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Summary Cache: A Scalable Wide-Area Web Cache Sharing Protocol

Abstract

The sharing of caches among Web proxies is an im-
portant technique to reduce Web traffic and alleviate
network bottlenecks. Nevertheless it is not widely
deployed due to the overhead of existing protocols.
In this paper we demonstrate the benefits of cache
sharing, measure the overhead of the existing proto-
cols, and propose a new protocol called “Summary
Cache”. In this new protocol, each proxy keeps a
summary of the cache directory of each participating
proxy, and checks these summaries for potential hits
before sending any queries. Two factors contribute
to our protocol’s low overhead: the summaries are
updated only periodically, and the directory repre-
sentations are very economical, as low as 8 bits per
entry. Using trace-driven simulations and a prototype
implementation, we show that, compared to existing
protocols such as the Internet Cache Protocol (ICP),
Summary Cache reduces the number of inter-cache
protocol messages by a factor of 40 to 65, reduces
the bandwidth consumption by over 50%, eliminates
75% and 95% of the protocol CPU overhead, all while
maintaining almost the same cache hit ratio as ICP.
Hence Summary Cache scales to a large number of
proxies.

1 Introduction

As the tremendous growth of the World-Wide Web
continues to strain the Internet, caching has been rec-
ognized as one of the most important techniques to
reduce bandwidth consumption [26]. In particular,
caching within Web proxies has been shown to be
very effective [13, 30]. To gain the full benefits of
caching, proxy caches behind a common bottleneck
link should cooperate and serve each other’s misses,
thus further reducing bottleneck traffic. We call this
cooperation “Web cache sharing.”

Web cache sharing was first proposed in the con-
text of the Harvest project [23, 11]. The Harvest

group designed the Internet Cache Protocol (ICP) [15]
that supports discovery and retrieval of documents
from neighboring caches. Today, many institutions
and many countries have established hierarchies of
proxy caches that cooperate via ICP to reduce traffic
to the Internet [22, 27, 39, 4, 13].

Nevertheless, the wide deployment of web cache
sharing is currently hindered by the overhead of the
ICP protocol. ICP discovers cache hits in other prox-
ies by having the proxy multicast a query message to
all other proxies whenever a cache miss occurs. Thus,
as the number of proxies increases, both the commu-
nication and the CPU processing overhead increase
quadratically. A number of alternative protocols have
been proposed to address the problem, for example, a
cache array routing protocol that partitions the URL
space among proxies [43]. However, such solutions
are often not appropriate for wide-area cache shar-
ing, which is characterized by limited network band-
width among proxies and non-uniform network dis-
tances between proxies and their users (for example,
each proxy might be much closer to one user group
than to others).

In this paper, we address the issue of scalable pro-
tocols for wide-area Web cache sharing. We first ex-
amine the benefits of Web cache sharing by analyz-
ing a collection of Web access traces. We show that
sharing cache contents among proxies significantly re-
duces traffic to Web servers, and that simple cache
sharing, which imposes no coordination among cache
replacements of proxies, suffices to obtain most of the
benefits of fully coordinated caching. We also quan-
tify the overhead of the ICP protocol by running a
set of proxy benchmarks. The results show that even
when the number of cooperating proxies is as low as
four, ICP increases the inter-proxy traffic by a factor
of 70 to 90, the number of network packets received
by each proxy by 13% and higher, and the CPU over-
head by over 15%. In the absence of inter-proxy cache
hits (also called remote cache hits), the overhead can
increase the average user latency by up to 11%.
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We then propose a new cache sharing protocol
called Summary Cache. Under this protocol, each
proxy keeps a compact summary of the cache direc-
tory of every other proxy. When a cache miss occurs,
a proxy first probes all the summaries to see if the
request might be a cache hit in other proxies, and
sends a query messages only to those proxies whose
summaries show promising results. The summaries
do not need to be accurate at all times. If a request
is not a cache hit when the summary indicates so (a
false hit), the penalty is a wasted query message. If
the request is a cache hit when the summary indicates
otherwise (a false miss), the penalty is a higher miss
ratio.

We examine two key questions in the design of
the protocol: the frequency of summary updates and
the representation of summary. Using trace-driven
simulations, we show that the update of summaries
can be delayed until a fixed percentage (for example,
1%) of cached documents are new, and the hit ratio
will degrade proportionally (For the 1% choice, the
degradation is between 0.02% to 1.7% depending on
the traces).

To reduce the memory requirements, we store each
summary as a “Bloom filter” [5]. This is a computa-
tionally very efficient hash-based probabilistic scheme
that can represent a set of keys (in our case, a cache
directory) with minimal memory requirements while
answering membership queries with 0 probability for
false negatives and low probability for false positives.
Trace-driven simulations show that with typical proxy
configurations, for N cached documents represented
within just N bytes, the percentage of false positives
is 1% to 2%. In fact, the memory can be further re-
duced at the cost of an increased false positive ratio.
(We describe Bloom filters in more detail below.)

Based on these results, we designed the Summary-
Cache Enhanced ICP protocol and implemented a
prototype within the Squid proxy. Using trace-driven
simulations as well as experiments with benchmarks
and trace-replays, we show that the new protocol re-
duces the number of inter-proxy messages by a factor
of 40 to over 65, reduces the network bandwidth con-
sumption (in terms of bytes transferred) by over 50%,
and eliminates 75% to 95% of the protocol CPU over-
head. Compared with no cache sharing, our imple-
mentation experiments show that the protocol incurs
little network and CPU overhead when there are no
remote cache hits, and only increases network traffic
by 7% and CPU overhead by 11% at the remote cache
hit ratio of 10%. Yet, the protocol achieves a cache
hit ratio similar to the ICP protocol most of the time.

The low overhead shown in the simulation and
implementation results indicates that the Summary
Cache Enhanced ICP protocol can scale to a large

number of proxies. Thus, it has the potential to sig-
nificantly increase the deployment of Web cache shar-
ing and reduce Web traffic on the Internet. Toward
this end, we are making our implementation publicly
available [36] and are in the process of transferring it
to the Squid users community.

2 Traces and Simulations

For our study we have collected five sets of traces
of HTTP requests. The number of requests in each
trace, the number of clients, and other statistics are
listed in Table 1. In particular, Table 1 lists the “in-
finite” cache size for each trace, which is the total
size in bytes of unique documents in the trace (i.e.
the size of the “infinite” cache which incurs no cache
replacement).

¢ DEC traces [29]: Digital Equipment Corpora-
tion Web Proxy server traces, servicing about
17,000 workstations. The trace is for a period of
25 days (Aug. 29 to Sep. 21, 1996). We parti-
tioned the trace into three one-week traces and
one half-week traces. QOur simulator can only
simulate the subtraces due to swap-space lim-
itations. In this paper, we present the results
on the trace of the week of Aug. 29 to Sep. 4,
1996. Results on other traces are very similar.

o UCB traces [21]: traces of HTTP requests gath-
ered from the Home IP service offered by UC
Berkeley to its students, faculty, and staff. The
total trace is for a period of 18 days from Nov.
1 till Nov. 19, 1996, and is partitioned into
four subtraces covering every four or five days.
We present the results on the traces from Nov.
14 till Nov. 19. Though the trace originally
records 2,468,890 requests, many of them have
response data sizes of 0 or 1, and we decide to
ignore those requests 1. Again, we have run the
simulations on other traces in the UCB collec-
tions, and the results are similar to what are
presented here.

e UPisa traces [41]: traces of HTTP requests
made by the users in Computer Science Depart-
ment in Universita di Pisa, Italy, for a period of
three months from January to March, 1997. Of
the traces, we only simulate GET requests, and
only those whose URLs do not include query
strings, since most proxies do not cache query
requests.

1The change may have contributed to the difference between
our hit ratio results on UCB and those reported in [20].
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Traces DEC UCB UPisa Questnet NLANR
Time 8729-9/4, 1096 | 9/14-9/19, 1996 | Jan-March, 1997 | 1/15-1/21, 1998 | 12/22, 1997
Requests 3543968 1907762 2833624 2885285 1766409
Infinite Cache Size 2.88e+10 1.80e+10 2.07e+10 2.33e-+10 1.37e+10
Maximum Hit Ratio 0.49 0.30 0.40 0.30 0.36
Maximum ByteHit Ratio 0.36 0.14 0.27 0.15 0.27
Client Population 10089 5780 2203 12 4
Client Groups 16 8 8 12 4

Table 1: Statistics about the traces. The hit ratio and byte hit ratio are achieved under infinite cache.

o Questnet traces [44]: 7-days worth of logs of
HTTP requests seen by the parent proxies at
Questnet, which is a regional network in Aus-
tralia, from Jan. 15 to Jan. 21, 1998. The
proxies are parent proxies serving about 12 child
proxies in the regional network. We extract suc-
cessful GET requests seen by the parent proxies.
Thus, the trace is only a subset of user requests
going to the ten proxies. Unfortuantely, the full
set of user requests to the proxies are not avail-
able.

e NLANR traces [35]: one-day log (Dec. 22,
1997) of HTTP requests to four major parent
proxy caches in the National Caching hierar-
chy by NLANR (National Lab of Applied Net-
work Research). There are about eight proxies
in the National caching hiearchy, but only four
of them ("bo”, ”pb”, ”sd”, and "uc”) handle
documents from the servers in .com, .net, .edu,
and other major domains?. Thus, we decide to
simulate requests to the four proxies only.

In our simulation of cache sharing, we partition
the clients in DEC, UCB and UPisa into groups, as-
sume that each group has its own proxy, and simulate
the cache sharing among the proxies. This roughly
corresponds to the scenario where each branch of a
company or each department in a university has its
own proxy cache, and the caches collaborate. We
set the number of groups in DEC, UCB and UPisa
traces to 16, 8 and 8, respectively. A client is put
in a group if its clientID mod the group size equals
the group ID. Though the simulation does not exactly
correspond to reality, we believe it does bring insight
on cache sharing protocols. Questnet traces contain
HTTP requests coming from a set of child proxies in
the regional network to the parent proxy. We assume
that these are the requests going into the child proxies
(since the child proxies send their cache misses to the

2This can be seen in the cache figuration files at
http://ircache.nlanr.net/Cache/Configuration/

parent proxy), and simulate cache shairng among the
child proxies. Finally, NLANR traces contains actual
HTTP requests going to the four major proxies, and
we simulate the cache sharing among them.

In all our simulations, we use LRU as the cache
replacement algorithm, with the restriction that doc-
uments larger than 250KB is not cached. The policy
is similar to what are used in actual proxies. We
do not simulate expiring documents based in age or
time-to-live. Rather, most of our traces come with
the last-modified time of a document for every re-
quest, and if a user request hit on a document whose
last-modified time is changed, we count it as a cache
miss. Thus, in our simulations we ignore the cache
consistency issues that arise in practice. There are
many other protocols [11, 31, 25] that address the
cache consistency issue in real life.

Most of our simulations assume a cache size that is
10% of the “infinite” cache size. Studies have shown
that 10% of the “infinite” cache size typically achieves
about 90% of the maximum cache hit ratio [46, 7, 32].
We also performed simulations with cache sizes being
5% of the inifinite cache size and the results are very
similar.

3 Benefits of Cache Sharing

Recent studies [7, 20, 13] have shown that under in-
finite cache capacity, Web cache hit ratio appears to
grow logarithmically with the size of the user pop-
ulation served by the cache. Clearly, the overlap of
requests from different users reduces the number of
cold misses, often a significant portion of all misses,
since both first-time reference to documents and doc-
ument modifications contribute to them.

To examine the benefits of cache sharing under
finite cache sizes, we simulated the following schemes
using the traces listed in the previous section:

o No Cache Sharing: proxies do not collaborate
to serve each other’s cache misses;
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Figure 1: Cache hit ratios under different cooperative caching schemes. Results on byte hit ratios are similar.

o Simple Cache Sharing: proxies serve each other’s
cache misses. Once a proxy fetches a document
from another proxy, it caches the document lo-
cally. Proxies do not coordinate cache replace-
ments. This is the sharing implemented by the
ICP protocol.

o Single-Copy Cache Sharing: proxies serve each
other’s cache misses, but a proxy does not cache
documents fetched from another proxy. Rather,
the other proxy marks the document as most-
recently-accessed, and increases its caching pri-
ority. Compared with simple cache sharing,
this scheme eliminates the storage of duplicate
copies and increases the utilization of available
cache space.

e Global Cache: proxies share cache contents and
coordinate replacement so that they appear as
one unified cache with global LRU replacement
to the users. This is the fully coordinated form
of cooperative caching. We simulate the scheme
by assuming that all requests go to one cache
whose size is the sum of all proxy cache sizes.

We examine these schemes in order to answer two
questions: whether simple cache sharing significantly
reduces traffic to Web servers, and whether the more
tightly coordinating schemes lead to a significantly
higher hit ratio.

Figure 1 shows the hit ratios under the different
schemes considered when the cache size is set to 0.5%,
5%, 10%, and 20% of the size of the “infinite cache
size” (the minimum cache size needed to completely
avoid replacements) for each trace. The results on
byte hit ratios are very similar, and we omit them
due to space constraints.

Looking at Figure 1, we see that, first, all cache
sharing schemes significantly improve the hit ratio
over no cache sharing. The results amply confirm the
benefit of cache sharing even with fairly small caches.

Second, the hit ratio under single-copy cache shar-
ing and simple cache sharing are generally the same or
even higher than the hit ratio under global cache. We
believe the reason is that global LRU sometimes per-
forms less well than group-wise LRU. In particular,
in the global cache setting a burst of rapid successive
requests from one user might disturb the working set
of many users. In single-copy or simple cache sharing,
each cache is dedicated to a particular user group, and
traffic from each group competes for a separate cache
space. Hence, the disruption is contained within a
particular group.

Third, when comparing single-copy cache sharing
with simple cache sharing, we see that the waste of
space has only a minor effect. The reason is that
a somewhat smaller effective cache does not make a
significant difference in the hit ratio. To demonstrate
this, we also run the simulation with a global cache
10% smaller than the original. As can be seen from
Figure 1, the difference is very small.

Thus, despite its simplicity, the ICP-style simple
cache sharing reaps most of the benefits of more elab-
orate cooperative caching. Simple cache-sharing does
not do any load balancing by moving content from
busy caches to less busy ones, and does not con-
serve space by keeping only one copy of the docu-
ments. However, if the resource planning for each
proxy is done properly, there is no need to perform
load-balancing and incur the overhead of more tightly
coordinating schemes.

Finally, note that the results are obtained un-
der the LRU replacement algorithm explained in Sec-
tion 2. Different replacement algorithms [7] may give
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different results. Also, separate simulations have con-
firmed that in case of severe load imbalance, the global
cache will have a better cache hit ratio, and therefore
it is important to allocate the cache size of each proxy
in proportion to its user population size and antici-
pated use.

4 Overhead of ICP

The Internet Cache Protocol (ICP) [15] has been very
successful at encouraging the practice of Web cache
sharing around the world. It requires loose coordi-
nations among the proxies, and is built on top of
UDP for efficiency. It was designed by the Harvest
research group [23] and supported by both the public-
domain Squid [16] proxy software and some commer-
cial products today. With the deployment of Squid
proxies around the globe, ICP is widely used by inter-
national countries to reduce traffic over trans-Atlantic
and trans-Pacific links.

Despite its success, ICP is not a scalable protocol.
The problem is that ICP relies on queries to find out
remote cache hits. Everytime one proxy has a cache
miss, everyone else receives a query message and pro-
cesses it. As the number of collaborating proxies in-
creases, the overhead quickly becomes prohibitive.

To measure the overhead of ICP and its impact on
proxy performance, we run experiments using a proxy
benchmark designed by us [37]. (The benchmark has
been submitted to SPEC as a candidate for the in-
dustry standard benchmark and is currently in-use at
a number of proxy system vendors.) The benchmark
consists of a collection of client processes that issue
requests following patterns observed in real traces,
including request size distribution and temporal lo-
cality, and a collection of server processes that delay
the replies to emulate latencies in the Internet.

The experiments are performed on 10 Sun Sparc-
20 workstations that are connected with 100Mb/s
Ethernet. Four workstations act as four proxy sys-
tems, running Squid 1.1.14, and each having 75MB
of cache space®. Another four workstations run 120
client processes, 30 processes on each workstation.
The client processes on each workstation connect to
one of the proxies. Client processes issue requests
with no thinking time in between, and the requested
document size follow the Pareto distribution with o =
1.1 and k = 3.0 [8]. Finally, two workstations act as
servers, each with 15 servers listing on different ports.
The Web server forks off a process when handling an

3The cache size is artificially small so that cache replace-
ment occurs during the short duration of the experiments. For
our final version we plan to experiment with more realistic
cache sizes.

HTTP request, and the process waits for 1 second
before sending the reply to simulate the network la-
tency.

We experiment with two different cache hit ratios,
25% and 45%, as the overhead of ICP varies with the
cache miss ratio in each proxy. In the benchmark, the
client issues requests following the temporal locality
patterns observed in [32, 7], and the inherent cache
hit ratio in the request stream can be adjusted. In an
experiment, each client process issues 200 requests,
for a total of 24000 requests.

Using the benchmark, we compare two configu-
rations: mno-ICP, where proxies do not collaborate,
and ICP, where proxies collaborate via ICP. Since
we are only interested in the overheads, the requests
issue by the clients do not overlap, and there is no re-
mote cache hits among the proxies. This is the worst
case scenario for ICP, and the results measure the
overhead of the protocol. We use the same seeds in
the random number generators for the no-ICP and
ICP experiments to ensure comparable results, since
otherwise the heavy-tailed document size distribution
and our low request numbers lead to high variance.
We present results from one set of experiments here.
(We have done more and the results are similar.)

We measure the hit ratio in the caches, the aver-
age latency seen by the clients, the CPU time con-
sumed by the Squid proxy in terms of user CPU time
and system CPU time, and network traffic. Using
netstat, we collect the number of UDP datagrams
sent and received, the TCP packets sent and received,
and the total number of IP packets handled by the
Ethernet network interface. The third number is roughly
the sum of the first two. The UDP traffic is incurred
by the ICP query and reply messages. The TCP traf-
fic include the HT'TP traffic between the proxy and
the servers, and between the proxy and the clients.
The results are shown in Table 2.

The results show that ICP incurs considerable over-
head even when the number of cooperating proxies is
as low as four. The number of UDP messages is in-
creased by a factor of 73 to 90. Due to the increase
in the UDP messages, the total network traffic seen
by the proxies are increased by 8% to 13%. Proto-
col processing increases the user-mode CPU by 20%
to 24%, and UDP messages processing increases the
system CPU time by 7% to 10%. Reflected to the
clients, the average latency of an HTTP request is
increased by 8% to 11%. The degradations occur de-
spite the fact that the experiments are performed on
a high-speed local area network.

The results highlight the dilemma faced by Web
cache administrators. There are clear benefits of cache
sharing, and yet the overhead of ICP is high. Further-

Page 5



Exp 1 Hit Ratio | Client Latency | User CPU | System CPU | UDP Msgs | TCP Msgs | Total Packets
no ICP 25% 2.75 (5%) 94.42 (5%) | 133.65 (6%) | 615 (28%) | 334K (8%) | 355K (7%)
ICP 25% 3.07 (0.7%) | 116.87 (5%) | 146.50 (5%) | 54774 (0%) | 328K (4%) | 402K (3%)
Owverhead 12% 24% 10% 90 2% 18%
SC-ICP 25% 2.85 (1%) 95.07 (6%) | 134.61 (6%) | 1079 (0%) | 330K (5%) | 851K (5%)
Overhead 4% 0.7% 0.7% 75% -1% -1%

Exp 2 Hit Ratio | Client Latency | User CPU | System CPU | UDP Msgs | TCP Msgs | Total Packets
no ICP 5% 2.21 (1%) 80.83 (2%) | 111.10 (2%) | 540 (3%) | 272K (3%) | 290K (3%)
ICP 15% 2.39 (1%) 97.36 (1%) | 118.50 (1%) | 39968 (0%) | 257K (2%) | 314K (1%)
Overhead 8% 20% 7% 78 -1% 8%
SC-ICP 5% 2.25 (1%) 82.03 (3%) | 111.87 (3%) | 799 (%) | 269K (5%) | 287K (5%)
Querhead 2% 1% 1% 418% -1% -1%

Table 2: Overhead of ICP in the four-proxy case. The SC-ICP protocol is introduced in Section 6 and will be
explained later. The experiments are run three times, and the variance for each measurement is listed in the
parenthesis. The overhead row lists the increase in percentage for each measurement. Note that in the synthetic

experiments there is no inter-proxy cache hit.

more, most of the time the processing of query mes-
sage is wasted because the document is not cached.
Essentially, the effort spent on processing ICP is pro-
portional to the total number of cache misses experi-
enced by other proxies, instead of proportional to the
number of actual remote cache hits.

To address the problem, we propose a new scalable
cache sharing protocol Summary Cache.

5 Summary Cache

In the summary cache scheme, each proxy stores a
summary of its directory of cached document in every
other proxy. When a user request misses in the local
cache, the local proxy checks the stored summaries to
see if the requested document might be stored in other
proxies. If it appears so, the proxy sends out requests
to the relevant proxies to fetch the document. If it is
not, the proxy sends the request directly to the Web
server.

The key to the scalability of this scheme is that
summaries do not have to be perfectly up to date or
perfectly accurate. A proxy does not have to update
the copy of its summary stored with other proxies
upon every modification of its directory: it can wait
until a certain percentage of its cached documents
are not reflected in other proxies. In other words,
two kinds of errors can be tolerated:

e false misses: the document requested is cached
at some other proxy but its summary does not
reflect it. In this case, a remote cache hit is
not taken advantage of, and the total hit ratio
within the collection of caches is reduced.

e false hits: the document requested is not cached

at some other proxy but its summary indicates
that it is. The proxy will send a query message
to the other proxy, only to be notified that the
document is not cached there. In this case, a
query message is wasted.

In general we are striving for inclusive summaries,
that is we are trying to avoid false misses as much
as possible, even at the cost of extra false hits. It
is important to note that false hits and false misses
affect the total cache hit ratio or the inter-proxy traf-
fic, but do not affect the correctness of the caching
scheme (e.g. a false hit does not result in the wrong
document being served).

Two factors limit the scalability of this scheme:
the network overhead (the inter-proxy traffic), and
the memory required to store the summaries (for per-
formance reasons, the summaries should be stored in
memory, not on disk). The network overhead is de-
termined by the frequency of summary updates and
by the number of false hits. The memory requirement
is determined by the size of individual summaries and
the number of cooperating proxies. Since the mem-
ory grows linearly with the number of proxies, it is
important to keep the individual summaries small.
Below, we first address the update frequencies, and
then discuss various summary representations.

5.1 Impact of Update Delays

We investigate the following technique of updating
summaries: a proxy broadcasts the summary changes
to all other proxies whenever the percentage of cached
documents that are “new” (that is, not reflected in
the summary) reaches a threshold. The delays in-
troduce false misses (documents newly stored are not
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Figure 2: Impact of summary update delays on total cache hit ratios. The cache size is 10% of the “infinite”

cache size.

visible in the summary) and (much less likely) false
hits (documents deleted from the cache are still in
the summary). Intuitively, the number of false misses
should be roughly proportional to the number of doc-
uments that are not reflected in the summary.

Using the traces, we simulate the total cache hit
ratio when the threshold is 0.1%, 1%, 2% and 5% of
the cached documents. For the moment we ignore the
issue of summary representations and assume that the
summary is a copy of the cache directory. The results
are shown in Figure 2. The top line in the figure is
the hit ratio when no update delay is introduced. The
second line shows the hit ratio as the update delay
increases. The difference between the two lines is the
false miss ratio. The bottom curve shows the false
hit ratio, which almost overlaps the x-axis.

The results show that except NLANR, the degra-
dation in total cache hit ratio grows more or less lin-
early with the update threshold. At the threshold
of 1%, the relative reductions in hit ratio are 0.2%
(UCB), 0.1% (UPisa), 0.3% (Questnet), and 1.7%
(DEC). DEC traces seem to be a bit more sensitive to
update delays; we suspect it might be because of the
large amount of Pointcast traffic in them. The false
hit ratio also seems to increase linearly with the delay
threshold, but is always smaller than the threshold.

For NLANR, it appears that some clients are si-
multaneously sending two requests for the exact same
document to proxy “bo” and another proxy in the
NLANR. collection. If we only simulate the other
three proxies in NLANR, the results are similar to
those of other traces. With “bo” included, we also
simulated the delay being 2 and 10 user requests,
and the hit ratio drops from 30.7% to 26.1% and

20.2%, respectively. The hit ratio at the threshold
of 0.1%, which roughly corresponds to 200 user re-
quests, is 18.4%. Thus, we believe that the sharp
drop in hit ratio is due to the anomaly in the NLANR
trace. Unfortunately, we cannot pin down the offend-
ing clients because the client IDs are not consistent
across NLANR traces [35].

The results demonstrate that in practice, a sum-
mary update delay threshold of 1% to 5% results in a
tolerable degradation of the cache hit ratios. For the
five traces, the threshold values translate into roughly
300 to 1500 user requests between updates, and on av-
erage, an update frequency of roughly every 5 to 25
minutes. Thus, the bandwidth consumption of these
updates can be very low.

5.2 Summary Representations

The second issue affecting scalability is the size of the
summary. Summaries need to be stored in the main
memory not only because memory lookups are much
faster, but also because disk arms are typically the
bottlenecks in proxy caches [33]. Although DRAM
prices continue to drop, we still need a careful design,
since the memory requirement grows linearly with the
number of proxies. Summaries also take DRAM away
from the in-memory cache of hot documents, affecting
the proxy performance. Thus, it is important to keep
the summaries small. Fortunately, summaries only
have to be inclusive (that is, depicting a superset of
the documents stored in the cache) to avoid affecting
the cache hit ratio.

We first investigated two naive summary repre-
sentations: exact-directory and server-name. In the
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exact-directory approach, the summary is essentially
the cache directory, with each URL represented by
its 16-byte MD5 signature [19]. In the server-name
approach, the summary is the list of the server name
component of the URLs in cache. Since on average,
the ratio of different URLs to different server names is
about 10 to 1 (observed from our traces), the server-
name approach can cut down the memory by a factor
of 10.

We simulated these approaches using the traces
and found that neither of them is satisfactory. The
results are in Figure 6, along with those on another
summary representation (Figure 6 is discussed in de-
tail in Section 5.2). The exact-directory approach
consumes too much memory. In practice, proxies typ-
ically have 8GB to 20GB of cache space. If we as-
sume 16 proxies of 8GB each and an average file size
of 8KB, the exact-directory summary would consume
(16—1)*16+(8GB/8K B) = 240M B of main memory
per prozy. The server-name approach, though con-
suming less memory, generates too many false hits
that significantly increase the network messages.

The requirements on an ideal summary represen-
tation are small size and low false hit ratio. After a
few other tries, we found a solution in an old tech-
nique called “Bloom filters.”

5.3 Bloom Filters — the math

A Bloom filter is a method for representing a set
A = {a1,0a2,...,an} of n keys to support member-
ship queries. It was invented by Burton Bloom in
1970 [5] and was proposed for use in the web context
by Marais and Bharat [34] as a mechanism for iden-
tifying which pages have associated comments stored
within a CommonKnowledge server.

The idea is to allocate a vector v of m bits, initially
set to 0, and then choose k independent hash func-
tions, hi, ha, ..., ht, with range {1,...,m}. For each
key a € A the bits hi(a), he(a), ..., hr(a) of v are
set to 1. (A particular bit might be set to 1 multiple
times.) Given a query key b we check the bits h;(b),
ha(b), ..., hi(b). If any of them is 0, then certainly b
is not in the set A. Otherwise we conjecture that b is
in the set although there is a certain probability that
we are wrong. This is called a “false positive” or, for
historical reasons, a “false drop.” The parameters k
and m should be chosen such that the probability of a
false positive is acceptable. (Note that in our context
a false positive is not the only cause of a false hit.
The latter can happen also because the summary is
out of date.)

Observe that after inserting n keys into a table of
size m, the probability that a particular bit is still 0

Figure 3: Probability of false positives (log scale).
The curve above is for 4 hash functions. The curve
below is for the optimum (integral) number of hash
functions.

is exactly

-

Hence the probability of a false positive in this situ-
ation is

<1‘ (1— %)kn)k ~ (1_ekn/m)k

The right hand side is minimized for k£ = In2 x m/n,
in which case it becomes

(%)k = (0.6185)™/™.

In fact k& must be an integer and in practice we
might chose a value less than optimal to reduce com-
putational overhead.

The graph in Figure 3 shows the probability of
a false positive as a function of the number of bits
allocated for each entry, that is, the ratio o = n/m.
The curve above is for the case of 4 hash functions.
The curve below is for the optimum number of hash
functions. The scale is logarithmic so the straight
line observed corresponds to an exponential decrease.
It is clear that Bloom filters require very little stor-
age per key at the slight risk of some false positives.
For instance for a bit array 10 times larger than the
number of entries, the probability of a false positive
is 1.2% for 4 hash functions, and 0.9% for the op-
timum case of 5 hash functions. The probability of
false positives can be easily decreased by allocating
MOore memory.

As discussed so far Bloom filters support inser-
tions but not deletions. In our context each proxy
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maintains a local Bloom filter that represents its own
directory so deletions must be supported. This is
done by maintaining for each location £ in the bit ar-
ray a count ¢(£) of the number of keys that hashed to
¢ under any of the hash functions. All the counts are
initially 0. When a new key a is inserted or deleted
the counts c(hi(a)), c(h2(a)), ..., c(hr(a)) are in-
cremented or decremented accordingly. If a count
becomes 0 the corresponding bit is turned off. Hence
the local Bloom filter always reflects correctly the cur-
rent directory. Since we must allocate memory for the
counters it is important to know how large they can
become.

The asymptotic expected maximum count after
inserting n keys with k hash functions into a bit array

of size m is (see [19, p. 72])
1
O{= ;
* (ln“ F‘l(m)>)

In(kn/m)
and the probability that any count is greater or equal

InT-1(m)
118
Pr(max(c) > i) < m<”’”) Lom (—”i)

i ) mt im

'~1(m) (1 +

As already mentioned the optimum value for k (over
reals) is In 2m/n so assuming that the number of hash
functions is less than In 2m/n we can further bound

Pr(max(c) > i) < m (61‘.12)i.

2

Hence taking i = 16 we obtain that
Pr(max(c) > 16) < 1.37 x 107 x m.

In other words if we allow 4 bits per count, the prob-
ability of overflow for practical values of m during the
initial insertion in the table is minuscule.

In practice we must take into account that the
hash functions are not truly random, and that we
keep doing insertions and deletions. Nevertheless, it
seems that 4 bits per count would be amply suffi-
cient. Furthermore if the count ever exceeds 15, we
can simply let it stay at 15; after many deletions this
might lead to a situation where the Bloom filter al-
lows a false negative (the count becomes 0 when it
shouldn’t be), but the probability of such a chain of
events is so low that it is much more likely that the
proxy server would be rebooted in the meantime and
the entire structure reconstructed.

5.4 Bloom Filters as Summaries

Bloom filters provide a straightforward mechanism to
build summaries. A proxy builds a Bloom filter from

the list of URLs of cached documents, and sends the
bit array plus the specification of the hash functions
used to other proxies. When updating the summary,
the proxy simply specifies which bits in the bit array
are flipped. Each proxy maintains a local copy of the
bloom filter, and updates it as documents are added
to and replaced from the cache. As explained, to
update the local filter, a proxy maintains an array
of counters, each counter remembering the number
of times the corresponding bit is set to 1. When a
document is added into the cache, the counters for
the corresponding bits are incremented; when it is
deleted from the cache, the counters are decremented.
When a counter increases from 0 to 1 or drops from
1 to 0, a record is added to a list which will be sent
to other proxies at the next summary update.

The advantage of Bloom filters is that they pro-
vide a tradeoff between the memory requirement and
the false positive ratio (which induces false hits). Thus,
if proxies want to devote less memory to the sum-
maries, they can do so at a slight increase of inter-
proxy traffic.

We experimented with three configurations for Bloom
filter based summaries: the number of bits being 8,
16, and 32 times the average number of documents
in the cache (the ratio is also called a “load” fac-
tor). The average number of documents is calculated
by dividing the cache size by 8K (the average doc-
ument size). All three configurations use four hash
functions®. The hash functions are build from the
MD5 signature of the URL.

The performance of these summary representa-
tions, the exact-directory approach, and the server-
name approach are shown in Figures 4 through 8.
In Figure 4 we show the total cache hit ratios and
in Figure 5 we show the false hit ratios. Note that
the y-azis in Figure 5 is in log scale. The Bloom fil-
ter based summaries have virtually the same cache
hit ratio as the exact-directory approach, and have
slightly higher false hit ratio when the bit array is
small. Server-name has a much higher false hit ratio.
It has a higher cache hit ratio, probably because its
many false hits help to avoid false misses.

Figure 6 shows the total number of inter-proxy
network messages, including the number of summary
updates and the number of query messages (which
includes both remote cache hits and false hits). Note
that the y-azis in Figure 6 is in log scale. For com-
parison we also list the number of messages incurred
by ICP in each trace. All messages are assumed to
be uni-cast messages. The figure normalizes the num-

4The number of hash functions is not the optimal choice
for each configuration, but suffices to demonstrate the perfor-
mance of Bloom filters. For the final version we plan to provide
results for the optimal number of hash functions as well.
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Figure 8: Memory requirement of different summary representations.

ber of messages by the number of HT'TP requests in
each trace. Clearly, both the exact-directory and the
Bloom filter based summaries perform well. There is
a clear tradeoff between bit array size and the number
of messages, as expected. The server-name approach
and ICP generate much more messages. Compared
to ICP, the Bloom filter based summaries reduce the
number of messages by a factor of 40 to 65.

Figure 7 shows the estimated total size of inter-
proxy network messages in bytes. We estimate the
size because update messages tend to be larger than
query messages. The average size of query messages
in both ICP and other approaches is assumed to be 20
bytes of header and 50 bytes of average URL. The size
of summary updates in exact-directory and server-
name is assumed to be 20 bytes of header and 16
bytes per change. The size of summary updates in
Bloom filter based summaries is estimated at 32 bytes
of header (see Section 6) plus 4 bytes per bit-flip. The
results show that in terms of message bytes, Bloom
filter based summaries improves over ICP by 55% to
64%. In other words, summary cache uses occasional
burst of large messages to avoid continuous stream of
small messages. Looking at the CPU overhead and
network interface packets in Tables 2 and 3 (in which
SC-ICP stands for the summary cache approach), we
can see clearly that it is a good tradeoff.

Finally, Figure 8 shows the memory per proxy
of the summary cache approaches, in terms of per-
centage of cache size. The three Bloom filter con-
figurations consume much less memory than exact-
directory, and yet perform similarly to it in all other
aspects. The Bloom filter summary at the load factor
of 8 has a similar memory requirement to the server-
name approach, and much fewer false hits and net-

work messages.

Considering all the results, we see that Bloom fil-
ter summaries provide the best performance in terms
of low network overhead and low memory require-
ments. This approach is simple and easy to imple-
ment. The only drawback is the MD5 calculation,
which must be performed every time a document is
added to or deleted from the cache. However, faster
hashing methods are available, for instance hash func-
tions can be based on polynomial arithmetic as in
Rabin’s fingerprinting method (See [40, 6]), or a sim-
ple hash function (e.g. [19, p. 48]) can be used to
generate, say 32 bits, and further bits can be ob-
tained by taking random linear transformations of
these 32 bits viewed as an integer. We are still ex-
ploring whether any degradation happens if we use
the faster approaches. One potential disadvantage
is that these faster functions are efficiently invertible
(that is, one can easily build an URL that hashes to
a particular location), a fact that might be used by
malicious users to nefarious purposes.

5.5 Recommended Configurations

Combining the above results, we recommend the fol-
lowing configuration for the summary cache approach.
A proxy should broadcast the summary changes ev-
ery time 1% to 5% of cached documents are new, de-
pending on the available bandwidth between proxies.
The summary should be in the form of a Bloom filter.
The default load factor (size of array in bits divided
by the average number of pages) is 16. The prox-
ies can lower or raise it depending on their memory
and network traffic concerns; the data in section 5.3
and the figures in the section above can be used as
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references. The hash functions are bits taken from
the MD5 signature of the URL, and if more bits are
needed, we can compute the MD5 signature of the
URL concatenated with itself any number of times.

5.6 Scalability

Although our simulations are done for 4 to 16 prox-
ies, we can easily extrapolate the results: For exam-
ple, assume that 100 proxies each with 8GB of cache
would like to cooperate. Each proxy stores on average
about 1M pages. The Bloom filter memory needed to
represent 1M pages is 2MB at load factor 16. Each
proxy needs about 200 MB to represent all the sum-
maries plus another 8 MB to represent its own sum-
mary counts. The messages in this system consist
of update messages, false hits, and remote hits. The
threshold of 1% corresponds to 10K requests between
updates, each update consisting of 99 messages, and
thus the number of update messages per request is
less than 0.01. The false hit ratios are around 4.7%
for the load factor of 16 with 10 hash functions. (The
probability of a false positive is less than 0.00047 for
each summary, but there are 100 of them.) Thus, not
counting the messages introduced by remote cache
hits, the overhead introduced by the protocol is under
0.06 messages per request for 100 proxies. Of these
messages only the update message is large, of the or-
der of several hundreds KB. Fortunately, the update
messages are broadcasts and can be transferred via
a non-reliable multicast scheme (see Section 6). Our
simulations predict that, while keeping the overhead
low, this scheme reduces the hit ratio by less than 2%
compared to the theoretical hit ratio of ICP.

We are working on larger simulations to verify
these “back of the envelope” calculations. However,
based on the existing results, we are confident that
Summary Cache scales well.

6 Summary-Cache Enhanced ICP

Based on the simulation results, we propose the fol-

lowing Summary-Cache Enhanced Internet Cache Pro-

tocol as an optimization of ICP. The protocol has
been implemented in a prototype build on top of
Squid 1.1.14 and the prototype is available for public
domain [38].

We added a new opcode in ICP version 2 [45],
ICP.OP DIRUPDATE (= 20), which stands for di-
rectory update messages. In an update message,
an additional header follows the regular ICP header
and consists of: 16 bits of Function.Num, 16 bits
of Function.Bits, 32 bits of BitArray Size_InBits,
and 32 bits of Number _of Updates. The header com-

pletely specifies the hashing functions used to probe
the filter. There are FunctionNum of hashing func-
tions. The functions are calculated by first tak-
ing bits 0 to M-1, M to 2M-1, 2M to 3M-1, etc.
out of the MD5 signature of the URL, where M
is Function Bits, and then modular the bits by
BitArray.Size.InBits. If 128 bits are not enough,
more bits are generated by computing the MD5 sig-
nature of the URL concatenated with itself.

The header is followed by a list of 32-bit inte-
gers. The most significant bit in an integer specifies
whether the bit should be set to 0 or 1, and the rest of
the bits specify the index of the bit that needs to be
changed. The design is due to the concern that if the
message only specifies which bits should be flipped,
then loss of previous update messages would have cas-
cading effects. It makes the scheme more robust to-
ward update message loss, and enables the messages
to be sent via a unreliable multicast protocol. Fur-
thermore, every update message carries the header,
which specifies the hash functions so that the receiver
can verify the information. The design limits the hash
table size to be less than 2 billion, which for the time
being is large enough.

We modified the Squid 1.1.4 software to imple-
ment the above protocol. An additional bit array
structure is added to the data structure for each neigh-
bor. The structure is initialized when the first sum-
mary update message is received from the neighbor.
The proxy also allocates an array of byte counters for
maintaining the local copy of the bloom filter, and
an integer array to remember the filter changes. The
update messages are sent via the outgoing ICP con-
nection to all neighbors. Since ICP uses UDP, in or-
der for the message to fit in one ethernet IP packet,
we deviate from the above design by sending update
messages whenever there are enough filter changes to
fill an IP packet. This is a workaround for the fact
that Squid currently uses UDP for outgoing ICP con-
nection, and we are working on better solutions. The
code as of now does not yet implement retransmis-
sions or recovery from other types of errors. In ad-
dition, we have not done any performance tuning on
the prototype. We are working on these problems.

7 Experiments

We run two experiments with the summary-cache en-
hanced ICP prototype. The first experiment repeats
the test in Section 4 and the results are included
in Table 2 in Section 4, under the title “SC-ICP.”
Clearly, the improved protocol reduces the UDP traf-
fic by a factor of 50, and results in network traffic,
CPU times and client latencies similar to the no-ICP
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Exp Hit Ratio | Client Latency User CPU System CPU | UDP Traffic | TCP Traffic | Total Packets
no ICP 10.65 4.53(0.4%) 77.19(0.1%) | 115.43(0.4%) | 626(1%) 221K (0%) 237K (0%)
ICP 235 4.88(0.7%) | 114.58(0.1%) | 140.19(0.1%) | 64582(0%) | 236K (0%) 317K (0%)
Querhead 8% 48% 21% 102 % 34%
SC-ICP 21.15 4.50(0.1%) §0.51(0.4%) | 124.25(0.5%) | 4941(2%) | 233K(0%) 253K (0%)
Overhead 0.7% 16% 7% 7 5% 7%
Table 3: Overhead of the ICP processing for UPisa trace.
case. 8 Related Work

Our second experiment takes the first 24,000 re-
quests from the UPisa trace, and let the client pro-
cesses issue requests from the trace. The experiment
does not try to replay the trace faithfully, but rather
as a test of the correctness of the implementation.
We have a total of 80 client processes running on 4
workstations, issuing requests round-robin from the
trace file. Each request’s URL carries the size of the
request in the trace file, and the server replies with
the specified number of bytes. The rest of the con-
figuration is similar to the experiments in Section 4.
Different from the synthetic benchmark, the trace re-
sults in fairly high remote hit ratio. The results are
listed in Table 3.

The results also show that the enhanced ICP pro-
tocol reduces the network traffic and CPU overhead
significantly, with only slight impact on total hit ra-
tios. The hit ratio degradation is higher than simula-
tion indicates. We suspect that it is because the re-
quests are issued round-robin, thus requests from the
same user in the trace are issued by different clients.
We are working on a different way to replay the trace
to verify the conjecture.

In addition, the enhanced ICP protocol lowers the
client latency slightly compared to the No-ICP case,
and yet increases the CPU time by about 10%. The
reduction in client latency is due to the remote cache
hits. Comparing with the results of no remote hits
in the first experiment, the numbers seem to indicate
that the CPU time increase is due to serving remote
hits. We are inspecting the code to find out exactly
where the CPU time increase is from. We are also
in the process of gathering more workstations and
experiments with larger number of proxies to verify
the scalability of the protocol. In addition, we are
experimenting with more traces and more faithfully
replay of the traces.

The existing results do indicate that the summary-
cache enhanced ICP solves the overhead problem of
ICP, requires minimal changes, and should be de-
ployed as soon as possible. Toward this end, we are
actively pushing the adoption of the new protocol in
the Squid user community.

Web caching is an active research area. There are
many studies on Web client access characteristics [9,
2, 13, 30, 20], web caching algorithms [46, 32, 7] as
well as Web cache consistency [25, 28, 31, 12]. Our
study does not address caching algorithms or cache
consistency maintanence, but overlaps some of client
traffic studies in our investigation of the benefits of
Web cache sharing.

There have also been a lot of studies on Web cache
hierarchies and cache sharing. Hierarchical Web caching
is first proposed in the Harvest project [23, 11], which
also introduces the ICP protocol. Currently, the Squid
proxy server implements version 2 of the ICP proto-
col [45], upon which our Summary-Cached enhanced
ICP is based. Adaptive Web caching [47] proposes
a multicast-based adaptive caching infrastructure for
document dissemination in the Web. In particular,
the scheme seeks to position the documents at the
right caches along the routes to the servers. Our
study does not address the positioning issues. Rather,
we note that our study is complimentary in the sense
that the summary cache approach can be used as a
mechanism for communicating caches’ contents.

Though we did not simulate the scenario, Summary-
Cache enhanced ICP can be used between parent and
child proxies. Hierarchical Web caching includes not
only cooperation among neighboring (sibling) prox-
ies, but also parent and child proxies. The difference
between a sibling proxy and a parent proxy is that a
proxy cannot ask a sibling proxy to fetch a document
from the server for it, but can ask a parent proxy.
Though our simulations only involve the cooperation
among sibling proxies, the summary-cache approach
can be used to propogate information about the par-
ent cache’s content to the child proxies, and eliminate
the ICP queries from the child proxies to the parent.
Our inspection of the Questnet traces shows that the
child-to-parent ICP queries can be a significant por-
tion (over 2/3) of the messages that the parent has
to process.

Recently, there have been a number of new cache
sharing approaches proposed in the literature. The
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directory server approach [18] use a central server to
keep track of the cache directories of all proxies, and
all proxies query the server for cache hits in other
proxies. The drawback of the approach is that the
central server can easily become a bottleneck with
the query and update messages from the proxies. An-
other approach is the Cache Array Routing Proto-
col [43], which divides URL-space among an array
of loosely coupled proxy servers, and lets each proxy
cache only the documents whose URLs are hashed
to it. An advantage of the approach is that it elim-
inates duplicate copies of documents. However, it is
not clear how well the approach performs for wide-
area cache sharing, where proxies maybe distributed
over a regional network. The Relais project [24] also
proposes using local directories to facilitate finding
documents in other caches, and updating the directo-
ries asynchronously. The idea is similar to summary
cache. However, the project does not seem to address
the problem of the linearly growing memory require-
ments of the local directories. From the publications
on Relais that we can find and read [3], it is also not
clear to us whether the project addresses the issue of
directory update frequencies. Finally, proxies built
out of tightly-coupled clustered workstations also use
various hashing and partitioning approaches to utilize
the memory and disks in the cluster [17], but the ap-
proaches are not appropriate in wide-area networks.

In the operating system context, there have been
a lot of studies on cooperative file caching [10, 1] and
the global memory system (GMS) [14]. The under-
lying assumption in these systems is that the high-
speed local area networks are faster than disks, and
workstations should use each other’s idle memory to
cache file pages or virtual memory pages to avoid traf-
fic to disks. In this aspect, the problem is quite dif-
ferent from Web cache sharing. On the other hand,
in both context there is the issue of how tightly coor-
dinated the caches should be. Most cooperative file
caching and GMS systems try to emulate the global
LRU replacement algorithm, sometimes also using
hints in doing so [42]. It is interesting to note that we
arrive at quite different conclusions on whether global
replacement algorithm is necessary [14]. The reason
is that in the OS context, the global replacement algo-
rithm is used for stealing memory from idle worksta-
tions (i.e. load-balancing the caches), while in Web
cache sharing, every proxy is busy all the time. Thus,
while simple cache sharing performs poorly in the OS
context, it suffices for Web proxy cache sharing as
long as each proxy’s resource configuration is appro-
priate for its load. Finally, note that the technique
of Bloom filter based summary cache is not restricted
to the Web proxy caching context, but can be used
whereever the knowledge of other caches’ contents is

beneficial, for example, in caching and load-balancing
in clustered servers.

9 Conclusions and Future Work

We propose Summary-Cache enhanced ICP, a scal-
able wide-area Web cache sharing protocol. Using
trace-driven simulations and measurements, we demon-
strate the benefits of Web proxy cache sharing, il-
lustrate the overhead of the current cache sharing
protocol ICP, and propose the summary cache ap-
proach to reduce the protocol overhead. We study
two key questions in the summary cache approach:
the delay in updating summaries, and the representa-
tion of summaries. Our solution, Bloom filter based
summaries with update delay thresholds, consumes
low memory and network overhead, and yet achieves
hit ratio similar to the ICP protocol. Trace-driven
simulations show that the new protocol reduces the
number of inter-proxy protocol messages by a fac-
tor of 40 to 65, reduces the bandwidth consumption
by over 50%, and yet keeps similar cache hit ratios
as ICP. Simulation and analysis further demonstrate
the scalability of the protocol.

We have implemented a prototype of the new pro-
tocol in Squid 1.1.14. Synthetic and trace-replay ex-
periments with the prototype show that in addition
to the network traffic reduction, the new protocol re-
duces the protocol CPU overhead by 75% and 95%
and improves the client latency.

There are many limitations in our current study.
We need to perform simulations and experiments with
larger numbers of proxies, larger caches, and longer
traces. We are working on acquiring the necessary
workstations for doing this. The prototype needs
performance tuning. More faithful and longer trace-
replay experiments are needed to understand the per-
formance of the protocol in practice.

We are also planning to investigate how the pro-
tocol performs for parent-child proxy cooperations.
We plan to use simulations and experiments to un-
derstand the appropriate replacement coordination
among the parent and child proxies, and to incor-
porate it in the enhanced ICP protocol.
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