo-predicates.

o Similarly, when an interprocedural slice
is computed, the control-dependence
edges whose targets are pseudo-predicates
should be followed only if the target is the
source of the slice.

8 Experimental Results

To evaluate our work, we implemented Algo-
rithms 2 and 3, and used each of them to
compute slices in four C programs (informa-
tion about the programs, the number of slices
taken in each, and the average sizes of those
slices is given in the table in Figure 10). Slices
were taken from all of the nodes that could
be reached by following one control-dependence
edge forward from a node representing a switch
case, and then following five data-dependence
edges forward. This ensured that every slice
would include a switch, but (by starting further
along the chain of data dependences) avoided,
for example, slices that would include only
switch cases and breaks.

More details about the experimental results
are given in the tables in Figures 11 and 12.
Figure 11 presents information about the differ-
ences in the sizes of the individual slices taken
using the two algorithms. The first column
gives the number of cases where the two algo-
rithms produced slices of exactly the same size.
The other columns give the number of cases
where the slice produced by Algorithm 2 was
larger than the slice produced by Algorithm 3;
the second column gives the number of cases
where the size difference was between 1 and
10, the third column gives the number of cases
where the size difference was between 11 and
20, etc.

lines of number of number of | Av. slice size

source | APDG/PPDG slices (# of nodes)

code nodes Alg2 | Alg3
gee.cpp 4,079 16,784 1,932 | 11,693 | 11,670
byace 6,626 21,239 468 | 2,119 | 2,110
CADP 12,930 35,965 499 | 7,921 | 7,905
flex 16,236 31,354 1,716 | 8,150 | 8,082

Figure 10: Information about the C programs used in the experiments.

0| 1-10 | 11-20 | 21-30 | 31-40 | 41-50 | 51-60 | 61-70 | 71-80 | 81-90
gec.cpp | 2 0 48 | 1881 0 1 0 0 0 0
byacc 0] 229 239 0 0 0 0 0 0 0
CADP | 18| 152 160 169 0 0 0 0 0 0
flex 0 0 5 127 48 41 8 79 | 1405 3

Figure 11: Differences in slice sizes using the two algorithms.

| 0% | 5% | 10% | 15% | 20% | 25% | 30% | 35% |
gee.cpp 2 [1918 3 1 8 0 0 0
byacc 0| 438 18 7 5 0 0 0
CADP 18] 481 0 0 0 0 0 0
flex 0] 1572 0 5 13 52 66 8

Figure 12: Percent reduction in slice sizes achieved using Algorithm 3.

13

Figure 12 presents information about how
much the use of Algorithm 3 reduced the sizes
of the slices. The first column gives the number
of cases where there was no reduction in slice
size (a 0% reduction). The other columns give
the number of cases where the reduction in size
falls within the range specified by the previous
and current column headers. For example, the
second column gives the number of cases where
there was a size reduction greater than 0% and
less than or equal to 5%; the third column gives
the number of cases where there was a size re-
duction greater than 5% and less than or equal
to 10%.

Note that in almost all cases Algorithm 3 did
produce smaller slices than Algorithm 2. Al-
though this led to only a small reduction in the
total size of the slice in most cases, there were
some cases in both gec.cpp and byacc where Al-
gorithm 3 provided reductions in slice sizes of
more than 15%, and some cases in flex where it
provided reductions in slice sizes of more than
30%.

9 Related Work

Choi-Ferrante: The paper by Choi and Fer-
rante [3] that presents Algorithm 2 also in-
cludes a second algorithm: Given a node S,
it starts with the slice from S computed us-
ing Algorithm 1, then adds goto statements to
the slice to form a program that will always
produce the same sequence of values for the
variables used at S as the original program.
This technique may produce smaller slices than
those produced using Algorithm 2. However,
the gotos that are added are not necessarily in
the original program,; therefore, it satisfies nei-
ther Weiser’s definition of a correct slice, nor
Definition 0 from Section 3.

Agrawal: Agrawal [1] also gives an algorithm
that involves adding jump statements to the
slice computed using the standard PDG, but
the statements that he adds are from the origi-
nal program. He states that this algorithm pro-
duces the same results as Algorithm 2; however,
no proof is provided.

Harman-Danicic: More recently, Harman
and Danicic [5] have defined an extension

14

to Agrawal’s algorithm that produces smaller
slices by using a refined criterion for adding
jump statements (from the original program)
to the slice computed using Algorithm 1. When
applied to programs without switches, it may
or may not produce slices that satisfy Defini-
tion 0. This is because their algorithm includes
some nondeterminism: when there are cycle-
free paths from a predicate to its immediate-
postdominator both via its true and its false
branches, then the jump statements along ei-
ther of the paths can be chosen to be in the
slice.

Unfortunately, when applied to programs
with switch statements, this algorithm can be
as imprecise as Algorithm 2. For example,
when used to slice the switch statement in the
first example in Figure 6, it produces exactly
the same slice as Algorithm 2.

Another disadvantage of this algorithm as
compared to ours is that the worst-case time
to compute a slice can be quadratic in the size
of the CFG, while our algorithm is linear in the
size of the computed slice.

Sinha-Harrold-Rothermel: In [10], Sinha,
Harrold, and Rothermel discuss interprocedu-
ral slicing in the presence of arbitrary inter-
procedural control flow; e.g., statements (like
halt, setjmp-longjmp) that prevent proce-
dures from returning to their call sites. That
issue is orthogonal to the one addressed here
(better slicing of programs with jumps and
switches); thus, the two approaches can be
combined to handle programs with arbitrary
interprocedural control flow as well as jumps
and switches.

10 Summary

We have provided a new definition for a “cor-
rect” slice, a new definition for control depen-
dences, and a new slicing algorithm. The al-
gorithm has essentially the same complexity as
previous algorithms that compute slices using
program dependence graphs, and is more pre-
cise than previous algorithms when applied to
programs with jumps and switch statements.
The motivation for this work was the obser-
vation that slices of code with switch state-
ments computed using the approach to han-

dling jumps proposed by [2, 3] (as implemented
in the CodeSurfer [7] programming tool) often
include many extra components, which is con-
fusing to users of the tool. We expect that the
new approach will have an important practi-
cal benefit (to users of slicing tools) as well as
being an interesting theoretical advance.

11 APPENDIX: Theorem
Proof

THEOREM:

(A) Node S is controlied by (normal or
pseudo) predicate P iff

(B) there is a chain of control-dependence
edges in the PPDG:

P s My — My — ... = My — S

such that every M; in the chain is a normal
predicate node. (Note that there may also
be no M;’s at all; i.e., there may be a single
control-dependence edge P — S.)

PROOF

Lemma 1: If P is a (normal or pseudo) pred-
icate with ACFG successors nj...ng, and
D = IPD(n;...ng), and there is a D-free
path p in the CFG from n; to S (for some
1); then there is some n; (j possibly = 1)
such that S does not postdominate n; in
the CFG.

Proof of Lemma 1: Assume that S does
postdominate all of ny...ng. In this case, ei-
ther S is D, or S postdominates D. However,
S cannot be D, since by assumption path p
(which includes S) is D-free. By definition of
postdomination, both D and S are on every
path from n; to erit, and D precedes S on that
path. Therefore, D must be in path p, which
contradicts the assumption that p is D-free.

Lemma 2: If P is a (normal or pseudo) pred-
icate, and there is a control-dependence
edge P — § in the PPDG, then S is con-
trolled by P.

15

Proof of Lemma 2: The fact that the control-
dependence edge P — S is in the PPDG means
that S postdominates one but not all of P’s
ACFG successors in the CFG. Without loss of
generality, assume that S postdominates P’s
successor n; but does not postdominate P’s
successor ng. This means that there is a path
p from n; to S such that S postdominates all
nodes in p. To show that S is controlled by P,
we must show that p is D-free (where D is the
IPD of P's ACFG successors). This must be
true: the fact that S postdominates all nodes
in path p means that if path p included D, then
S would postdominate D, and would also post-
dominate all of P’s ACFG successors including
ng, which viclates the assumption that S does
not postdominate no.

Lemma 3: If S is controlled by a normal pred-
icate P, and P is controlled by a pseudo
or normal predicate (), then S is controlled

by Q.

Proof of Lemma 3: Let @’s ACFG succes-
sors be g;...q;, and let P’s ACFG successors be
ny...ng. Note that since P is a normal predi-
cate, IPD(n;...n;) = IPD(P).

P controlled by () means there is a path pl
from one of ()’'s ACFG successors to P that
does not include IPD(g;...q;). Without loss of
generality, assume that this path starts from
node ¢s.

S controlled by P means there is a path p2
from one of P’s CFG successors to S that does
not include IPD(P). Without loss of generality,
assume that this path starts from node n;.

This situation is illustrated in Figure 13.

Claim : IPD(g;...q;) also postdominates P.

Proof : Suppose not: then there is a path
p3 from P to exit that does not include
IPD(gi...q;). But then the path pl || p3 is
a path from g, to exit that does not include
IPD(g1...q;), which cannot happen.

Since path p2 does not include IPD(P), it
cannot include any postdominator of P, and
thus cannot include IPD(g;...q;). Therefore,
the path pl || p2 is a path from one of Q’s
ACFG successors to S that does not include
IPD(g:...q;), and thus S is controlled by Q.

-
-
-

14 !
1 ___—l
S !
path z from 1
QoD @ '\
4

path t from
g2 tox

Figure 13: Hlustration of Lemma 3.

PROOF OF THEOREM:

Proof part 1 (Theorem (A) = Theorem
(B)):

Recall that node S is controlled by predicate
P iff there is a D-free path p from one of P’s
ACFG successors to S (where D is the IPD of
P’s ACFG successors). In what follows, we will
assume (without loss of generality) that path p
starts from node y;.

Case 1: S postdominates y;. By Lemma
1, there is some y; that is not postdominated
by S. Therefore, the control-dependence edge
P — § will be in the PPDG, which satisfies
the conditions of part (B) of the Theorem.

Case 2: S does not post-dominate y;. This
means that there is some set of (normal) pred-
icate nodes M on path p that S does not post-

16

dominate in the CFG.
We will now proceed by induction on the size
of set M.

Base case: size(M) = 1. In this case, M =
{N}. N must be followed by one of its suc-
cessors N1 in path p, and S must postdom-
inate N1 in the CFG (since by assumption
S postdominates all predicates in path p
other than V), but not some other succes-
sor N2 of N (or else S would also post-
dominate N). Therefore S is control de-
pendent on N, and the control-dependence
edge N — S is in the PPDG.

Furthermore, since S postdominates all
other predicates in path p, there can be
no predicates at all in the path from y;
to N (since S does not postdominate any
of the nodes in that path), so it must be
the case that N postdominates y;. Since
path p is D-free, and the path from y; to
N is a prefix of p, that path must also be
D-free. Therefore, by Lemma 1, there is
some y; that is not postdominated by N,
and thus NV is control dependent on P, and
the control-dependence edge P — N is in
the PPDG. In this case, the PPDG path
P - N — S satisfies the conditions of
part (B) of the Theorem.

Induction step: Assume that the proof (The-
orem (A) = Theorem (B)) holds for all M
of size 1 to n. We must now show that it
holds for M of size n+1.

Consider the node N in M that occurs
last in path p. As in the base case, NV
must be followed by one of its successors
N1 in path p, and S must postdominate
N1 in the CFG, but there must be some
other successor N2 of N that S does not
postdominate. Therefore S is control de-
pendent on N, and the control-dependence
edge N — S is in the PPDG.

Furthermore, N must be controlled by P
(because the path from y; to NV is a prefix
of the D-free path from y; to s), and the
number of (normal) predicate nodes in the
prefix of path p from y; to N must be n
(since S does not postdominate any node
in that prefix, and since N itself was the

n+1% predicate in p that S did not post-
dominate). Therefore, either N postdom-
inates y; (in which case it is control de-
pendent on P, and the control-dependence
edge P — N will be in the PPDG), or
the induction hypothesis holds for nodes
N and P (the size of set M for node N is
between 1 and n), so we can conclude that
there is a control-dependence path from P
to N in the PPDG. That path plus the
edge N — § provides a path that satisfies
the conditions of part (B) of the Theorem.

Proof part 2 (Theorem (B) = Theorem
(A)):

The proof is by induction on the length of
the path from P to S in the PPDG.

Base Case: There is a control-dependence
edge P — S in the PPDG.

By Lemma 2 above, this means that S is
controlled by P.

Induction step: Assume that if there is a
control-dependence path of length n > 1
from P to S in the PPDG (where all nodes
other than P and S are normal predicates),
then S is controlled by P. We must now
show this is true for paths of length n+1.

If there is a control-dependence path P —
My, — ... — § in the PPDG of length
n+1, then the control-dependence path
M; — ... — S is of length n, and so by
the induction hypothesis, S is controlled
by M;. Lemma 2 says that the presence
of the control-dependence edge P — M,
means that M; is in turn controlled by P;
Lemma 3 says that if S is controlled by M;
(a normal predicate), and M is controlled
by P, then S is controlled by P.

12 Acknowledgements

This work was supported in part by NSF under
grants CCR~9970707 and CCR-9987435.

17

References

1]

e

[10]

H. Agrawal. On slicing programs with
jump statements. In Proc. ACM Conf. on
Programming Language Design and Imple-
mentation (PLDI), pages 302-312, June
1994.

T. Ball and S. Horwitz. Slicing programs
with arbitrary control flow. In Lecture
Notes in Computer Science, volume 749,
New York, NY, November 1993. Springer-
Verlag.

J. Choi and J. Ferrante. Static slicing in
the presence of goto statements. ACM
Trans. on Programming Languages and
Systems, 16(4):1097-1113, July 1994.

J. Ferrante, K. Ottenstein, and J. War-
ren. The program dependence graph and
its use in optimization. ACM Trans.
on Programming Languages and Systems,
9(3):319-349, July 1987.

M. Harman and S. Danicic. A new algo-
rithm for slicing unstructured programs.
Jrol. of Software Maintenance, 10(6):415-
441, Nov./Dec. 1998.

S. Horwitz, T. Reps, and D. Binkley.
Interprocedural slicing using dependence
graphs. ACM Trans. on Programming
Languages and Systems, 12(1):26-60, Jan-
uary 1990.

http://www.codesurfer.com.

K. Ottenstein and L. Ottenstein. The pro-
gram dependence graph in a software de-
velopment environment. In Proc. ACM
SIGSOFT/SIGPLAN Software Engineer-
ing Symp. on Practical Software Develop-
ment Environments, pages 177-184, 1984.

A. Podgurski and L. Clarke. A formal
model of program dependences and its im-
plications for software testing, debugging,
and maintenance. IEEE Trans. on Soft-
ware Engineering, 16(9):965-979, Septem-
ber 1990. '

S. Sinha, M. Harrold, and G. Rothermel.
System-dependence-graph-based slicing of

programs with arbitrary interprocedural
control flow. In Int. Conf. on Software
Eng., pages 432-441, May 1999.

[11] M. Weiser. Program slicing. IEEE Trans.
on Software Engineering, SE-10(4):352-
357, July 1984.

18

