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Abstract
Register integration (or simply integration) is a mechanism for incorporating speculative
results directly into a sequential execution by using their data-dependence relationships.
In this paper we use integration to implement squash reuse, the salvaging of instruction
results that were discarded during the course of sequential recovery from a control- or
data- mis-speculation, but needlessly so because the corresponding instructions were
control- and data- independent of the particular mis-speculation event.

Integration itself occurs as the processor re-traces portions of the squashed path. To
implement it, we first allow the results of squashed instructions to remain in the physical
register file past mis-speculation recovery. Then, integration logic that is added to the
register-renaming circuit examines each instruction as it is being renamed. Using an
auxiliary table to match input dependences, this circuit searches the physical register file
for the value belonging to the corresponding squashed instance of the instruction. Ifa
match is found, integration succeeds and the squashed result is re-validated by a simple
‘update of the rename table. Once integrated, an instruction is complete and may bypass
the out-of-order core of the machine entirely. Integration reduces contention for queuing
and execution resources, collapses dependent chains of instructions and accelerates the
resolution of branches. Integration achieves this using only rename-table manipulations;
no additional register values are read from or written to the physical registers. Also, the
implementation of integration requires only changes to register-renaming.

Our preliminary evaluation using cycle-level simulation shows that, at minimal
additional hardware cost and complexity, integration can provide performance
improvements of up to 8% when applied to current-generation micro-architectures and
up to 11.5% when applied to more aggressive micro-architectures. Furthermore, while
improving performance, integration also reduces the amount of wasteful speculation in
the machine, cutting the number of instructions executed by up to 15% and the number of
instructions fetched along mis-speculated paths by as much as 6%.

1. Introduction
Modern microprocessors rely heavily on speculative execution to achieve performance. Sequential

processors (ones that execute sequential programs) speculate on both control and data, executing
instructions before all of their input dependences are known with certainty. Successful speculation
improves performance by sparing the speculated instructions the wait of having their execution context
verified. On the other hand, unsuccessful speculation, or mis-speculation, hurts performance by forcing the
processor to recover to some prior non-speculative state and start over. This paper presents register
integration, a mechanism for overcoming an inherent inefficiency in conventional sequential mis-

speculation recovery.

The inefficiency we speak of is born of a basic antagonistic combination found in sequential programs.
While a sequential program is composed of many locally independent computations, the state of the

program is only defined sequentially at dynamic instruction boundaries. Since mis-speculation recovery is




defined in terms of this sequential state, a mis-speculation in one computation inadvertently but necessarily
causes valid work from sequentially younger computations to be aborted, or squashed, and re-executed.
Register integration can be used to perform squash reuse [2][24], to salvage the results of squashed
computations that are in fact control- and data- independent of the particular mis-speculation event that

precipitated the recovery action.

Many processors implement speculation using a level of indirection that maps the architectural register
name space to a larger physical register storage space. The larger physical space allows multiple versions
of each architectural location (all but one of which is speculative) to simultaneously co-exist. Successful
speculation involves the promotion of newer mappings to non-speculative status; mis-speculation recovery
restores prior mappings and recycles the speculative storage. Integration is motivated by the observation
that only restoration of previous mappings is required for correct recovery. If the speculative values are left
intact past a recovery event, then should the processor retrace part of the squashed path and discover that
some of the instructions were useful after all, only the corresponding mappings will need to be restored; the

values themselves will already exist and will not need to be re-computed.

The matching of squashed results with re-traced instructions is accomplished using a second mapping into
the physical register file, the Integration Table (IT). The IT differs from the sequential mapping (map
table) in a fundamental way. The map table describes the contents of the physical registers in a transient,
sequentially dependent way from the point of view of the architectural registers. The IT describes the
contents of the physical registers in a persistent, order-independent way that reflects the operations and
dataflow relationships used to create the values they contain. While an instruction is being register-
renamed, the IT is used to search the physical register file for a physical register that holds the result of a
previous squashed instance of the same instruction. If a register is found such that its creating instruction
instance had the same physical register inputs as the currently renamed instance, then the currently-
renamed instruction is “recognized” as having been previously executed and squashed. The instruction is
integrated by setting the sequential mapping for its output to point to the physical register allocated during
the initial (squashed) execution. The integrated instruction is complete for all intents and purposes, it can

cormmit as soon as previous instructions allow.

Integration has many advantages. Obviously, it reduces consumption of and contention for execution
resources. It also collapses data-dependent chains of instructions: a data-dependent chain of instructions
cannot be executed in a single cycle, but a completed chain of instructions may be integrated in a single
cycle. Integrated branch instructions are resolved immediately, and should these be mis-predicted branches
the mis-prediction penalty and subsequent demand on the fetch engine are also reduced. From an
engineering standpoint, integration is simple to implement. It is unambiguously correct, involves no

explicit verification and does not require additional data paths to either read or write any values into the



physical registers. In general, integration involves modifications only to the register renaming stage in the

processor; the rest of pipeline is oblivious to its existence.

Our initial experiments show that, for a minimal cost and complexity IT configuration, integration can
achieve speedups of up to 8% on a representative current-generation micro-architecture. We estimate that
the speedup increases to up to 11.5% for more-aggressive next-generation micro-architectures. In addition
to these speedups, integration also reduces the level of wasteful speculation in a processor, cutting the
number of instructions fetched along mis-speculated paths by as much as 6% and the number of
instructions executed by the out-of-order core by 15%.

The rest of the paper is organized as follows. The next section presents the basic integration algorithm and
argues for its correctness properties. Section 3 addresses some issues involved in the implementation of
integration. In section 4 we evaluate integration using cycle-level simulation. Section 5 discusses related

work. Section 6 presents our conclusions.

2. Integration
In this paper, we use integration to implement squash re-use, the salvaging of results that have been

unnecessarily discarded during the process of sequential mis-speculation recovery. In this section we
discuss the basic integration algorithm and describe the principles that allow it to accomplish its goal in a
straightforward way. We also address the problem of the integration of load instructions, which requires

additional attention.

2.1. Basic Algorithm
During the course of processing, the program’s dataflow graph in the form of the results of its individual

instructions is stored in the physical register file. At any point in the program, the “active” vertices
(results) of this graph are available through a set of mappings that maps architectural register names to
physical register locations and their values. New portions of the dataflow graph can only be attached to
these “active” vertices. As each instruction is added to the graph, a physical register to hold its value is
allocated and mapped to the architectural output. Each instruction is annotated with both the physical
register holding its value and the physical register that was the prior mapping of the same architectural
location. Recovery entails backtracking over a portion of the program and restoring the previous mapping

of each instruction’s output, simultaneously recycling the storage for the squashed result.

Integration exploits the observation that mis-speculation recovery is obligated only to restore some prior
sequential mapping into the physical register file. That the results associated with the discarded mappings
are also recycled during recovery is an implementation convenience; leaving them intact past the mis-
speculation does not impact correctness (of course, they must be recycled eventually lest the processor

“leak” away all physical registers). Assuming the results are kept, let us consider the point immediately




after the completion of a recovery sequence. Just at this point, all squashed instructions are, in principle,
still “attached” to the current state (dependence graph) of the program as defined by the register mapping.
The inputs of the oldest squashed instructions are found in this mapping. The fact that the inputs are valid
validates the outputs, which are themselves inputs of younger squashed instructions that have been
squashed, and so on. Integration is the process of transitively recognizing this validity, instruction by
instruction. For every instruction sequenced by the processor, the integration logic looks for the result of a
squashed instruction that had the same input mappings. If one is found, the corresponding physical register
is “un-squashed” or “pulled back into the sequential flow” simply by setting the sequential mapping to
point to it. This action re-validates the physical register mapping, and makes the input mappings of
squashed instructions that depend on it valid, allowing them to be subsequently integrated. Notice, this
same mechanism naturally avoids the re-use of instructions whose data inputs have been invalidated. As
the processor sequences instructions from paths different than the squashed one, the results of these
instructions create mappings to new physical registers not found in the squashed dataflow graph. These
new mappings effectively “detach” those portions of the squashed dataflow graph that depend on the

corresponding architectural name, and prevent them from being integrated.

Integration of a result requires locating a squashed instance of the corresponding instruction with input
physical registers identical to those of the current instance being renamed. To facilitate this search,
integration relies on the Integration Table (IT), an auxiliary structure that indexes and tags squashed results
using instruction identity and input mapping information. Each entry in the IT corresponds to a squashed
instruction instance and contains that instruction’s PC and the physical registers used for that instance’s

inputs and output (as well as Jump-Target and Memory-Address fields whose use will become clear later).

We illustrate the basic algorithm using an example. Figure 1 shows a short program fragment with four
variables X,Y,Z and W each allocated to a different logical register. For each dynamic instruction, we
show the instruction preceded by its PC, the state of the Map and Integration Tables immediately after the
renaming of the instruction and descriptions of the actions taking place during sequential processing and in
the IT. The shaded boxes highlight the handling of instruction A5. The program undergoes three
processing phases. In the first, instructions Al through A8 are renamed and executed; a new physical
register is allocated to each newly created result. The second phase begins after all the instructions have
completed execution when a branch mis-prediction is detected at instruction A3. Instructions A8, A7, A6,
A5 and A4 are recovered in reverse order and the original mappings for their output registers are restored.
However, instead of recycling the physical registers, each result is entered into the IT and tagged with the
instruction PC and physical register inputs used to create it. Integration comes into play in the final phase.
Having recovered from the mis-prediction, the sequential processor resumes fetching at the re-convergent

point beginning at AS. Let us follow the renaming and potential integration of each instruction carefully.
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Figure 1. A Working Example of Integration. Shows the three-phase processing of a series of instructions. The three
phases are mis-speculative execution, recovery, and correct-path execution. The shaded quantities in the dynamic
instruction stream, map table, and integration table highlight the actions surrounding instruction A5.

Intuitively, the re-traced instance of AS should be integrated since removing A4 did not change the value of
Y. Indeed, when AS renamed for a second time Y is mapped to 51, the same mapping it had during A5’s
original (squashed) execution. Properly, the IT contains an entry for an instance of A5 with input physical
register 51. By comparing PC/input register tuples from the dynamic instruction and map table with the
corresponding tuples in the IT (dark shaded quantities), we determine that integration can take place. The
act itself consists of setting the output mapping of A5 to the physical register originally allocated for it, 53

(in lighter shade). The IT entry is removed so that the register will not be integrated by another instruction.

When A6 is renamed for the second time, it finds its input X mapped to register 50. Changing the path has
removed A4 and changed the value of X with respect to A6, invalidating it. This invalidation is naturally
reflected in the IT, as no entry for A6 with an input of 50 is found. The A6 IT entry has 52 as its input; 52
was created by A4, which was squashed and not re-traced. Without a match, the instruction is left in the IT

until it is evicted. A new physical register, 57, is allocated to the current instance of A6.

Recall, when we integrated AS, we entered its output (53) into the map table. That action set the stage for
A7, an instruction that depends on A3, to be integrated now. The squashed version of A7 was executed
with input register 53, the output of the squashed A5. When A7 is re-traced, its input is again 53 thanks to

the integration of A5. A7 is integrated in exactly the same manner that A5 was.

The final instruction in the group, A8, should not be integrated since it depends on A6, which was itself not
integrated. Such indeed is the case. When A6 was not integrated, a new mapping (57) was created for X.
This new mapping prevents A8 from being integrated, much like the removal of A4 changed the mapping

that prevented A6 from being integrated.




In a four wide super-scalar machine, the integration decision on these four instructions can be made in
parallel. How this is done is the subject of a future section. However, the example demonstrated the four
possible cases for super-scalar integration: basic integration of an instruction (A5), basic non-integration of
an instruction (A6), the integration of an instruction that depends on an integrated instruction (A7), and the

non-integration of an instruction that depends on a non-integrated instruction (A8).

2.2. Integrating Loads
An integrated instruction can be thought of as having two executions: a physical execution where the

instruction is actually executed and then squashed, and an architectural execution in which the integrated
instruction is supposed to execute but doesn’t actually do so. For most types of instructions, the algorithm
we have shown so far is perfectly safe. The combination of operation and valid input values, denoted by
PC and physical registers respectively, is enough to guarantee that the results of the physical execution are
identical to those that would be produced in the architectural execution, allowing the former to be
substituted for the latter. Loads are the exception. The integration of a particular load is not guaranteed to
be safe because a conflicting store may have executed between the load’s physical and architectural
executions. A load that has either been blindly integrated despite such a store conflict or that experiences a

post-integration conflict is termed mis-integrated. Mis-integrations jeopardize correctness.

Loads present a problem because physical register names are not sufficient to detect load/store collisions.
There are two ways to ensure that mis-integrated loads are not allowed to retire. The first is to re-execute
all integrated loads and treat a change in the output value as a mis-speculation. The second is to store data
addresses with loads in the IT and use stores to invalidate matching loads. The first method uses a simple
IT but reduces the positive impact of successful integration, forcing integrated loads to consume reservation
station slots and execution bandwidth. The second increases the potential impact of successful integration,
but complicates the IT somewhat and may produce some false invalidations. In our experiments, we

model store invalidations.

3. Implementation Aspects
In this section we discuss several implementation aspects of integration including all modifications that

must be made to the base micro-architecture, the integration circuit itself, and the mechanism that ensures

the safe integration of loads.

3.1. Requirements of the Base Micro-architecture
Integration is not a technique that can be applied to all speculative micro-architectures. Its implementation

requires that the base micro-architecture allow speculative results fo remain intact past a mis-speculation
recovery action and that it support the out-of-order allocation and freeing of speculative storage. These

requirements disqualify many current micro-architectures. In-order speculative micro-architectures like



Sun’s UltraSparc-III that use working (future) register files indexed by architectural register number both
disallow arbitrary assignments of physical results to architectural names and overwrite the mis-speculated
instructions results during recovery. Intel’s P6 [10] core processors and HAL’s SPARC64 V [6] keep
speculative results in the re-order buffer, preventing their preservation on a mis-speculation. IBM's Power
[25] processors and (we believe) AMD’s K7 [7] have physical register files separate from the re-order
buffer, but also have an architectural register file and require that physical registers be allocated and freed
in-order. Two micro-architectures with physical register models that will support integration are the out-of-

order Alpha processors starting with the 21264 [12] and those of MIPS beginning with the R10000 [27].

3.2. A Micro-architecture with Integration
We now examine a micro-architecture that includes integration and comment on changes in the flow of

instructions through the modified pipeline. A pipeline with integration is shown in figure 2; the structural
modifications and new register tag paths are in bold. We work from the back of the pipeline to the front,
explaining how instructions become candidates for integration before dealing with the flow of integrated

instructions. A later subsection is dedicated to explaining the integration circuit itself in detail.

Fetch Rename/ R Read . |Execution
—> ] Integrate 4 P Registers [ >} Units | ]
T A
o] Free Memory Ordering Buffer 14__.
P+ List
Evict/ > Instruction Ordering Buffer r'_:
Reclaim - —>
Registerl__| Integration <
Table Complete? Create IT entry
Not Complete? Recycle physical register as usual

Commit/Free old physical register
Figure 2. A Micro-architecture with Register Integration. Modifications from a conventional micro-
architecture are in bold. In addition to the actual integration table (IT) and modified rename logic, there are

added paths from the instruction ordering buffer to the IT that are used during recovery, and a path from the IT
to the free list.

Since integration deals with salvaging the results of squashed instructions, the most natural time to insert
instructions into the IT is during mis-speculation recovery. This implementation of IT insertion is
straightforward for micro-architectures that implement recovery using serial rollback. Most micro-
architectures, however, including the Alpha 21264 [12] and MIPS R10000 [27], implement recovery as a
monolithic copy from a checkpoint. The implementation of IT insertion is slightly more involved in this
case, but its particulars do not affect the performance of integration. For clarity and brevity, we will

explain the entry process as serial.

One important qualification to the IT entry procedure is the exclusion of all instructions that have not
completed execution. The decision to insert only completed instructions in the IT is made with the

reasoning that it is the integration of these instructions that contributes most to performance. Integration




provides two main performance benefits: it allows instructions to bypass the execution engine and it
collapses dependent chains of instructions. Neither of these benefits applies to instructions that have not
issued and only the first applies to instructions that have issued but not completed. However, the number
of instructions likely to be integrated while in this post-issue/pre-completion state is small, and in return for
forfeiting them, we can simplify the handling of integrated instructions by assuming that all integrated

instructions are complete.

One of the principles of integration is that it allows speculative physical registers to “survive” recovery.
Obviously, this means that during recovery output registers of instructions that are entered into the IT are
not reclaimed and added to the free list as usual. However, we must be explicit about who is responsible
for eventually freeing the registers of instructions that are in the IT, so that these registers are not “leaked”.
The policy is actually quite straightforward. The IT assumes responsibility for the physical registers of its
entries. If an entry is evicted without having been integrated, it physical register is added to the free list.
Conversely, if an entry is integrated, responsibility for the register returns to the re-order buffer, which
handles it in the usual way. One caveat is that the IT entry of an-integrated instruction must be cleared so
that no other sequential instruction will attempt to get ownership of the corresponding register (the output
of two simultaneously active instructions may not be allocated to the same physical register). Notice, the

change of ownership mechanism also allows the same instruction to be repeatedly squashed and integrated.

The next subsection describes the integration related modifications to the register renaming logic. Here, we
describe what happens to an instruction after it has been integrated which, having decided that only
completed instructions can be integrated, is not much. An integrated instruction is entered into the re-order
buffer marked as completed and the integrated physical register is set as its “current mapping”. The entry
is no different than an ordinary re-order entry. For loads and stores, the instruction is also entered into the
memory-ordering buffer with its address (this is the function of the Memory-Address field in the IT) and
data fields filled and marked as ready. These entries, too, are ordinary. Finally, if the integrated instruction
is a branch, the resolution and potential recovery sequences are started immediately using the Jump-Target
IT field as a recovery address. The integrated instruction can bypass the out-of-order execution core; it

does not need to be allocated to a reservation station, scheduled, executed, or written back.

3.3. Integration Circuit
The most delicate piece of the integration mechanism is the integration circuit itself. The integration circuit

examines each dynamic instruction and decides whether or not that instruction may be integrated. Of
course, it must do so for multiple, potentially dependent instructions in parallel. In this section, we describe
one possible implementation of this logic and it complexity. We begin with a scalar description of the

circuit, before proceeding to the super-scalar case.



Scalar register renaming occurs in two logical steps. First, an instruction’s logical inputs are renamed to
physical outputs using lookups in the map table. Second, its logical output is allocated a new physical
register and this new logical-to-physical mapping is entered into the sequential map table, allowing future
instructions that need the value to route their inputs to the correct location. We call the two stages input
routing and output allocation, respectively. Integration adds a piece called output selection in which the
output mapping must be chosen between a newly allocated physical register and a physical register
obtained from an IT entry. The output selection circuit occurs logically after the input routing circuit since
the integration test must compare the input physical registers of the sequential instance with those in the IT
entry. However, the scalar implementation of integration can be thought of as occurring in one of two
ways. In the first, output selection is implemented serially after input routing; with the integration table
indexed by instruction PC and input physical registers. In the second, output selection is split into /T
lookup, which happens in parallel with input routing, and an integration test, which occurs logically after it.
In this organization, the IT is indexed by PC only and the physical register numbers are used to match tags.

Both schemes likely require that register re-naming be pipelined into at least two stages.
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Figure 3. Scalar, PC-Indexed Integration circuit. A scalar integration circuit in which IT and map table
proceed in parallel, an extension of this precise circuit is used in a super-scalar implementation of integration.
The diagram traces the IT, map table and free list as well as the instruction itself through the two steps of
integration enabled renaming. At the top of the figure, the instruction shown is raw and the structures are as
they appear before the instruction is renamed. In the bottom, the instruction is renamed and the structures
reflect that fact.
The merits of each implementation are open to debate in the scalar realm, but in a super-scalar environment
only the second is viable. While the first scheme interleaves and serializes the input routing and output
selection decisions that must be made for each instruction, the PC-only indexed scheme permits a parallel
prefix implementation similar to the one used to super-scalarize conventional register renaming. Let us
review conventional super-scalar renaming. Super-scalar renaming is more complex than scalar renaming
because its input routing decisions must reflect intra-group dependences. To do so, dependency-check
logic acts in parallel with the output allocation. This logic compares the logical input of each instruction in

the group with the logical output of each previous in-group instruction; a match overrides the initial input




routing retrieved from the map table and routes the input to the appropriate newly allocated physical
register. For example, in a group of four two-input, one-output instructions each of the second instruction’s
inputs has to be compared with the first instruction’s output, each of the third instruction’s inputs has to be
compared with the outputs of the first two instructions and each of the fourth instruction’s inputs has to be
compared with the outputs of the first three instructions. The total number of comparisons for this case is
12 and in general I * N(N-1)/2, with I the number of inputs per instruction and N the super-scalarity or the
number of parallel renaming operations. In general, the depth of the circuit is linear with N and the number

of comparisons grows as N

In addition to the conventional dependence-check circuit that compares logical registers, integration
requires that we implement output selection and any corrections it might imply for input routing for
subsequent instructions. Recall, for the scalar integration test we compared each IT entry input with the
corresponding register retrieved from the map table. In the super-scalar case, we must also compare it to
the physical register outputs for all integration candidates of all prior instructions in the group. Note, we do
not have to compare the candidate inputs with the newly allocated physical registers corresponding to each
prior instruction: the situation in which an instruction is dependent on a prior instruction in the group and is
integrated while the prior instruction is not is obviously impossible. Nevertheless, although the priority
encoding depth of the circuit is still N, the number of physical register comparisons now grows with both
super-scalarity, N, and the number of possible IT matches, M. The precise formula is I * (((N(N-1)/2)M +
N) * M); the growth of the function is IN*M?. The complexity of the circuit is very close to that of register
renaming for a direct-mapped IT, but diverges for higher-associativity implementations. For instance, a
four-wide machine with a direct-mapped IT requires 20 physical register comparisons to implement
integration. The same machine with a 2-way IT needs 64 comparisons. Just for scale, an 8-wide machine
with a 4-way IT requires 960 comparisons! Certainly, a highly associative integration circuit is impractical

to build. In the evaluation section, we will quantify the performance impact of higher associativity.

We should mention here that some of the complexity of the integration circuit may be moved off-line into
the IT itself. For instance, the IT could internally perform the intra-group dependence checks and store
groups of dependent instructions in a kind of trace that can be integrated using I*N*M comparisons.
However, IT management becomes much more complex in this case, and there is the added problem of
choosing the grouping of instructions into traces. An investigation of such optimizations is outside the

scope of this work.

3.4. Guaranteeing Correct Load Integration using Store Invalidations
When first presenting integration, we remarked that special support must be provided to ensure that loads

that have been invalidated by intervening stores are removed from integration consideration. At the very

least, the mis-integration should be detected so that alternative corrective action can be taken.
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A simple invalidation mechanism coupled with our definition of integration covers the two possible cases.
Completed loads that enter the IT (recall, only completed loads do) are marked with their address (this is
the second use of the Memory-Address field). Store addresses that become available are then associatively
matched against addresses in the IT and any matches cause the invalidation and eviction of the
corresponding entry. The idea is similar in spirit, functionality and implementation to the Memory Conflict
Buffer (MCB) [9] or IA-64’s ALAT [11]. Its realization requires that the IT implement simple invalidation
using content-based lookup (snooping). The scheme handles the mis-integration avoidance case, when an

invalidating store address becomes available while the corresponding load is still in the IT.

To ensure correctness, however, we must also handle the mis-integration detection case in which a store
address becoming available after a load has already been integrated. Fortunately, this case is handled
naturally by the basic load speculation mechanism. All we need to do to take advantage of it is to enter
integrated loads and stores into the memory-ordering buffer. Integrated loads are completed by definition.
Any conflicting store whose address becomes ready invalidates all subsequent loads that have issued pre-
maturely. A completed integrated load will be included among these. Although the detection procedure
preserves correctness, mis-integrations can have a negative impact on performance, from whose standpoint
they are equivalent to a load or value mis-speculations. Our performance evaluation section will measure

the prevalence of mis-integration.

3.5. Handling Data Mis-Speculations
The discussion of load integration brings up an important note regarding integration and the way it must

deal with instructions squashed due to data mis-speculations like speculative memory-ordering violations
[17](28] and value mis-speculations [13]. Specifically, for micro-architectures like the Alpha 21264 [12],
in which data mis-speculations are handled by squashing, integration must be careful not to confuse a value
mis-speculated instruction and its dependent instructions with correctly executed squashed instructions. 1T
entries that correspond to data mis-speculated results must not be integrated. One broad solution to this
problem would be not to enter squashed instructions into the IT during recovery from these kinds of mis-
speculations. However, this solution is too harsh since it prevents the correctly executed instructions that
were lost during recovery from being salvaged. An effective trick is to enter all completed instructions
except for the value mis-speculated instruction itself into the IT. Its omission effectively “detaches” all

dependent instructions from possible integration, while leaving all independent instructions intact.

There is an interesting interaction between integration and another technique for salvaging work lost to a
data mis-speculation, selective squashing [81[13][20][21][28]. In selective squashing, instructions are kept
in reservation stations until retirement allowing them to simply re-issue as data mis-speculations are
resolved. If selective squashing is implemented, integration is not “activated” during data mis-speculations
since the instructions are not squashed and re-fetched. Integration, on the other hand still handles control

mis-speculation squashes, which quite conveniently cannot be handled by selective squashing. Integration
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and selective squashing complement each other nicely. However, we do not explore their interaction

experimentally; our simulations model full squashing for all mis-speculations.

3.6. Setting the Size of the Physical Register File
A final implementation note concerns the size of the IT and its relationship to the total size of the physical

register file. To avoid resource stalls, the number of physical registers should be equal to the maximum
number of values (both architectural and speculative) that can be in play at any time. For a speculative
machine this is equal to the number of architected registers plus the maximum number of renamed in-flight
instructions (the size of the re-order buffer). Now, the IT is simply a mechanism for keeping physical
registers “in circulation” for longer periods of time; values in the IT are still considered “in play”.
Consequently, to avoid resource stalls in a micro-architecture with integration, the size of the physical
register file should be equal to the number of architected registers plus the size of the re-order buffer plus
the size of the IT. As we will see, effective integration does not require overly large physical register files.
However, should the required size increase pose timing problems, any one of several techniques from
replication [12][25] to banking [4] can be used to deal with them. In all our simulated configurations,

exactly enough physical registers are supplied to ensure that the machine never stalls for lack of a free one.

4. Performance Evaluation
We evaluate the potential performance impact of integration using cycle level simulation. Although we

disregard engineering effects of integration on cycle time and number of pipeline stages, we strive to keep
our proposed implementation reasonable. We present a full set of results for one specific design meant to
represent a potential current-generation (or very near future) microprocessor. We also quickly look at
several dimensions in the design space, including ones we mentioned earlier like the associativity of the
integration table. We conclude by trying to project the impact of integration on more-aggressive future-

generation micro-architectures.

4.1. Experimental Framework
We evaluate integration using the SPEC2000 integer benchmark suite. The programs are compiled for the

Alpha EV6 architecture by the Digital UNIX V4 cc compiler with optimizations -03 -fast. We use
the test datasets for reporting performance for all benchmarks except perlbmk. There we are forced to use
the training set because the test set contains fork and exec calls that our simulation environment does not
support. Where multiple test data sets are given we use the longer running one, specifically place for vpr

and kajiya for eon. We simulate all programs in their entirety.

The simulation environment is built on top of the SimpleScalar 3.0 [1] Alpha toolkit. The cycle-level
simulator models an out-of-order machine similar in organization to an unclustered Alpha 21264 [12] with
nominal stages fetch, register rename and dispatch, schedule, execute, writeback and commit. The out-of-

order scheduling logic speculates loads aggressively, issuing them even in the presence of prior stores with
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unavailable addresses. A mis-speculation causes the load and all downstream instructions to be squashed
and re-fetched. Our model does not include a dependence-speculation mechanism that may reduce the
incidence of memory-ordering violations [3][17][28]. However, we don’t believe that the inclusion of such
a mechanism would take away a significant portion of the impact of integration, since most integration
candidates are produced by control mis-speculation. The recovery mechanism itself is modeled as serial
with bandwidth equal to commit. Recovery stalls renaming, but execution and retirement from the head of
the machine may continue. We model a memory system with non-blocking caches, finite write-buffers and
miss-status holding registers (MSHR), and cycle accurate bus utilization. Table 2 shows the simulation
parameters in detail. IT configuration is specified inline with the respective presentation of results. The
Alpha has 64 architectural registers; the number of physical registers for a given configuration is therefore

always set to be 64 + ROB size + IT size.

Branch Symmetric 16K-entry combined 10-bit history gshare and 2-bit predictors. 2K entry, 4-
Prediction way associative BTB, 32-entry return-address stack.

Fetch, Decode | 3-cycle fetch, 32-entry instruction buffer. Up to 8 instructions from two cache blocks
and Rename fetched with a maximum of one taken branch per cycle. 2-cycle decode/register-rename.
Issue 8-way super-scalar out-of-order speculative issue with a maximum of 128 instructions or
Mechanism 64 loads or 32 stores in flight. 2-cycle register read. Load speculatively issue in the

presence of earlier stores with unknown addresses. The load and subsequent instructions
are squashed and re-fetched on a memory ordering violation. Recovery from all forms of
mis-speculation is serial with a bandwidth of 8 instructions per cycle. Recovery stalls
register renaming, but execution of unrecovered instructions may proceed in parallel.
The scheduler is symmetric modulo functional unit availability. Loads, stores and
branches have the highest scheduling priority. Intra-group priority is determined by age.

Memory 32KB, 32B lines, 2-way associative, 1 cycle access first level instruction cache. 64 KB,
System 32B lines, 2-way associative, 1 cycle access, first level data-cache. Shared 1MB, 64B
lies, 4-way 12 cycle access second level cache. 16-entry ITLB and 32-entry DTLB, both
with 30-cycle hardware miss handling. 70-cycle latency to an infinite memory. 32B bus
to L2 cache clocked at processor frequency. 16B bus to main memory clocked at 1/3
processor frequency. Cycle-level bus utilization modeled. Up to 8 simultaneously
outstanding load misses.

Functional 8 integer ALU (1), 3 integer MULT/DIV (3/20), 4 FP adders (2), 3 F? MULT/DIV
Units (latency) | (4/24). 4 load/store ports (2). Except the dividers, all units are fully pipelined.

Table 1. Simulated Machine configuration.

4.2. Base Configuration Results
Table 2, which is split into two for readability, shows the performance impact of integration using a 256-

entry direct-mapped IT on the configuration described above. Data is presented in four main parts. The
first two characterize the performance of the base and modified system in terms of instructions fetched and
executed, branch mis-predictions and branch mis-prediction resolution latency, and total memory-ordering
violations. These numbers give a feel for the degree of mis-speculation in each program and its causes.
Comparing these groups of numbers pair-wise gives an idea of the overall effect of integration on
speculative (mis-speculative) processor activity, and they are included for completeness. The next two
parts measure the activity and effectiveness of integration using more direct metrics. We report absolute
counts of instructions integrated, loads integrated, and mis-predicted branches integrated (and ostensibly,

immediately resolved).
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The shaded at the bottom computes the characteristic and performance metrics of integration and its impact

on performance. The contribution rate is the number of instructions integrated as a percentage of the total

number of instructions; it is the amount of work integration contributes to the architectural execution of the

program. The salvage rate is number of instructions integrated as a percentage of squashed (and

completed) instructions and measures the rate at which integration candidates are harvested.

The

contribution and salvage rates measure both a program’s inherent suitability for integration and our

mechanism’s ability to capture integration candidates.

instructions fetched, instructions executed and total execution time saved by integration.

The final three metrics measure the percentage of

gzip vpr gce mef crafty parser

Comumitted insns (M) 3367.27 1566.70 2015.64 259.63 4264.78 4203.56
Base { Fetched insns (M) 5555.67 3667.92 3816.01 527.87 8080.35 7515.99
Executed insns (M) 4114.58 2069.79 2327.15 292.49 5158.60 4854.72

Br. Mispred. (M) 16.61 20.48 22.93 2.54 38.80 38.08

Br. Mispred. res. lat. (c) 29.72 18.41 16.85 33.37 21.48 20.78

Load squashes (M) 2.50 0.00 0.20 0.01 1.35 0.14

Base | Fetched insns (M) 5376.16 3424.83 3709.65 509.96 7659.44 7374.33
+IT | Executed insns (M) 3481.16 1774.06 2133.07 271.98 4649.16 4582.10
Br. Mispred. (M) 15.91 20.90 22.97 2.54 38.84 38.05

Br. Mispred. res. lat. (¢) 27.56 15.66 15.86 31.96 19.27 20.15

Load squashes (M) 3.29 0.59 0.36 0.02 1.41 0.20
Integrated insns. (M) 1 6040.70:1 249351 '167 731 1585 45031  274.49
Integrated loads (M) L 177 12 90.69 | 556070 - 328  200.294 . 7819
Integrated br. Mlspred (M) 1 078 f-'0.59, 07 001 053] 054
Intes Jrated/«:ommltted %) ] 190 159§ 831 o 6Ll 1060 6.5
Integrated/squashed (%) _I 619 46.7' 2291 2401 453 283
Fetched insns saved (%) e 302 6.6 2.8 3.7 5.2 1.9
Executed insns saved (%) L 154 15.3 8.3 7.0 9.9 5.6
Execution Time Saved (%) 4.8 81 2.0 L 521 1.1

eon Perlbmk gap Vortex Bzip2 twolf

Committed insns (M) 548.20 | 27684.23 1169.58 9808.12 8822.14 258.73
Base | Fetched insns (M) 707.10 | 51890.55 1738.94 | 12413.60 | 10694.62 530.94
Executed insns (M) 514.23 | 3030091 1227.20 9528.89 9067.05 295.94

Br. Mispred. (M) 4.46 261.86 9.80 43.08 24.40 2.89

Br. Mispred. res. Lat. (¢) 12.33 60.65 24.82 9.53 19.56 16.56

Toad squashes (M) 0.04 13.66 0.15 17.77 0.16 0.32

Base | Fetched insns (M) 69549 | 51341.83 1722.18 | 12283.35 | 10638.29 505.40
+1IT | Executed insns (M) 483.99 | 28964.36 1186.67 9407.42 8017.34 268.77
Br. Mispred. (M) 4,46 262.07 9.87 43.17 24.49 2.89

Br. Misp. res. Lat. (¢) 11.73 59.88 24.35 9.43 19.10 14.98

Load squashes (M) 0.02 13.56 0.18 18.22 0.52 0.32
Titegrated insn (M) 26900 130839 0 3.80: 0 121,671 132050 22.35
Integrated loads (M) ) 843 43556 - 1.04 225.09 |0 4427 {0 838
Integrated br. mispred. (M) ().16,~1 767 0020 046 0.27. 027
‘;Integrated/comnutted (%) 49 470 03 12 0 15] 8.6
Integrated/squashed (%) 380 224 @ 224| 414 334 . 2414
Fetched insns saved (%) 16 LI} o 10D 1O 051 48
Executed insns saved (%) 59 44| @ 33| 13| 17| 9.2
| Execution Time Saved (%) - | 16| 09| 04]  01] 04 5.6

Table 2. Detailed Performance Impact of Adding a Direct-Mapped, 256-entry IT to a Current Generation Micro-

Arch

itecture.
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The performance figures show that integration is certainly a bimodal technique. On some benchmarks,
gzip, vpr, crafty and twolf, it cuts execution time by upwards of 5%. On the rest, it achieves speedups of
less than 1%. To explain this bimodal behavior we appeal to the structure of the programs and to the
contribution and salvage rates, which help correlate this structure with suitability for integration. There are
some programs that for structural reasons simply cannot take advantage of integration. One possibility is
that the programs have few squash-causing branch mis-predictions and memory-ordering violations.
Another is that branch mis-predictions are present but that the code within the conditional arms is so long
that the processor does not have time to fetch and execute the re-convergent region before the branch is
resolved. Finally, if the re-convergent region is reachable along the mis-speculated path, it is possible that

it contains no data-independent instructions, the ones that will later be integrated.

How do the benchmarks break down according to these criteria? Vortex, bzip2 and, to a lesser degree, eon,
encounter branch mis-predictions infrequently (fewer than once every 200 and 400 instructions for vortex
and bzip2, respectively). They fall under the first category of benchmarks. The salvage rates for these
programs are close to 40%, but they execute ! so few instructions along mis-speculated paths as compared
to other programs that the overall pool of integration candidates is small. The second two categories are
somewhat more difficult to distinguish from one another, but five of the other benchmarks: gcc, mcf,
parser, perlbmk and gap fall into them. These programs incur branch mis-predictions or memory ordering
violations every 100 instructions or so (or more frequently), execute (and squash) somewhat more
instructions than they commit, yet permit the successful integration of only around 20% of squashed
instructions. The four benchmarks we mentioned at the top execute a lot of work along mis-speculated
paths and integrate that work at a high rate. These programs benefit the most from integration. Other
factors that contribute to the observed impact of integration but are difficult to quantify directly are the
parallelism in the high-integration regions and the extent to which the integrated instructions help collapse

dependence chains.

To a first order, integration is primarily a technique for reducing the number of instructions executed in a
program. To that end it is fairly successful, reducing the consumption of execution bandwidth by 1% to
15%. However, a rather striking trend is the incredibly strong correlation between the performance of
integration and its second order effect, reducing the number of instructions ferched, which it does at rates
that vary from close to nil to near 7%. Integration is a technique that operates at decode/rename time. It is
is therefore unable to eliminate the latency and bandwidth of fetch from the cost of an integrated
instruction. Integration frees up execution bandwidth for new instructions, but does not directly free up
more fetch bandwidth (they actually can, but only indirectly via the accelerated resolution of mis-predicted

branches) to fetch those new instructions. As a result, the reduced consumption of execution bandwidth

! The number of instructions executed along mis-speculated paths is a more telling metric the number of instructions
fetched because, you will recall, we choose to integrate only completed instructions.
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generally leaves bubbles and open slots in the execution pipelines. Actual performance gain is more

closely related to the number of instructions eliminated from processing completely.

One opportunity for integration to do harm is by precipitating squashes through mis-integrations.
However, our figures show that although memory-ordering squashes are sometimes increased with
integration, the number of introduced squashes is small in comparison with the number of loads integrated.
On the whole, integration reduces the amount of mis-speculation activity in the processor, cutting down the
number of instructions fetched and (to a lesser degree) executed. This fact suggests two interesting
applications for integration. The first is as a dynamic power and energy reduction technique [15]. This
use, of course, requires that the power characteristics of the integration circuit itself be acceptable,
something that has not yet been investigated®. The second application is in a simultaneous multithreading
(SMT) processor [S5}{26], where several narrow front-ends share a large out-of-order execution engine.
This could be an ideal environment for integration, which would reduce contention in the back end, and

would require only narrow, low-complexity integration circuits (replicated, of course) to do so.

4.3. Effect of Integration Table Size and Associativity
Two important parameters in the design of the IT are its size and associativity. Since the IT always

contains the most recently squashed instructions, its size determines the degree to which it can salvage
work from older squashed regions. For example, imagine a processor that encounters a loop and
incorrectly speculates that it will execute zero iterations. Discovering its mistake, it squashes the post-loop
region, enters the completed instructions into the IT and begins executing the loop. During loop execution
itself, the processor mis-predicts intra-iteration branches and enters more instructions into the IT. The size
of the IT determines whether the post-loop code will be available for integration when the loop finally
exits. If the IT is too small, the post-loop instructions would be evicted by the squashed instructions from
the loop itself. However, an overly large IT 1s also undesirable since it implies an overly large (and overly

slow) physical register file.

The effect of IT size on the performance impact of integration is shown in Figure 4. The trends certainly
support our program-structure explanation for the bimodal nature of integration, as each group of
benchmarks responds differently to changes in IT size. Those benchmarks that fail to benefit from
integration for structural reasons do so consistently, regardless of IT size. More integration resources do
not change the fact that the product of program and machine does not produce many valid integration
candidates. On the other hand, programs whose structure does allow them to support integration, can draw
additional benefit from additional integration resources. In general, however, a very large IT is not

necessary. A significant fraction of the benefit can be achieved with a small IT that can buffer the

? Conversely, should the power requirements of integration prove excessive, the circuit is compartmentalized in a way
that enables it to be completely gated for programs for which it provides too little benefit to justify the expenditure.
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squashed results from the last mis-speculated region. For this set of programs and our machine
configuration, 256 entries (enough space to buffer instructions from between 4 to 8 mis-speculated regions)

appears to be sufficient. The corresponding number of physical registers is 448.

Effect of IT Size on Integration Performance

m64 01128 @256 w512

Execution Time Save (%)
—“ NN W HOTON O

<

gzip vpr gcc mef crafty parser eon perbmk gap vortex bzip2 twolf

Figure 4. Effect of IT Size on Performance Impact of Integration. Percentage of execution time saved for each
benchmark with direct-mapped IT’s of five sizes: 64, 128, 256, 512. The corresponding physical register file sizes
are 256, 320, 448 and 704.
The associativity of the IT has two different uses that impact performance in two ways. From the standard
viewpoint, associativity is a mechanism for more efficient management of collisions in the IT. Specific to
the integration circuit, however, associativity can also determine the number of squashed instances of the
same static instruction that are simultaneously considered for integration. Although the first use does not
necessarily imply the second, we use associativity to quantify both IT eviction policy and integration

circuit complexity in order to simplify the discussion.

Effect of IT Associativity on integration Performance

Execution Time Save (%)

gzip vpr gee mef crafty parser eon perbmk gap vortex bzip2 twolf

Figure 5. Effect of IT Associativity on Performance Impact of Integration. Percentage of execution time saved
for each benchmark with a 256-entry IT with associativities 1, 2 and 4.

The impact of IT associativity on integration performance is shown in Figure 5. The trends are similar to
those observed when changing the size of the IT; the bimodal effect is still present for the same program-
structural reasons. The trends are much less pronounced, however. Except for in the case of gzip, there is

little benefit to having anything more complex than a direct-mapped IT that supplies a single integration
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candidate per instruction. That higher associativities that would overly complicate the integration circuit

are unnecessary is good news indeed.

4.4. Impact of Integration on More Aggressive Micro-Architectures
One final piece of data we would like to provide is an estimate of the impact of integration for more

aggressive micro-architectures. To model a micro-architecture that hopefully represents a next-generation
microprocessor., we begin with the organization of our basic 8-way machine. We double the re-ordering
capability by doubling the sizes of the instruction and memory ordering buffers; the nu"mber of physical
registers is increased accordingly. In the memory system, we double the size of the L2 cache to 2 MB and
increase the number of simultaneously outstanding misses to 16. To simulate a faster clock, we deepen the
pipeline to 5-cycle fetch, 3-cycle decode/rename and 4-cycle register read, lengthen cache array access time
to 2 cycles, and slow raw memory access time and the memory bus by 50%. In Figure 6, we compare the
speedups achieved by our baseline integration configuration (a direct-mapped 256-entry IT) when applied

to both the current-generation and next-generation microarchitectures.

Effect of Base Micro-Architecture Aggressiveness on Relative Integration Impact
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Figure 6. Estimated Performance Impact of Integration on Current- and Next-Generation Micro-Architectures.
Percentage of execution time saved for each benchmark using a direct-mapped, 256-entry IT on each of two
microarchitectures: a representative current-generation machines and a more-aggressive, more-speculative, more
deeply pipelined, representative next-generation machine).

One trend that is noticeable by its novelty is that that, unlike increasing IT size or associativity, a more
aggressive micro-architecture does increase the impact of integration on programs that do not benefit from
it in a more conservative implementation. The reason for this is that a more speculative machine changes
the structural behavior of the program. Larger re-order buffers that provide more room for speculation and
a deeper pipeline that increases the time it takes to discover and resolve branch mis-predictions combine to
raise the total number of instructions executed along mis-speculated paths. That increases the number of
potential integration candidates and, in turn, successful integrations. For example, a larger machine can
mis-speculate longer along a conditional arm and is more likely to reach (and squash) the re-convergent
region along the mis-speculated path. Our results indicate that between 5% and 50% more instructions are

integrated in the more aggressive, more-speculative configuration.
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The relative increase in the effectiveness of integration is probably larger than a simple increase in
integrated instructions can account for. As the graph shows, integration is 50% to 120% more effective in
reducing execution time in the aggressive configuration than in the base configuration. Absolute
performance improvements for the next-generation micro-architecture are close to or over 10% for several
benchmarks. The reason for this boost is that in the more aggressive, more deeply pipelined
implementation, the benefit of each integrated instruction is also relatively higher. Specifically, the longer
register-read times make integration’s ability to collapse dependent chains of instructions more important.
The absolute importance of instant branch mis-prediction resolution is also increased by longer register-
read times. However, the relative impact of this effect is somewhat mitigated because the depth of the

front end increases as well.

5. Related Work

The term squash re-use was introduced to describe one of the tasks performed by Instruction Re-use (IR)
[24]. IR is a table-based technique for avoiding the execution of an instruction that has been previously
executed with the same inputs. IR is a more general form of integration. In addition to squash re-use, in
which the re-used value comes from the same instance of the instruction that has merely been squashed, IR
implements general re-use, in which the re-used value comes from a different (not necessarily squashed)
previous instance that just happens to have the same input operands. Integration implements only squash
re-use because it requires that the value already exist in the register file and that the physical register inputs
of the squashed instruction match exactly with the inputs of the instruction it will “replace”. IR lifts these
constraints to allow general re-use as well. It does so by storing the squashed value inside the lookup table
(which is called a re-use buffer or RB) and writing it into the register file when re-use is detected and by
basing the re-use criterion itself is on instance-independent architectural quantities like values or logical
register names, rather than instance-dependent micro-architectural ones like physical register numbers. IR
has an edge over integration in applicability; the architectural quantities it uses to test for re-use allow it to
exploit generél re-use and to be implemented on any micro-architecture. Where it applies, however,
integration has an advantage in implementation simplicity. Value-based IR is extremely general, but the
need for values in the re-use test implies the need to read registers, which not only complicates the register
file, but also moves IR further back in the pipeline, reducing its impact. Architectural-name-based IR does
not need to read registers, but requires an explicit dependence-tracking scheme within the IR table so as not
to become too conservative. Both IR forms require additional write data-paths into the register file. In
integration, the re-used values are already stored in physical registers so no additional register data-paths to
read or write any values are required. At the same time, the physical-register-based nature of the re-use

test implements dependence-tracking naturally.
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The Dynamic Control Independence (DCI) [2] buffer is another result salvage mechanism that operates in a
centralized window environment. The DCI buffer is a shadow re-order buffer whose contents persist past
mis-speculation events that invalidate the architectural buffer (this is a familiar theme). Shadow buffer tags
and results can be re-used if the instruction proves to be control- and data- independent. Control
independent instructions are found by associatively searching the squashed region of the shadow buffer;
their data-independent nature is checked using an architectural-name-based invalidation scheme. The DCI
buffer is essentially an architectural-name-based implementation of squash re-use similar to IR that uses a

shadow re-order buffer rather than an RB.

We have already alluded to the interplay between integration and selective squashing [8][13]{20]{21],
which allows instruction instances to execute multiple times “in-place” before retirement. Selective
squashing is an effective way of dealing with data mis-speculations, in which the correct instructions are
already in the machine. Selective squashing allows the penalty of squash and re-fetch to be avoided at the
cost of keeping instructions in the reservation-station longer and increasing reservation-station contention.
Selective squashing, however, cannot salvage work lost to control mis-speculation. Integration and
selective squashing are duals. Both techniques salvage instructions by keeping around information for
longer than is conventionally required, physical registers for integration and reservation stations for
selective squashing. However, while selective squashing actively picks out instructions dependent on the
mis-speculation, integration waits for all squashed instructions to be re-processed then picks out the ones

that were actually mis-speculation independent.

6. Conclusions and Future Work
In this paper we presént register integration (or just integration), a technique for salvaging valid results that

have been unavoidably lost due to the sequential nature of speculation and mis-speculation recovery.
Integration is a discipline that allows speculative results to remain in the physical register file past recovery
events with the hope that they were independent of the mis-speculation in question and can be used once
the particulars of that mis-speculation have been resolved. Integration logic itself is implemented as a
modification to conventional register renaming that recognizes the validity of squashed results using their

data-dependences and spares the processor from having to re-execute the corresponding instructions.

Our initial evaluation shows that integration has the potential for noticeable performance improvements of
up to 8% at configurations representative of current-generation processors and up to 11.5% for more
aggressive, more speculative, more-deeply pipelined next-generation configurations. These speedups are
achieved through a combination of reduction in the consumption of execution and fetch bandwidths, the
collapsing of dependent instruction chains, and the acceleration of branch resolution. Our numbers indicate
that programs typically are able to re-use between 20% and 60% of all squashed instructions that have

completed execution prior to squashing, representing between 1% and 19% of all instructions committed.
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Perhaps more important than integration’s performance characteristics, are its mis-speculation reduction
characteristics. In addition to improving performance, integration reduces the overall level of wasted work
performed by the processor. It reduces the number of instructions executed by re-using squashed
computations and its acceleration of branch resolution reduces the number of instructions fetched along
mis-speculated paths. According to our results, the number of instruction fetches saved can reach 6% and
the number of instruction executions saved, 15%. Both of these numbers grow relatively as the underlying
micro-architecture becomes more aggressive. These characteristics make integration an interesting
candidate for reducing dynamic-power and energy and also suggest its use in reducing resource contention

in simultaneously multi-threaded (SMT) processors.

The implementation of integration is simple, requiring only an integration table (IT), a small cache-like
structure of with limited content-addressible capabilities and an integration circuit, which is interleaved
with register renaming logic. No changes to either the fetch or execution engines themselves are necessary
and integration does not require the reading or writing of any register values, only map table manipulations
are used. The performance improvements we present are all achievable with the minimal complexity

implementation of integration.

Future work in the area of integration includes a more thorough search of the IT design space, experiments
with more varied benchmarks, and a more detailed investigation into the interaction of different micro-
architectural parameters with integration. A study of the high-level characteristics of programs that draw
benefit from integration is also interesting. We have mentioned possibility for interesting synergy between
integration and selective squashing; that possibility needs further investigation. The power aspects of

integration and its potential use as a power-reduction technique are also subjects of open research.

The most interesting future direction for integration, however, lies in its ability to support new speculation
models. As we have presented it, integration is a mechanism that can re-impose lost sequential semantics
on a set of instructions using only their data-dependences. The real power of integration, however, may be
in its ability to impose such semantics on a set of instructions that were not executed sequentially in the
first place. Integration enables a new form of speculation, data-driven speculation, in which speculative
execution proceeds along statically annotated data-dependence arcs with no regards to sequencing.
Integration is used subsequently to sequence the results into a control-driven sequential form required by
the architectural interface. In fact, integration was invented during the course of our investigation into

these new speculation modes [22][23].
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