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Abstract

This paper applies Dynamic Bayes Nets to
the task of predicting gene expression in
E. coli. Specifically, the evidence variables
in our DBN are discretized gene expression
levels, and the hidden state variables are
“operon” transcription levels. An operon is
a sequence of genes that are transcribed to-
gether; our operons include both known oper-
ons from [Salgado, Moreno-Hagelsieb, Smith
and Collado-Vides 2000] and predicted oper-
ons from [Craven, Page, Shavlik, Bockhorst
and Glasner 2000]. The arcs from state to
evidence variables are known, but the arcs
from state variables of one time step to state
variables of the next time step are unknown.
These arcs, as well as all CPT probabilities,
are inferred from time-series microarray data
for E. coli.

1 Introduction

Over the past decade, scientists have been rushing to
produce complete genome sequences for various organ-
isms ranging from microbes to humans. These com-
pleted genomes are springboards to the ultimate goal
of understanding the workings of complex living sys-
tems. Each genome contains thousands of genes, each
of which codes for one or more proteins; these proteins
may in turn regulate other genes through complex reg-
ulatory pathways to accomodate changes in their en-
vironment or carry out the programs of growth and
development of the organism. The key to understand-
ing living processes is uncovering this genome-wide cir-
cuitry that underlie the regulation of cells.

The laborious task of identifying metabolic pathways
through many experiments over the last century has
been fundamental for drug development. Discovering
transcriptional regulatory pathways will have an even
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greater impact on medicine because regulatory path-
ways that fail to function correctly are the major cause
of ailments such as cancer (due to uncontrolled cell
growth).

To uncover genome-wide regulatory pathways, we need
a way to measure the expression levels of all the genes
within the organism. DNA microarrays enable the si-
multaneous measurement of most if not all identified
genes in a genome. However, the data from microar-
rays are inherently noisy; our approach to analysis uses
both discretization (a common technique) and back-
ground knowledge to partially offset the noise.

We introduce an approach to determining transcrip-
tional regulatory pathways by applying Dynamic
Bayes Nets to time-series gene expression data from
DNA microarray hybridization experiments. Our ap-
proach involves building an initial DBN structure
that exploits background knowledge of operons and
their associated genes. We use the operon map from
[Craven, Page, Shavlik, Bockhorst and Glasner 2000]
that maps every known and putative gene in the E. coli
genome into its most probable operon. This map
makes the simplifying assumption (rarely but occa-
sionally violated) that every gene appears in exactly
one operon, and its accuracy is estimated at about
95%. We also use our best guess of priors for setting
initial conditional probability tables (CPTs) in the
DBN. The structural EM algorithm [Friedman 1998] is
used to infer the remaining structure of the DBN from
E. coli gene expression data, with the EM algorithm
revising the CPTs. The use of prior knowledge—
operons and prior CPTs—is especially important be-
cause of the noise and small sample size of the data.

[Friedman, Linial, Nachman and Pe’er 2000] were the
first to address the task of determining properties of
the transcriptional program of an organism (Baker’s
yeast) by using Bayesian Networks to analyze gene ex-
pression data. Their method can represent the de-
pendence between interacting genes, but it does not
show how genes regulate each other over time in the



complex workings of regulatory pathways. Analysis
of time-series data potentially allows us to determine
regulatory pathways across time rather than just as-
sociating genes that are regulated together.

To our knowledge [Friedman, Linial, Nachman and
Pe’er 2000} and [Murphy and Mian 1999] are to be
credited with first proposing the suitability of DBNs
for modeling time-series gene expression microarray
data. [Murphy and Mian 1999] cited the advantages
of DBNs as being stochasticity and the abilities to in-
corporate prior knowledge and hidden variables. The
primary contribution of our paper is to test this DBN
approach on real time-series microarray data. A sec-
ondary contribution is the incorporation of the results
of a previous application of Bayesian inference (naive
Bayes) as background knowledge for this new applica-
tion. The previous application used a variety of evi-
dence sources, including earlier microarray data from
the Blattner Laboratory at the University of Wiscon-
sin, to predict the operons in E. coli. The goal of
that work was to produce an accurate operon map
that could later be used in the prediction of regula-
tory pathways in E. coli. The present paper describes
a next step in this direction.

The experiments described in the following section are
designed to test two hypotheses. The first is that DBN
structure learning will induce arcs between operons
that are involved in the same regulatory pathway. If
this hypothesis proves to be true, then DBN structure
learning can propose links that investigators can fur-
ther pursue by experimentation. The second, stronger
hypothesis is that DBN structure learning will induce
arcs that actually appear in the regulatory pathway.
This second hypothesis is much stronger since the ac-
tual arcs might not be induced for a variety of reasons
including: the time steps in the data set are too large,
the data are too noisy, or the learning algorithm rec-
ognizes the dependence but not the “causality” (the
arc is in the wrong direction). The next section pro-
vides evidence that supports the first hypothesis but
not the second. Section 3 discusses further work that
might be done to improve the DBN learning approach
and further experimentation that might be done.

2 Experiments

2.1 Materials

Our eventual goal is to develop a tool for analyzing
time-series expression data on E. coli as it is produced
by the Blattner Lab at the University of Wisconsin.
But to test our hypotheses, this paper reports the
analysis of time-series gene expression data from [Kho-
dursky, Peter, Cozzarelli, Botstein, Brown and Yanof-

sky 2000]. This data set is used because it is focused
on tryptophan metabolism, a well studied regulatory
process, so it is an excellent check for the reverse en-
gineering of a genetic network. In addition the au-
thors already have generously made the data publicly
available on a web page supplement to their paper, so
computational experiments with this data can be repli-
cated if desired. It should be noted that a common
problem with current microarray expression data is a
small number of data points, and this is especially true
of time-series data. The present data set consists of 8
data points, from 4 time steps under tryptophan-rich
conditions and 4 time steps under tryptophan-starved
conditions. Nevertheless it is hoped that discretiza-
tion and reasonable priors will permit useful results
to be obtained. We hope to have significantly larger
time-series data sets in the near future.

We obtained the operon map of known operons of
E. coli from [Salgado, Moreno-Hagelsieb, Smith and
Collado-Vides 2000] and the operon map of predicted
operons of E. coli from [Craven, Page, Shavlik, Bock-
horst and Glasner 2000] to build our initial DBN
structure.! An operon is a sequence of genes that are
transcribed together into mRNA on their way to be-
ing expressed as proteins. The presence or absence
of these proteins, as well as other molecule(s) such as
the amino acid tryptophan, may cause other genes to
increase or decrease in transcription levels.

There are two important reasons to incorporate ex-
plicit operon nodes into the DBN model even though
operon transcription levels are not observed. First, if
we use nodes for genes only, and allow the learning
algorithm to induce arcs between genes, it will induce
many “useless” arcs between genes in the same operon.
For example, if genel and gene2 are both in operonl,
then we would expect the expression level of genel
to be an excellent predictor of the expression level of
gene2, but this would provide no new insight given that
we already know (or believe) that genel and gene2 are
in the same operon. Second, incorporation of operons
in the model can help combat problems due to noise.
For example, the trp operon (also known as trpED-
CBA) contains five genes: trpA, trpB, trpC, trpD, and
trpE. Because of noise in microarray experiments, the
measured expression level for trpC might be a bit too
high. But the five different gene expression measure-
ments give us essentially five independent indicators
of trp transcription, potentially reducing the effect of
noise in the measurement of trpC expression.

The Bayes Net Toolbox software package written by
[Murphy 2000] was used for the experiments in this
paper because it already provided the necessary func-

1The full operon map, with an interactive graphical in-
terface, will be available online within a month.
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Figure 1: High-level Dynamic Bayes Net structure with CP'Ts for each arc in the model. t represents up regulation
| represents down regulation and — represents no change in expression level. Time slices are represented by t=0,

t=1 and t=2.

tionalities for building Bayes Nets, as well as an imple-
mentation of EM for learning CPTs. We constructed
the initial Bayes Net structure and learned the param-
eters of the model using the methods provided in Bayes
Net Toolbox. Within this framework we implemented
the structure search described in the next subsection.

2.2 Methodology

We start by describing our initial DBN structure. Each
time slice in a DBN is identical in structure to the
next, so we will first focus on the structure within a
time slice. By definition, an operon is a cluster of con-
tiguous genes that are transcribed together. Since an
operon’s transcription level affects the expression lev-
els of the genes in that operon, we show this causality
with arcs from each operon to its associated genes. Be-
cause we cannot directly measure an operon’s expres-
sion levels, we represent each operon as a hidden node
in the network. The gene expression levels, which can
be measured, are our observed variables. The high-
level structure of the initial DBN model is shown in
Figure 1.

The arcs connecting operons to genes are known from
our operon map. If operonl consists of gene2 and
gene3, our DBN will contain an arc from the operonl
node to the gene2 and gene3d nodes. This leaves un-
determined the arcs from the hidden variables of one
time step to the hidden variables of the next time step.

Since an operon’s expression level from one time step
typically affects its expression level at the next time
step, we add these arcs as shown in the detailed DBN
structure in Figure 2. Any additional arc among hid-
den nodes, as well as all posterior CPT probabilities,
must be inferred from time-series microarray data for
E. coli.

The evidence variables in our DBN are the discretized
gene expression levels from the experiments with ex-
cess tryptophan and tryptophan starvation. We define
up regulated (1), down regulated () or no change(-)
as the possible discrete values. In particular, we com-
pare the expression levels between two consecutive
time-series measurements to determine whether there
was a 1.4-fold increase (1), 1.4-fold decrease (}), or no
change (—). Note that we are determining the relative
change in expression from one time-step to another
rather than absoclute absent, present or marginal calls.
We chose to use 1.4-fold difference as the threshold for
determining change in expression levels because 1.4~
fold is the smallest average extent of repression accord-
ing to [Khodursky, Peter, Cozzarelli, Botstein, Brown
and Yanofsky 2000]. Our best guess of informative pri-
ors for setting initial CPT values are shown in Figure
1.

Because of limited data, we consider only simple struc-
tural models in which each operon has at most two in-
coming arcs, from (1) the same operon at the previous



time step, and (2) at most one other operon from the
previous time step. Section 3 discusses the potential
for relaxing this requirement. We employ broadly the
structural EM methodology of [Friedman 1998]. Each
operon begins with one parent—the same operon at
the previous time step. In our full algorithm, for each
operon we consider adding a different operon from the
previous time step as a second parent. Each poten-
tial parent is considered. For each such potential sec-
ond parent, the EM algorithm is employed to update
all CPTs in the model to give a (local) maximum log
likelihood. If any choice of second parent increases
the log likelihood, then the choice that provides the
highest log likelihood is selected.

In general, the preceding cycle through all the operons
may need to be repeated several times for convergence
to a locally optimal structure. Unfortunately, even
with our structural restrictions, because we are using
142 operons and 169 genes the EM algorithm as imple-
mented in the BN Toolbox for Matlab requires more
than 10 minutes real time on a standard workstation
(Sun running Solaris or Dell running Red Hat Linux).
Even one full cycle requires 20022 calls to the EM al-
gorithm, which will require over 4 months to run. For
the long-term, we are reimplementing the algorithm
in C to run in parallel on a Condor [Litzkow, Livny
and Mutka 1988] pool of networked workstations. For
the short-term, we focus the algorithm on nine oper-
ons containing genes known to be involved in trypto-
phan metabolism; the algorithm cycles once through
these only, but all 142 operons containing genes in
the data set are considered as potential parents. For
each operon we record both the best and second-best
choices for the additional parent.

2.3 Results

The results of the experiments were mixed and are
summarized in Table 1. It is disappointing that for
only one of the nine operons known to be involved
in tryptophan metabolism (aroL) was another of the
nine chosen as the best additional parent (aroP). The
probability of inducing at least one such arc simply
due to chance is quite high, at 0.41.2 Hence this result
provides no support for our hypotheses. More encour-
aging is the emergence of the tryptophan operon itself
(trp, also known as trpEDCBA) as the second best
choice of additional parent for four of the nine operons,

2That is to say, the probability of at least one of the nine
operons relevant to tryptophan metabolism being chosen
as a parent for one of the other nine due to chance alone
is 0.41. This figure is just the probability of one or more
successes drawn from the binomial distribution (9, 15 ),
since we draw a parent for each one of the nine tryptophan-
related operons, and the probability of this parent being
another one of the nine is 75

Figure 2: Dynamic Bayes Net structure details show-
ing intra and inter time slice connections

including the important tryptophan repressor (trpR),
as well as the appearance of aroP as the second best
additional parent for tnaAB. The probability of hav-
ing this many of the nine tryptophan-related operons
chosen as the best or second-best parent for another of
the nine due to chance alone is only 0.01. While fur-
ther experimentation is required, these results provide
some initial evidence in favor of our first hypothesis.
Figures 3-8 show the induced CPTs for the 6 cases
where a tryptophan-related operon was chosen as the
second parent for another tryptophan-related operon.

It is interesting to note the significant repetition
among the other best or second-best parents that are
not members of the set of nine known tryptophan-
related operons. The operon flgBCDEFGHIJK ap-
pears four times as a best or second-best parent. The
predicted (from [Craven, Page, Shavlik, Bockhorst and
Glasner 2000]) operons yafDE, gltJKL, and yciGFE
appear two times each. These results suggest that per-
haps these operons also play some role in tryptophan
metabolism. [Khodursky, Peter, Cozzarelli, Botstein,
Brown and Yanofsky 2000] note that in their cluster
analysis yciGF forms a tight cluster with trpR and
related operons and hence merits a closer look.

Somewhat surprisingly the tryptophan repressor
(trpR), which plays a major role in the regulation of
tryptophan metabolism, does not emerge as a best
or second-best additional parent for any of the nine




Table 1: Most Probable DBN Structure. Operons
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tryptophan-related operons. Nevertheless, the trypto-
phan operon (trp) is the second-best additional par-
ent for trpR. In the regulatory pathway for trypto-
phan metabolism, expression of trpR. directly affects
trp expression, but the influence of trp on trpR is indi-
rect. Hence while the DBN picked up the link between
trp and trpR, it did not correctly identify the direc-
tion of causality. In fact, in every case above where
a tryptophan-related operon was chosen as the best
or second-best parent of another tryptophan-related
operon, the relationship between the operons in the
regulatory pathway either flows in the opposite direc-
tion or is a relationship of indirect influence rather
than direct. Thus the experiments refute our second
hypothesis, that DBN structure learning will induce
arcs that actuolly appear in the regulatory pathway.

3 Conclusions and Future Directions

We have reported an initial experiment in learning Dy-
namic Bayesian Networks as a means of modeling time-
series gene expression microarray data, with the aim of
gaining insights into regulatory pathways. The prior
structure and prior CPTs of our DBN encode back-
ground knowledge about gene expression in the organ-
ism being modeled, E. coli. The experiment provides
evidence that DBN learning is capable of identifying
operons in E. coli that are in a common regulatory
pathway. But it also provides evidence against the hy-
pothesis that DBN learning is capable inducing arcs
that reflect causality, or arcs that actually appear in
the pathway. Nevertheless, this initial foray into DBNs
for time-series data has several shortcomings that im-
mediately suggest directions for further research.

First, use of a larger data set may improve the perfor-

Figure 3: CPT for aroL conditional on aroL and aroP
from previous time step.

mance of the approach. Some additional time-series
data recently have been made available by the Blat-
tner Laboratory at the University of Wisconsin, un-
der a different set of conditions, and we anticipate the
availability of further time series data on E. coli in the
year ahead. Nevertheless, potentially offsetting any
such gain is the need to include additional genes (ob-
served variables) and operons (hidden variables) in the
analysis. The present data set used only 169 genes ap-
pearing in 142 operons. But the full E. coli genome
has over 4000 genes, and the predicted operon map
has well over 1000 operons.

A second, and perhaps more important, shortcoming
of the present work is that computation time did not
permit our full algorithm to be employed. The full al-
gorithm modifies incoming arcs to every hidden node.
As the arcs coming into one hidden node are modi-
fied, and the CPTs updated, this node may become a
better parent for another node. A cascade of such im-
provements could dramatically improve the fit of the
model and hence, potentially, the match of the model
with the actual regulatory structure of the organism.
Therefore, a crucial direction for further work is to
increase the efficiency of our implementation of the
learning algorithm, both through parallel execution on
a Condor pool and simple reimplementation in C, so
that the full algorithm can be tested. The faster im-
plementation also will facilitate more extensive exper-
imentation, including cross-validation to estimate the
accuracies of expression levels that the model predicts



P(aroF _|trpP _garoF,_)

\ _
OLO oflz)ﬁ 0.34
0.00} 0.50 0.50
— 0.00] 0.14] 0.86
P(arotho) 0.83/ 0.03{0.14
1\ \L - 0.00{ 0.23/0.77
— 0.00] 0.14/ 0.86
0.32(0.33 0.35
— 1075/ 0.05|0.20
— 10.00/0.39] 0.61
0.000.11{ 0.89
P(tpP_,) \
0.330.33] 0.34

Figure 4: CPT for aroF conditional on aroF and trp
from previous time step.

for various genes at various time steps.

Third, our initial DBN structure and prior CPTs are
based on several simplifications. We ignore atfenua-
tion of operons—cases where at times only the first
several genes in an operon are transcribed. The CPTs
for genes based on their operons should reflect cur-
rent knowledge about attenuation. For example, con-
sider an operon for which attenuation is known to
be important. If the transcription of the operon in-
creases then perhaps earlier genes in the operon should
have a higher probability of increased expression than
should later genes in the operon. Another simplifica-
tion is that we do not directly model important en-
vironmental factors. The model may perform better
if we include additional hidden or observed variables
corresponding to temperature or the availability of re-
sources such as glucose or tryptophan.

This paper has presented the first application (to our
knowledge) of Dynamic Bayesian Networks to time-
series gene expression microarray data. It also has
shown how background knowledge about an organ-
ism’s genome (in this case, an operon map) can be used
to construct the initial, core structure of the DBN.
This background knowledge can be taken from the sci-
entific literature or can itself be the output of another
modeling system. In this case, the operon map con-
sisted partially of each type of knowledge. The paper
has provided some evidence that the results of such an
application of DBNs provide additional insights into
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Figure 5: CPT for aroH conditional on aroH and trp
from previous time step.

the organism’s regulatory network. The paper also
has demonstrated, though, that our DBN approach is
much less useful for inducing direct causal links, that
is, direct arcs in the regulatory network. Further ex-
periments will provide insight into whether this short-
coming is inherent to DBNs or is merely a result of
limited data and computational resources, as well as a
result of our simplifying assumptions as described in
the previous paragraph.
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