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Abstract

Hierarchical State Machines (HSMs) are a natural model for representing the reactive behavior of
complex software systems. We investigate in this paper an extension of the HSM model where state
machines are allowed to call each other recursively. Such “unrestricted” HSMs can model classes of
infinite state systems such as arbitrary combinations of control-flow graphs of procedures in programming
languages such as C. We precisely compare the expressiveness of unrestricted HSMs with known classes of
infinite state systems, namely context-free and pushdown processes. We then discuss several verification
problems on HSMs, and present original model-checking algorithms for unrestricted HSMs.

1 Introduction

Hierarchical State Machines {HSMs) are finite state machines whose states themselves can be other machines.
HSMs are a popular model for specifying complex software systems, which is why they form the basis of
commercial modeling languages such as StateCharts, ObjecTime, and UML. Various verification problems
for HSMs without recursion were recently studied in [AY98, AKY99, AGO00].

In this paper, we investigate an extension of the HSM model where state machines are allowed to call
each other recursively. Such “unrestricted” HSMs are strictly more expressive than the previously-studied
HSM model since HSMs with recursion can model classes of infinite state systems. For instance, unrestricted
HSMs can be used to model arbitrary combinations of control-flow graphs of procedures in programming
languages such as C. Unrestricted HSMs are therefore a natural model for reasoning about the abstract
behavior of reactive software programs.

We study in this paper several verification problems defined on unrestricted HSMs. First, we define several
classes of unrestricted HSMs (or HSMs for short), and establish correspondence theorems with previously-
existing classes of infinite state systems. Specifically, we show that “single-exit” HSMs, i.e., HSMs composed
exclusively of machines each with a single exit state, have the same expressiveness as context-free processes,
while general “multiple-exit” HSMs have the same expressiveness as pushdown processes. From these corre-
spondence theorems and known verification results for context-free and pushdown systems, we immediately
obtain algorithms and complexity bounds for various verification problems on HSMs.

We then show how some of the above results can be improved using new verification algorithms. We
present a linear-time temporal-logic (LTL) model-checking algorithm for unrestricted HSMs. With this
algorithm, we show that LTL model checking for single-entry multiple-exit HSMs (i.e., HSMs composed of
machines each with a single entry state, but possibly multiple exit states) can be solved in time linear in
the size of the HSM, instead of cubic time as previously known. This implies that the reachability and
cycle-detection problems can also be solved in linear time for single-entry HSMs.

We also present a new model-checking algorithm for the logic CTL* and single-exit HSMs. Our algorithm
runs in time linear in the size of the HSM, instead of quadratic time, the best previously-known upper bound.




Due to the correspondence results mentioned above, this algorithm also provides a new improved upper bound
for CTL* model checking of context-free processes.

2 Unrestricted Hierarchical State Machines

Various definitions of state machines have been proposed for representing the behavior of reactive systems.
A popular model used in the model-checking literature [CE81] is the Kripke structure. Given a set P of
atomic propositions, a (flat) Kripke structure K is a tuple (S, R, L) where S is a (possibly infinite) set of
states, R C S x § is a transition relation, and L : § — 2% is a labeling function that associates with each
state the set of atomic propositions that are true in that state.

In this paper, we consider an alternative representation for reactive systems that supports a notion of
hierarchy. In particular, we define an unrestricted hierarchical state machine (HSM) M over a set P of
atomic propositions to be a set of component structures {Ms, ..., M,}, where each of the M; has

e A nonempty finite set IV; of nodes.
o A finite set B; of bozes (or supernodes).

e A nonempty subset I; of NV;, called the entry-nodes of N;.

A nonempty subset O; of N;, called the exit-nodes of N;.

e A labeling function X; : IV; +— 2P that labels each node in N; with a subset of P.
e An indexing function Y; : B; + {1,...,n} that maps each box of M; to the index j of some structure
M;.

o A set C; of pairs of the form (b, e), where b is a box in B; and e is an entry-node of M; with j = Y;j(b),
called the call-nodes of B;.

o A set R; of pairs of the form (b, ), where b is a box in B; and z is an exit-node of M; with j = Y;(b),
called the return-nodes of B;.

e An edge relation F;. Each edge in E; is a pair (u,v) such that (1) u is either a node in IV; or a return
node in R;, and (2) v is either a node in NV; or a call-node in C;.

M is called the top-level structure of M. The above definition is essentially that of Alur and Yannakakis [AY98];
however, we permit component structures to call each other recursively. An example of an unrestricted HSM
is shown in Figure 1.

To simplify notation in what follows, we assume that the sets I; and O; are all pairwise disjoint, as are
the sets C; and R;. Note that C; and R; are technically not part of N;. An HSM M is called single-entry
if every structure M; in M has exactly one entry-node (i.e,, V1 < ¢ < mn: || = 1). An HSM M is called
single-exit if every structure M; in M has exactly one exit-node (i.e.,, V1 <i < n:|0;] =1).

Each structure M; can be associated with an ordinary Kripke structure, denoted K (M;), by recursively
substituting each box b € B; by the structure M; with j = Y;(b). Since we allow state machines to call each
other recursively, the expanded structure K (M;) can be infinite. A state of the expanded Kripke structure

K (M) is defined by a node and a finite sequence of boxes that specify the context. Formally, the ezpansion
K(M) of an HSM M is the Kripke structure (S, R, L) defined as follows:

e 5C U?}ﬂ Ni x (U?:l B;)*.

o The transition relation R is the set of transitions ((v,w), (v',w')) that satisfy any of the following
conditions:

— (v,v") € E;, v,v' € N; and w = w'.
- (v,(¥,eN) € BEi,v e Ny, v' =€, and w' = wb'.
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Figure 1: An example of an unrestricted HSM (left) and its expansion (right). The top-level structure M,
has one box, which calls structure M,. M, models an attempt to send a message; if no positive or negative
acknowledgment is received, a timeout occurs and a recursive call to My is performed.

= ((b,z),v') € E;, v =2, v € N;, and w = w'b.

— ((b,z),(b,e")) € BEj,v=12,v =€, and w' ="V with w = w"b.
e The labeling function L : S + 2% is defined by L{(v,w)) = X;(v) with v € N;.

The (infinite) expansion K (M;) of the HSM of Figure 1 is shown on the right of the figure, where the
finite sequence of boxes corresponding to each state is indicated on top of the state when it is nonempty
(e.g., the state “(send,b1b2)” is depicted as the state “send” labeled with “b1b2”). In what follows, we will
write K (M) to denote the expansion of the top-level structure M; of an HSM M.

3 Expressiveness of Unrestricted HSMs

As mentioned in the introduction, the unrestricted HSM model is closely related to several existing models for
infinite-state systems, namely context-free grammars and pushdown automata. In this section, we compare
the expressiveness and conciseness of these models. We also compare the expressiveness of the four classes of
unrestricted HSMs defined in the previous section, namely single-entry single-exit, single-entry multiple-exit,
multiple-entry single-exit, and multiple-entry multiple-exit HSMs.

Since we are interested in the temporal behavior of systems, our comparison of expressiveness is based
on the existence of bisimulation relations between the Kripke structures corresponding to the expansions of
these different classes of models. We now recall the definition of a bisimulation relation on Kripke structures.

Definition 1 Let M, = (S;, Ry, L) and M2 = (S, Rs, L) be Kripke structures. A binary relation B C
S1 x S5 is a bisimulation relation if (s1,s2) € B implies:

o Li(s1) = La(s2),
o if (s1,5)) € Ry, then there is some s}, € Sy such that (s3,s5) € Ry and (s},s5) € B, and

o if (s2,8h) € Ry, then there is some s} € Sy such that (s1,s]) € Ry and (s},s5) € B.
Two states s; and s, are bisimilar, denoted s; ~ s3, if they are related by some bisimulation relation. M

By extension, we say that two Kripke structures M; and Ms are bisimilar if Vs; € Sy : Jsq € Sa : 51 ~ 59
and Vsg € Sp 1 dsy € 511 81 ~ 2.




Obviously, any multiple-entry machine with % entry-nodes can be replaced by k machines, each with
a single entry-node. Therefore, the expressiveness of single-entry and multiple-entry HSMs is the same,
although multiple-entry HSMs can be more concise than their equivalent single-entry HSM. In contrast, we
show in the remainder of this section that single-exit and multiple-exit HSMs have different expressivenesses.
Indeed, single-exit HSMs have the same expressiveness as context-free processes while multiple-exit HSMs
have the same expressiveness as pushdown processes.

An alphabetic labeled rewrite system [CM90] is a triple R = (V, Act, R) where V is an alphabet, Act is a
set of labels, and R C V x Act x V* is a finite set of rewrite rules. The prefiz rewriting relation of R is defined
by —r= {(uvw, a, vw)|{u, a,v) € R,w € V*}. The labeled transition graph T = (V*, Act,— ) is called the
prefiz transition graph of R. Since the leftmost derivation graph of any context-free grammar [HU79] is the
prefix transition graph of an alphabetic rewrite system [CM90], such prefix transition graphs are sometimes
called context-free processes. For purposes of comparison with HSMs, we define the ezpansion of R as the
(possibly infinite) Kripke structure K(R) defined as follows: a state of K(R) is a pair (a,w) € Act x V*
such that (v,a,w) €—x for some v € V*; a transition of K(R) is a pair ((a,w), (a',w')) such that (w,a’, w')
is in +; the label of state (a,w) is a. We can now prove the following theorem:

Theorem 2 For any alphabetic labeled rewrite system R, one can construct in linear time a single-exit HSM
M such that K(R) and K(M) are bisimilar.

Proof: All proofs are omitted in this extended abstract. M
The converse of the previous theorem also holds:

Theorem 3 For any multiple-entry single-exit HSM M, one can construct in linear time an alphabetic
labeled rewrite system R such that K(M) and K(R) are bisimilar.

We now establish a similar correspondence between multiple-exit HSMs and pushdown processes. A push-
down automaton {e.g., [HU79]) is a tuple A = (Q, Act,T',6,q0) where Q is a finite set of states, Act is an
alphabet called the input alphabet, I is a set of stack symbols, gy € @ is the initial state, and § is a mapping
from Q x Act x I to finite subsets of Q@ x I'*. The initial configuration of the system is (qq, €¢). The ezpansion
of A is the (possibly infinite) Kripke structure K (A4) defined by the expansion of the prefix rewriting relation
F5C (Q x T%) x Aet x (Q x T) itself defined by 5= {((g, Z7),a,(d, B4, B) € 6(¢q,a,Z),v € "} We
call such a Kripke structure a pushdown process. We have the following:

Theorem 4 For any pushdown automaton A, one can construct in linear time a multiple-exit HSM M such
that K(A) and K(M) are bisimilar.

Conversely, the following theorem also holds:

Theorem 5 For any multiple-entry multiple-exit HSM M, one can construct in linear time a pushdown
automaton A such that K(M) and K(A) are bisimilar.

Since it is known [CM90] that there exist pushdown processes that are not bisimilar to any context-free
processes, we obtain the following result:

Theorem 6 There exist multiple-ezit HSMs whose expansion is not bisimilar to the expansion of any single-
exit HSM.

4 Complexity of Verification Problems for Unrestricted HSMs

In this section, we discuss the complexity of five verification problems for unrestricted HSMs: the reachability
problem, the cycle-detection problem, and the model-checking problems for the logics LTL, CTL, and CTL".
Given an unrestricted HSM M and a set T' C |Ji; N; of distinguished nodes, the reachability problem is




| Class of HSM [ Reachability | Cycle Detection | LTL CTL | cTL* |

Restricted Single-exit Linear Linear Linear Linear
Restricted Multiple-exit Linear Linear Linear | PSPACE
Unrestricted Single-exit Linear Linear Linear Linear Quadratic
Unrestricted Multiple-exit Cubic Cubic Cubic | EXPTIME | EXPTIME

Figure 2: Known complexity results. Those for restricted HSMs are from [AY98]; those for unrestricted
HSMs follow from [BS92,Wal96, FWW97,BS97, BEM97,EHRS00] and the theorems of Section 3. (Complexity
bounds are given in terms of the size of the HSM.)

the problem of determining whether some state (v,w) of K(M), with v € T, is reachable from some initial
state (vo, €), with vy € I;. Given M and T, the cycle-detection problem is to determine whether there exists
some state (v, w)of K(M), with v € T, such that (i) (v,w) is reachable from some initial state (v, €), with
vy € Iy, and (ii) (v, w) is reachable from itself. We refer the reader to [Eme90] for precise definitions of the
model-checking problems for the logics LTL, CTL, and CTL".

Since restricted HSMs are special cases of unrestricted HSMs, it is worth reviewing some of the results
presented in [AY98] for the restricted case. Lines 2 and 3 of Figure 2 summarize the results of [AY98]
concerning the complexity of the verification problems considered here, except for CTL" model checking,
which was not discussed in [AY98]. Complexity bounds are given in terms of the size of the restricted HSM;
in the case of LTL and CTL model checking, this means the size of the formula is fixed. (It is also shown
in [AY98] that, for any fixed restricted HSM, CTL model checking is PSPACE-complete in the size of the
formula.)

Thanks to the correspondence theorems established in the previous section, we can obtain algorithms
and complexity bounds for the verification of unrestricted HSMs from previously existing algorithms and
bounds for the verification of context-free and pushdown processes.

Consider the case of single-exit unrestricted HSMs. By Theorem 3, model checking for single-exit HSMs
can be reduced to model checking for context-free processes. Since context-free processes can be viewed
as pushdown processes defined by pushdown automata with only one state [BS92, Wal96], and since LTL
model checking for one-state pushdown automata can be solved in time linear in the size of the pushdown
automaton [EHRS00, FBW97], LTL model checking for single-exit HSMs can be solved in time linear in the
size of the HSM. This also implies a linear-time algorithm for the reachability and cycle-detection problems.
A linear-time algorithm for CTL model checking for single-exit HSMs can be derived from the CTL model-
checking algorithm for context-free processes given in [BS92]. Finally, since the y-calculus model-checking
algorithm of [BS97] for context-free processes runs in quadratic time for formulae in the second level of
the p-calculus alternation hierarchy, which is known to contain CTL* [EL86], CTL* model checking for
single-exit HSMs can be solved in time quadratic in the size of the HSM.

Let us turn to the case of multiple-exit unrestricted HSMs. By Theorem 5, we know that model checking
for multiple-exit HSMs can be reduced to model checking for pushdown processes. Since LTL model checking
for pushdown automata can be solved in time cubic in the size of the pushdown automaton [FBW97,
EHRS00], LTL model checking for multiple-exit HSMs can be solved in time cubic in the size of the HSM.
Moreover, a cubic-time algorithm for the reachability and cycle-detection problems can easily be derived
from this LTL model-checking algorithm. Since CTL model checking for pushdown processes is EXPTIME-
hard [Wal96] and since CTL is contained in the alternation-free p-calculus for which the model-checking
problem can be solved with the exponential-time algorithm presented in [BEM97], we can deduce from
Theorems 4 and 5 that the CTL model-checking problem for multiple-exit HSMs is EXPTIME-complete in
the size of the HSM. Similarly, the exponential-time model-checking algorithm given in [BS97] for pushdown

|
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H Class of HSM ” Reachability | Cycle detection | LTL CTL CTL* H
Unrestricted Multiple-entry Single-exit Linear Linear Linear Linear Linear
Unrestricted Single-entry Multiple-exit Linear Linear Linear | EXPTIME | EXPTIME

Unrestricted Multiple-entry Multiple-exit Cubic Cubic Cubic | EXPTIME | EXPTIME

Figure 3: Improved complexity bounds for unrestricted HSMs. The improved bounds obtained in Sections 5
and 6 are highlighted in italic.

processes and the full p-calculus, which contains CTL*, and the EXPTIME-hardness result of [Wal96] imply
that the CTL* model-checking problem for multiple-exit HSMs is also EXPTIME-complete in the size of the
HSM. The bottom two lines of Figure 2 summarize the results obtained from the foregoing discussion.

In the remainder of this paper, we present two improvements to the results listed in Figure 2. First, in
Section 5, we present an LTL model-checking algorithm for unrestricted HSMs, and analyze the complexity
of this algorithm. We then show that LTL model checking for single-entry multiple-exit HSMs can be solved
with this algorithm in time linear in the size of the HSM, instead of cubic time. This implies that the
reachability and cycle-detection problems can also be solved in linear time for single-entry HSMs. Second, in
Section 6, we present a new CTL* algorithm for single-exit HSMs that runs in time linear in the size of the
HSM, instead of quadratic time. Improved complexity bounds that take into account these two new results
are listed in Figure 3.

5 LTL Model Checking

Following the automata-theoretic approach to model checking [VW86], a model-checking procedure for a
formula ¢ of linear-time temporal logic can be obtained by (1) building a finite-state Biichi automaton 4~
that accepts exactly all the infinite words satisfying the formula —¢, (2) creating a product automaton for
A4 and the system to be verified, and (3) checking if the language accepted by the product automaton is
empty. To apply this procedure in our context, we define the product of a Biichi automaton A-4 with an
HSM! M = {M,...,M,} to be a Biichi-constrained HSM M' = {Mj,...,M}}: M'is an HSM as defined
earlier, where the labeling function encodes a Biichi acceptance condition. In particular, the nodes in node
set N! of component structure M| are pairs (v,s), where v € N; and s is a state of A-. Each box in B! is
also a pair (b, s), where b € B; and s is a state of A4, and such that Y/((b,s)) = ¥;(b). Moreover, we have
C! = {((b, s), (e, ))|(b,s) € B! and (b,e) € C;} and R} = {((b, ), (z,5))|(b,s) € B} and (b,z) € R;}. Edges
in the edge sets F! are of the form (v,s) — (v',s'), such that there is an edge v — v' in E; and a transition
(s,€,5") in Ay, where £ € 2P agrees with the set of propositions true at v if v € N;, or else £ agrees with
the set of propositions true at z if v is a return-node (b,z) € R;.

We define the labeling function X' on nodes (v,s) of M’ such that X'((v,s)) equals true if s is an
accepting state of Ay, and equals false otherwise. Let T' denote the set of nodes of M' where X' equals
true. The LTL model-checking problem for an HSM M and a formula ¢ is thus reduced to checking whether
there exists an infinite sequence w of states in K(M') such that w passes through a node in 7' infinitely
often. (Note that we have K(M') = K(M) x A4, where x denotes the traditional definition of the product
of a Kripke structure with a Biichi automaton.)

The latter problem can in turn be reduced to a graph-theoretic problem expressed in terms of the
finite graph G(M’) whose nodes are the nodes of M’ and whose edges are the edges of M " plus the set
CallEdges(M') U ReturnEdges(M'), where CallEdges(M') = {((b,e),e) | e € I},b € B}, Y/(b) = i} and

]

ReturnEdges(M') = {(z,(b,z)) | z € O},b € B},Y/(b) = i}. This graph finitely and completely represents

L As usual in this context, we assume for technical convenience that every node in N; has an E; successor.




K (M"), while making explicit how behaviors of component structures M} can be combined with calls and
returns between component structures: every possible execution sequence in K (M "} is represented by a
path in G(M'). However, not all paths in G(M') represent execution paths of K(M'): a path in G(M")
corresponds to a path in K (M') if, when a call finishes, the path in G(M') returns to a return-node of the
invoking box. The following definitions characterize the paths of G(M') that correspond to executions of
(M.

Definition 7 Let each box in M’ be given a unique index in the range 1...|B|, where |B| is the total
number of boxes in M’. For each box b in M’, label the associated call-edges ((b,e),e) and return-edges
(z, (b, z)) with the symbols “(,” and “);”, respectively; label all other edges with “e”. A path in G(M') is
called a Matched -path (resp. UnbalLeft-path) iff the word formed by concatenating, in order, the symbols on
the path’s edges is in the language L(Matched) (resp. L(UnbalLeft)), defined as follows:

Matched — Matched Matched UnbalLeft — UnbalLeft (; Matched 1< j <|B|
| (; Matched ); 1<y <|B| | Matched
| e
| €

L(Matched) is a language of balanced-parenthesis strings (interspersed with strings of zero or more e’s). In
general, a Matched-path from u to v, where u and v are in the same component structure, represents a
sequence of transition steps from u to v during which the call stack may temporarily grow deeper—because
of calls—but may never be shallower than its original depth, before eventually returning to its original depth.
L(UnbalLeft) is a language of partially balanced parentheses (again, interspersed with strings of zero or more
e’s): every right parenthesis “);” is balanced by a preceding left parenthesis “(;”, but the converse need not
hold. An UnbalLeft-path from u to v represents a sequence of transition steps from u to v during which
the call stack may never be shallower than its original depth, but may end with the call stack deeper than
it was originally. The (additional) pending calls left on the stack by such a transition sequence correspond
to the unmatched (;’s in the path’s word. Every infinite path in K(M') either corresponds to a Matched-
path (a repeated computation pattern after which the stack is preserved) or a UnbalLeft-path (a repeated
computation pattern after which the stack grows) of G(M").

LTL model checking is carried out directly on the Biichi-constrained product-HSM by means of the two-
phase algorithm presented in Figures 4 and 5. The first phase consists of applying function ComputeSum-
maryEdges of Figure 4 to an HSM? M with Biichi acceptance condition T" to create a set of summary-edges.
Each summary-edge represents a, Matched-path between a call-node and a return-node, where the two nodes
are associated with the same box. More precisely, ComputeSummaryEdges creates the set Summarybdges,
which consists of pairs of the form ((b,e) — (b,z), B). Summary-edge ((b,e) — (b,z), B) indicates that
(i) there exists a Matched-path from e to z, and (ii) if Boolean value B is true, then there exists such a path
that passes through at least one node in 7.

ComputeSummaryEdges is a dynamic-programming algorithm. In addition to tabulating summary-edges,
ComputeSummaryEdges builds up the set PathEdges: a path-edge (e — v, B) in PathEdges indicates the
existence of a Matched-path from an entry-node e € I; of component structure M; to v, where v € N;UC;UR;.
As with summary-edges, the Boolean value B records whether the Matched-path summarized by the edge
traverses at least one node in 7. ComputeSummaryEdges starts by asserting that there is a zero-length
Matched-path from every entry-node to itself (lines [10]-[12]); the corresponding path-edges are inserted into
PathEdges, and also placed into the set WorkList. (The condition “e € T on line [11] sets the Boolean value
of the path-edge according to whether e itself is a T node.) Path-edges are always tabulated by invoking
procedure Propagate, which maintains PathEdges and WorkList, and hence only edges whose source is an

?Henceforth, we will drop prime symbols (') on the components of Biichi-constrained HSMs.




function ComputeSummaryEdges(M: HSM, T' C |J;_, N;) returns set of pairs (edge,Boolean)
declare
[1] PathEdges, SummaryEdges, WorkList: set of pairs (edge,Boolean)

procedure Propagate(e — v: edge, B: Boolean)

2 if there is no pair of the form (e — v, B') in PathEdges then
3 Insert (e — v, B) into PathEdges
4] Insert (e — v, B) into WorkList
5] else if (e — v, B') € PathEdges A B = true A B' = false then /* B subsumes B’ */
6] PathEdges = (PathEdges — {(e — v, B")}) U{(e — v, B)}
7] WorkList := (WorkList — {(e — v, B')}} U {(e — v, B)}
8 fi
) end
begin
9] PathEdges = 0; SummaryEdges = 0; WorkList := ()
10 for each entry-node e in some set [I;, for 1 <i < n do
11 Propagate(e — e,e € T')
12 od
13 while WorkList # 0 do
14 Select and remove a pair (e — v, B) from WorkList
15 switch v
16 case v = (b,e') € Ci: /* vis a call-node */
17 for each (b,z) such that ((b,¢') — (b,%), B') € SummaryEdges do
18 Propagate(e — (b,z), BV B')
19 od
20 end case
21 case v = x € O;: /* v is an exit-node */
22 for each box b in some component structure M; such that Y;(b) =1 do
23 if there is no pair of the form ((b,e) — (b,z), B') in SummaryEdges then
24 Insert ((b,e) — (b,z), B) into SummaryEdges
25 else if ((b,e) — (b, ), B') € SummaryEdges A B = true A B' = false then /* B subsumes B’ */
26 SummaryBdges = (SummaryBEdges — {((b,e) — (b,z), BY}) U {{(b,e) — (b,z),B)}
27 fi
28 for each ¢’ € I; such that (¢' — (b,e), B") € PathEdges do
29 Propagate(e’ — (b,z), BV B")
30 od
31 od
32 end case
33 default : /* v € (N; — O;) U Ry, i.e., v is other than a call-node or an exit-node */
34 for each v’ such that v — v’ € E; do
35 Propagate(e — v, BV (v' € T))
36 od
37 end case
38 end switch
39 od
40 return(SummaryFdges)
end

Figure 4: An algorithm for computing summary-edges for a Biichi-constrained HSM M with Biichi acceptance
condition T'.

entry node are included in PathEdges and in WorkList. Propagate also enforces the property that a path-edge
associated with the Boolean value false is “overwritten” if the same pair of endpoints is later discovered to
be associated with the Boolean value true (lines [1]-[8]). Function ComputeSummaryEdges then finds new
path-edges by repeatedly choosing an edge e — v from WorkList and extending the path that it represents
as appropriate, depending on the type of target node v (lines [13]-[15]).

If the target node v is a call-node (b, e’) in component structure M;, previously computed summary-edges
of the form (b,e') — (b, z) are used to create new path-edges in M; (lines [16]-[20]). When v is an exit-node
of component structure M;, ComputeSummaryEdges tabulates a summary-edge ((b,e) — (b,z), B) (with an




function ContainsTCycle(M: HSM, T C | Ji_, N:) returns a pair (set of nodes, set of edges)
begin
SummaryFdges = ComputeSummaryEdges(M, T')
G = (U, N;UCiUR;,|Jl_, B:|)CallEdges(M)|) SummaryEdges)
SCCSet = FindSCCs(G, 1) /* I is the set of roots of the depth-first search */
for each non-trivial SCC (Nodes, Edges) € SCCSet do
if (Nodes N'T # 0) or (3((b,e) — (b,z),B) € Edges : B = true) then
return(Nodes)
fi
od
return(0)
end

O 00 ~J Oy U s Q2 B b=t

Figure 5: An algorithm for detecting T-cycles.

appropriate value of B) between the corresponding call-nodes and return-nodes at all boxes b that can invoke
M; (lines [21]-[27])—possibly “overwriting” a previously tabulated summary-edge in cases where B is true;
each new summary-edge in a component structure M; may in turn induce new path-edges in M;: if the new
summary-edge is (b,e) — (b, z), then there is a path-edge ¢’ — (b, z) inserted for every entry-node e’ of M;
such that there is already a path-edge €' — (b,e) € PathEdges (lines [28]—[30]). Otherwise, by default, every
edge v — v from node v in M; is used to attempt to generate new path-edges that extend e — v to e — o'
(lines [33]-[37]).

The second phase of the model-checking algorithm consists of lines [2]-[8] of function ContainsTCycle
of Figure 5. The goal of ContainsTCycle is to determine whether any component structure M; contains
a node n such that (i) n is reachable from some entry-node of Iy along an UnbalLeft-path, and (ii) there
is a non-empty cyclic UnbalLeft-path (which might merely be a cyclic Matched-path) that starts at » and
contains a member of T

ContainsTCycle checks this condition by searching for (nontrivial) strongly connected components that
are reachable from an entry-node of I; (line [3]) in a directed graph G that consists of the nodes and
edges of all component structures of M, together with all M’s call-edges, plus the set of summary-edges
computed by the function ComputeSummaryEdges (line [2]). The presence of call-edges and summary-edges
is what allows information to be recovered from G about UnbalLeft-paths in M. The summary-edges permit
ContainsTCycle to avoid having to explore Matched-paths between call-nodes and return-nodes of the same
box, and, in particular, whether such nodes are connected by a Matched-path that contains a 7" node.

Graph G is searched for nontrivial strongly connected components that are reachable from the initial
node of M (line [3]). A strongly connected component (SCC) of a graph G is a subgraph (Nodes, Edges) of
G such that (1) for every pair of vertices v,w € Nodes, there is a path in G from v to w and a path in G from
w to v, and (2) Edges consists of the edges of G that connect the vertices in Nodes; an SCC is nontrivial
if Edges is nonempty. If there exists a nontrivial SCC (Nodes, Fdges) in G such that Nodes contains a
member of T or Edges contains a summary-edge with a Boolean value true, the algorithm returns the set of
nodes of this SCC (lines [4]~[8]), which represents an infinite computation of the Biichi-constrained HSM M
that passes through a T node infinitely often. Otherwise, the empty set @ is returned (line [9]), which means
that the language accepted by M is empty, and hence that the original HSM satisfies the LTL formula. The
correctness of the algorithm is established by the following theorem.

Theorem 8 Given an HSM M and an LTL formula ¢, K (M) satisfies ¢ iff the algorithm of Figure 5
applied to the Biichi-constrained HSM M x A_4 and its corresponding set T returns 0.

We now turn to the question of the runtime complexity of Figures 4 and 5. Function ComputeSumma-
ryEdges discovers the need for a new path-edge e — v’ by extending some previously discovered path-edge
e — v (taken from WorkList) with an edge v — v/, which can be either an E; edge (lines [34]-[36]) or a




summary-edge (lines [17)-[19] and [28]-[30]). Because node v' can have in-degree greater than one, a path-
edge e — o' can be “discovered” by function ComputeSummaryEdges more than once (as much as once
for each in-edge to v'), but it will only be inserted into PathEdges and WorkList at most twice, once when
associated with the Boolean value false, followed by once when associated with the Boolean value true, due
to the guards in lines [2] and [5] in procedure Propagate.

Thus, for any given component structure M;, the worst-case time complexity of the function Compute-
SummaryEdges is equal to the number |I;| of entry-nodes of M;, multiplied by the number of E; edges plus
summary-edges in M;. In the worst case, each box b € B; can have a summary-edge from every call-node
(b,e) to every return-node (b,z) in box b in M;. If C; denotes the number of call-nodes (b,e) in box b, and
R, denotes the number of return-nodes (b, z) in box b, the number of summary-edges in component structure
M; is bounded by O(Zep, Co Ry). Therefore, the worst-case time complexity of the function ComputeSum-
maryEdges that can be attributed to M; is bounded by O(|;| (|Ei| + Zep; Cp Ry)). Summing this expression
over all component structures, the overall worst-case time complexity of function ComputeSummaryEdges
is bounded by O(X%; |L| (|E;| + oep, CoRs)).

It is possible to make two improvements to ComputeSummaryEdges, which we now sketch. First, notice
that path-edges in each component structure could be “anchored” at exit-nodes rather than at entry-nodes,
and path-edges could be “grown” backwards rather than forwards (a technique also used in [HRS95]). The
cost of this first variant algorithm is thus bounded by O(Z?%; |O;| (|Ei| + Xeen;CsRp)). Second, path-
edges in component structures M; where |O;] < || could be anchored at exit-nodes (and path-edges
grown backwards), whereas in other component structures the path-edges could be anchored at entry-
nodes (and path-edges grown forwards). The cost of this second variant algorithm is thus bounded by
o2, min(|Li],10:]) (1B:| + Zeen:CoRy)) (1)

Since the size of the graph G computed by function ContainsTCycle is O(Z.; (|E:| + Zpep, Coly +
Yuen; Ch) (2) and since finding all strongly connected components in a directed graph can be carried out in
time linear in the size of this graph (e.g., see [AHU74]), we can conclude that the overall worst-case time
complexity of our algorithm is given by (1) + (2), i.e.,

O£, [min(|L],]0:|) (1Ei| + Sees; CoRy) + |Ei| + Loen, CoRy + Toep, Cil) (3)-

In the case of single-entry, single-exit, and single-entry single-exit HSMs, these bounds simplity to

Single-entry HSM | Single-exit HSM | Single-entry single-exit HSM
O(E| +|R]) O(E| +|c]) O(lE| +1B))

We can thus conclude that, for any fized LTL formula &, the LTL model-checking problem for an unre-
stricted HSM M that is single-entry or single-exit can be solved in time linear in the size of M.

Note that the Biichi-constrained HSM M’ = M x A, obtained by combining a single-entry (or single-
exit) HSM M with the Biichi automaton A4 for an LTL formula ¢ will typically be multiple-entry (resp.
multiple-exit). However, each component structure M] of M’ will have at most |S-4| entry-nodes (resp. exit-
nodes), where |S-4| is the number of states of the automaton A_4. Therefore, for a fixed LTL formula ¢, the
term min(|I!|,|O}]) for component structure M is bounded by the fixed constant |S-¢| in Expression (3).
Hence our claim that the LTL model-checking problem can be solved in linear-time when the HSM M is
single-entry (resp. single-exit) does hold.

6 CTL* Model Checking for Single-Exit HSMs

In this section, we present a CTL* model-checking algorithm for single-exit HSMs which runs in time linear in
the size of the HSM. The logic CTL* uses the temporal operators U (until), X (nexttime) and the existential
path quantifier E in addition to the traditional operators - (not) and V (or) of propositional logic. Two
types of CTL* formulas, path formulas and state formulas, are defined by mutual induction. Every atomic
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function DECOMP(¢: LTL formula ) returns Set of pairs (8 €LTL*, 6 €LTL)

[1] Dbegin

2 if (¢ = P) then return{{(P,true)})

3 if (¢ = ¢ V ¢2) then return(DECOMP{¢1) U DECOMP(¢2) )

(4] ff (¢ = —¢1) then return(UAgDECOMP(¢1)(/\(,6,5)6,4 =B, A_(ﬂ,&)eDECOMP(¢1)~A —=6))
5] if (¢ = Xp) then return( | ﬂ,a)eDECOMP(p)(XIB’ 8y U {(exit,p)})

[6] if (¢ = pUq) then return( w;éAgDECOMP(p)(G v(,@,&)eA B, /\(ﬂ»ﬁ)eA 6§ A pUq)

Y %0¢AQDECOMP(,;) U(a',él)eDECOMP(q)(V(ﬁ.a)eA BUB', &' A A(ﬂ,&)EA 6
en

Figure 6: The function DECOMP

proposition is a state formula as well as a path formula. If p,q are both state formulas (resp., both path
formulas) then pV ¢ and —p are also state formulas (resp., path formulas). If p and ¢ are path formulas, then
pUq and Xp are also path formulas while Ep is a state formula. We use the abbreviation Fp for trueUp
and Gp for =F-p. Any CTL* state formula can thus be viewed as a boolean combination of existential
formulas, where an existential formula is either an atomic proposition or a CTL* state formula of the form
E p(p(71) < Y1,---,0(1m) « ¥n) with p an LTL formula over propositions p(v1),...,p(7») that are each
substituted by the corresponding CTL* state formula ;. We refer the reader to [Eme90] for a detailed
presentation of the semantics of CTL".

A key technical challenge is that the truth value of a temporal-logic formula in any state (v, w) of K (M)
may not only depend on the node v but also on the stack content w. Fortunately, it is sufficient to consider
only finitely many equivalence classes of possible stack contents, each equivalence class being represented by
a contezt, as already observed in [BS92, BS97, AY98]. A context is a set of (here CTL*) formulas whose
truth value at the exit node of a machine M; determine the truth value of a formula ¢ at the root. The
notion of context makes it possible to reason compositionally about HSMs.

Our algorithm exploits this idea and reduces the evaluation of a path formula ¢ on a sequence w; w’ of
states, where w is finite while w’ is infinite, to the evaluation of some formulas # and 6 on the sequences w
and w' respectively. We introduce a special atomic proposition exit that holds only at the final state of a
finite sequence w, and denote by LTL" the set of LTL formulas that can be expressed using this extended
set of atomic propositions. The function DECOMP given in Figure 6 specifies how the evaluation of an LTL
formula ¢ can be decomposed as described above. (A conjunction over an empty set of formulas is defined
to have the value true.) For instance, w;w' = Xp can be decomposed either into w |= Xp and ' = true
(for the case where |w| > 1), or into w = ezit and w' |= p (for the case where |w| = 1).

Given a set F of CTL* state formulas, let exists(F') denote the set of existential formulas that are elements
or subformulas of elements of F'. A set F of existential CTL* formulas is closed if, for every v = Ep(p(y1) <
Y1y P(Yn) — Tn) € exists(F), for every 6 such that (8,§) EDECOMP(p), Eé6(p(v1) < 71, - - - ,2(Yn) — Tn)
is also in F. The closure cl(¢) of a CTL* formula ¢ is the smallest closed set containing exists({¢}). One
can show, using properties of DECOMP, that cl(¢) is always finite for any CTL* formula ¢. Let pd(¢) be
the maximal nesting of path quantifiers (E) in a CTL* formula ¢. Given a set F' of CTL* formulas, let
pd(F) =max,ecr(pd(v)). For ¢ with pd(¢) > j, let cIS/(¢) be the elements of cl(¢) with at most j nested
path quantifiers. Clearly, cIS7(¢) is a closed set and pd(clS(¢))=j.

_For any closed set F', an F-contezt is any assignment of truth values to all elements of . We say that a
Kripke structure K with a single initial state sq satisfies an F-contezt C, written K |= C, if, for all v € F,
(K, s0) = v iff C(v) = true. An F-context is consistent if it is satisfied by some structure. All the F-contexts
generated by our model-checking algorithm will be consistent by construction. We often identify a F-context
with the elements set to true by it. For an HSM M, a node v € M , an F-context C, and a formula v € F,
we say (M,v) satisfies v in context C, written (M,v) ¢ v, if, for all K/, K' |= C = (K(M); K'),v) F 7,
where K (M); K' is the Kripke structure obtained from K (M) by identifying the top-level exit node of K (M )
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function CONTEXTUALIZE(F: closed set of CTL*existential formulas, M: HSM over {y € F :pd(vy)< pd(F)},
C: F-CONTEXT) returns HSM over F.
* We assume M = {M,..., M.} with M; = (N;, B, I;, 0;, X3, Yi, Ci, Ri, Bi) */

1 begin

2 My =TopLevelMachine(M)

3] for each v € F with v = E p(p(y1) < 71,-- -, p(¥n) < ¥n) do /* Precompute all the LTL results needed */
4 N(v)=LTLALG(E p, M)

5 for each (B,6) eEDECOMP{p)

6 N(B)=LTLALG(E (BA F exit), M)
7 for each M; € M do

8 Nodes; (M;,v)= N;nN(v)

9 for each (3,6) EDECOMP(p)

10 Nodes, (M;,3)= NiﬂN(,B)

11 od

12 od

13] OLDCON = 0 /* Find the pairs (M;, c) reachable from (My,C) */
14] CON= {(My,C)}
15] while (CON # OLDCON) do

16 OLDCON =CON

17 for each (M;,c) €OLDCON do

18 for each v € F with v=Ep(p(71) « v1,-- ,P(n) < Tn)

19 Sat(Mi, ¢, v)=Nodes: (M:,7) UU 5 5)e DECOMP(+) c(Bs(o(r1)— - pm ) mya) ) =tre NOde2 (M)
20 for each b €Boxes(M;) do

21 Prop(b, (M, c))= (Y:(b),c') such that Vy € F : /() = true iff (b, z) €Sat(M;,c,7)

22 CON=OLDCON U{Prop(b, (M;,c))}

23 od

24 od

25 od

26] /* Now build the output HSM M~
27 M*={M;|l1<i<nandce CON}
28] Forall 1 <i < m, for all ¢ € CON,

29 Mie = (N; x {c}, B; x {e}, I x {},0; x {c}, Xi o, Y, Ci o, Ri x {c}, Ei x {¢}) where
30 C1{,,c = {((b1 C)s (e, C’))[(b7 e) € C; and (AJI\HC,) =P1‘0p(b, (]V[i’c))}

31 For all b € B;, Yi .((b,c)) = (Yi(b),c') with (My,c") =Prop(b, (M, c))

32 For all v € Ni, X; .((v,¢)) = {vy € Flv €Sat(Mi, c,v)}

33] TopLevelMachine(M™)=M; c
34} return(M™)
end

Figure 7: Construction of the context-dependent HSM

with the initial state of K.

Given a closed set F of existential formulas, an HSM M whose nodes are labeled with formulas in
{y € Flpd(y)< pd(F)}, and an F-context C, the function CONTEXTUALIZE presented in Figure 7
constructs a new HSM M* from multiple copies of M, each of which is indexed by an F-context c¢. The nodes
of M* in copy (M;,c) are labeled by formulas v € F' representing the truth value of v in the corresponding
node of M in the context ¢. It can be shown that any node (v,c) in M* is labeled with v € F iff (M,v) . 7

The function CONTEXTUALIZE uses a variant, denoted LTLALG, of the LTL model-checking algo-
rithm presented in the previous section. Given a formula of the form Ep(p(vi,)...,p(vn)) where p is an
LTL* formula over atomic propositions including p(v1,)...,p(7n), and an HSM M whose nodes are also
labeled with propositions in p(71,)...,2(yn), LTLALG(Ep, M) returns the set of nodes v of M such that
(v,€) = Ep. This is done exactly as described in the previous section, except for the three following modifi-
cations. First, LTLALG evaluates formulas of the form Ep instead of Ap. Second, we still need to define how
formulas of LTL* are evaluated on M: we say that a formula Ep where p is in LTL" is satisfied in a node v
of a machine M; if there is a path w from (v, €) that satisfies p, such that either w is infinite or w terminates
at (z,¢), where = is the exit node of M;. Third, we also extend the evaluation of formulas to include return
nodes: we say that the return node (b,z) of a box b satisfies a formula Ep iff the corresponding exit node »
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function CHECK(¢: existential CTL" formula, M: single-exit HSM, C : cl(¢)-CONTEXT) returns set of nodes in M,

1]  begin :
2 M® =M f
3 for{j = 0;j <pd(¢); j+-+}

4

5

M =CONTEXTUALIZE(cIS7 Y (), M7, C 1 ST (4)))

]
] return {v € TopLevelMachine(]\/Ipdw))[Label(v) includes ¢}
end

[
[
|
[
[

Figure 8: CTL* model-checking algorithm

satisfies Fp when b is the only element of the stack; in other words, we define ((b,z),¢€) = Ep iff (z,0) = Ep.
It is easy to extend the LTL model-checking algorithm of the previous section to meet these three additional
requirements.

By repeatedly invoking CONTEXTUALIZE with clS/(¢) with increasing values of j, 1 < j <pd(¢), i.e.,
larger and larger subsets of cl(¢), one can thus evaluate CTL* formulas in a bottom-up manner. This is what
is done in function CHECK presented in Figure 8. Since any CTL* formula ¢ is a boolean combination
of existential formulas ¢;, finding the nodes of the top-level machine M; of an HSM M satisfying ¢ can be
reduced to finding the nodes of M satisfying each ¢;. This is done by computing CHECK(¢;, M, Cy) where
Cy is the set of formulas v in cl(¢;) that evaluate to true at a single node labeled as the exit node of M; and
with a self-loop. Since Cy is consistent, all subcontexts derived from it during the execution of the algorithm
are also consistent. The correctness of the algorithm is established by the following theorem.

Theorem 9 Given a single-exit HSM M, a node v of M1, and an ezistential CTL* formula ¢;, (v, €) satisfies
¢; iff v is included in the set of nodes returned by CHECK (¢;, M, Cy).

An analysis of the overall complexity of CHECK reveals that the number of contexts over F' =cl(¢) and
the number of pairs of formulas returned by DECOMP on these formulas depends only on ¢. This implies é
that the size of each M7 is linear in M for any fixed ¢. Moreover, the number of formulas on which the
LTL algorithm is invoked in CONTEXTUALIZE is bounded independently of the size of M. Hence, the
run-time complexity of the function CONTEXTUALIZE and the size of the returned HSM M™ are linear
in the input HSM M for any fixed formula ¢ and closed set F. Therefore, the CTL* model-checking problem
for a single-exit HSM M can be solved in time linear in the size of M.

7 Concluding Remarks !

The LTL model-checking algorithm presented in Section 5 is closely related to algorithms for solving so-
called “Context-Free-Language” reachability problems [Yan90, Rep98], as well as to CFL-reachability-based
algorithms for such program-analysis problems as interprocedural slicing [HRSR94] and interprocedural
dataflow analysis [RHS95, HRS95]. In particular, the notions of path-edges and summary-edges, and the
dynamic-programming technique used to compute such edges in function ComputeSummaryEdges already

appeared in this earlier work, although the cycle-detection and LTL model-checking problems considered in
Section 5 have not been previously explored in the literature on CFL-reachability. The “transfer functions”
used in [BS92] are also similar to the “summary-edges” used here.

Thanks to Theorem 2, which provides a linear-time translation from context-free processes to single-exit
HSMs, the linear-time CTL* model-checking algorithm of Section 6 can also be used for CTL* model-
checking of context-free processes, and hence provides a new improved upper bound for this problem: CT'L*
model checking of context-free processes can now be solved in linear-time, instead of quadratic-time.

Our other results, however, cannot even be stated in the context of context-free or pushdown processes.
For example, the distinction between single-entry and multiple-entry HSMs has no obvious counterpart in
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the literature on pushdown automata, and the linear bounds for single-entry multiple-exit HSMs presented

here could not be derived from such previous work.
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