A System-Level Specification
Framework for I/0 Architectures

Mark D. Hill
Anne E. Condon
Manoj Plakal
Daniel J. Sorin

Technical Report #1398

April 1999

A System-Level Specification Framework for I/O Architectures™
Mark D. Hill, Anne E. Condon, Manoj Plakal, Daniel J. Sorin

Computer Sciences Department,
University of Wisconsin - Madison,
1210 West Dayton Street, Madison, WI 53706, USA.
{markhill, condon, plakal, sorin}@cs. wisc.edu

Abstract

A computer system is useless unless it can interact with the outside
world through input/output (1/0)} devices. I/0 systems are complex,
including aspects such as memory-mapped operations, interrupts,
and bus bridges. Often, /O behavior is described for isolated
devices without a formal description of how the complete I/O sys-
tem behaves. The lack of an end-to-end system description makes
the tasks of system programmers and hardware implementors more
difficult o do correctly.

This paper proposes a framework for formally describing 1/0
architectures called Wisconsin /O (WIO). WIO extends work on
memory consistency models (that formally specify the behavior of
normal memory) to handle considerations such as memory-
mapped operations, device operations, interrupts, and operations
with side effects. Specifically, WIO asks each processor or device
that can issue k operation types to specify ordering requirements in
a k X k table. A system obeys WIO if there always exists a total
order of all operations that respects processor and device ordering
requirements and has the value of each “read” equal to the value
of the most recent “write” to that address.

This paper then presents examples of WIO specifications Jor sys-
tems with various memory consistency models including sequen-
tial consistency (SC), SPARC TSO, an approximation of Intel 1A-
32, and Compaq Alpha. Finally, we present a directory-based
implementation of an SC system and a proof which shows that the
implementation conforms to its WIO specification.

1 Introduction

Modern computer hardware is complex. Processors execute
instructions out of program order, non-blocking caches issue
coherence transactions concurrently, and system interconnects
have moved well beyond simple buses that completed transactions
one at a time in a total order. Fortunately, most of this complexity
is hidden from software with an interface called the computer’s
“architecture.” A computer architecture includes at least four com-
ponents:

e The instruction set architecture gives the user-level and sys-
tem-level instructions supported and how they are sequenced
(usually serially at each processor).

e A memory consistency model (e.g., sequential consistency,
SPARC Total Store Order, or Compaq Alpha) gives the behav-
ior of memory.

* This technical report adds Appendix A, “Proof that an Imple-
mentation Satisfies WIO,” to the paper that appears in the Pro-
ceedings of the 11th Annual Symposium on Parallel Algorithins
and Architectures (SPAA), June 1999.

o The virtual memory architecture specifies the structure and
operation of page tables and translation buffers.

e The Input/Output (I/O) architecture specifies how programs
interact with devices and memory.

This paper examines issues in the often-neglected /O architecture.
The I/O architecture of modern systems is complex, as illustrated
by Smotherman’s venerable /O taxonomy [15]. It includes at least
the following three aspects. First, software, usually operating sys-
tem device drivers, must be able to direct device activity and
obtain device data and status. Most systems today implement this
with memory-mapped operations. A memory-mapped operation is
a normal memory-reference instruction (e.g., load or store) whose
address is translated by the virtual memory system to an uncache-
able physical address that is recognized by a device instead of reg-
ular memory. A device responds to a load by replying with a data
word and possibly performing an internal side-effect (e.g., popping
the read data from a queue). A device responds to a store by
absorbing the written data and possibly performing an internal
side-cffect (e.g., sending an external message). Precise device
behavior is device specific. Second, most systems support inter-
rupts whereby a device sends a message (0 a processor. A proces-
sor receiving an interrupt may ignore it or jump to an interrupt
handler to process it. Interrupts may transfer no information
(beyond the fact that an interrupt has occurred), include a “type”
field, or possibly include one or more data fields. Third, most sys-
tems support direct memory access (DMA). With DMA, a device
can transfer data into or out of a region of memory (e.g., 4Kbytes)
without processor intervention.

An example that uses all three types of mechanisms is a disk read.
A processor begins a disk read by using memory-mapped stores to
inform a disk controller of the source address on disk, the destina-
tion address in memory, and the length. The processor then
switches to other work, because a disk access takes millions of
instruction opportunities. The disk controller obtains the data from
disk and uses DMA to copy it to memory. When the DMA is com-
plete, the disk controller interrupts the processor to inform it that
the data is available.

A problem with current I/O architectures is that the behaviors of
disks, network interfaces, frame buffers, I/O buses (e.g., PCI), sys-
tem interconnects (e.g., PentiumPro bus and SGI Origin 2000
interconnect), and bus bridges (that connect I/0 buses and system
interconnects) are usually specified in isolation. This tendency to
specify things in isolation makes it difficult to take a “systems”
view to answer system-level questions, such as:
* What must a programmer to do (if anything) if he or she wants
to ensure that two memory-mapped stores to the same device
arrive in the same order?

e How does a disk implementor ensure that a DMA is complete
so that an interrupt signalling that the data is in memory does
not arrive at a processor before the data is in memory?

e How much is the system interconnect or bus bridge designer
allowed to reorder transactions to improve performance or
reduce cost?

This paper proposes a formal framework, called Wisconsin 1/0
(WIO), that facilitates the specification of the systems aspects of
an /O architecture. WIO builds on work on memory consistency
models that formally specifies the behavior of loads and stores to
pormal memory. Lamport’s sequential consistency (SC), for exam-
ple, requires that “the result of any execution is the same as if the
operations of all the processors were executed in some sequential
order, and the operations of each individual processor appear in
this sequence in the order specified by its program [10]” WIO,
however, must deal with several issues not included in most mem-
ory consistency models: (a) a processor can perform more opera-
tions {e.g., memory-mapped stores and incoming interrupts), (b)
devices perform operations (e.g., disks doing DMA and sending
interrupts), (c) operations can have side effects (e.g., a memory-
mapped load popping data or an interrupt invoking a handler), and
(d) it may not be a good idea to require that the order among oper-
ations issued by the same processor/device (e.g., memory-mapped
stores to different devices) always be preserved by the system.

To handle this generality, WIO asks each processor or device to
provide a table of ordering requirements. If a processor/device can
issue k types of operations, the required table is k X k, where the
ij-th entry specifies the ordering the system should preserve from
an operation of type i to an operation of type j issued later by that
processor or device in program order (i.¢., in the order specified by
the processor or device's program). A disk, for example, might
never need order to be preserved among the multiple memory
operations needed to implement a DMA. A system with p proces-
sors and d devices obeys WIO if there exists a total order of all of
the operations issued in the system that respects the subset of the
program order of each processor and device, as specified in the
p+d tables given as parameters, such that the value of each “read”
is equal to the value of the most recent “write” to that address.'

This paper is organized as follows. In Section 2, we discuss related
work. Section 3 presents the model of the system we are studying.
Section 4 explains the orderings that are used to specify the 110
architecture for a system whose memory model is SC, and it
defines Wisconsin 1/O consistency based on these orderings.
Section 5 extends the framework to incorporate other memory con-
sistency models. Section 6 describes a system with [/0 that is com-
plex enough to illustrate real issues, but simple enough to be
presented in a conference paper. In Section 7, we show that the
system described in Section 6 obeys Wisconsin 1/O. Finally,
Section 8 summarizes our results.

We see this paper as having two contributions. First, we present a
formal framework for describing system aspects of 1/O architec-
tures. Second, we illustrate that framework in a complete example.

1. The same table can be re-used for homogeneous processors and
devices. We precisely define “read” and “write” in later sections.

2 Related Work

The publicly available work that we found related to formally
specifying the system behavior of /O architectures is sparse. As
discussed in the introduction, work on memory consistency mod-
els is related [1]. Prior to our current understanding of memory
consistency models, memory behavior was sometimes specified
individually by hardware elements (e.g., processor, cache, inter-
connect, and memory module). Memory consistency models
replaced this disjoint view with a specification of how the system
behaves on accesses to main memory. We seek to extend a similar
approach to include accesses across 1/0 bridges and to devices.

Many popular architectures, such as Intel Architecture-32 (1A-32)
and Sun SPARC, appear not to formally specify their I/O behavior
(at least not in the public literature). An exception is Compaq
Alpha, where Chapter 8 of its specification [14] discusses ordering
of accesses across 1/O bridges, DMA, interrupts, ete. Specifically,
a processor accesses a device by posting information to a “mail-
box” at an I/O bridge. The bridge then performs the access on the
1/0 bus. The processor can then poll the bridge to see when the
operation completes or to obtain any return value. DMA is mod-
eled with “control” accesses that are completely ordered and
“data” accesses that are not ordered. Consistent with Alpha’s
relaxed memory consistency model, memory barriers are needed in
most cases where software desires ordering (e.g., after receiving an
interrupt for a DMA completion and before reading the newly-
written memory buffer). We seek to define a more general /O
framework than the specific one Alpha chose and to more formally
specify how 1/0 fits into the partial and total orders of a system’s
memory consistency model.

3 System Model

We consider a system consisting of multiple processor nodes,
device nodes, and memory nodes that share an interconnect.
Figure | shows two possible organizations of such a multiproces-
sor system, where shared memory is implemented using either a
broadcast bus or a point-to-point network with directories [5]. The
addressable memory space is divided into ordinary cacheable
memory space and uncacheable I/O space. We now describe cach
part of the system.

Processor Nodes: A processor node consists of a processor, cache,
network inteiface, and interrupt register. Each processor “issues™ a
streamt of operations, and these operations are listed and described
in Table 1. Note that LD and LDio are not necessarily different
opcodes; in many machines, they are disambiguated by the address
they access. We classify operations based on whether they read
data (ReadOP) or write data (WriteOP). If the cache cannot satisfy
an operation, it initiates a transaction (these will be described in
Section 6) to either obtain the requested data in the necessary state
or interact with an /O device. The cache is also allowed to proac-
tively issue transactions, such as prefetches. In addition, the pro-
cessor (logically) checks its interrupt register, which we consider
to be part of the /O space, before executing each instruction in its
program, and it may branch to an interrupt handler depending on
the value of the interrupt register.

Device Nodes: We model a device node as a device processor and
a device memory. Each device processor can issue operations to its
device memory. In addition, it can also issue operations which lead
to transactions across the I/O bridge (via the 1/0 bus). These

-

MEMORY BUS | |

Bus-bused 10 Bridge
Muemory
system
1/0 BUS
Device || Pevice Pevice
Processor Memuory Mumory

Duevice
Processor

Directosy Duvice
+

Processor

Device
Memory

1O BUS

Memory

1/0) Dridae

(Nework imurr:wc)

Network inerfice)

Dircctory-based
system

Interconnection Network

FIGURE 1. Possible System Organizations

TABLE 1. Processor Operations

Operation Class Description

LD ReadOP Load - load word from ordinary
nemory space

ST WriteOP Store - store word to ordinary
memory space

LDio ReadOP Load I/O - load word from I/O
space

STio WriteOP Store 1/O - store word to I/O
space

requests allow a device to read and write blocks of ordinary cache-
able memory (via DMA) and to write to a processor node’s inter-
rupt register. The list of device operations is shown in Table 2.

A request from a processor node to a device memory can “cause”
the device to “do something useful.” For example, a write to a disk
controller status register can trigger a disk read to begin. This is
modeled by the device processor executing some sort of a program
(that specifies the device behavior) which, for example, makes it sit
in a loop, check for external requests to its device memory, and
then do certain things (e.g., manipulate physical devices) before
possibly doing an operation (o its device memory or to ordinary
memory. The device program will usuaily be hard-coded in the
device controiler circuits, while the requests from processor nodes
will be part of a device driver that is part of the operating system.
Note that, in general, the execution of a subroutine by the device in
response 1o an external request to device memory needs to be made
atomic with respect to other external requests to device memory.
This avoids data races in accessing device memory locations.

Memory nodes: Memory nodes contain some portion of the ordi-
nary shared memory space. In a system that uses a directory proto-
col, they also contain the portion of the directory associated with
that memory. Memory nodes respond to requests made by proces-
sor nodes and device nodes. Their behavior is defined by the spe-
cific coherence protocol used by the system.

TABLE 2. Device Operations

Operation Class Description

LDio ReadOP Load l/O - load word from
device memory (I/0 space)

STio WriteOP Store 1/O - store word to
device memory (I/O space)

INT - Interrupt - send an interrupt to
a processor node

LDblk ReadOP Load Block - load cache block
from ordinary memory

SThlk WriteOP Store Block - store cache block
to ordinary memory

Interconnect: The interconnect consists of the network between the
processor and memory nodes and the /O bridges. This could either
be a broadcast bus or a general point-to-point interconnectionnet-
work. The I/O bridges are responsible for handling traffic between
the processor and memory nodes, and the device nodes. Note that,
while we allow a system to contain multiple bridges, we do assume
that a single device is accessible via exactly one bridge. This could
perhaps be extended to systems where devices are accessible
through multiple bridges (for fault-tolerance reasons), by assuming
that only one device-bridge pairing is active at any point in time.

Example: We now present an example that shows how this model
~an be used to describe a common 1/O scenario. Table 3 illustrates
disk reads, which, for example, might be initiated by the operating
system for paging virtual memory or for accessing files in a disk-
based file-system. In the example, the first operand of a memory
operation is the destination and the second operand is the source.
The example assumes a hypothetical disk controller with device
registers DRO, DRI, DR2, and DR3 mapped into I/O address
space. These registers are used to control the initial disk block
number to read, the starting memory address of the buffer which
will contain the data to be read, the length of the buffer, and the
command (Read) to be executed. In the table, physical time flows
downwards. The final STio to DR3 (the command register) imme-
diately “triggers” the device to read all of the device registers and
to set up the disk to do the read. Data is transferred using DMA
between the disk and coherent memory via physical disk reads and
STbiks. It is useful to note here that most operating systems would
make sure that these STblks do not generate any unnecessary
coherence activity by invalidating all shared and modified copies
(to speed up the DMA). Finally, an interrupt is generated when the
disk controller has finished the DMA. This triggers the interrupt
handler at the processor which can then use the data.

4 An /O Framework for Sequential Consistency

As the example in the previous scction shows, certain orderings
between operations are required in order to get device operations
to work. The objective of our framework is to concisely capture the
orderings required of a system. In this section, we present a version
of our framework for ordering the memory and 1/O operations in a
system where the memory model is sequential consistency (SC).
Section 5 will address systems with other memory models. We
begin with the ordering at individual processors and devices, and

TABLE 3. Disk Read

TABLE 4. Partial Program Order at a Processor

Processor Disk Controller Operation 2
STio Block, [DRO
Setup fo Block, |] LD ST LDio STio
P STio Address, [DR1]

- LD A A A A

STio Length, [DR2)
io Length, [] E ST A R A A

STio Read-Cmd, [DR3 ®
io Read-Cmd, |] £ LDio A A o 5

Read DRO, DR1, DR2, 8-]

DMA DR3 and set up disk read STio - - D D

Read in data from disk,
issue STblk for each cache
block of data to appropri-
ate address

INT
Interrupt handler runs

Use LD R1, [Address]

data ST [Address+4], R1

then we incorporate these orderings into a framework for system-
wide ordering.

4.1 Processor and Device Ordering

In a given execution of the system, at each processor or device
there is a total ordering of the operations (from the list LD, ST,
LDio, STio, INT, LDblk, and STblk) that can be issued by that pro-
cessor or device. Call this program order and denote it by <,

Let partial program order be any relaxation of program order at a
processor or a device processor. For example, let <p, be the partial
program order that respects program order with respect to opera-
tions to the same address and also satisfies the constraints of Tables
4 and 5, where entries in these tables use the following notation:

A: OP1 <, OP2 always

D: OPI <pp OP2 if the addresses of OP1 and OP2 refer to the same
device

- no ordering constraint on OP1, OP2 (if not to the same address)

The entries in the tables reflect the behavior of a hypothetical sys-
tem. For example, in many systems, STios to multiple devices are
not guaranteed to be ordered in any particular way. Also, there is
no ordering from a STio to a subsequent LD or ST, since that
would require the processor to wait for an acknowledgment from
the device.

It is important to realize that a programmer who wishes to enforce
ordering between operations that are not guaranteed to be ordered
can create an ordering through transitivity. For example, a pro-
grammer can order a processor’s LD after a STio by inserting a
LDio to the same device as the STio between the two operations.
Since STio <, LDio and LDio <p, LD, we have STio <, LD (for
this particular sequence of three operations).

4.2 System Ordering: Wisconsin I/O Consistency for SC

Using the definition of partial program order, we can now define a
system ordering which we call Wisconsin 1/O ordering. The defini-

TABLE 5. Partial Program Order at a Device Processor

Operation 2
LDio STio INT LDblk STblk

LDio A A A A A
g STio A A A A A
- INT - - D . .
3
j=5 - - - -
& LDblk A

STblk - - A - §

tion of Wisconsin 1/0 (WIO) ordering takes as a parameter an n-
tuple of partial program orders, such as the 2-tuple specified by
Tables 4 and 5. Let <y be a total ordering of all LD, ST, LDio,
STio, INT, LDblk, STblk operations of an execution of the system.
Then <y satisfies Wisconsin I/O with respect to a given partial
program order if:

1. <y respects the partial program order, and

2. the value read by every ReadOP operation is the value stored by
the most recent WriteOP operation to the same address in the <y
order.

In Sections 6 and 7, we will describe an implementation for an SC
system and outline a proof that shows it obeys this specification.

5 An /O Framework for Other Consistency Models

To ease presentation complexity and concentrate on I/O aspects,
we have thus far assumed a memory consistency model of sequen-
tial consistency. More relaxed models, such as SPARC TSO and
Compagq Alpha, can also be accommodated, and we now show how
this can be accomplished. We accommodate them by changing the
partial program ordering at the processor, but we leave the device
processor ordering unchanged. One could easily imagine provid-
ing a WIO specification where the device ordering does not match
the ordering specified in Table 5, but instead matches that of the
specific device(s) being modeled.

5.1 Processor and Device Ordering

As in Section 4.1, for each memory consistency model, we will
present tables of ordering requirements for partial program order at
processors. In the following discussion, we do not include syn-
chronization operations, such as Read-Modify-Write (RMW). A
RMW can be thought of as an atomic operation which includes a
LD and then a ST. It would be ordered such that order between a

RMW and another operation, OP2, respects the union of ordering
rules between OP2 and a LD and between OP2 and a ST.

5.1.1 SPARC Total Store Order (TSO)

SPARC Total Store Order (TSO) [17] is a variant of processor con-
sistency [7.8] that has been implemented on Sun multiprocessors
for many years. TSO relaxes SC in that STs can be ordered after
L.Ds which follow them in program order (so long as there are no
intervening memory barriers (MB) and the two operations are to
different locations). Thus, TSO sometimes allows a load to get a
value from a “future” store. In real implementations, this behavior
is manifest when a processor’s LD returns a value from its own ST
that is still on its own first-in-first-out (FIFO) write buffer and has
not yet seen by other processors. It should be noted that TSO sup-
ports multiple flavors of MBs, but we only concern ourselves with
the strongest (i.e., an MB that enforces order between any opera-
tion before it and any operation after it).

In previous research [3], we developed a memory model called
Wisconsin TSO that is equivalent to SPARC TSO, and it elimi-
nates the oddity of getting a value from a “future” store by splitting
each ST into a STpyae and a STpypiic: Wisconsin TSO respects
program order between STy s and LDs, while STyypj;cs can be
delayed until the next MB in program order. In addition, STppjc8
must also stay in program order with respect to each other. The
STpeivate and STpublic corresponding to the same ST carry the same
value. A LD gets its value from either (a) the most recent STyqe
by the same processor as the LD for which the corresponding
STouptic has not yet occurred (if any) or (b) the most recent STpypic
otherwise. The STpyae OF STpyplic from which the LD gets its
value is considered to be the applicable WriteOP. Practitioners can
think of a STy as a store entering a processor’s FIFO write
buffer, case (a) as bypassing from the write bulfer, STy as a
store exiling the write buffer, and case (b) as obtaining a LD's
value from cache or memory.

TABLE 6. TSO: Partial Program Order at a Processor

Operation 2

LD STpriv ST, MB LDio STio

LD A A A A A A

- STpiv | A A A? A A A
E | STpw | - - A A A A
g MB A A A A A A
© | Lbio | A A A A D D
STio - - - A D D

a. Includes the case where both operations are caused by
the same Store (i.e., OP1 is the STprivate and OP2 is the
STpublic for a given ST).

This definition leads to the ordering rules shown in Table 6 for par-
tial program order at a processor, where differences from Table 4
are shaded. Note that a programmer can enforce order from a
STpublic to a LD by inserting an MB between them.

5.1.2 An Approximation of Intel IA-32

The Inte] IA-32 memory model is similar to TSO, in that it is a
variant of processor consistency. We approximate the 1A-32 sys-
tem ordering model by combining the TSO memory model with
our interpretation of the 1A-32 /O ordering rules [4]. 1A-32 has
two uncached (UC) operations, LDuc and STug, that are similar to
our LDio and STio /O operations, but UC operations are more
strictly ordered. All operations before a UC operation (in program
order) are ordered before the UC operation, all operations after a
LDuc are ordered after the LDuc, and all STs after a STuc are
ordered after the STuc. In addition to the UC operations, 1A-32 has
two “write combining” (WC) uncached operations, LDwc and
STwe. These operations are less strictly ordered than LDio/STio
operations, and they are well-suited to the access ordering require-
ments for a video frame buffer. There is no ordering enforced
between WC operations or between a WC operation and a cache-
able memory operation. Also, 1A-32 has several “serializing
instructions” which enforce ordering in much the same way as
memory barriers, and we will simply refer to them as MBs.

We have made two simplifications in this description of [A-32.
First, 1A-32 has several flavors of cacheable memory operations,
including Write-through, Write-back, and Write-protected, but we
will fold them all into LD/ST operations. Second, it supports IN
and OUT V/O instructions, which are not memory-mapped 1/O, but
instead directly access 1/0 ports. These /O instructions are
ordered just as strongly as MBs, and we do not include them here.

Table 7 shows the ordering rules al a processor obeying our
approximation of 1A-32. Once again, differences from the SC table
are shaded. Notice the extra ordering requirements of the LDuc/
STuc compared to those of the LDio/STio in Table 4.

5.1.3 Compaq Alpha

The Compaq (DEC) Alpha memory model {14] is a weakly consis-
tent model that relaxes the ordering requirements at a given pro-
cessor between any accesses to different memory locations unless
ordering is explicitly stated with the use of a Memory Barrier
(MB). The Alpha memory model is formally defined through the
use of two orders that must be observed with respect to memory
accesses. The first order, program issue order, is a partial order on
the memory operations (LDs, STs) issued by a given processor.
Issue order relaxes program order in that there is no order between
accesses o different locations without intervening MBs. Issue
order enforces order between accesses to the same location, order
between any access and an MB, and order between MBs. The sec-
ond order, access order, is a total order of operations on a single
memory location (regardless of the processors that issued them).

We previously defined an equivalent memory model, called Wis-
consin Alpha [3], where an execution of an implementation satis-
fies the Wisconsin Alpha memory model if there exists a total
ordering of all loads, stores, and MBs, such that:

e all of the issue orders are respected, and

e g load returns the value of the most recent store to the same
location in this total order.

This definition of Wisconsin Alpha is reflected in the partial pro-
gram ordering rules shown in Table 8. Notice that there are no
ordering requirements between L.Ds and STs (unless they are to the

TABLE 7. “I1A-32”: Partial Program Order at a Processor

Operation 2
LD STpriv STpub MB LDuc STuc LDwc STwe
LD A A A A A A - -
- STpriv A A A? A A A - -
.ij STpub - - A A A A - -
5 MB A A A A A A A A
g LDuc A A A A A A A A
STuc - A A A A A - A
LDwc - - - A A A - -
STwe - - - A A A - -

a. Includes the case where both operations are for the same ST (i.e., OP1 is the STprivate and OP2 is the STpublic for a given ST).

TABLE 8. Alpha: Partial Program Order at a Processor

Operation 2

LD ST MB LDio STio
LD - - A A A

Y
g ST - - A A A
O |MB | A A A A A
g- LDio | A A A D D
STio - - A D D

same address). To enforce order between them requires inserting
an MB between them, which creates the order LD/ST <y MB <y
LD/ST.

5.1.4 Release Consistency

Release consistency (RC), particularly the RCpc flavor, is one of

the most relaxed memory consistency models [7]. To define con-
sistency models like this, Gharachorloo et al. developed a general
framework for memory consistency models, where writes are bro-
ken into p+1 sub-operations, where p is the number of processors
in the system [6]. This framework, in turn, is based on a system
abstraction developed by Collier [2].

Along these lines, we could expand our partial program order
tables to reflect that a store in an RC system could appear to be
broken up into a ST iyae and many STpuplics: With one STouplic at
each processor. The applicable WriteOP for a LD would be either
the STpivae OF the STyypiic at that processor. Moreover, RC has
two new operations, Acquires and Releases, which can be consid-
ered to be types of MBs for our purposes. Acquires and Releases
would be included in the processor partial program order table, and

the ordering required among them would depend on the flavor of

RC. For example, the ordering between acquires and releases in an
RCpc system would be the same as the ordering between LDs and
STs in a processor consistent system (e.g., TSO). This approach,
however, could lead to large, unwieldy tables.

5.2 WIO Consistency for General Memory Models

Extending the definition of WIO from Section 4.2 to incorporate
memory models other than SC requires that we:

e Add any new operations, such as LDwc and STwc (which are a
ReadOP and a WriteOP, respectively).

* Define what the applicable WriteOPs are for a ReadOP. For
example, in TSO, the applicable WriteOP for a LD is the most
recent STpqvate at'lhat processor unless the corresponding
STpubiic is also before the LD, in which case it is the most
recent STpubliC“

e Change WIO property 2 to read:
2. the value read by every ReadOP operation is the value stored by

the most recent applicable WriteOP operation to the same address
in the <y order.

6 An Implementation that Obeys WIO for SC

So far, we have provided abstract specifications of systems that
include 1/0. We now provide a concrete implementation that aims
to conform to the WIO specification for SC systems presented in
Section 4. In this section, we specify a sequentially consistent
directory-based system consisting of the components described in
Section 3. This description builds upon the directory protocol
-described in Plakal et al. [12]. The description is divided into
descriptions of the processor nodes, interconnect, /O devices,
bridge and memory nodes.

Processor nodes: The cache receives a stream of LD/ST/L.Dio/STio
operations from the processor and, if it cannot satisfy a request, it
issues a transaction.! The complete list of transactions, including
block transfer transactions (Rblk/Wblk) that can only be issued by
devices and which will be discussed later, are shown in Table 9.
Cache coherence transactions (GETX/GETS/UPG/WB) are
directed to the home of the memory block in question (i.e., the
memory node which contains the directory information for that

1. As noted earlier, caches can also proactively issue transactions
without receiving an operation from their processors.

block). 1/O transactions (Rio/Wio) are directed to a specific /O
device and also contain an address of a location within the memory
of the device (and, if Wio, the data to write as well). The granular-
ity of access for an I/O transaction is one word (for simplicity of
exposition). Rios generate a reply message from which the cache
extracts a register value and passes it to the processor. Wios do not
generate any reply messages from the target device; in the case that
a processor issues a Wio and desires a response, it can subse-
quently query the device with a Rio. Note that each LDio or STio
generates exactly one Rio or Wio (respectively). This is unlike nor-
mal cacheable memory transactions where, for example, multiple
LDs or STs may be issued o the same block after a single GETX
brought it into the cache.

TABLE 9. Transactions

Transaction Description

GETX Get Exclusive access

GETS Get Shared access

UPG Upgrade (Shared to Exclusive) access

WB Write Back

Rio Read I/O - read word from 1/0 space

Wio Write 1/0 - write word to 1/O space

Rblk Read Block - read cache block from ordi-
nary memory

Whblk Write Block - write cache block to ordi-
nary memory

Processor nodes must conform to the list of behavior requirements
specified in Section 2.4 of Plakal et al. [12] (e.g., a processor node
maintains at most one outstanding request for cach block). They
must also conform to the ordering restrictions laid out in Table 4.
Thus, they do not issue a LD/ST until all LDios preceding it in pro-
gram order have been “performed” (i.e., the reply has been written
into the register by the cache).

A processor node’s network interface sends all transactions from
the cache into the interconnection network. In addition, the net-
work interface will pass a Wio coming from the network to the
processor’s interrupt register. It also passes all replies to transac-
tions to the cache.

Interconnect: The network ensures point-to-point order between a
processor node and a device node, and it ensures reliable and even-
tual delivery of all messages.

Bridge: The 1/O bridge performs the following functions: it
receives Rio/Wios from processor nodes and broadcasts them on
the I/O Bus (this has to be done in order of receipt on a per-device
basis); sends Wio replies from device memory to processor nodes;
sends Wios (to interrupt registers) from device processors to pro-
cessor nodes; participates in Rbik/Wbik transactions (discussed
below) and broadcasts completion acknowledgments on the 1/O
bus. The 17O bridge must obey certain rules. It provides sufficient
buffering such that it does not have to deny (negative acknowledg-
ment or NACK) requests sent by processors or devices. It also han-
dles the re-try of its own NACKed requests (to memory nodes). No
order is observed in the issue/overlap of Rblk/Wblk transactions.

Device Nodes: Each device processor can issue LDio/STios Lo its
device memory and INTs to processor interrupt registers. INT
operations are converted to Wio transactions by the /O bridge.
These are directed to a specific processor’s interrupt register and
do not generate reply messages. In addition, a device can also issue
LDblk and STblk requests, and these operations are converted to
Rblk and Whblk transactions by the bridge and are directed to the
home node. The data payload for both requests is a processor
cache line (equal to a block of memory at a memory node, which is
equal to the coherence unit for the entire system). Both requests
generate acknowledgments (ACKs) on the 1/O bus (from the
bridge) and, in the case of the Rbik, the ACK contains the data as
well. A Whlk request carries the data with it. Also, cach LDblk/
STblk will generate exactly one RbIk/Wblk (just as with LDio/
STios and Rio/Wios).

Each device memory receives a stream of LDio/STios from its
device processor. In addition, it also receives a stream of Rio/Wios
from the bridge (via the /O bus) which it logicaily treats as LDio/
STios. These two streams are interleaved arbitrarily by the device
memory. For each incoming Rio, the device memory sends (via the
bus and the bridge) the value of that location back to the node that
sent the Rio. LDio/STios operate on device memory like a proces-
sor’s LD/STs operate on its cache.

The device processor must obey the ordering rules specified in
Table 5. For example, an INT is not issued until all LDblk/STblks
preceding it in “device program order” have been performed (i.e.,
an ACK has been received from the bridge for the corresponding
Rbik/Wblk).

Memory Nodes: Memory nodes operate as described in Plakal et
al. [12] (with respect to directory state and transactions), with the
following modifications for handling Rbik/Wblk transactions. Pro-
toco! actions depend on the state of the block at the home node for
both transactions.

Rblk:

s Jdle or Shared: the home sends the block to the bridge, which
broadcasts an ACK with the data on the [/O bus.

o [xclusive: the home changes state to Busy-Rblk, removes the
current owner’s 1D from CACHED, and forwards the request
to the current owner. The owner sends the block to the bridge,
invalidates the block in its cache, and sends an update message
(with the block) to the home, which changes the state to ldle
and writes the block to memory. The bridge receives the block
and broadcasts an ACK along with the data on the /O bus.

© Busy-Any: the home NACKSs the request.

Whik:

e Jdle: the home stores the block to memory and sends an ACK
to the bridge. The bridge sends an ACK to the device (via
broadcast on the I/O Bus).

e Shared: the home stores the block to memory, sends invalida-
tions to all shared copies, sends a count of the copies to the
bridge and changes the state to Busy-Wbik. The bridge waits
until it receives all ACKs for the invalidations before broad-

TABLE 10. Example 1

TABLE 11. Example 2

D1 P2 D3
send Wio W1 to DI

recv Wio W1 send Rio Wi to D1
STio W1 send Rio W2 to D3
recv Rio W recv Rio W2

LDio W1; send to P2
receive W2
LDio W2
receive W1
LDio W1

casting the transaction completion ACK on the I/O Bus. The
bridge also then sends an ack to the home which enables it to
change its state to /dle.

e [Exclusive: the home stores the block to memory, sends an
invalidation to the (previous) owner, sends an ACK to the
bridge, and changes the state to Busy-Wblk. The former owner
invalidates its copy and sends an ack to the bridge, which then
sends an ACK to the device and to the home (which then
changes its state to /dle).

* Busy-Any: the home NACKSs the request.

Note that we now have two new “busy” home states, Busy-Rblk
and Busy-Whik, which serve similar roles as the busy states used in
the original directory protocol. These modifications make some
formerly impossible situations possible. In particular, Writeback
requests may find the home busy. One solution is to modify this
transaction case:

o Writeback on home Busy-Rblk or Busy-Wblk: This is the same
as when the home is Busy-Shared.

7 Proof that the Implementation Satisfies WIO

We show correctness of the implementation described in Section 6
as follows. We will use a verification technique based on Lam-
port’s logical clocks [9] that we have successfully applied to sys-
tems without I/O [16, 12, 3]. The technique relies on being able to
assign limestamps o operations in a system and then proving that
the ordering induced by the timestamps has the properties required
of the implementation. In order to apply our verification technique,
we first describe a timestamping scheme that logically orders all
ReadOps and WriteOps that occur in any given execution of the
protocol. Second, we show that the resulting total order satisfies
properties 1 and 2 of WIO consistency, as in Section 4.2 for SC. A
detailed specification of our correctness proof can be found in
Appendix A; the following is a short overview of our approach.

To specify the timestamping scheme, we augment processors,
directory, and device processors (all referred to as nodes) with log-
ical clocks. We stress that these clocks are simply conceptual tools,

/ LDio W2; send to P2

D3 P4 P5
GETX B
send Wio W2 to D
recv INV B
recv acks/data for B
reve Wio W2
STio W2 STB

not part of the actual protocol. Using these clocks, a unique times-
tamp is assigned to each read and write. In addition, a transaction
that causes a node to change its access permission to a block of
data or word of 1/0 is timestamped by that node. Thus, a transac-
tion may be timestamped by several nodes. Roughly, when an
event (i.e. read, write, or transaction) to be timestamped “happens”
at a node, the clock is moved forward in time and the updated time
on the clock is assigned to that event. Of course, events are not
atomic and so a central aspect of the timestamping method is the
determination, from the protocol specification, of exactly when
(and where) events are timestamped (and thus when they are con-
sidered to “happen”). In this way, the timestamping scheme pro-
vides a single, total ordering of all key events in the system. The
correctness proof then shows that the real system behaves just as if
the events happened atomically, in the order given by the times-
tamping scheme.

Tables 10, 11, and 12 are examples that illustrate how the times-
tamping scheme works and help in reasoning about correctness of
our protocol. We need to describe one further aspect of timestamps
before getting to our examples. Timestamps are split into three
non-negative integral components: global time, local time, and
processor 1D. As will become clearer from the example, global
timestamps help to order transactions which happen across nodes,
whereas local timestamps help to order read and write operations

_that happen internal to a node. Processor 1D simply acts as a tie-

breaker between operations with the same global and local times-
tamps.

The first example, shown in Table 10, shows one processor, P2,
that communicates with two devices, namely D1 and D3. P2 sim-
ply does a write followed by a read to a word W1 of DI, followed
by a read to a word W2 of D3. Because the network preserves
point to point ordering of messages, D1 first receives the “Wio
W1" request, and then the “Rio W1~ request; D1 performs these
operations in order and returns the value of W1 to P2. Meanwhile,
D3 handles the “Rio W2” request and returns the value of W2 to
P2,

TABLE 12. Combined example with timestamps. Initially, all clocks (global.local) are set to 0.0.

D1 P2 D3

P4 P5

send Wio W1 to D1
send Rio W1 to D1
send Rio W2 10 D3

1.0.1 recy Wio W1

1.1.1 STio W1

2.0.1 recv Rio W1

2.1.1 LDio W1; send to P2
receive W2
LDio W2
receive W1
LDio W1

1.0.3 recv Rio W2
1.1.3 LDio W2; send to P2

GETX B
send Wio W2 to D3
1.0.5 recv INV B

2.0.4 recv acks/data for B

2145TB

2.0.3 recv Wio W2

2.1.3 STio W2

Table 12 shows how these reads and writes are timestamped. In our
timestamping scheme, reads and writes to device memory are
timestamped at the device (thus ensuring that, in the resulting total
ordering, the value of a read is that of the most recent write to the
same word). The Wio and Rio requests to D1 are considered to be
transactions and so D1 assigns global time 1 to the Wio and global
time 2 to the Rio request. As with all transactions, the local times-
tamp for each of these is 0, and the final component of the times-
tamp is the device ID, which is 1 in our example. When the (local)
“STio W17 is performed by D1, the local time is incremented, and
thus the timestamp is 1.1.1. Similarly, the timestamp of the “LDio
W1 operation is 2.1.1, and the events at D3 are timestamped in a
manner consistent with those at D1. Thus, the “STio W1” appears
before the “LDio W1 operations at D1. This is consistent with our
specification in Table 4 that reads and writes to a common device
(in this case, D1) by a processor should respect program order.
Also note that, regardless of the relative order in real time of the
“LDio W1 at D1” and “LDio W2 at D3,” the “LDio W1” happens
before the “LDio W2 in timestamp order simply because DI’s
clock is further along than D3's clock when they perform these
operations. The timestamps assigned to these operations are also
independent of whether P2 receives the value of W2 before or after
P2 receives the value for Wi. So, although the “Rio W1 appears
before “Rio W2” in P2’s program order, the “LDio W2 appears
before the “LDio W1” in timestamp order. Again, this is consistent
with Table 4, which that specifies LDios to different devices are
not constrained to respect program order.

Our second example, in Table 11, concerns a processor P4 that
receives exclusive permission for block B, causing processor P5 to
invalidate its copy of block B. In addition, P4 sends a “Wio W2” 10
D3. Table 12 shows how transactions and operations at D3, P4, and
P5 are timestamped. The timestamping rules specify that the glo-
bal timestamp assigned by P4 to the GETX transaction must be
later than the corresponding INValidate at P3. Imagine that acks
sent to P4 from PS5 include the timestamp of the INValidate. Also,
in contrast with the fact that reads and writes to devices are times-
tamped at the device, reads and writes to cacheable memory (and

thus the “ST B” operation at P4) are timestamped at the processor
performing the operation. This is because permissions for the
block reside at the processor, whereas permissions for a word of
device memory always reside at the device.

Note that in Table 12, at any single node, the logical timestamps
are always increasing in real time, while timestamps may be “out
of order” across nodes in real time. Finally, note that the logical
timestamps provide a total ordering of all reads and writes; this
total ordering obtained in our example can be easily seen to satisfy
the conditions of Section 4.2,

8 Conclusions

Although 1/O devices are integral parts of computer systems and
having clean I/O architectures would offer benefits, the commer-
cial systems with which we are familiar tend to use ad hoc, com-
plex, and undocumented interfaces. In this paper, we have
proposed a framework called Wisconsin 1/O for formally describ-
ing 1/O architectures. W1O is an extension of research on memory
consistency models that incorporates memory-mapped /O, inter-
rupts, and device operations that cause side effects. WIO is defined
through ordering requirements at each processor and device, and a
system is considered to obey WIO if there exists a total order of all
operations that satisfies these ordering requirements such that the
value of every read is equal to the value of the most recent write.
We outlined how to use Lamport clocks to prove that an example
system that we specified satisfies its WIO specification.

The framework presented here for specifying and analyzing sys-
tems with I/O can be generalized in several ways that were not pre-
sented earlier in order to simplify the discussion. For example,
unlike in Section 6, we can model I/O bridges that do not have
enough buffering to ensure that they can sink all incoming
requests. Also, the definition of Wisconsin I/O consistency is
parameterized by a n-tuple of partial program orders and is there-
fore easily generalized to handle an arbitrary set of local ordering
rules. In the extreme case, each processor and each device would
have its own table of partial program orders.

Acknowledgments

We would like to thank Sarita Adve, Bob Cypher, Andy Glew, Gil
Neiger, and the anonymous referecs for their helpful comments
and suggestions. The authors, however, take responsibility for the
views expressed in this paper.

References
i Sarita V. Adve and Kourosh Gharachorloo. Shared Memory

Consistency Models: A Tutorial. JEEE Compuler, pages 66-76,
December 1996.

2] William W. Collier. Reasoning About Parallel Architectures.
Prentice-Hall, Inc., 1992.

[3} Anne E. Condon, Mark D. Hill, Manoj Plakal, and Daniel J. Sorin.
Using Lamport Clocks to Reason About Relaxed Memory Models.
In Proceedings of the Sth International Symposium on High
Performance Computer Architecture, January 1999

[4] Intel Corporation. Pentiun Pro Family Developer’s Manual,
Version 3 Operating Systent Writer's Manual. January 1996

[5) David Culler, Jaswinder Pal Singh, and Anoop Gupta. Parailel
Computer Architecture: A Hardware/Software Approach. Morgan
Kaufmann, 1998

(6] Kourosh Gharachorloo, Sarita V. Adve, Anocop Gupta, John L
Hennessy, and Mark D. Hill. Specifying System Requirements for
Memory Consistency Models. Technical Report CS-TR-1199,
University of Wisconsin — Madison, December 1993. See also
URL, ftp://fip.cs wisc.edu/tech-reports/reports/93/tr1 199.ps. Z

n Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip
Gibbons, Anoop Gupta, and John Hennessy. Memory Consistency
and Event Ordering in Scalable Shared-memory Multiprocessors,
In Proceedings of the 17t Aunual International Symposium on
Computer Architecture, pages 15-26, May 1990

[8] J. Goodman. Cache Consistency and Sequential Consistency.
Technical Report 61, IEEE Scalable Coherent Interface Working
Group, 1989.

[9] Leslie Lamport. Time, Clocks and the Ordering of Events in a
Distributed System. Communications of the ACM, 21 (7):558-565,
July 1978

[10] Leslie Lamport. How to Make a Multiprocessor Computer that

Correctly Executes Multiprocess Programs. JEEE Transactions on
Computers, C-28(9):241-248, September 1979,

James P. Laudon and Daniel Lenoski. The SGI Origin: A
ccNUMA Highly Scalable Server. In Proceedings of the 24ih
Imternational Symposium on Computer Architecture, Denver, CO,
June 1997.

Manoj Plakal, Daniel J. Sorin, Anne E. Condon, and Mark D. Hill.
Lamport Clocks: Verifying a Directory Cache-Coherence
Protocol. In Proceedings of the 10th Annual ACM Symposium on
Parallel Architectures and Algorithms, Puerto Vallarta, Mexico,
June 28-July 2 1998

A Singhal, D Broniarczyk, F. Cerauskis, J Price, L. Yuan,
C. Cheng, D.Doblar, S Fosth, N.Agarwal, K. Harvey,
E Hagersten, and B. Liencres. Gigaplane: A High Performance
Bus for Large SMPs. Hot Interconnects 1V, pages 41-52, 1996

[t

[12]

{13]

Richard L. Sites, editor. Alpha Architecture Reference Manual.
Digital Press, 1992.

Mark Smotherman. A Sequencing-Based Taxonomy of 1/0
Systems and Review of Historical Machines. Conmpuier
Architecture News, 17(5):10-15, September 1989. See also URL
hitp://www cs.clemson.edu/~mark/io.ps.

Daniel J. Sorin, Manoj Plakal, Mark D. Hill, and Anne E. Condon.
Lamport Clocks: Reasoning About Shared-Memory Correctness.
Technical Report CS-TR-1367, University of Wisconsin-Madison,

(16}

March 1998. See also URL f{tp:/ftp.cs.wisc edu/tech-reports/
reports/98/tr1 367 ps.Z.

David L. Weaver and Tom Germond, editors The SPARC
Architecture Manual, Version 9. Prentice Hall, 1994, SPARC
International, Inc

[17]

Appendix A: Proof that an Implementation Satisfies wio!

In this section, we will demonstrate that the impiementation
described in Section 6 satisfies the definition of WIO. We will use
a verification technique based on Lamport’s logical clocks that we
have successfully applied to systems without I/O [16, 12, 3]. The
technique relies on being able to assign limestamps to operations
in a system and then proving that the ordering induced by the
timestamps has the properties required of the implementation.
Section A.1 provides background on our verification technique,
Section A.2 describes the timestaimping scheme for our implemen-
tation, and Section A.3 provides the proof of correctness of the
implementation. Both the timestamping scheme and proof are
intended to be modest extensions of those presented in our previ-
ous work [12].

A.1 Background to Lamport Clocks?

Our previous work on using Lamport Clocks to verify shared-
memory multiprocessor systems [12,16] proved that implementa-
tions (without 1/O) using a SGI Origin 2000-like [11,5] directory
protocol and a Sun Gigaplane-like [13] split-transaction bus proto-
col both implement SC. Both implementations use three-state
invalidation-based coherence protocols. We have also extended
this research to use Lamport clocks to prove that systems obey two
relaxed memory consistency models, SPARC TSO and Compag
Alpha [3].

Our reasoning method associates logical timestamps with loads,
stores, and coherence events. We call our method Lamport Clocks,
because our timestamping modestly extends the logical times-
tamps Lamport developed for distributed systems [9]. Lamport
associated a counter with each host. The counter is incremented on
local events and its value is used to timestamp outgoing messages.
On message receipt, a host sets its counter to one greater than the
maximum of its former time and the timestamp of the incoming
message. Timestamp ties are broken with host ID. In this manner,
Lamport creates a total order using these logical timestamps where
causality flows with increasing logical time.

Our timestamping scheme extends Lamport’s 2-tuple timestamps
to three-tuples: <global . local . node-id>, where global takes pre-
cedence over local, and local takes precedence over node-id (e.g.,
3.10.11 < 4.2.1). Coherence messages, or transactions, carry global
timestamps. In addition, global timestamps order LD and ST oper-
ations relative to transactions. Local timestamps are assigned to
LD and ST operations in order to preserve program order in Lam-
port time among operations that have the same global timestamp.

1. This appendix is present in the technical report version of this
paper but not in the version that appears in the Proceedings of the
11th Annual Symposium on Parallel Algorithms and Architectures
(SPAA), June 1999,

2. This summary is similar to the summary we present in Section
2.1 of Condon et al. [3].

D

They enable an unbounded number of LD/ST operations between
transactions. Node-ID, the third component of a Lamport times-
tamp, is used as an arbitrary tiebreaker between two operations
with the same global and local timestamps, thus ensuring that all
LD and ST operations are totally ordered.

A.2 Timestamping Scheme for Our Implementation

Before we present the timestamping scheme, we would like to
define some concepts and make some changes which will make the
timestamping and the proof simpler to express and understand.

First, we split up Rblk and Wblk transactions into two steps: RBIk-
Start/End and WBIk-Start/End, respectively. The reasoning behind
this is as follows: cache coherence transactions (e.g., a GETX) will
bring a block into a processor cache where it can be accessed until
it is removed via another transaction (e.g., 2 WB or an incoming
invalidation generated by another GETX). On the other hand,
RBIK/Wblk transactions access a cache block but they do not give
the device permission to do more than one operation (LDblk/
STbIk). It is as if the LDblk/STblk was immediately followed by a
transaction that removed the device’s access to the block. Concep-
tually breaking RBIk and WBIk into Start and End transactions
unifies cache coherence and DMA transactions into one frame-
work and simplifies the timestamping and the proof. This was not
done earlier (in Section 6) to avoid confusing the reader with extra
detail. The changes to the protocol are minimal: every RBIk/WBIk
transaction is now regarded as a RBIK/WBIk-Start transaction.

After such a transaction succeeds, a device node is now capable of

performing a LDblk/STblk operation. The Rblk-End/Wblk-End is
considered lo conceptually occur when the transaction is complete.

Consislent with our previous work {12], we introduce the notion of
a per-block A-state (address-state) at a node to describe the home
node’s view of that node’s access to that block of memory. The A-
state can be one of Aj (Idle), Ag (Shared), or Ay (Exclusive). The
A-state of a block at a node changes as it participates in transac-
tions for that node (either initiated by it or forwarded to it by the
home). The A-state is set to A| when the node receives an invalida-
tion or a forwarded Ger-Exclusive, or an acknowledgment for its
own Writeback request. The A-state is set to Ag when the node
receives a downgrade, or a response (o its own Get-Shared request.
Finally, the A-state is set Lo Ay when the node receives a response
to its own Upgrade or Get-Exclusive request, along with all associ-
ated invalidation acknowledgments. In addition, we now define the
A-state of a device node for a block B of memory to change to Ag
or Ax when it performs a RBIk-Start or WBIk-Start, and that it
change to Aj on a RBIk-End or WBIk-End. Similarly, after a RBIk/
WBIK-Start transaction, the home node’s A-state will change (0 A,
or Ag according as the final home state for that block is /dle or
Shared respectively. After a RBIK/WBIk-End transaction, the
home nodels A-state will change to Ay if the final home state for
that block (after the corresponding RBIk/WBIk-Start) was Idle.

We assign timestamps to the operations and transactions defined in
Tables 1, 2, and 9 (with RBIk and WBIk split up as described
above). The rules listed in Tables 13, 14, and 15 indicate the
assignment of the global and local components of the timestamp
for each kind of operation/transaction. Note that transactions do
not need a local timestamp and could be assigned some arbitrary

TABLE 13. Processor node timestamping

Operation/ Global Local
Transaction | Timestamp Timestamp | Node ID
LD, ST current global I + current processor
clock local clock
LDio global timestamp] device
of corresponding
Rio (sent)
STio global timestamp] device
of corresponding
Wio (sent)
P-UP I + max {global 0 processor
clock, timestamps
assigned to P-UP
by all other nodes
that downgrade as
a result of P-UP}
P-DOWN 1 + global clock 0 processor
Rio (sent) only timestamped at device
Wio (sent) only timestamped at device
Wio (recv) I + max {global ot processor
clock, global
timestamp of
device when Wio
was sent}

a. Timestamp is 0, but the clock is set to 1. This ensures that
LDio/STios issued by a processor get a local timestamp of |,
while those issued by a device get a local timestamp of 2 or
greater.
local timestamp (e.g., zero so that a transaction gets ordered before
operations with the same global timestamp).

Conceptually, each node (processor/memory/device) maintains a
global and local clock which get updated in real time for opera-
tions and transactions. To do this in a well-defined manner, we
define a rimestamping order which is a per-node total order which
decides the order in which operations and timestamps get assigned
timestamps. Operations enter the timestamping order of a node at
the point in real time when they are retired (i.e., they cannot be un-
done due to mis-speculation handling), and operations are retired
in a real time order that is consistent with program order. If more
than one operation is committed at the same point in real time, they
can be ordered arbitrarily in the timestamping order. Transactions
enter the timestamping order of a node at the point in real time
when the corresponding A-state change occurs at that node’.

The timestamping rules given below also determine the mainte-
nance of the per-processor clocks in that a node updates its global
and local clocks to equal the corresponding timestamp of each

1. There is the exceptional case of Ger-Shared transactions at the
home for a Shared block. In this case, we consider the timestamp
to be assigned at the point that the home sends the block to the
requester, i.e., when the A-state “changes” from Ag to Ag.

TABLE 14. Memory node timestamping

Transaction Global Timestamp

M-UP 1 + max {current global clock, timestamps
assigned to M-UP by the nodes that down-
grade as a result of M-UP}

M-DOWN 1 + current global clock

Rblk-Start 1 + max {current global clock, global times-
tamp of device when Rblk-Start was sent,
global timestamp assigned to Rblk-Start by
Exclusive node that downgrades as a result of
Rblk-Start (if any)}

RBIlk-End 1 + current global clock

Whlk-Start 1 + max {current global clock, global times-
tamp of device when Wblk-Start was sent,
global timestamp assigned to Wblk-Start by
all nodes that downgrade as a result of Whlk-
Start (if any)}

WBIk-End 1 + current global clock

operation/transaction it timestamps in timestamping order. Any
increase in the global clock value causes the local clock to be reset
to zero before it is updated as specified by the rule. There are a few
cases where a lransaction originating at a node is timestamped
elsewhere (e.g., the Wio at a device corresponding to an INT). The
assignment of this timestamp causes the local node’s global clock
to get incremented (if necessary). For purposes of timestamping,

we consider a bridge to be part of each device node, and all trans-
actions in which a bridge participates on behalf of a device node
will update the clocks of that device node.

Processor nodes: Let P-UP be a transaction that causes an increase
in coherence permissions (upgrade) at processor node p; (GETX,
GETS, or UPG by p;), and let P-DOWN be a transaction that
causes a decrease in coherence permissions (downgrade) at p; (WB
by p;, GETX by p; for a block that p; has Shared or Exclusive, UPG
by p; for a block that p; has Shared, GETS by p; for a block that p;
has Exclusive, or Rblk/Wblk by a device for a block that p; has
Shared or Exclusive). Then the processor node timestamping rules
are as shown in Table 13.

Memiory nodes: Let M-UP be a transaction that causes an increase
in permissions at memory node m; (WB by p;), and let M-DOWN
be a transaction that causes a decrease in permissions at m; (GETS,
GETX, or UPG by p;). With these definitions of M-UP and M-
DOWN, the timestamping rules for memory nodes are as shown in
Table 14. The memory node timestamps transactions in the real-
time order in which they are processed. In the case of transactions
that involve transient Busy states, the “current global clock” corre-
sponds to the global clock at the time the Busy state is entered,
while the timestamp of the transaction is assigned when the mem-
ory enters a non-transient state (Idle, Shared, Exclusive).

Device nodes: A device node timestamps operations and transac-
tions as shown in Table 15.

TABLE 15, Device node timestamping

Operation/ Global Local
Transaction Timestamp Timestamp | Node ID
LDio, STio current global | + current device
clock local clock
INT global times- 1 processor
tamp of corre-
sponding Wio
LDblk global times- | memory
tamp of corre-
sponding Rblk-
Start
STblk global times-] memory
tamp of corre-
sponding
Whlk-Start
Rio (recv) 1+ max{global | 0° device
clock, global
timestamp of
sender when
Rio was sent}
Wio (recv) I+ max {glo- 0* device
bal clock, glo-
bal timestamp
of sender when
Wio was sent}.
Wio (sent) only timestamped at processor
Rblk-Start only timestamped at memory
RBIk-End only timestamped at memory
Whblk-Start only timestamped at memory
WBIk-End only timestamped at memory

a. See footnote under Table 13.

A.3 Proof of Correctness of Our Implementation

To prove WIO, it is sufficient to show that there is a total order of
operations such that the orderings in Tables 4 and 5 are respected
and such that every Read-OP gets the value of the most recent
Write-OP. The timestamping scheme ensures the total order and,
combined with the protocol specification, ensures that Tables 4 and
5 are respected. LDios and STios to device memory are ordered at
the device in the order in which they are performed, so a LDio
must get the value of the most recent STio. Now we will prove that
every LD/LDblk gets the value of the most recent ST/STblk.

The proof that we provide here is very similar in structure to the
proof that we provided in our previous work [12]. In what follows,
we first outline how definitions from our previous work can be
extended to the implementation presented in this paper. We then
summarize the claims and lemmas that are used in the main theo-
rem. The changes in the statements of these results (relative to our
previous work in SPAA’98 [12]) are in underlined bold.

The consistency model is established using the concept of coher-
ence epochs. An epoch is an interval of logical time during which a

node has read-only or read-write access to a block of data. In the
rest of the paper, we assume a block to be a fixed-size, contiguous,
aligned section of memory (usually equal to the cache line size).
Also, LDs and STs operate on words, where we assume that a
word is contained in a block and is aligned at a word boundary.
Our scheme could be extended to handle LDs and STs on sub-units
of a word (half-words or bytes) which need not be aligned. How-
ever, this makes the specification of the memory models very
tedious without any gain in insight or clarity.

Transactions on a given block are serialized by the block’s direc-
tory. Hence, we can speak about a sequence of transactions on the
same block where the ordering is implied by their serialization at
the directory. For each node N, a sequence of t transactions on
block B (where the order among transactions is seen at the Home)
defines a unique sequence Ay, A(z)..-., Ay of associated A-states
for N, given some initial A-state value at N. If Ay is not equal to
Ag.py forsome i 2 I, we say that the i transaction in the sequence
“affects” N and that the transaction “implies that N’s A-state for
block B change from A, to A" For example, consider a single
block of memory and three nodes: Ny (processor), N (device) and
N3 (memory). Suppose that both Ny and N, start out with an initial
A-state of Ay and Ny starts with Ay. Let the sequence of transac-
tions at Ny be Ny’s Get-Exclusive, No’s RBIk-Start and Ny's RBlk-
End. Then the sequence of A-states for Ny, Ny and Ny are Aj, Ay,
A Al AL AL Ay, Apand Ay, A A Ay respectively. The Ger-
Exclusive affects Ny and Nj, while the RBIk-Start/End affect N,
and Nj. In the special case that a node is the directory, we say that
it is also affected by all transactions resulting from Get-Shared
requests, even though no change in the A-state at the directory may
be implied by such a transaction.

Each transaction implies an “upgrade” of A-state (i.e. change from
state Ay to Ag, from Aj to Ay, or from Ag to Ay) at exactly one
node. For example, a RDblk-Start causes an upgrade at the device,
a downgrade at memory, and possibly a downgrade at a processor.
Also, each transaction implies a “downgrade” of A-state (ie.
change from Ay to Ag, from Ay to A}, or from Ag to Ay) at zero or
more nodes. In the special case that node N is the directory, we say
that N's A-state “downgrades” as a result of every Get-Shared
transaction, even though its A-state may not be changed by the
transaction. On each transaction, exactly one node upgrades and
zero or more nodes downgrade.

The definitions of “affects” and “implies” in the previous two para-
graphs depend only on the sequence of transactions on block B at
B’s directory. In Claim 2 below, we show that the protocol specifi-
cation ensures that, at every node, the actual sequence of changes
to the A-state for block B occurs in the order implied by the serial-
ization of the transactions at B’s directory, even though messages
on successive transactions may be received out of order by a node.

Claim 1: For each transaction T, a message is sent to every proces-
sor affected by T. Also, if processor N upgrades as a result of T,
exactly those nodes that are affected by transaction T (other than
N) send a message to N.

Claim 2: The sequence of A-state changes on block B at a node
occurs in real time in the order implied by the serialization of
transactions on block B at its directory.

Claim 3: For a transaction T on block B,

(a) The timestamps of the downgrades associated with T are less
than or equal to the timestamp of the upgrade associated with T.

(b) The timestamp of the upgrade associated with T is less than the
timestamp of the upgrade associated with any transaction T" on
block B occurring after T in the serialization order at the directory,
so long as one of T or T’ is a Get-Exclusive or Writeback or

Claim 4: Every LD/ST or LDblIk/STblk operation on block B at
processor p; is bound' to the most recent (in Lamport time at p;)
transaction on block B that affects p;.

By construction, the Lamport ordering of LDs and STs within any
processor is consistent with program order. Therefore, to prove
sequential consistency, it is sufficient to show that the value of
every load equals the value of the most recent store.

Recall that a coherence epoch is simply a Lamport time interval
[t1,t2) during which a node has access to a block. All operations
that have global timestamp t where t} £t < tp are contained in
epoch [t},l;). A shared or exclusive epoch for block B at node N
starts at time t; il a transaction with timestamp t; (at N) implies
that N’s A-state for block B changes to Ag or Ay respectively. The
epoch ends at time ty, where 1, is N's timestamp of the next trans-
action on B that implies a change in A-state at N.

Lemma | shows that two processors cannot have “conflicting” per-
mission to the same block at the same (Lamport) time. Lemma 2
states that processors do operations within appropriale epochs.
Finally, Lemma 3 shows that the “correct” block value is passed
among processors and the directory between epochs.

Lemma 1: Exclusive epochs for block B do not overlap with other
exclusive or shared epochs for block B in Lamport time.

Lemma 2: (a) Every LD/ST, LDblk/STblk operation on block B
at p; is contained in some epoch for block B at p; and is bound to
the transaction that caused that epoch to start. (b) Furthermore,
every ST or STblk operation on block B at p; is contained in some
exclusive epoch for block B at p; and is bound to the transaction
that caused that epoch to start.

Lemma 3: If block B is received by node N at the start of epoch
[t}.t9), then each word w of block B equals the most recent ST or
SThlk to word w prior to t; or the initial value in the directory, if
there is no store to word w prior to global time t;.

The proof of the Main Theorem shows how WIO follows from the
lemmas.

Main Theorem: The value of every LD or LDblk equals the value
of the most recent ST or STbIk or the initial value, if there has
been no prior store.

1. In our previous work [12], we had defined the notion of LDs/
STs being bound to the transaction that brought the corresponding
block into the cache. Similarly, LDblk/STblk operations are bound
to their corresponding RBIk/WBIk-Start transactions.

