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Abstract

The data analysis process is interactive. Analysts are more interested in seeing a subset of
query answers quickly than in seeing all answers after a long waiting period. To effectively
support such interactive queries, we propose new join execution strategies that minimize the
time to produce the first N answers. Our techniques deliver early result tuples at a signif-
icantly higher rate than traditional pipelined join plans, as demonstrated by experiments.
This improvement is a result of better memory utilization, which is in turn made possible
by exploiting database statistics to prioritize tuples that are the largest contributors to the
join result. To incorporate these new techniques into a cost-based optimizer, we derive cost
formulas and suggest an optimization strategy that seeks to minimize the response time
for early query answers. We also show that system statistics can be exploited, surprisingly
enough, to significantly improve the total ezecution time of traditional blocking operators
such as Hybrid Hash join and hash-based group-by.

1 Introduction

It is widely recognized that the information analysis tools should provide quick response
times since they are used in an iterative manner. Analysis usually starts with broad queries
that are subsequently refined based on the initial answers. Database systems used as back-
ends of such tools must, therefore, be able to provide interactive response times as well.

Data analysts typically examine large databases in search of common trends. For exam-
ple, one might compare total sales on a monthly basis. Two common methods for detecting
large scale trends are: (1) Aggregate operations such as sum, count, and average, and (2)
Data visualization. While it is evident how aggregating data reduces information com-
plexity, data visualization does this as well, since large distributions can be presented in a
graph where data trends may be evident at a glance. Both of these methods can be made
interactive, as explained next.

Online aggregation techniques produce approximate aggregate answers with increasing
precision over time [8, 6]. The objective of an online aggregation system is not to minimize
the time to produce the final answer, but to minimize the time to achieve a small confidence
interval. Because the confidence interval is proportional to 1/+4/n, where n is the number
of processed tuples, the basic objective of online aggregation is equivalent to the objective
of minimizing time to produce a certain number of answers. On the other hand, database
visualization systems, such as DEVise [10], can be interactive by displaying tuples as soon
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as they are produced. This is, of course, under the assumption that answers to a query
are being produced as soon as the query is issued. It follows that, in order to be useful
for interactive visualization, database systems must provide an option of optimizing queries
for the first few (N) answers. Some commercial systems support such optimization, mostly
by choosing pipelined plans with Nested Loops joins, as discussed in the section on related
work (Section 6).

As described, optimizing for N answers is needed in online aggregation and data visu-
alization environments. Querying mode in which the emphasis is on producing a subset
of answers quickly is called partial or interactive querying. In most scenarios, optimizing
for N answers forces an optimizer to use a pipeline of Nested Loops joins. Unfortunately,
Nested Loops joins are inefficient, mostly due to the non-locality of page references. For
example, when memory is lacking, every index lookup in the Index Nested Loops (INL) join
can result in one I/O operation. Because some form of an INL join is required for fast de-
livery of the first block of answers, we exploit the available system statistics to significantly
improve memory utilization of the INL join.

We now consider the following motivating example.

Example 1.1 Consider a business intelligence query that explores the distribution of sale
prices by various drug manufacturers, based on point of sale data. (This example is moti-
vated by real world data that we use to evaluate our technique.) The sales table has price
and productld attributes, among several others. The product table has productld (primary
key with an index) and manufacturer attributes, among other fields. Scaled down examples
of sales and product tables are shown in Figures 1 and 2, respectively. Notice that the most
common productld in the sales table is 1.
Suppose we want to execute the query that asks for (price, manufacturer) pairs:

select price, manufacturer
from sales s, products p where s.productld = p.productld

The system needs to perform an equi-join on product/d between Sales and Products tables.
A blocking join operator, such as hash join, is not suitable in an interactive environment due
to a large initial “think” time. Index Nested Loops join, with Products as the inner table,
is a better option since it will immediately start producing answers. However, assume that
just two pages of memory are available for the join, one for the inner table and one for the
outer table. (We use such small numbers since a more realistic scenario would be harder to



follow.) Suppose the number of tuples per page is two for both relations, and that a user
wants to see five answer tuples as soon as possible. We now calculate the total number of
I/Os needed to produce five answers using INL join. There are five I/Os on Products table,
one for each index lookup needed to match the first five tuples in Sales. In addition, there
are three I/Os on Sales, as we need to read three pages sequentially before we reach the
fifth tuple (two tuples per page). This brings the total to eight I/Os before the five answer
tuples are produced.

To produce the five answer tuples quicker, we propose the following strategy. Identify one
page from Products (since that is the memory available) that is most frequently referenced
by Sales. This is clearly the first page of Products (with tuples 1 and 2), since it has five
references, compared with three references to the second page. Scan the sales table, and at
the same time produce answers for tuples that have a match on this page. In this case we
have four I/Os on Sales (since the whole outer must be scanned to produce five answers)
and one I/O on Products, a total of five I/Os. By better utilizing the available memory
we were able to reduce the number of I/Os from eight to five. Savings are more impressive
when more realistic numbers are used, as illustrated in the experimental section (Section 3).
0

The main contribution of the work described in this paper is to propose and demonstrate
effectiveness of techniques that use tuple frequencies for better memory utilization. Tuple
frequencies are readily available in current database systems as a part of system statistics,
usually in forms of histograms [14].

Histograms and other statistical summaries, such as random samples and wavelets, have
been proposed and used in database systems primarily for query optimization. To the best
of our knowledge, this is the first time that the use of distribution summaries is shown to
significantly improve the performance of query execution.

The rest of the paper is organized as follows: Section 2 describes techniques for perfor-
mance improvements of partial query evaluation. Experimental evaluation follows in Section
3. We then propose an optimization framework for partial query evaluation in Section 4,
which takes into account properties of the new operator evaluation methods. Even though
our work was primarily motivated by inefficiencies of partial query evaluation, we found that
database statistics can be used to speed up the computation of all query answers also, as
discussed in Section 5. Finally, we discuss related work, outline future work and conclude.

2 Statistics Guided Partial Query Evaluation

In this section, we focus on partial query evaluation for which blocking relational operators
are not applicable, as explained in the introductory section (1). Our discussion is focused
on common foreign key joins, but the results are easily applicable to general equi-joins as
well. We first describe how statistical information helps minimize the I/O cost to produce
the first N answers in single foreign key joins, and then extend the ideas to address multiple
foreign key joins.

2.1 Single Foreign Key Joins

Our discussion in this section is applicable to INL and Simple Nested Loops joins. As
illustrated in Example 1.1, Nested Loops joins have poor locality of memory references on
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Figure 3: Comparison of traditional and Filtered Index Nested Loops joins.

the inner relation when the available memory is not sufficient. In that example, we illustrated
a strategy to improve memory utilization. We now summarize our observations. We propose
to use a multi-phase join algorithm. The first join phase consists of two operations:

1. We identify the set of pages of the inner relation that has the most references in the
outer relation. Tuples that occupy that set of pages can be defined by a relational
selection on the join column which we call the join filter. (See Section 2.1.1.)

2. We sequentially scan the outer relation; if a tuple satisfles the join filter, an index
lookup is performed and an answer is produced, otherwise the tuple is skipped.

If more answer tuples are desired, the next join phase is performed, which differs from the
previous only in the join filter; it now includes the set of pages that are most frequently
referenced and do not satisfy any previous filter.

We call such a join operation Filtered Index Nested Loops join. Note that our algorithm
partitions the inner relation into disjoint blocks, and joins each block with the entire outer
relation. A conceptual comparison between the traditional INL join and the filtered version
is depicted in Figure 3. We note that index lookups of a Filtered INL join are limited
to the set of join values satisfying the join filter. As a consequence, the set of referenced
pages is limited. Because some outer tuples are rejected, i.e., no index lookup is attempted,
additional scans over the outer relation may be required. On the other hand, a traditional
INL join requires only one scan of the outer relation, and it repeatedly references all the
pages of the inner relation. The major difference between these two algorithms is the
usage of database statistics. While a traditional INL algorithm, makes no use of database
statistics, a Filtered INL join uses frequency information to define the memory content in
order to maximize the number of early answers. We reiterate that none of the traditional join



operators take advantage of readily available database statistics. Most of these operators
could be enhanced by filtering. Perhaps the cleanest example would be the Filtered Block
Nested Loops join. This algorithm is identical to the Block Nested Loops join except that a
block would always contain the (next) most frequently referenced pages in the outer relation,
not just a contiguous set of pages on disk. A disadvantage of Filtered Block Nested Loops
join is that it requires a full scan of the outer relation before any answers are produced,
which is why we focus on the INL join instead.

The key idea in join filtering is to construct a filter such that it contains the current set
of the most frequently referenced pages. We discuss how to do this next.

2.1.1 Constructing a Join Filter for Index Nested Loops Join

As indicated before, a join filter ideally contains a set of the most referenced inner pages
that remain to be joined. Therefore, to create an ideal join filter one would need to order
pages of the inner relation by the number of references. In a realistic scenario, it would be
too expensive to construct an exact join filter, so we consider the following approximations:

1. Maintain (small) histograms [14] to represent approximate reference counts for each
page.

2. Use existing histograms on tuple values, together with some information about the
tuple layout on pages in order to infer the number of page references. This solution
is probably less efficient that the first alternative, but, it does not require creation of
special purpose histograms.

In our experiments, we used the second alternative, as outlined next. Suppose that a
filter can have M pages and that the index used is clustered on the join column. We use
a histogram on the outer’s join column. To create a join filter that includes M pages we
proceed as follows:

1. Find the histogram bucket with the (next) largest height.
2. Include the bucket bounds into the filter, extended up to the nearest page boundaries.

We repeat these steps until the size of the join filter is M pages. The bucket extension in
step 2 makes the filter more efficient by including the tuples that share the same page. We
note that filter construction is fast since it based on histograms, which are small in size. An
example of a histogram and a corresponding join filter is shown in Figure 4.

To create a filter for an unclustered relation, one would need to consult the histogram
and an unclustered index to see which pages are frequently referenced. Alternatively, one
could only consult the histogram and assume that each tuple is on a separate page.

In general, a join filter can be expressed as a disjunct of range selections. In practice,
since histograms assume uniform frequency within a bucket, many entire buckets will be
included in a filter. Therefore, the size of a filter will be about the same size as a histogram.
Since histograms are typically small, testing for filter satisfiability in step 2 of a Filtered INL
join phase is quick. Our techniques can be easily adapted to any other statistical summary.
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Figure 4: A histogram and the corresponding filter.

2.1.2 1I/0O Cost For Filtered Index Nested Loops Join

In this subsection we derive an analytical expression for the I/O cost for the first phase of
a Filtered INL join, and then generalize it to include all phases. Since filtered joins will be
used when optimizing for N answers, the cost formula must be a function of N, the target
number of answers. The input parameters that determine the cost are:

M, the number of memory pages allocated to the inner relation, which is equal to the size
of the filter.

h(M), the selectivity of the current join filter on the outer relation, it depends on the size
of the filter and on the join column distribution.

|S|, the number of pages in the outer relation.
{S}, the number of tuples in the outer relation.

We first estimate the number of I/Os on the inner relation in the first phase of a join.
This number is at most M, however it depends on N. Initially, almost all index lookups will
result in I/O operations. Later on, there will be almost no I/0, as all the pages satisfying
the join filter will be in memory. Denote the number of I/Os on the inner relation by Pg.
For each output tuple produced, the probability of an I/O on the inner relation is join value
dependent. Pages containing more frequent join values are more likely to be in memory than
other pages, assuming the LRU replacement policy. At this point we use the simplifying
assumption that any tuple within the filter has the same frequency of occurrence in the
outer relation. This assumption is a reasonable approximation, as experimentally verified
in Section 3.6 , and it makes derivation of an analytical expression possible. Under this
assumption, the likelihood of a page fault on the inner relation when an output tuple is
produced is: !\LX—}DE. That is, there are M — Pgr unoccupied slots in memory of size M, and
referring to any of them will result in a page fault. This can be expressed as a differential
equation:

dPr M — Pg
dN M
It can be easily checked that the solution for this equation is:

Pp=M(1—e )

As discussed before, for a small N, Pgr ~ N, while for large N, Pg ~ M.



Next, we estimate the number of I/Os for the outer relation. To produce N output tuples
we need to read N/h(M) outer tuples (as only the ones satisfying the filter are passed on).
The number of 1/Os per each outer tuple is |S|/{S}. It follows that the number of I/O
operations on the outer relation, Pg, is:

N 15|

"= R 18] W

This brings the total number of I/Os in the first phase (P = Pr + Ps) to:

N N 18]

= — M PRSP M. BN
P=M(1-e¢ )+h(M)V{S} (2)
The maximum N produced in the first phase of a filtered join is {S}h(M). If a larger N
is needed the second join phase must be performed, which is identical to the first phase,
only with a different join filter. The total cost is the sum of the costs of all the join phases.
In practice, the number of phases will be small, because a blocking operator is likely to be

more efficient than a multi phase Filtered INL join.

2.1.3 Optimal Join Filter

Our underlying objective is to minimize the cost to produce N answers by a join operator.
We approximate the cost measure by the number of 1/O operations; the inclusion of CPU
cost would be straightforward. The question we consider is this: What join filter should be
used to minimize the number of 1/O operations, given that all other parameters are fixed?
It is easy to see that Eq. (2) is minimized when h(M) is maximized. Finally, we clearly
see the reason for selecting the most frequent join values in the outer relation—such a filter
minimizes the cost of a filtered join, under the given memory constraints.

2.1.4 Optimal Memory for a Filtered Join

In a typical database system, memory is a precious resource and it is therefore important to
know what the maximum memory requirement of a join operation is. To find the optimal
memory needed by a filtered join, we need to minimize Eq. (2) with respect to M. To find
the minimum of the cost function (Eq. (2)) we can use a standard function minimization
algorithm such as Golden Section Search [20]. Of course, the minimum memory required
by a Filtered INL join is just one page (M = 1).

2.2 Multiple Foreign Key Joins

If individual joins comprising the execution pipeline are independent from each other, then
maximizing the tuple rate for each join will maximize the output rate of the query. However,
if correlations exist between join columns in different joins, then creating filters to maximize
each individual join rate may not maximize the overall query rate , as illustrated by the
following example.

Example 2.1 Consider a three way foreign key join of tables: A with two columns A; and
A,, shown in Figure 5, B with one column, shown in Figure 6, and C with one column,
shown in Figure 7. Join conditions are A; = B; and Ay = C1. Notice that there is a large
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correlation between columns A; and As; high values of A; are associated with high values
of As. Suppose that a join filter may have only one tuple. Considered independently, the
join filter on table B would consist of value 1 (the most frequent A; value) and the join filter
on table C would consist of value 5 (the most frequent Ay value). However, the pair (1, 5)
does not even exist in relation A, and therefore these two filters combined would produce
no results! To create a good filter, one should filter pairs of B and C values that are the
most frequent in relation A. In this case it is the pair (2, 4). O

If multiple join attributes are correlated, a multidimensional join filter must be produced for
such a group of attributes. A multidimensional join filter is comprised of tuples that have
the most frequent combinations of correlated attributes. To capture attribute dependences,
we need multidimensional histograms [15]. The technique for constructing and using multi-
dimensional filters is the same as the one for single attribute filters. Hence we do not discuss
the correlated join case further in this paper.

3 Experimental Evaluation of Partial Join Execution

3.1 Testing Environment

We ran our experiments on a NT 4.0 workstation with 128 MB of memory and a 400
MHz Intel Pentium II processor. To measure the impact of filtered joins in an unbiased
environment we decided to use a commercial database system rather than a simulation
or an experimental system. We conducted our experiments on an IBM’s DB2 Universal
Database version 6.1, configured with 4KB pages. To eliminate buffering by the NT file
system, we set the DB2 registry variable NTNOCACHE = yes. This way we could control
the amount of memory used by the system by altering the size of the DB2 buffer pool. The
amount of memory available to all algorithms was the same.

3.2 Join Methods Compared

1: Index Nested Loops (INL) join. A clustered index was built on the foreign key table.
To make the DB2 select an INL join we used the OPTIMIZE FOR N ROWS clause. We
used N = 10, but any small number would have the desired effect.

2: Filtered Index Nested Loops join. Since we could not modify the join processing
of the DB2, we achieved the effect of filtering by rewriting the SQL query with additional



filter predicates. Actual values of the filter predicates were obtained from an externally
maintained histogram. For example, to simulate the effect of a filter with the most frequent
values in the interval from 10 to 20, we can rewrite the join query from Example 1.1 as
follows:

select price, manufacturer from sales s, products p
where s.productld = p.productld and s.productld between 10 and 20

Before loading the data into the database, we built a compressed histogram [14], which is
an enhanced version of the widely-used equi-depth histogram. The size of a histogram was
fixed to a typical value of 500 Bytes. (Using a larger histogram, or higher quality algorithms,
such as V-optimal [14] or Wavelets [16], would produce even better filters.)

3: Sort merge join. This represents the best DB2 timing when the query is optimized for
all answers.

3.3 Data Sets
3.3.1 Real Data Set

We used point of sale data of a Japanese drugstore chain Pharma [7], consisting of two tables:
Sales and Products (introduced in Example 1.1). To execute the query from Example 1.1,
the system needs to perform an equi-join on productld between Sales and Products. The
cardinality of Products and Sales are 27,215 and 893,402, while the tuple sizes are 96 and
110 bytes respectively. Since it was not possible to determine the number of inner tuples
per page (the DB2 manual provides only an approximate formula), our simple policy is that
if a tuple is selected to be in a filter, at least 10 neighboring tuples are selected as well. This
reflects an assumption that 10 neighbors of a particular tuple are likely to be on the same
page, which is reasonable since the number of inner tuples per page is 40. Performance
results are not very sensitive to this number, as long as it is much smaller than the number
of tuples per page, and the results are good enough to illustrate the gains of filtering.

3.3.2 Synthetic Data Set

Conceptually, in terms of tables and schemas, the synthetic data set is the same as the
real data set. However, it differs in the distribution of the join values, which were varied
throughout the experiment.

Join attribute values form clusters, which are positioned according to Zipf distribution
[22]. Zipf distribution is known to accurately model skew in real-life data. Each cluster
is bell shaped, with the same standard deviation (width) but with a variable number of
points (size). The number of points within a cluster was also distributed according to a
Zipf distribution. = The summary of parameters, along with the default values used in
experiments, are shown in Table 1.

The cardinality of the outer and inner relations are 1,000,000 and 100,000 respectively,
while the tuple sizes are 100 bytes in both relations.




] Parameter | Values I

Number of clusters 500
Skew in the cluster sizes 1

Skew in the cluster positions 0
Standard deviation within a cluster | 100
Total distribution width 100,000

Table 1: Synthetic data parameters with values.

3.4 Experimental Results with Real Data Set
3.4.1 Time Dependency

We measured times of answer tuples arrivals for the query from Example 1.1. Results,
when the buffer size is 250 pages, are shown in Figure 8. The horizontal line represents the
Sort Merge join, characterized by a pause of about 80 seconds before the first answer tuple
is delivered. This is unacceptable for an interactive user who may prefer to obtain some
answers immediately. As shown by the dashed line, the INL join achieves this. However, in
case users are interested in seeing any significant fraction of the complete result set (more
than 4% in this case) they will have to wait for a much longer time than that required for
the Sort Merge join. The Filtered INL join has desirable characteristics of both previous
methods: quick response time and efficient delivery of a larger number of answers. We note
that some items in the sales data are sold much more frequently than others. Filtered join
takes advantage of this fact by retaining such items in memory, which results in a large
performance advantage.

3.4.2 Memory Dependency

We vary the number of memory pages allocated to the join and show the time needed to
produce 6% of the answer set in Figure 9. This figure demonstrates that histogram filtering
is effective over a large range of memory sizes (up to the full size of inner relation). However,
the advantage over traditional INL join is less pronounced for higher memory sizes. This is
expected since the INL join causes much less I/Os when given enough memory.

3.5 Experimental Results with Synthetic Data Sets
3.5.1 Time Dependency

Early tuple delivery rate is shown in Figure 10 and it looks much like the corresponding
figure for the drugstore data (Figure 8). Filtered INL join runs significantly faster than the
traditional version, since the most frequently referenced tuples are found in the buffer pool.
The Sort Merge join blocks for about 120 seconds but delivers answers rapidly from there
on. Due to excessive thrashing, the execution time for an INL join exceeds that of the Sort
Merge join after 1% of the answer tuples are returned.

10
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3.5.2 Skew Dependency

In Figure 11 we show the time needed to produce 5% of the answers for different skews of the
cluster sizes in the outer relation. The differences between algorithms are less pronounced
for the higher skew because the LRU replacement policy of the buffer manager effectively
keeps the most frequent values in the cache, the same task that is achieved by the join filter.

3.5.3 Memory Dependency

In Figure 12 we show the time needed to produce 5% of the answers for different buffer sizes.
This figure demonstrates that differences between filtered and traditional joins are more
pronounced when less memory is available. The same trend was observed and explained in
the real data set experiment (Section 3.4). It is interesting to notice that the Filtered INL
join may not always be faster when given more memory. This emphasizes the importance
of finding the optimal memory by minimizing Eq. 2 as described in Section 2.1.4.

3.6 Simulation of Filtered Join I/O Operations

In this section we verify the plausibility of an approximation used in Section 2.1.2. We
compare the total number of I/Os predicted by formula (2) versus the simulation results of
the synthetic data set described in Section 3.3.2. The results, presented in Figure 13, show
that the two curves are close enough; the discrepancy is mostly confined to the early stages
of the join while the memory is being loaded with the inner tuples that satisfy the join filter.
The total number of I/Os is dominated by the outer relation, whose contribution is linear
in the number of answers produced. (See Eq. 2). Notice that the number of I/Os on the
_ inner relation is bounded by M, the memory size, so once all the inner tuples are brought in
memory (1,000 pages in this case), the cost curve becomes a straight line, as evident from
Figure 13.

12
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4 Optimizing Queries For N Answers

As we have seen from the experimental section (Section 3), filtered joins are faster than
standard join methods when a small fraction of result tuples are required. Consequently, an
optimizer should create plans involving Filtered Index Nested Loops joins when optimizing
for N answers. Current query optimizers, however, optimize for all answers, so we describe
how a standard, dynamic programming based, optimizer [17] can be modified to optimize
queries for N answers. We note that the best plan for N answers must be identical to the
best plan for all answers when N is very large. We review some basic concepts in query
optimization next.

A query can be represented as a tree of relational operators such as select, project, and
join. Such relational operators are called logical operators. Physical operators are specific
algorithms to evaluate logical operators, such as Hash join, Index scan, etc. A plan is a tree
of physical operators. There are many plans that are logically equivalent but differ in cost.
A traditional optimizer takes a tree of logical operators and generates a logically equivalent
plan with the minimum cost to produce all answers.

In this section we focus on join optimization, since it is the most difficult aspect of query
optimization. A standard optimizer builds join plans bottom up, starting from one relation
subplans. It then uses already generated subplans as building blocks for larger plans. If two
logically equivalent plans are generated, the more expensive one is eliminated,i.e., it is not
considered as a part of any larger plan.

As indicated before, our task is to modify an optimizer to generate plans with minimum
cost for obtaining N answers. We propose to maintain plans optimized for partial answers, in
addition to traditional plans optimized for all answers. To distinguish between two types of
plans, we mark each plan as either (1) optimized for all answers or (2) optimized for partial
answers. For plans optimized for partial answers, we introduce a new physical property
called optimization cardinality; it is the number of answers that a plan is optimized for. The
optimization cardinality Nx for a plan X must be such that, on average, N query answers
would be produced if the cardinality of X was Nx. Let T be the cardinality of the query
result, and Tx be the cardinality of the plan X. Assuming that the tuples contributing to
the final answers are uniformly spread throughout table X, we have %3— = l;%f-, from which

13




it follows that:

T
Ny = N»i{i. (3)

Note that the optimization cardinality may be any number between 1 and the total plan
cardinality.

In addition to traditional optimization rules, the following rules are needed for partial
query optimization:

1. We need to create all possible single relation plans and mark them as optimized for
partial answers. The optimization cardinality of these plans is given by (3). To
evaluate the cost of a single relation plan for partial answers, we count only the work
needed to produce the number of answers given by (3). For example, the cost of a
File scan plan with optimization cardinality 1 is just 1 I/0O.

2. To build a larger plan using a blocking join operator, both input plans must be opti-
mized for all answers. This is because a blocking operator, by definition, requires both
of its entire inputs before any answer tuple can be produced. We mark the resulting
plan as optimized for all answers. !

3. When building larger plans using Nested Loops joins, the inner plan must be optimized
for all answers, since the entire inner relation is required before any answer tuple may
be produced. If the outer input is marked as optimized for all answers, we mark
the resulting plan the same. If the outer input is marked as optimized for partial
answers, we proceed as follows: (1) Evaluate the cost of the join as if the cardinality
of the outer subplan is equal to its optimization cardinality, (2) determine the resulting
optimization cardinality using Eq. (3), and (3) mark the resulting plan as optimized
for partial answers.

4. If a plan optimized for a partial number of answers is more expensive than a logically
equivalent plan optimized for all answers, it may be eliminated. This is due to the fact
that the cost of a plan may only decrease with the smaller optimization cardinality.
Note that a plan optimized for all answers may not be eliminated, even if it is more
expensive, since more efficient blocking algorithms are applicable to such plans.

To illustrate the search process when optimizing for N answers we present the following
example.

Example 4.1 Consider a three way join between tables A, B, and C, as described in
Example 2.1. Suppose that a plan optimized for 10 answers is needed. Single table subplans
considered by an optimizer are A, B, and C. (We use table names to denote subplans, at the
risk of confusing tables and plans, however the meaning is always clear from the context.)
Because we need to optimize for 10 final answers, an optimizer will also consider plans A’,
B’, and C’ where the prime () stands for a subplan optimized for partial answers. Since
both of our joins are foreign key joins, the optimization cardinality for all single relation
plans is 10, the final optimization cardinality (according to Eq. (3)). Two table subplans
considered by an optimizer are AB and AC (since we don’t consider cross products) and

"We could also cost a blocking join for a partial number of answers but the savings will be small since
most of the execution time is the “think” time.
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the corresponding (AB)’ and (AC)’ plans. The best plan for group AB is the cheaper of
AnyJoin(A, B) and AnyJoin(B, A). Possible solutions for (AB)’ is NestedLoops(A’, B) and
NestedLoops(B’, A), according to Rule 3. If (AB)’ is more expensive than AB, it is pruned
(not considered as a part of any larger plan), according to Rule 4. Analogous statements are
true for plans AC and (AC)’. The final plans are ABC and (ABC)’. The best plan for the
group ABC is the cheaper of AnyJoin(AB, C) and AnyJoin(AC, B), since we consider only
the left-deep trees. The best plan for group (ABC)’ is the cheaper of NestedLoops((AB)’,
C) and NestedLoops((AC)’, B). The final plan is the cheaper of ABC and (ABC)’. O

5 Using Filters to Reduce Total Execution Time

In this section, we demonstrate that using statistics may also reduce the total execution
time of blocking operators. We achieve significant cost reduction in Hybrid Hash join and
group-by operators when the distribution of the join column is skewed.

5.1 Hybrid Hash Join

Hybrid Hash join algorithm (see [18] for an overview) works by partitioning inner and outer
relations. In the first phase of the algorithm, the inner (smaller) table is partitioned into a
number of memory sized partitions, which are written to temporary files on disk, and one
memory resident partition. During the second phase, the outer table is hashed and tuples
that hash into the memory resident partition are immediately probed and joined, while
the other tuples are written to their partitions on disk. In the third phase, the matching
disk resident partitions are joined. Since the outer tuples that hash into disk resident
partitions have to be written to disk and read back in, the more tuples that hash into the
memory resident partition, the smaller the number of I/O operations. To reduce the I/0,
the algorithm uses all available memory in the first phase to make the memory resident
partition as large as possible.

Consider a foreign key join where the foreign key table is chosen as inner. To save on
1/0 in the outer table, the number of outer table tuples that hash into the memory resident
partition should be maximized. This means that the candidate tuples for the memory
resident partition should have the most matches in the outer table. Therefore, we suggest
using database statistics to find the most frequent values of the join column in the outer
table and storing these values in the memory resident partition. We illustrate our strategy
in Figure 14. The figure shows traditional Hybrid Hash join partitioning, which is based
on hash values and therefore uniform, and Filtered Hybrid Hash join partitioning, which is
characterized by a large first partition of the outer table, since it contains the most frequent
join values. Because the first partition of the outer table is not written to disk, the larger
it is, the smaller the number of I/O operations. We demonstrate gains of this strategy by
analyzing the cost formula for Hybrid Hash join.

Let R denote the build relation and S the probe relation in a Hybrid Hash join algorithm
and let |R| and |S| denote the respective number of pages while {R} and {S} denote the
respective number of tuples. Furthermore, let MIPS denote the CPU speed of the machine,
T7,0 denote the average I/0 service time, v denote the selectivity of the join, while fg and
fs denote fractions of the respective relations that belong to the memory resident partition.
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Figure 14: Comparison of traditional vs. Filtered Hybrid Hash join.

] Parameter ] Value

[ Parameter | Value I QIOPS ég ()n;\?[H
|R] 25,000 7 —— z
{R} 100,000 move

Ijoin 100
|S] 25,000
{ S} 106 Ih,ash 100
Isearch 1000
Table 2: Data parameters. I10 3000

Table 3: Cost model parameters.

Then the total cost of the Hybrid Hash is [21]:

/O Cost = Tijol(3 - 2fr)|RI+ (3 ~2fs)IS]], (4)

s+ Tol(3 ~ 2fm) R + (3 - 245)|S]) + )
Imove[(3 - sz){R} + (3 - sz){SH +

ToinARHS} + Trasnl(2 — FR){R) + (2~ fs)(S)] +

Fearen (R} + (S,

CPU Cost =

where various I's stand for the instruction path lengths for corresponding operations. The
value of fr is M/|R|, where M is memory allocated to the join. Obviously, this formula is
a decreasing function of fs, which is maximized when the memory resident partition of R
contains join attribute values that are the most frequent in S.

For an experimental evaluation of these ideas we used synthetic data generated as de-
scribed in experimental section (Section 3) with data parameters shown in Table 2 and cost
parameters shown in Table 3. The memory given to the join operator is 40 MB. In general,
the smaller the memory the larger the impact of filtering. Results of experiments are shown
in Figure 15. As expected, using a filter to define the content of the memory resident
partition is especially beneficial for high skew data, where the time saving is about 25% for
this typical data set. This is because a large percentage of the outer relation is matched to
the memory resident partition.
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Figure 17: Filtered hash-based group-by operator aggregates the largest groups in memory.

5.2 Hash-Based Group-By Operator

A hash-based implementation of a group-by operator is analogous to the Hybrid Hash
algorithm. Results for a certain number of groups are aggregated in memory while the
tuples from other groups are hashed to appropriate partitions that are then grouped in
memory during the second pass. We propose to determine the largest groups from database
statistics and make sure that such groups are aggregated in memory. This strategy, which
is illustrated in Figure 17, minimizes the number of tuples passed to disk. The exact cost
formula for group-by operator is a simplified version of Equations (4), and (5) with no R and
Ljoin terms. The experimental results are shown in Figure 16. It can be seen that relative
benefits of filtering are even larger here than in a Hybrid Hash join since there are no filter
independent R terms. We note that our technique can reduce the execution time in half for
this typical data set. Memory allocated to the group-by operator is 10 MB.

6 Related Work

Optimizing queries for interactive response time is a topic of considerable interest for the
database community. To achieve interactive response time for select-project-join queries,
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some commercial systems have extended SQL with a clause that instructs an optimizer to
minimize the time to produce the first N answers. Examples are IBM’s DB2 Universal
Database OPTIMIZE FOR N ROWS clause [2], and Microsoft SQL Server 7.0 [3] OPTION
FAST N clause. When this clause is present, the optimizer typically chooses a pipelined plan,
provided that the value of N is small enough. There is no publicly available documentation
on how the feature was implemented, however, we obtained some high level information
from [11] and [5] that indicates certain similarities with the approach outlined in Section 4.

Optimization for the first answers is considered in [9], however, the main contribution
was to reduce wasted effort in join pipelining. Authors observed that a pipeline of reductive
join operators could be more efficient if the next tuple was always drawn from the first join
operator whose tuple failed to match. We, on the other hand, consider foreign key (non-
reductive) joins for which this work does not apply. We are also primarily concerned with a
single join not a pipeline of joins, even though our work applies to a series of joins as well.

Ideas about getting certain number of query answers quickly were also presented in
[19]. The emphasis of this paper is on heuristic query rewriting and decomposition into
subqueries that can be evaluated on demand. The decomposition strategy is based on
system configuration and past user behavior.

Online aggregation framework [8, 6] is closely related to our work since the objective is
to achieve interactive response times. However, the focus of the work on online aggregation
(and in particular Ripple joins) is to produce output with desired (random) statistical
properties. In contrast, our work is focused on producing answers in the shortest possible
time.

Previous work on partial query evaluation ([13, 4, 1]) is largely orthogonal to ours. The
TOP N operator, which is the main focus of these papers, is conceptually a sequence of
operators starting with SORT and followed by OPTIMIZE FOR N and STOP AFTER N.
In fact, our work is not concerned with SORT operator because the problem would reduce
to the TOP N query.

A distinguishing feature of our work is the use of system statistics to guide query exe-
cution. This idea was not proposed nor evaluated in any of the previous work, to the best
of our knowledge.

7 Future Work

One of the directions for future work is to explore potential gains that filtering may offer
in a wide-area network, where the bandwidth is scarce. For example, when transferring a
relation over a slow wide area network in distributed join processing, one might first ship
data satisfying the join filter. This way, we use the scarce bandwidth efficiently, as we first
ship the data that will produce the maximal number of answers. This strategy is similar in
its nature to bloom filters [12].

More research needs to be done to address the issue of answer correlation when using
filters in answering partial queries. Users see the results that satisfy the filter but are not
aware of filter existence and its influence on the early results. In other words, first tuples
produced by a filter are not a random sample of the total answer set and such an assumption
may mislead the user. A solution to this problem is to verify that the initial answers are
random by maintaining the information about attribute correlations. For example, if a
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query asks for attribute A and the filter is on attribute B, the filtering technique will not
impose any specific ordering of answers only if there is no correlation between A and B.

8 Conclusion

We explored the idea of using system statistics to improve the execution speed of major
relational operators such as join and group-by. Our experimental results indicate that sig-
nificant performance gains are possible in both partial and full execution of those operators.
Filtered join and group-by algorithms can be easily incorporated into a traditional cost based
database optimizer, and can naturally be included into an online aggregation system. We
believe that histogram filtering is an important step towards achieving interactive response
times for complex, ad hoc, decision support queries.
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