Using Lightweight Procedures to Improve
Instruction Cache Performance

Krishna Kunchithapadam
James R. Larus

Technical Report #1390

January 1999

Using Lightweight Procedures to Improve
Instruction Cache Performance

Krishna Kunchithapadam James R. Larus
University of Wisconsin-Madison Microsoft Research
1210 West Dayton Street One Microsoft Way
Madison, WI 53706 Redmond, WA 98052
krisna@cs.wisc.edu larus@microsoft.com
Abstract

Instruction cache performance is widely recognized as a critical com-
ponent of the overall performance of a program; especially so in the case
of large applications like database servers. In this report, we present a
technique for (1) identifying repeated blocks of instructions in a program
executable, and (2) converting these repeated code blocks into lightweight
procedures (i.e. LWprocs).

The use of LWprocs reduces the static code size of a program, and
can potentially reduce the working set size of the process, at the cost of
increasing its dynamic instruction count. However, the tradeoff seems to
be in favor of the reduction in working set size for most programs. Even
with a simple model of program structure and a straightforward technique
for generating LWprocs, we find performance improvements between 3%
to 9% for programs in the SPECINTY5 suite. However, the technique
sometimes leads to slowdowns (between 5% and 27%) for some programs,
suggesting that lightweight procedures should be used with care.

1 Introduction

1t is widely acknowledged that the instruction cache performance of a program
is an important component of its overall performance. Recent studies [RGAB9S,
LBE*98] of workloads on large database servers find that I-cache misses have
a significantly greater impact on overall program performance than comparable
rates of D-cache misses. Indeed, modern out-of-order execution engines are
able to tolerate the latency associated with D-cache misses far better than the
pipeline stalls associated with I-cache misses. Ranganathan et al. find up to
a 30% degradation in online transaction processing performance due to I-cache
misses. Lo et al. report that CPI degradation due to I-cache misses and large
memory footprints in database workloads may be as high as 75%.

Many techniques have been developed in the past to improve the spatial and
temporal locality of execution with respect to the I-cache. Locality-oriented
techniques have focused primarily on reordering the instructions, basic-blocks,
and procedures of a program to make better use of the memory hierarchy [PH90,
HKC97, CLY6].

In this work, we focus on a different method for improving the I-cache per-
formance of programs by attempting to reduce the size of their working set. We
do this through a code compression technique that (1) locates repeated blocks
of instructions in an executable, and (2) packs these code blocks into lightweight
procedures or LWprocs.

Code compression techniques similar to ours have been used in the past in
embedded systems where reducing the size of a programs working set is not
quite as important as merely having the code fit in memory [LDKT95, Lia96].

A lightweight procedure is a collection of instructions that may be called
like an ordinary procedure from anywhere in the program. By compacting long,
repeated code blocks into short procedure call sequences, we have the potential
to reduce the static size of a program’s code segment, and to also reduce the size
of its instruction working set during execution. But this optimization comes at
the cost of increasing the number of dynamic instructions the program executes
(the extra instructions for calling a lightweight procedure and returning from
it), and possible pipeline bubbles caused by the transfer of control.

In this respect, the use of LWprocs is the obverse of the technique of pro-
cedure inlining. Whereas procedure inlining expands a single copy of a block
of instructions (the procedure) into each of its call sites, our LWproc tech-
nique identifies common blocks of instructions and collects them into a single
lightweight procedure. Past work has demonstrated that procedure inlining can
degrade the performance of a program by causing code size blowup, i.e. by
greatly increasing the working set size of the program [DH92, DC93]. The use
of lightweight procedures combines the reduction of a program’s working set size
with low procedure call overhead (a call to an LWproc is much cheaper than a
regular procedure call).

Pinally, the use of LWprocs is orthogonal to other locality-based I-cache
optimizations, and it should be possible to combine basic-block and procedure
reordering /placement with code compression techniques into a single framework.

The rest of this report is organized as follows. In section 2, we motivate
the benefits of using lightweight procedures using a simple example benchmark.
In section 3, we discuss the details of identifying repeated code blocks in an
executable, and the use of binary rewriting to generate lightweight procedures.
In section 4, we present the results of our performance study on benchmarks in
the SPECINTO5 suite. In section 5, we discuss two extensions to the a model for
identifying and generating lightweight procedures. In section 6, we compare our
work to other techniques for improving the I-cache performance of programs.
Finally, we close with a summmary of our work.

1We use the term LWprocs rather than LWP to avoid confusion with the well established
meaning of lightweight process for the latter term.

2 Motivation

In order to motivate the usefulness of lightweight procedures, we will first discuss
a synthetic benchmark. This benchmark has been constructed to demonstrate
an extreme case of program structure—namely, one in which the use of pro-
cedures is advantageous (to the point of improving the execution time of the
program by a factor of 3). Thus the synthetic benchmark gives us an upper
limit (of sorts) on the kind of performance improvements that we can expect
from the identification of common code and the use of lightweight procedures
in more realistic programs.

We present the optimizations in terms of source code changes for clarity in
illustration. In the section 3, we shall discuss the use of binary rewriting to iden-
tify repeated code blocks and to generate lightweight procedures in application
executables.

Consider the C program in figure 1.

static void p0() {

goto LO;
LO: NOPS; goto L9;
L1: NOPS; goto L8;
L2: NOPS; goto L7;
L3: NOPS; goto L6;
L4: NOPS; goto L5;
L5: NOPS; goto LL;
L6: NOPS; goto L4;
L7: NOPS; goto L3;
L8: NOPS; goto L2;
1.9: NOPS; goto L1;
LL:

}

int main() {
int i; for (i = 0; i < 10000; ++i) {
po(0);
}

Figure 1: Program proc0Q

In the above code NOPS represents a large number of nop instructions, large
enough that although each block of NOPS fits in the I-cache, the entire proce-
dure p0() is larger than the size of the I-cache. 2 Therefore, any execution of
the procO will cause a large number of I-cache misses.

2The jumps have been added to p0() to break up the procedure body into smaller basic-
blocks.

The same program can be rewritten as shown in figure 2.

static void lwproc() {
NOPS;
}

static void p1() {
goto LO;

LO: lwproc(); goto L9;
Li: lwproc(); goto L8;
L2: lwproc(); goto L7;
L3: lwproc(); goto L6;
L4: lwproc(); goto L5;
L5: lwproc(}); goto LL;
L6: lwproc(); goto L4;
L7: lwproc(); goto L3;
L.8: lwproc(); goto L2;
19: lwproc(); goto L1;
LL: ;

}

int main() {
int i; for (i = 0; i < 10000; ++i) {
p1Q);
}

Figure 2: Program procil

Program proc1 is functionally equivalent to program proc0; however, the
combined size of both lwproc() and p1() is now much smaller than the size of
the I-cache. Each block of NOPS in p0() has been replaced with a call to the
procedure lwproc() (which is a lightweight procedure in our terminology), and
there is only one copy of lwproc() in the entire program.

While program procl will execute many more dynamic instructions than
program proc0 (to be specific, procl will execute at least 2 extra dynamic
instructions—one call and one return—per execution of a block of NOPS, com-
pared to proc0), it is also the case that proc1 will execute completely inside the
I-cache of the machine, and can therefore be expected to have a much smaller
execution time than proc0. What is more, proc1 has a much smaller static text
segment size than procO since all of the repeated NOPS code blocks have been
collected into a single procedure lwproc().

The table in figure 3 shows the static size of the text segments, execution
times, and the dynamic instruction counts and I-cache miss rates (as measured

by the Shade [CK94] analyzer) for programs proc0 and proci. 8

Program | Text size | User time | #instructions | I-cache miss rate
(in bytes) | (in seconds)
procO 171779 2.52 410248065 12.51%
procl l 24419 l 0.87 l 410948065 \ 0.21%

Figure 3: Code size, execution time, dynamic instruction count, and I-cache
miss rates for procO and procl.

As can be seen, in spite of the increased number of dynamic instructions
executed by program procli (and in fact, the increase in dynamic instruction
count is a mere 0.17%), it has a substantially smaller execution time (smaller
by a factor of about 3) and I-cache miss rate.

This leads us to suspect that the use of lightweight procedures will be ad-
vantageous in more realistic programs.

There is another difference between proc0O and proci that merits some dis-
cussion here. The difference is caused by the nature of the additional instruc-
tions executed by proci. As mentioned before, and as can be seen from the
use of a procedure call, all of the additional instructions in proc1 are branches
(the call instruction to a lightweight procedure and its return counterpart).
Control-transfer instructions have the potential to cause performance degrada-
tions in deeply pipelined CPUs, and it is all the more surprising that procl,
despite its higher dynamic instruction count and higher rate of executing branch
instructions, has a better performance than proc0.

However, the supposed negative performance impact of the additional call
and return instructions in procl is, we believe, an illusion and one whose
impact is almost certain to be less significant with each succeeding generation
of processors. The reason for this view is that the additional control-transfer
instructions in proc1 are of a very special kind—they are non- conditional branch
instructions with, in the case of the call instruction, a known target. Such
instructions are especially easy for a processor to handle via branch-prediction
and instruction prefetching techniques and should cause minimal disruptions
to the execution pipeline. Similarly, a return instruction is equally easy to
handle and many micro-architectures support (or have proposals to add) a stack
that mirrors the return addresses of the procedure call hierarchy. Moreover,
these control-transfer instructions always occur in the context of computational
instructions and CPUs with multiple execution units and multi-way issue logic
can execute the branch instructions in parallel with the regular computation
instructions.

Our evidence for the above conjectures is only indirect (since we do not have
access to a detailed micro-architectural simulator for the SPARC processor).

8The executables were dynamically linked to highlight the differences in the text sizes of the
code without the large runtime libraries. The programs were run on a 250 Mhz UltraSPARC-
11, 16kB I-cache, 32kB D-cache, running Solaris-2.6

However, in section 5, we shall present examples of micro-benchmarks where
there seems good reason to believe that the additional control-transfer instruc-
tions are executed almost for free, with no negative impact on the performance
of the program.

Having provided the motivation for the magnitude of benefits that can be
obtained from using lightweight procedures, we shall now discuss the detailed
technique for generating lightweight procedures in programs without any refer-
ence or access to source code, i.e. by using binary rewriting techniques, and the
performance of these modified programs.

3 Generating Lightweight Procedures

In order to identify, generate, and use lightweight procedures, we need to address
the following problems:

o Identify repeated code blocks in the program.

o Select, from these repeated code blocks, those suitable for encapsulating
into a lightweight procedure (where the selection will be made based on
both the size and the frequency of occurrence of the code blocks).

o Generate lightweight procedures from the selected candidates.

o Modify the program to reorder its procedures and patch the code to make
calls to the lightweight procedures as appropriate.

While it is possible to do all of the above steps at the source-level, we use the
technique of binary analysis and rewriting [LB92, BL92, LB94] to perform each
of the above actions. Working at the level of an executable offers significant
advantages over source code:

o Repeated code blocks can be identified across the entire program, rather
than within a single procedure, source file, or module.

e Both the application code and libraries can be analyzed.

e Repeated code blocks that are not apparent at the level of source code
(and code sequences which are specific to machine architecture) can be
identified.

The Executable Editing Library (EEL) [LS95, Lar97] allows us to build
custom binary rewriting applications, while handling all of the low-level system-
specific details of reading an executable file, analyzing its contents to recover
the control and data flow structure of the program, and writing a modified
executable in the appropriate format. We use EEL-based applications in all of
our work on LWprocs.

In the rest of this section we shall describe our approach to identifying and
generating lightweight procedures. The technique uses an extremely simple cost

model and does not take a program’s loop structure into account. More complex
models can be defined which have the potential to perform better on a wider
variety of applications (we shall discuss some of these extensions later). Since we
use EEL, which currently handles only the SPARC instruction set architecture,
some of the details in this section will be specific to SPARCs. However, the
general techniques are more widely applicable.

3.1 Identifying repeated code blocks

The first step, i.e. the identification of repeated code blocks, works at the
granularity of basic blocks in the program. 4 Using EEL, we identify all single-
entry, single-exit code blocks in the program and select from among these blocks
those that satisfy the following conditions:

e The block occurs within a non-leaf procedure. Leaf procedures occur at
the leaf nodes of a call-graph hierarchy and are optimized to not have
a stack frame (they use the stack frame of the calling procedure). This
optimization precludes a leaf procedure from making procedure calls—
hence we cannot generate lightweight procedures from code blocks that
are inside a leaf procedure, even if they are repeated elsewhere in the
binary.

e The instructions in the code block do not read or write the procedure
return register (%07 on the SPARC). If a code block is converted into a
lightweight procedure, all of its instructions will move to a new location
in the text segment of the modified program. Hence an instruction that
depends on a specific value for the PC (or uses PC-relative addressing) can-
not be moved into a lightweight procedure. Likewise, instructions which
modify the return address register cannot be moved into a lightweight
procedure—otherwise the modified program would have different seman-
tics than original. ®

e Finally, if a basic block terminates in a control transfer instruction (i.e.
a branch or a procedure call), this instruction (and its delay slot instruc-
tion) cannot be moved into a lightweight procedure. However, all of the
preceding instructions in the basic block are potential LWproc candidates.

The reason control-transfer instructions cannot be moved into a lightweight
procedure is similar to the reason that prevents us from moving other
PC-relative instructions, i.e. branches and procedure calls are addressed

4 An obvious extension to this approach would be to attempt to search for repeated sub-
graphs of a program’s context flow graph. However, our tests indicate that as we widen the
scope of search beyond the granularity of basic-blocks, the opportunities for finding repeated
instructions drops dramatically. The issue is discussed in fuller detail in section 5.

5EEL is clever enough to relocate instructions with PC-relative addressing by changing
the index offsets. However, this relocation will not work for LWprocs since multiple copies of
an instruction are being folded into a single copy when a lightweight procedure is generated.
A single, possibly relocated, PC-relative offset cannot correctly implement the semantics of
multiple instructions located at different addresses in the original program.

relative to the program counter. Since multiple copies of an instruction
are merged into a single copy inside an LWproc, no single value of a PC-
relative offset be correct for all calling points.

It is also possible to split a single basic-block into smaller blocks and
convert the sub-blocks into lightweight procedures, although we have not
examined this option in our current work.

Each basic block (excluding any control-transfer instructions) that satisfies
the above conditions is considered a potential candidate for being converted into
a lightweight procedure. Such conversions are safe (a modified program where
each safe basic-block was replaced by a call to a suitable lightweight procedure
will have the same semantics as the original program). However, converting
every candidate code block into a separate lightweight procedure, is, obviously,
a silly thing to do. It makes sense to convert only those blocks that are repeated
often enough (in the sense defined below).

Figure 4 shows a program with multiple procedures and multiple repeated
code.

procedure p0: procedure pl procedure p2

LO: L3: L7:
instx0 instr3 instr3
instril instr4 instré
instr2 b L5 b L9
b L2 L4: 1.8:

Li: instr3 instxr0
instr3 instré instri
instré b L6 instr2
b L1 L5: 1L9:

L2: instr6 instr7
instrb

Figure 4: Original program with repeated code blocks

The set of instructions in figure 4 can be modified to use lightweight proce-
dures as shown in figure 5.

Figure 5 demonstrates the salient features and optimization of our LWproc
generating technique. We reduce the overhead of invoking a lightweight pro-
cedure to the minimum of 2 instructions (a call and a retl (the leaf-return
instruction on the SPARC)) by filling the delay slots of the control-transfer in-
structions with instructions from the original code blocks. This optimization
also provides us with our static cost model for selecting LWhprocs (as discussed
below). However, we need to point out that the above example is meant merely
to illustrate the nature of the rewriting transformation involved in generating

procedure lwpO procedure lwpl

instrl retl
retl instr4d
instr2
procedure p0: procedure pl procedure p2
LO: L3: L7:
call 1lwpO call lwpl call lwpl
instr0 instr3 instr3
b L2 b L5 b L9
Li: L4: L8:
call lwpl call lwpl call 1lwpO
instr3 instr3 instr0
b L1 b L6 L9:
L2: L5: instr7
instrb instr6

Figure 5: Program modified to use LWprocs

and using lightweight procedures-——the need for brevity in the example means
that the code presented here will not conform to the cost model that we discuss
below.

3.2 Selecting lightweight procedures

As the executable is being scanned, all the instructions of each candidate code
block are stored in a hash multiset. When the entire binary has been scanned,
the multiset has information about the size of the various candidate code blocks,
and the number of copies of these blocks that occur in the program.

We eliminate from the multiset all code blocks which occur only once in the
program—these are not suitable for converting into lightweight procedures.

From among the remaining blocks we choose those that satisfy the following
equation:

C+N>(2+C+N) (1)

where C is the number of copies of a given repeated code block and NV is the
number of instructions in the block.

The left hand side of the above inequality represents the total size of can-
didate copies of a given block in the original program (C copies, each with NV
instructions). The right hand side of the inequality represents the total size of
the lightweight procedure that can generated from these candidate blocks (N in-
structions; N —1 from the original code block and one retl instruction) and the

replacement of each of the repeated blocks with a call to the single lightweight
procedure (C copies, each with 2 instructions—a call instruction and its delay
slot filled with an instruction from the original code block).

The inequality determines if it is possible to reduce the static size of the
code segment of the program by moving repeated code blocks into a single
lightweight procedure, and captures the kind of optimization represented in fig-
ure 5. Clearly, if there are many repeated copies (large C), or the repeated blocks
have many instructions (large N), it is advantageous to generate lightweight
procedures from these blocks.

The above cost model does not account for the loop structure of the program.
In section 5 we discuss extensions to the above model to account for loop struc-
ture, and whether such extensions provide any additional performance benefits
compared to the sirnpler model.

3.3 Generating LWprocs

Once all of candidate code blocks in the hash multiset have been analyzed to find
suitable LWprocs (i.e. those that reduce the static code size of the program),
we use EEL to scan and rewrite the binary.

EEL can package any sequence of instructions into a new procedure and
introduce this procedure into an executable. In addition, EEL can make calls
to these newly created procedures from any other part of the original program,
and patch these call instructions as needed (depending on the exact addresses of
the calling instruction and the called procedure). We simply use these features
of EEL to package the candidate code blocks that satisfy our cost model into
lightweight procedures. We also use EEL to replace the code blocks in the
original program corresponding to a lightweight procedure with a call to the
LWproc.

Before we produce a new executable, we perform one final optimization.
EEL has the ability to reorder the procedures of an executable according to
any specification. We use this feature in EEL to co-locate each procedure and
all the LWprocs that it calls so as to maintain spatial locality in the program.
However, this co-location cannot be done for all procedures and all LWprocs.
For example, if procedure P and P2 make a call to LWproc lwp0, and if P1
and P2 are located far apart in the program executable, it is impossible for lwp0
to be located spatially close to both procedures.

We therefore use profile information to rank the procedures in the program
in decreasing order of cumulative execution time, and co-locate an LWproc with
a procedure of higher profile rank. ¢

The pseudo code below describes the heuristic:

8 An alternative to co-locating procedures and LWprocs would be to clone the LWprocs—
we did not use this method since our goal is to reduce the static code size of the program.
Furthermore, it is necessary to co-locate procedures and LWprocs only w.r.t. cache pages, not
memory pages. A more sophisticated I-cache layout scheme in conjunction with the co-location
heuristic would be advantageous.

10

foreach procedure p (sorted by decreasing profile counts) {
foreach lwproc 1 called by p {
if (1 is not already gemerated) {
generate 1;
}
}

generate p with calls to appropriate lwprocs;

Despite the fact that the above technique is extremely simple (repeated code
blocks are identified only at the granularity of basic-blocks), and that we use a
simple static cost-model (reduction in static size of the program’s code segment),
our experiments show that there are significant performance improvements to
be gained even from many programs in the SPECINT95 suite.

4 Performance Results

In this section, we present the results of the use of lightweight procedures on
a set of benchmarks (which include a couple of small C++ programs, and a
subset of programs in the SPECINT95 suite).

Since we use the EEL toolkit to perform binary rewriting, it is not completely
meaningful to directly compare the execution times of the original program and
the rewritten one—the rewriting modifications performed by EEL introduce
some overheads that can mask any performance improvements in the binaries
due to LWprocs. 7 We do report the execution times of the original programs
for comparison.

In addition to the overheads associated with binary rewriting, the ordering
of the procedures in the program that uses LWprocs is different from the origi-
nal ordering of procedures—as described in the previous section, this reordering
is done so that each lightweight procedure is located spatially close to the pro-
cedures that call it. Merely reordering the procedures of a program (without
using LWprocs) can lead to a change in performance, once again masking the
effects of the use of LWprocs.

To isolate the effects of using LWprocs, we perform the following steps:

e Instrument each program in our test suite using the EEL-based path pro-
filer PP [BL96].

e Collect performance information from the execution of the instrumented
programs, and rank the procedures of the program in decreasing order
of execution time. Such a profile is similar to that produced by prof or
gprof.

7There are some instances where merely rewriting an executable, without any attempt at
reordering procedures or basic-blocks, can result in a new executable than runs significantly
faster than the original.

11

e Rewrite the original program using EEL, with the procedures ordered
according to their profile rank (however, no other modification or opti-
mization is done). This new executable is the Null Rewrite and is used as
the baseline for comparisons.

o Analyze the original program to locate repeated code blocks, select and
generate lightweight procedures (based on our cost model), and rewrite a
new executable with the procedures ordered by their profile rank, and with
calls to LWprocs where appropriate. The performance of this executable,
the LWproc Rewrite, is compared with that of the Null Rewrite.

The reordering of the procedures in the Null Rewrite based on profile rank
accounts for any random changes in the performance of the benchmarks that
might result from simply changing the position of the procedures in a rewritten
executable. Both the Null Rewrite and the LWproc Rewrite should, in principle,
benefit or degrade in performance equally from any such random effects.

All our tests were carried out on a 250Mhz UltraSparc-II, with a 16kb I-
cache (2-way associative, 32 byte lines), 16kB D-cache (direct mapped, 32 byte
lines, 2 sub-blocks), and running the Solaris-2.6 operating system. User times
(in seconds) are reported.

The benchmarks that we test include two small C++ applications (compiled
with GNU g++ at the highest levels of optimization to force the compiler to
inline methods as aggressively as possible), and all of the SPECINT95 programs
except gcc and li. ® Aggressive inlining might positively impact the LWproc
technique for the C-+-+ programs, but does not favor the use of LWprocs for the
SPECINT95 C programs. In any case, the use of high levels of optimization is
appropriate as a baseline for comparison since real-world programs are always
compiled with optimization, and the benefit of any incremental technique like
ours is in any marginal benefit that it provides over and above what the compiler
already does.

All of the programs were compiled with the GNU gcc/g-++ compiler (version
2.8.1) and linked as static executables so that repeated code in the standard C
language and system libraries would also be included in the search for repeated
code blocks and LWprocs.

The SPECINT95 programs were compiled for the peak configuration and
timed on the test data sets. The path profiles and procedure ranks were com-
puted from data collected by running the peak binaries on the train data set.

Figure 6 reports the size of the rewritten text segments in the Null Rewrite
and the LWproc Rewrite, the percentage reduction in the static sizes, the num-
ber of lightweight procedures, the number of static LWproc call sites, the average
size an LWproc, and the average number of instructions saved per static LWproc
call (i.e. savings weighted by the number of static call sites for each LWproc)
as generated by our hashing technique.

8The EEL toolkit encountered some problems analyzing and rewriting these two bench-
marks, and we hope to fix the problem soon.

12

Program Null LWproc Percent | LWproc Call Avg. Avg.
size size reduction count sites size savings

(bytes) (bytes) (static) (static) (bytes) (#instr.)

anagram | 186588 176932 -5.18 122 715 29.9 19.8
simulate 171784 162672 -5.30 85 596 20.1 26.8
go 402800 399384 -0.85 186 610 28.5 4.6
m88ksim | 269064 265888 -1.18 135 475 31.5 5.9
compress | 180912 179692 -0.67 57 229 28.2 5.4
ijpeg 360060 354324 -1.59 177 809 27.7 8.1
perl 439368 430516 -2.01 238 1278 25.6 9.3
vortex 634648 619608 -2.37 419 3035 26.0 9.0

Figure 6: Code sizes and Average LWproc size in bytes; average savings per
LWhproc in number of static instructions per call site.

As can be seen from figure 6, the two C--+ programs (which had been
compiled with aggressive inlining) show a greater percentage reduction in code
size from the use of LWprocs. The C programs in the SPECINT95 suite show
a more moderate percentage reduction in code size. However, there does not
seem to be any significant correlation between the percentage reduction in size
in the various programs and the number of lightweight procedures selected by
the cost model. Although the average size of LWprocs is fairly uniform over
all programs, the number of calls to the LWprocs varies and hence there is a
marked difference in the average number of instructions saved for every LWproc
generated.

Figure 7 reports the performance of the Null and LWproc rewrites in terms
of the user times of the programs.

Program Original Null LWproc Percent

user time | user time user time reduction

(secs) (secs) (secs)

anagram 2.56 2.40 2.28 -5.00
simulate 48.19 71.44 69.83 -2.25
go 167.7 176.13 184.97 5.02
m88ksim 726.5 391.15 355.90 -9.01
compress 222.43 240.90 229.88 -4.57
ijpeg 173.1 178.62 172.70 -3.31
perl 151.49 177.63 172.00 -3.17
vortex 462.84 407.49 520.49 27.73

Figure 7: User time in seconds; % reduction in LWproc time compared to Null
Rewrite time.

Except for go and vortez, the use of LWprocs improves the performance of
all the SPECINT95 benchmarks by anywhere from 3% to 9% We are not quite
sure of the cause for the serious performance degradation in go and vortez,
although I-cache interference may play a role. In such cases, the combination

13

of LWprocs with better layout algorithms (e.g. the cache coloring scheme of
Hashemi et al. [HKC97]) would help. The two C++ programs also show a
significant performance improvement.

Seeing any performance improvement at all for SPEC programs is, to some
extent, surprising since manufacturers design processors, caches, and systems
to perform well on these benchmarks. These results are quite encouraging and
suggest that larger programs (like database servers) which have large working set
sizes are quite likely to benefit even more significantly from the use of lightweight
procedures in terms of improved I-cache and overall execution performance.

Due to their sheer size and complexity, large programs (and commercial
database servers, in particular) are not easy to edit with EEL (for example,
EEL’s relocation techniques either break down or lead to a high overhead for
extremely large code segments). These programs are also often built from shared
libraries, which EEL does not handle fully, as yet. We are working with compiler
writes and vendors [Kun97] in adding annotations to program executables that
would allow EEL (and similar tools) to analyze and rewrite these programs with
greater ease.

5 Extensions to Models for Generating LWprocs

As mentioned in section 3, there are many possible extensions to the simple
model for identifying and generating LWprocs.

In this section, we explore two of them, namely: (1) accounting for the loop
structure of a program’s control-flow graph, and (2) extending the notion of
repeated code blocks to extended basic blocks.

5.1 Accounting for Program Loop Structure

In section 2 we considered two programs proc0 and proci, and showed how
the use of lightweight procedures can dramatically improve the performance of
procl over proc0.

However, few programs have the special structure of proc0 or proci. Most
real-world programs are built out of loops. It is possible to construct a program
that executes about the same number of dynamic instructions as procO, and
yet executes almost as quickly as proci.

Consider the C program in figure 8.

In program loopO, the ™loop” in the main() function of procO has been
pushed into the body of the procedure 10(). Even though 10() is of the same
size as p0 (perhaps even slightly larger due to the overhead of loop management),
10() exhibits a temporal locality that allows it to execute completely within the
I-cache. It is possible to "un-inline” the NOPS basic-blocks in 1oop0 as we did
with procO.

The program in figure 9 is the result.

The table in figure 10 shows the static size of the text segments, execution
times, the dynamic instruction counts and I-cache miss rates of loop0 and

14

#define LOOP for (i = 0; i < 10000; ++i) { NOPS; }

static void 100) {

int i; goto LO;
LO: LOOP; goto L9;
L1i: LOOP; goto L8;
L2: LDOP; goto LT7;
L3: LODOP; goto L6;
L4: LOOP; goto L5;
L5: LOOP; goto LL;
L6: LOOP; goto L4;
L7: LDOP; goto L3;
L8: LOOP; goto L2;
L9: LDOP; goto Li;
LL: ;

}

int main() {
100;

Figure 8: Program loop0

loopl.

‘What is surprising in these performance numbers is that there is almost no
difference in the execution times of loopO and loopl, in spite of the fact that
loopl executes many more dynamic instructions than 1oop0 and loop1 has the
kind of program structure with temporal locality that would not, at first glance,
seem to benefit from the use of LWprocs.

It seems as if the use of LWprocs is orthogonal to the temporal locality
{or lack thereof) properties in the program. Indeed, if a block inside a loop
is converted into an LWproc, then the new program still retains the temporal
locality present in the original program.

The new program also does not suffer a performance degradation due to the
extra dynamic instructions since (as discussed in section 2), these additional
instructions are special kinds of branch instructions that can be easily predicted.

The possible loss of spatial locality in the program by the conversion of a
block into an LWproc is also mitigated by co-locating the LWproc with the
procedure that uses it.

It therefore seems that a more complex cost model that accounts for the
loop structure of the program, and selects lightweight procedure candidates
only from those regions of the code not embedded in loops, is unlikely to yield
any additional performance improvements. The simple cost model is sufficient.

‘We implemented a modification to our LWproc-rewriting algorithm that ig-

#define LOOP for (i = 0; i < 10000; ++i) { NOPS; }

static void lwproc() {
L0OP;
return;

h

static void 10(0) {

int i; goto LO;
LO: lwproc(); goto L9;
L1: lwproc(); goto L8;
L2: lwproc(); goto LT7;
L3: lwproc(); goto L6;
L4: lwproc(); goto L5;
Lb: lwproc(); goto LL;
L6: lwproc(); goto Lé4;
L7: lwproc(); goto L3;
L8: lwproc(); goto L2;
L9: luproc(); goto Li;
LL: ;
}
int main() {

100);
}

Figure 9: Program loopl

nored LWproc candidates occurring inside small ® program loops from consid-
eration for conversion into lightweight procedures, even if the simple cost model
would have earlier considered them. LWproc candidates occurring in larger pro-
gram loops were still considered for conversion, as were candidate blocks that
were not inside a loop in a procedure. We did not consider cases of program
loops which themselves contain procedure calls—these procedures are not dif-
ferent in terms of either temporal locality or spatial locality than lightweight
procedures.

In these experiments, the performance of the various SPECINT95 bench-
marks did not change compared to those figures reported in section 4. A loop-
aware cost model does not provide any additional performance improvement for
these benchmarks, and, equally, does not degrade performance either.

The pairs of programs procO/procl and loop0/loopl represent the range

9The meaning of small depends on the size of the I-cache of the machine on which the
rewritten program is meant to be executed. We used a size of 16kB, in line with that of the
actual machine we used for our experiments.

16

Program Text size User time #instructions I-cache miss rate
(in bytes) (in seconds)
loop0 172675 0.866 410782566 5.12%
loopl 24419 0.864 410782636 0.12%

Figure 10: Code size, execution time, dynamic instruction count, and I-cache
miss rates for loop0 and loopl.

of program structures in almost all real-world code. Procedure-oriented codes
exhibit little spatial or temporal locality, and have the potential to benefit from
the identification and un-inlining of repeat code blocks. Database servers are
examples of procedure-oriented programs.

Loop-oriented codes exhibit a high degree of spatial and temporal locality,
especially if the size of the loops fit inside the I-cache of the machine. Such pro-
grams are unlikely to benefit from the use of lightweight procedures. However,
the use of LWprocs in even such programs is not likely to degrade performance.

In both kinds of programs, the simple cost model that was discussed in
section 3 seems to capture the benefits of identifying and using lightweight
procedures.

5.2 Using Extended Basic Blocks as LWproc Candidates

The algorithm for identifying LWprocs presented earlier (in section 3) works at
the granularity of basic-blocks, i.e. single-entry, single-exit sequences of instruc-
tions without any internal branches.

We considered the effects of extending the scope of LWproc candidates to
the granularity of extended basic blocks, i.e. sequences of instructions which
are still single-entry, single-exit, but possibly with branches among the various
sub-blocks of the extended block.

An extended basic-block as defined above is a subgraph of the controi-flow
graph that is bounded by a dominator and a post-dominator node, i.e. the
root block of the subgraph dominates all of the blocks in the extended block
(which means that the only way for control-flow to reach any of the blocks in
the extended block is to first go through the root block), and that the tail block
of the subgraph post-dominates all of the blocks in the extended block (which
means that the only way for control-flow to exit the extended block is to finally
go through the tail block).

The above, rather strict, restrictions are necessary for an extended block to
be even considered a candidate for being transformed into a lightweight proce-
dure. These restrictions are necessary since an LWproc will not be situated in
the same set of addresses as the original block of instructions—if there had been
a jump into an extended block that did not first go through the root block, such
a jump would, in the case of LWproc, transfer control to a region of code with
no way to preserve the original semantics of the program. Likewise, a jump
out of the extended block that did not finally go through the tail block would,

17

in the case of an LWproc, lead to control flow that does not preserve the se-
mantics of the original program. In this respect, the dominator/post-dominator
requirement for LWproc candidates is akin to specifying that it is illegal (or at
least bad form) in a program to directly into or out of the body of a procedure
without the usual setup and cleanup code associated with procedure call and
return respectively. ‘

The strict requirements are necessary to perform a correct transformation
of an extended basic block into an LWproc. However, these very requirements
also mean that the number of extended blocks that satisfy these conditions
will be greatly reduced from the number that would be considered without
these restrictions. Moreover, the reduction in the number of LWproc candidates
also means that there is a reduced chance of the candidate extended blocks of
satisfying the requirements of the cost model (even of the simple cost model
given in section 3).

We implemented the above dominator/post-dominator search algorithm in
our framework for identifying LWproc candidates and select from among them,
those blocks that would satisfy our cost model. The table in figure 11 shows the
number of LWprocs (of extended basic blocks with more than the trivial one
basic block), the average size of these LWprocs, and the number of call sites to
these LWprocs.

These numbers do not include LWprocs composed of single basic blocks and
hence highlight the possible incremental benefit of considering extended basic
blocks as LWproc candidates.

Program | LWproc Call Avg.
count sites size

(static) (static) (bytes)

anagram 7 24 8.5
simulate 8 26 8.8
go 6 17 8.7
m88ksim 3 6 20
compress 0 0 (n/a)
ijpeg 4 8 13
perl 7 36 5.1
vortex 4 54 2.2

Figure 11: Number of LWprocs, number of static call sites, and average size per
LWprocs in number of static instructions per call site.

As can be seen from figure 11, the number of LWprocs generated from ex-
tended basic blocks is more than an order of magnitude smaller than the number
of LWprocs generated with basic blocks. Moreover, the strict requirements on
the extended blocks greatly reduces (often by more than two order of magni-
tude) the number of copies of these candidates that satisfy the cost model. The
average number of instructions saved by the use of such LWprocs is also much
smaller than the equivalent figure for LWprocs composed of basic blocks.

18

It therefore seems that even this extension to the simple LWproc model, of
considering extended basic block candidates, does not provide any additional
benefit in terms of reduction in the static code size of our benchmarks. We did
not perform the rewriting transformations to generate new binaries or measure
their execution times since the above numbers were so discouraging.

5.3 Summary of extensions

In this section, we considered the two most promising extensions to our simple
scheme for identifying and generating LWprocs. Both extensions turned out to
not provide any added benefit in performance. Underlying this somewhat dis-
couraging message is the fact that the technique of using LWprocs is insensitive
to the loop structure of the program, and can hence be employed in its simple
form over a wide range of programs.

6 Related Work

The earliest memory-hierarchy optimization techniques were used on systems
with small amounts of physical memory. In the past, programmers have ex-
amined source code to identify common blocks of code and moved them into
procedures (in effect performing the identification and generation of LWprocs
by hand) [Gra97]. Brenda Baker [Bak95] presents algorithms based on fast
string-matching that can discover exact and parameterized duplication in source
code—thereby enabling the identification of procedures even when variables, for
example, have different names.

Modern locality-based techniques owe their origin to Pettis and Hansen
[PHO0] who identify the two main kinds of optimizations based on the placement
of (1) procedures and (2) basic-blocks. Hashemi, Kaeli, and Calder [HKC97]
extend this work with a coloring algorithm to account for varying cache sizes
and associativities. Cohn and Lowney [CL96] use profile information to clas-
sify basic-blocks as hot or cold and use this information to guide locality-based
reordering.

Our work does not depend on a locality-based optimization technique nor
does our cost-model depend on size or the organization of the I-cache. However,
all of the above mentioned technique are orthogonal to our own and can be
combined into a single framework for I-cache optimization.

Fraser, Myers, and Wendt [FMW84] discuss a technique of analyzing assem-
bly instructions to discover potential procedure abstractions (which they regard
as the obverse of procedure inlining) in order to facilitate code compression, but
without specific reference to the dynamic memory footprint or the I-cache per-
formance of the resulting code. Our work focuses on the analysis and discovery
of lightweight procedures in the context of I-cache performance.

Stan Liao [LDKT95, Lia96] discusses techniques for the generation of lightweight
procedures in the context of embedded systems with limited memory. This work

19

examines code at the granularity of extended basic-blocks and uses a dictionary-
based compression algorithm to create LWprocs (referred to as mini-subroutines
in the work). Liao also works from the control-flow graph of the program before
code generation and uses code compression to guide the code generator.

Our technique is very similar to this work although we do not examine code
at a granularity beyond the basic-block level. The advantage of doing so is
that our technique has minimal overhead and we do not need to generate any
patchup code or extra basic blocks.

7 Conclusion

In this report, we present a technique for improving the instruction cache per-
formance of programs that is based on the reduction of working set sizes. Our
technique identifies repeated blocks of instructions in an executable, and uses
binary rewriting to convert these repeated code blocks into lightweight proce-
dures (LWprocs) using a static cost model. Thus our technique differs from the
commonly used locality-based methods of optimizing I-cache performance.

Experiments with the SPECINT95 suite of programs indicate that our tech-
nique can improve the performance of these benchmarks by 3% to 9%. We
expect to see even more significant performance improvements on large appli-
cations like database servers. However, the use of lightweight procedures is not
always a win—some programs degrade in performance, and the technique should
be used with care.

Using LWprocs is also orthogonal to locality-based optimizations and may
be combined with them—with the addition of a cost-model based on dynamic
profile information and program loop-structure, we believe that the use of
lightweight procedures will become an important component in the toolkit of
I-cache optimization techniques.

References

[Bak95] Brenda S. Baker. Parameterized pattern matching by Boyer-Moore-
type algorithms. In Proceedings of the Sizth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 541-550, San Francisco,
California, 22-24 January 1995.

[BL92] Thomas Ball and James R. Larus. Optimally profiling and tracing
programs. In Principles of Programming Languages, January 1992.

[BL96] Thomas Ball and James R. Larus. Efficient path profiling. In Pro-
ceedings of the 29th Annual International Symposium on Microar-
chitecture, pages 46-57, Paris, France, December 2-4, 1996. IEEE
Computer Society TC-MICRO and ACM SIGMICRO.

[CK94] Bob Cmelik and David Keppel. Shade: A fast instruction-set simu-
lator for execution profiling. In Proceedings of the 1994 ACM SIG-

20

[CL96)

[DC93)

[DHY2]

[FMW84]

[Gra97]
[HKC97]

[Kun97]
[Lar97]

[LB92]

[LBY4)

[LBE*+98]

METRICS Conference on the Measurement and Modeling of Com-
puter Systems, pages 128-137, May 1994.

Robert Cohn and P. Geoffrey Lowney. Hot cold optimization of
large Windows/NT applications. In Proceedings of the 29th Annual
International Symposium on Microarchitecture, pages 80-89, Paris,
France, December 2-4, 1996. IEEE Computer Society TC-MICRO
and ACM SIGMICRO.

J. Dean and C. Chambers. Training compilers to make better inlin-
ing decisions. Technical Report TR 93-05-05, University of Wash-
ington, 1993.

J. W. Davidson and A. M. Holler. Subprogram inlining: A study of
its effects on program execution time. IEEE Trans. on Softw. Eng.,
18(2):89, February 1992.

C. W. Fraser, E. W. Myers, and A. L. Wendt. Analyzing and com-
pressing assembly code. In Proceedings of the ACM SIGPLAN 1984
Symposium on Compiler Construction, pages 117-121, Montreal,
Canada, 1984.

Jim Gray. In a personal conversation with james larus. 1997.

Amir H. Hashemi, David R. Kaeli, and Brad Calder. Efficient proce-
dure mapping using cache line coloring. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI-97), volume 32, 5 of ACM SIGPLAN Notices,
pages 171-182, New York, Junel5-18 1997. ACM Press.

Krishna Kunchithapadam. Sun microsystems internal report. 1997.

James R. Larus. EEL Guts: Using the EEL Ezecutable Editing
Library, July 1997.

James R. Larus and Thomas J. Ball. Rewriting executable files to
measure program behavior. Technical Report 1083, Computer Sci-
ences Department, University of Wisconsin-Madison, March 1992.

James R. Larus and Thomas Ball. Rewriting executable files

to measure program behavior. Software Practice and Ezperience,
24(2):197-218, February 1994.

J. Lo, L. Barroso, S. Eggers, K. Gharachorloco, H. Levy, and
S. Parekh. An analysis of database workload performance on si-
multaneous multithreaded processors. In Proceedings of the 25th
Annual International Symposium on Computer Architecture (ISCA-
98), volume 26,3 of ACM Computer Architecture News, pages 39-51,
New York, June 27-July 1 1998. ACM Press.

21

[LDKT95]

[Lia96)

[LS95]

[PH90]

[RGABOS]

S. Liao, S. Devadas, K. Keutzer, and S. Tjiang. Instruction selection
using binate covering for code size optimization. In International
Conference on Computer Aided Design, pages 393-401, Los Alami-
tos, Ca., USA, November 1995. IEEE Computer Society Press.

Stan Liao. Code Generation and Optimization for Embedded Digital
Signal Processors. PhD thesis, Los Alamitos, Ca., USA, January
1996.

James R. Larus and Eric Schnarr. EEL: Machine-independent exe-
cutable editing. In Proceedings of the ACM SIGPLAN’95 Conference
on Programming Language Design and Implementation (PLDI),
pages 291-300, La Jolla, California, 18-21 June 1995.

Karl Pettis and Robert C. Hansen. Profile guided code positioning.
In Mark Scott Johnson, editor, Proceedings of the ACM SIGPLAN
90 Conference on Programming Language Design and Implementa-
tion (SIGPLAN ’90), pages 16-27, White Plains, NY, USA, June
1990. ACM Press.

Parthasarathy Ranganathan, Kourosh Gharachorloo, Sarita V.
Adve, and Luiz Andre Barroso. Performance of database workloads
on shared-memory systems with out-of-order processors. In Proceed-
ings of the 8th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), oct
1998.

22

