Relationships Between Quantum and Classical
Space-Bounded Complexity Classes

John Watrous
Technical Report #1357

December 1997

Relationships between quantum and classical space-bounded
complexity classes

John Watrous
Computer Sciences Department
University of Wisconsin
Madison, Wisconsin 53706
watrous@cs.wisc.edu

December 5, 1997

Abstract

In this paper, we discuss the relative power of quantum and classical (probabilistic)
machines when the limiting resource is space rather than time. In particular, quantum
simulations of probabilistic machines and probabilistic simulations of quantum machines
are presented which imply the following relationships.

(1) Any probabilistic Turing machine (PTM) which runs in space s and which halts ab-
solutely (i.e. halts with certainty after some finite number of steps) can be simulated
in space O(s) by a quantum Turing machine (QTM). If the PTM has probability
of error bounded away from 1/2, then the same is true of the QTM. In the case of
unbounded error, the quantum machine may be taken to halt absolutely, but for
the bounded error case the QTM will not necessarily halt absolutely.

(2) Any QTM running in space s can be simulated by an unbounded error PTM running
in space O(s). No assumptions on the probability of error or running time for the
QTM are required, but it is assumed that all transition amplitudes of the quantum
machine are rational.

It follows that unbounded error, space O(s) bounded quantum Turing machines and
probabilistic Turing machines are equivalent in power, and that any space s QTM can
be simulated deterministically in space O(s?). We also consider quantum analogues
of nondeterministic and one-sided error probabilistic space-bounded classes, and prove
some simple relationships regarding these classes.

1 Introduction

Within the past several years, a number of researchers have provided compelling evidence sug-
gesting that quantum computers may be considerably more powerful, in terms of time-bounded
computation, than classical (probabilistic) computers (see [6, 8, 13, 17, 25, 26, 27}, for instance).
In this paper, we consider the relative power of quantum and classical machines when the limiting
resource is space rather than time. In particular, we define quantum complexity classes which
are analogous to classes traditionally studied in the context of space-bounded probabilistic com-
putation, and prove that various relationships hold amongst these classical and quantum classes.
By studying quantum versions of space-bounded complexity classes, we hope not only to better
understand the strengths and limitations of quantum computational models, but also to possibly
shed new light on the classical versions of these classes.

The model for quantum computation which we use in this paper is the quantum Turing machine
(QTM) model, first formally defined by Deutsch [12], and also discussed in [5, 6, 31]. Specifically,
we use a multitape version of the QTM model; in addition to having a read-only input tape, our
QTMs also have an output tape which is assumed to be observed after each and every computation
step. Such a model is better suited to the situation in which space is the limiting resource, since
we may consider not only machines with sublinear space-bounds, but also machines with rather
weak conditions on halting times. In this paper, we will restrict our attention to QTMs which have
rational transition amplitudes.

Although we are not aware of any previous work on space-bounded quantum complexity classes,
previous work on reversible computation is quite relevant to our discussion. The reason for this is
that reversible computation represent the overlap between classical and quantum computation; a
deterministic Turing machine (DTM) directly corresponds to a QTM, and vice versa, exactly when
the machine in question is a reversible Turing machine (RTM) (i.e. a DTM for which each configu-
ration may have only one predecessor). It was proved by Bennett in [3] that any DTM computation
can be simulated by an RTM. Although Bennett’s simulation incurred only a constant factor in-
crease in running time, in the worst case the space required for the simulation was exponential in the
space required by the original machine. Bennett later improved the space-efficiency of this simula-
tion so that it required at most a quadratic increase in space, at the cost of only a slight increase in
running time [4]. We may state this result as DSPACE(s) C RevSPACE(s?), where RevSPACE(s)
denotes the class of languages recognizable in space O(s) by some RTM. It was subsequently proved
in [10] that nondeterministic Turing machines can also be simulated reversibly with the same in-
crease in space, i.e. NSPACE(s) C RevSPACE(s?). Quite recently, Lange, McKenzie and Tapp [22]
proved that, at the cost of a possibly exponential increase in running time, DTMs can be simulated
by RTMs with only a constant factor increase in space, i.e. DSPACE(s) = RevSPACE(s).

Given that DSPACE(s) = RevSPACE(s), we may deduce various relationships between clas-
sical and quantum space-bounded classes by considering deterministic simulations of probabilistic

‘machines. Independently, Jung [18] and Borodin, Cook and Pippenger [9] showed that any prob-
abilistic Turing machine (PTM), even in the case of unbounded error and without restriction on
running time, can be simulated deterministically with at most a quadratic increase in space, i.e.
PrSPACE(s) C DSPACE(s?). This implies that RTMs, and hence QTMs, can also simulate PTMs
with at most a quadratic increase in space. Along similar lines, it was proved in [24] that any
bounded error PTM which halts absolutely (i.e. halts with certainty after some finite number of
steps) can be simulated deterministically (and hence by a QTM) in space O(s%/2).

A natural question to ask is whether it is possible for QTMs to simulate PTMs in a more
space-efficient manner than implied by these deterministic simulations. In the context of time-
bounded computation, it is known that QTMs can simulate PTMs without significant increase in
running time (which follows from the fact that QTMs can simulate coin-flips, along with Bennett’s
simulation). It is not clear, however, that a similar technique can be applied in the space-bounded
case without requiring the QTM to have multiple access to its (simulated) coin-flips. Since a PTM
can perform useful work even after a number of steps which is doubly exponential in its space-bound
[16], a QTM storing the values of the required number of coin-flips would, in the worst case, require
considerably more space than the O(s?) deterministic simulation mentioned above.

Using a different method not directly based on simulating coin-flips, we show that any bounded
error PTM which runs in space s and halts absolutely can be simulated by a bounded error QTM
running in space O(s) (but which does not necessarily halt absolutely). A similar result is shown to
hold for the cases of one-sided error and unbounded error, and in the case of unbounded error it may
be assumed that the quantum machine does halt absolutely. We also define quantum analogues of
nondeterministic space-bounded classes by considering whether or not input strings are accepted
with zero or nonzero probability. It is shown that a space s nondeterministic Turing machine can
be simulated by a QTM running in space O(s), with respect to this notion of acceptance.

In the other direction, we consider probabilistic simulations of space-bounded quantum ma-
chines. We show that any (unbounded error) QTM running in space s can be simulated by an
unbounded error PTM running in space O(s). As corollaries, we have that unbounded error space-
~ bounded PTMs and QTMs are equivalent in power, and that any QTM running in space s can
be simulated deterministically in space O(s?). Further, it follows that unbounded error, space-
bounded QTMs do not lose power if required to halt absolutely; a result which is analogous to
one proved by Jung [20] for the probabilistic case (see also [2]). Our proof of these relationships
uses a technique similar to the one used in the probabilistic case; the problem of determining
whether or not quantum machines accept with probability exceeding 1/2 is reduced to the problem
of comparing determinants of integer matrices.

The remainder of this paper has the following organization. In Section 2 we define the multi-
tape quantum Turing machine model and space-bounded quantum complexity classes which will
be used throughout the paper. Next, in Section 3 we discuss some of the relationships which hold
amongst these quantum classes, and in Sections 4 and 5 we show how quantum and probabilistic
space-bounded classes compare by considering quantum simulations of probabilistic machines and
probabilistic simulations of quantum machines, respectively. Finally, Section 6 contains some con-
cluding remarks and mentions some open questions. Proofs of various claims from Sections 3 - 5
will appear in an appendix following Section 6.

Notation

We will mention here some of the notation which is used in this paper. N, Z and C denote the
natural numbers (excluding 0), integers and complex numbers, respectively, and Z* = NuU{0}.
The empty string over any given alphabet will be denoted e. For any finite or countable set S,
¢5(S) will denote the Hilbert space of vectors indexed by the set S. Elements of such spaces will be
expressed using the Dirac notation; for each s € S, |s) denotes the elementary unit vector taking
value 1 at s and 0 elsewhere, and arbitrary elements of £3(S) (generally denoted by |¢), |¢), etc.)
may be written as linear combinations of these elementary vectors. For |¢) € £2(S), (¢| denotes

the linear functional mapping each |1) € £3(S) to the inner product (¢ |1) (skew-linear in the first
coordinate rather than the second).

2 Preliminaries

Multitape quantum Turing machines

In this section, we define a multitape version of the quantum Turing machine model which is better
suited to the study of space-bounded classes than the more usual single-tape model. Specifically,
our QTMs will have three tapes: a read-only input tape with a two-way tape head, a work tape
with a two-way tape head, and a write-only output tape with a one-way tape head. The input and
work tapes are assumed to be two-way infinite and indexed by Z, while the output tape is one-way
infinite and indexed by Z*. For a given QTM M, @ and X will denote the set of internal states
and alphabet of M, respectively. It is assumed that () contains an initial state go and ¥ contains
at least the two symbols # (blank) and 1. Input strings are assumed to be elements over some
alphabet I, where I C T\ {#}.

Although we will not include the entire contents of the output tape or the position of the
output tape head when measuring the space used by a QTM, we will include this information in
the definition of a configuration; a configuration of a QTM includes (1) the internal state of the
machine, (2) the position of the input tape head, (3) the contents of the work tape and the position
of the work tape head, and (4) the contents of the output tape and the position of the output tape
head. We denote the set of all configurations of a QTM M by C(M) (or just C if M is understood
from context). The initial configuration of a machine M, denoted co, is that configuration in
which the internal state of M is qg, all tape heads are positioned over the tape squares indexed
by zero, and all tape squares on the work tape and output tape contain blanks. Throughout the
computation of a given machine on input z, it is assumed that z is written on the input tape in
squares 0,...,|z| — 1, and all remaining squares on the input tape contain blanks.

At any instant, the state of a QTM may be described by a superposition of configurations. For-
mally, a superposition of a QTM M is a unit vector in the Hilbert space £3(C). For a superposition
) = Y cec e o), each . is called the amplitude associated with configuration ¢. Superpositions
of the form |c) for ¢ € C will also be referred to as classical states.

In general, the transition function of a QTM is a mapping of the form

p:QxIxLxQx{-1,0,1} x T x {-1,0,1} x (Eu{e}) = C.

The interpretation is as follows: u(g, 0, 0w, ¢, di, 0y, dw, T) is the amplitude with which a machine,
currently in state g, reading symbol o; on its input tape and reading oy, on its work tape, will move
the input tape head in direction d;, write o7, on the work tape, move the work tape head in direction
dy and, if 7 # €, write 7 on the output tape and move the output tape head to the right. (If 7 = ¢,
then nothing is written to the output tape and the output tape head remains stationary.) We will
place the following restriction on allowable transition functions: we assume that for each ¢ € X
there exists a unitary (i.e. norm preserving and invertible) mapping V; : £2(Q x) = £5(Q x %),
and for each ¢ € Q there exist D;(q) and Dy(q) in {~1,0,1} and Z(g) € £ U {e}, such that

,O:u] Vo, |Q7Uw> d; = Di(q,), dy = Dw(ql)a T = Z(q,)
otherwise.

. /d. ! d . (q/
u(q:glaaqu, 1a0w7 w,T)“‘ 0

This restriction is analogous to unidirectionality for the single-tape QTM model, discussed in [6];
therein it is shown that this restriction does not decrease the power of QTMs. Similarly, the RTMs
considered in [3, 4, 22] obey this restriction (where each V, is a permutation in this case). In the
interest of simplicity, we prefer to include this restriction as part of the definition of multi-tape
QTMs. In short, the condition says that the output and movement of tape heads is determined by
whatever internal state the machine enters on the step in question. Each V; must be unitary in
order to insure that the machine is well-formed (see below).

It is known that the power of QTMs depends greatly upon the values which the transition
function p may take; in the absence of any restrictions, it is possible to encode a great deal of
information in these values. For example, it is shown in [1] that QTMs can recognize non-recursive
sets in polynomial time, logarithmic space and with bounded probability of error if allowed to
have arbitrary transcendental transition amplitudes. Thus we must place some restriction on these
values in order to avoid this problem, and so we will insist that all transition functions of QTMs may
take only rational values. Although many quantum algorithms use algebraic transition amplitudes,
it is shown in [1] that, for the case of bounded error polynomial time, machines with algebraic
amplitudes are equivalent in power to ones with rational amplitudes. It is an open question not
addressed in this paper whether QTMs with algebraic amplitudes are equivalent in power to ones
with rational amplitudes in the case of space-bounded classes.

For given input z and any pair of configurations ¢ and ¢/, u specifies some amplitude, which we
will denote by a(c F '), associated with performing the transition ¢ - ¢’ in the manner described
above (if ¢ is not reachable from ¢ in a single transition, then a(c i ¢’) = 0). The time evolution
operator of M on input z may now be defined as

Uy = Z actd)|d) (d,

¢, eC

so that if machine M on input z is in superposition |¢) at some instant, and is allowed to evolve
(unobserved) for one step, its new superposition will be Uz |[¢). A QTM M is said to be well-
formed whenever U, is a unitary operator for every input z. It can be shown that any QTM
obeying the restriction on transition functions mentioned above will necessarily be well-formed
(following from the fact that each V, is unitary). Unitary operators preserve length, and hence we
have ||Ug [¥) || = || |¥) || = 1 for any superposition |1) — a property will be important in regard to
observations of QTMs, which will now be discussed.

In order for a QTM to reveal any information about its computation, we must assume that it
is observed. The information revealed by a particular observation is described by an observable.
Formally, an observable is any finite or countable collection {(P;,r;)}, where each P; is a projection
operator on £3(C) and each r; is a result, which we will take to be some element of £*. This collection
of pairs must satisfy (1) P;P, =0 for j # k, (2) Zj P;=1,and (3) r; # ri for j # k. If a machine
M in superposition |1) is observed with observable {(Pj,r;)}, then the following occurs:

(1) Each result r; will be selected with probability || P; lh)]|%.
(2) For whichever result r; was selected, the superposition of M will “collapse” to ﬂFJIWWIPJ [).

As previously mentioned, superpositions are of unit norm, so it follows that the probabilities in (1)
sum to 1. Item (2) implies that the new superposition immediately after the observation will also
be of unit norm.

The particular observable which we will be interested in corresponds to simply observing the
contents of the output tape. Since the output tape head moves right one square exactly when a
symbol is written to the output tape, the contents of the output tape and the position of the output
tape head can be identified with a unique string in 3*. For each w € ¥*, let P, be the projection
from £,(C) onto the space spanned by classical states for which the output tape contents and tape
head position are described by w. Now {(Py,w)}weg- is a formal description of our observable.

The computation of any QTM M on input z will proceed as follows. We assume that M begins
in the classical state |co) with z written on its input tape. Each step of the computation consists
of two phases: first the machine evolves according to Ug, then the output tape of the machine
is observed as described above. The computation continues until it has been observed that some
symbol has been written to the output tape (the output tape head has moved right); if the observed
symbol is “1”, then the result of the computation is accept, and for any other symbol the result is
reject.! With a given QTM M, input z, k € N and 0 € X, we may therefore associate a probability
DMz ko, Which is the probability that if M on input z is run as described above, each observation
at time k' < k yields € and the observation at time k yields 0. The probability that M accepts z is
thus 3, Par,ck,1, and the probability that M rejects = is Yok Z#lpM,m)k,g. If for all z € ¥* there
exists an NV such that ", <y Y, PMz ke = 1, i.e. M halts with certainty after some finite number
of steps, then we say that M halts absolutely?.

Space-bounds and quantum space-bounded classes

We will measure the space used by (quantum and classical) Turing machines in terms of the number
of bits required to encode certain information regarding configurations of these machines, relative
to some reasonable encoding scheme. We note that this notion of space will differ from the more
standard notion by at most a constant factor. Specifically, the following information regarding
each configuration is to be encoded: (1) the internal state of the machine, (2) the position of the
input tape head, (3) the position of the work tape head and the contents of the work tape, and
(4) the first symbol (if any) written to the output tape. It is assumed that the length of the
encoding of any configuration is logarithmic in the distance of the input tape head from square
0, and is linear in both the maximum distance of any non-blank work tape square from square 0
and in the distance of the work tape head from square 0. We further assume that each encoding
begins with 1, and each configuration has a unique encoding. Now we say that the space required
for a given configuration is the length of the bit string encoding the above information about this
configuration. It follows that the number of configurations with space bounded by [is at most
2!, and each such configuration can be written uniquely as a bit string of length [(padding the
beginning of the string with zeroes as necessary).

Next, we say that the space required for a superposition is the maximum space required for
any configuration which has nonzero amplitude in that superposition, and we say that a QTM M
on input z runs in space [if each superposition obtained during an execution of M on z requires
space at most [. More precisely, M on z runs in space [if, for every £ > 0, we have that each

If we are interested in QTMs which output strings, we may define the output of a computation of M on z to be,
say, the longest string in (Z\{#?})" observed during the computation (i.e. the computation ends when it is observed
that the machine writes a blank to the output tape, and otherwise the machine does not halt). We will restrict our
attention in this paper to machines for language membership, however.

2Unlike the probabilistic case, if a QTM M halts absolutely it may not be the case that M halts along every
nonzero amplitude computation path, since interference may cause such paths may cancel each other out.

configuration ¢ for which (c | (UgP.)k I co> # 0 requires space at most [. (Note that the behavior of
M on steps subsequent to observing any non-empty string written on the output tape is ignored;
the computation has ended once such output is observed). A PTM on input z runs in space [if
each configuration reachable with nonzero probability requires space at most [.

Finally, we say that a QTM or PTM M runs in space s (where s will always denote a function
of the form s : Zt — N) if, for every input z, M on input z runs in space s(|z|). Throughout
this paper, whenever we refer to a space bound s, we assume that s(n) = Q(log n) and that s is
nondecreasing and space constructible. Frequently we will write s to mean s(|z|), and similarly for
any function ¢ : ZT — N denoting some number of time steps which is a function of |z|.

Now we may define various complexity classes based on space-bounded QTMs.

Definition 2.1 For each X € {EQ,RQ, BQ, NQ,PrQ}, a given language L is said to be in the class
XSPACE(s) if there exists a QTM M which runs in space O(s) and which satisfies the appropriate
condition below:

EQSPACE(s): For z € L, M accepts = with probability 1, and for z € L, M accepts z
with probability 0.

RQSPACE(s): There exists an € > 0 such that for z € L, M accepts x with probability

greater than % +¢, and for z ¢ L, M accepts ¢ with probability 0.

BQSPACE(s): There exists an £ > 0 such that for z € L, M accepts z with probability
greater than % + ¢, and for x € L, M accepts z with probability less
than § —e.

NQSPACE(s): For z € L, M accepts = with probability greater than 0, and for z ¢ L,
M accepts = with probability 0.

PrQSPACE(s): For x € L, M accepts z with probability strictly greater than %, and for
x € L, M accepts = with probability less than or equal to %

If in addition M halts absolutely, then L is in the class X gSPACE(s).

The prefixes RQ, BQ, NQ and PrQ may be replaced by R, BP, N and Pr, respectively, to obtain
the analogously defined probabilistic classes. Here we have adopted the notation of [23], to which
the reader is referred for further information regarding the probabilistic versions of these classes.

3 Relationships between quantum classes

In this section, we discuss relationships amongst the space-bounded quantum classes defined in the
previous section. In the two sections which follow, we will examine relationships between these
quantum classes and their probabilistic counterparts.

Naturally, each of the halting classes is contained in its corresponding non-halting class, i.e.
XgSPACE(s) C XSPACE(s) for X € {EQ,RQ, BQ,NQ, PrQ}. The following containments also
follow immediately from the definitions:

RevSPACE(s) C EQSPACE(s) C RQSPACE(s) C BQSPACE(s) C PrQSPACE(s),
and RQSPACE(s) € NQSPACE(s), and similarly for the halting classes.

6

The following lemma will be useful in establishing further relationships between space-bounded
quantum classes. The lemma is somewhat more general than will be required in this section, but
it will be useful to refer back to it in subsequent sections.

Lemma 3.1 Let M be a QTM running in space s and let t : Z+ — N be computable in space O(s).
Let poce() and prej(z) denote the cumulative probabilities that M accepts and rejects, respectively,
input z after t steps have passed. Then for any choice of o € {0,1} and § € {0,1} there ezists a
QTM M’ running in space O(s) and t' : Z* — N computable in space O(s) such that the following
hold.

(1) After precisely t'(|z|) steps, M' accepts with probability Pace(x) and rejects with probability
aprej(z), for each input z.

(2) After precisely t'(|z|) + 1 steps, M' accepts with probability 3 and rejects with probability 1 — 3
(thus halting absolutely), resulting in a cumulative probability of B+ (1= B) Pace(x) — @ B prej ()
for acceptance and (1 — B) — (1 — B) Pace() + B pres (z) for rejection.

Informally, the lemma states that there exists a QTM which will simulate a given QTM for a
given number of steps, possibly suppressing output and acting in the described manner once the
simulation is complete. The values a and 3 could be taken to be any rational numbers in the range
[0,1], but the values above are sufficient for our needs. A proof of this lemma can be found in the
appendix.

An immediate consequence of Lemma 3.1 is that we have NQy,SPACE(s) € PrQgSPACE(s)
(take @ = 1, 8 = 1). However, this containment will follow trivially from results proved below.

2
Another simple relation is as follows.

Proposition 3.2 NQySPACE(s) = NQSPACE(s).

Proof. For the nontrivial direction, take M to be a QTM running in space s, and for given input
z let |tho) = |co) and let [¢pg41) = Uz Pr [tx) for each k > 0. Under the assumption that M runs in
space s, there exists a subspace of £3(C) of dimension 2° which contains every |). Hence, if k is the
largest number such that 1) & span{|o),. .., |¥k—1)}, then k < 2°. It follows that if P [g) #0
for any k > 0, then P [1h;) # 0 for some k < 2°. Now apply Lemma 3.1 with t(|z]) = 250D and
6 =0. n

It is known that NSPACE(s) = RSPACE(s), since a space-bounded probabilistic machine can
simulate a nondeterministic machine by repeatedly choosing random computation paths until it
inevitably picks an accepting path (if there is one). It is not immediately clear that a similar result
holds in the quantum case, since restarting a quantum machine likely constitutes an irreversible
action not performable by a well-formed QTM. However, the following lemma shows that a well-
formed quantum machine can perform a process which has a similar outcome. As for the previous
lemma, this lemma, will also be useful in later sections.

Lemma 3.3 Let M be a QTM running in space s and let t : ZT — N be computable in space O(s).
Let pace(z) and prej(z) denote the cumulative probabilities that M accepts and rejects, respectively,
input = after t steps have passed. Then there exists a QTM M' running in space O(s) such that

for each input z, z'fpacc((ﬂ)v) + prej(z) > 0 then M’ accepts with probability E:&‘—)er————;qm
Prej{T

with probability PG e @) and otherwise M' accepts and rejects with probability 0.

and rejects

The proof appears in the appendix.
We now have the following proposition, which follows readily from the above.

Proposition 3.4 NQSPACE(s) C EQSPACE(s).
Corollary 3.5 EQSPACE(s) = RQSPACE(s) = NQSPACE(s).

It will be demonstrated in the two sections which follow that the class NQSPACE(s) corresponds
to the counting class co-C—SPACE(s), defined analogously to co-C=L for s(n) = log n (see [2],
and also see Section A.4 in the appendix for an equivalent definition.) It is not known whether
C-SPACE(s), and hence NQSPACE(s), is closed under complementation.

4 Quantum simulations of classical classes

In this section, we discuss quantum simulations of probabilistic machines. Given a PTM which
runs in space s and which halts absolutely, we show that there exists a QTM running in space 0(s)
and recognizing the same language. The quantum machine constructed has the property of having
bounded error when the same is true of the PTM, but in this case the simulation is quite inefficient
in terms of time; the QTM constructed will not halt absolutely and will have expected running
time which is doubly exponential in s. In the unbounded error case the QTM may be taken to halt
absolutely, having running time 20(s),
The following lemma provides the basis for these relationships.

Lemma 4.1 Let M be a PTM running in space s and satisfying the properties (1) each non-
halting configuration of M has either 1 or 2 successors, (2) for each input x, there is at most one
accepting and one rejecting configuration reachable from the initial configuration, and (3) there
exists t : ZT — N computable in space O(s) such that, on each input x, M halts after precisely t
steps on all computation paths. Let Docc(x) and prej(x) denote the probabilities that M accepts =
and rejects x, respectively. Then there ezists a QTM M’ running in space O(s) and t': Zt -+ N

computable in space O(s) such that for each input T, M' accepts x with probability (2725 pacc)2

and rejects © with probability (2725 pre; 2 after t' steps.
]

The proof may be found in the appendix. In essence, the quantum machine constructed follows
the computation paths of the probabilistic machine with positive amplitudes proportional to the
probabilities for each path. As indicated by the probabilities of acceptance and rejection for the
quantum machine, the constant of proportionality is very small.

For a given PTM M, we may apply Lemma 3.1 (with & = 1 and 8 = 1/2) to the QTM M’
resulting Lemma 4.1, and we see that there exists a QTM M " which halts absolutely and which
has probability of acceptance greater than 1/2 if and only if pacc(T) > prej()-

Proposition 4.2 PrSPACE(s) C PrQy SPACE(s).

(Here we rely on the fact that PrSPACE(s) = PrySPACE(s), proved in [20] (see also [2]).) In the
case that M has probability of error bounded away from 1/2, we may apply Lemmas 3.1 and 3.3 to

M’ to obtain a QTM which accepts with probability ———p%ﬁ@z—,—ﬂz and rejects with probability
pacc(m) +Prej (m)

pm(z ‘;F:_;jj @z~ These probabilities are bounded at least as far from 1/2 as pgec(z) and prej(z),
and consequently the following relationship holds.

8

Proposition 4.3 BPySPACE(s) C BQSPACE(s).

We note that the QTM M' constructed in the proof of Lemma 4.1 accepts with nonzero prob-
ability if and only if the same is true of the PTM M, and hence the containment NSPACE(s) C
NQSPACE(s) immediately follows. However, it is possible to obtain the following stronger result:

Proposition 4.4 co-C-SPACE(s) C NQSPACE(s).
For a proof of this proposition and definition of co-C_SPACE(s), see the appendix.

5 Probabilistic simulations of quantum classes

In this section, we discuss probabilistic simulations of space-bounded quantum machines.

In [1] it is shown that unbounded error, polynomial time probabilistic machines are capable
of simulating polynomial time quantum machines. In the context of space-bounded classes, it is
possible to modify this simulation to obtain the result PrQ;SPACE(s) € PrSPACE(s). However,
we are able to obtain the somewhat stronger result PrQSPACE(s) C PrSPACE(s) by adopting
techniques which have been used to prove PrySPACE(s) = PrSPACE(s) (see (2, 20]).

Lemma 5.1 Let M be a QTM running in space s. Then for each input x there exist 22s+1 5 92s+1

matrices A and B, where entries of A and B are | bit integers with | computable in space O(s),
such that the following properties are satisfied.

(1) For each i,j < 227! and k < I, the kth bit of the i,j entries of A and B are computable in
space O(s).
(2) det(A) > det(B) if and only if M accepts T with probability ezceeding 1.

It is known that the problem of deciding whether or not one given integer matrix has a larger
determinant than a second given matrix can be solved by an unbounded error PTM running in
space O(log n) ([2], see also [11, 28, 29, 30]). From this it follows that for A and B as above,
there exists a space O(s) PTM which accepts with probability greater than 1/2 if and only if
det(A) > det(B), and hence if and only if the given QTM M halts with probability greater than
1/2. Thus, we have the following proposition.

Proposition 5.2 PrQSPACE(s) C PrSPACE(s).
By Propositions 4.2 and 5.2, we have
Corollary 5.3 PrQySPACE(s) = PrQSPACE(s) = PrSPACE(s).
Corollary 5.4 PrQSPACE(s) C DSPACE(s?).
Finally, we note the following relationship.
Proposition 5.5 NQSPACE(s) C co-C=SPACE(s).

Proof. Tt follows from the proof of Lemma 5.1 that the matrix A has zero determinant if and only
if M accepts z with probability zero. As noted in [2], singularity of integer matrices is in C=L,
from which it follows that testing non-singularity of A can be performed in co-C_SPACE(s). =

From Propositions 4.4 and 5.5, we have
Corollary 5.6 NQSPACE(s) = co-C=SPACE(s).
This may be viewed as the space-bounded analogue of the result QNP = co-C-P [14].

9

6 Conclusion and open problems

Figure 1 is a diagram which summarizes the relationships between some of the quantum and classical
space-bounded classes which we have discussed.

DSPACE(s?)
= RevSPACE(s?)

PrSPACE(s)
= PrQSPACE(s)
= PrQy SPACE(s)

BPSPACE(s) 4 » BQSPACE(s)

NQSPACE(s)
= RQSPACE(s)
= EQSPACE(s)

= co-C=SPACE(s)

b BQy SPACE(s)

NSPACE(s)
= RSPACE(s)

DSPACE(s)
= RevSPACE(s)

Figure 1: Relationships between space-bounded quantum and probabilistic classes.

A number of questions have been left open by this paper. In particular, can a probabilistic
machine which halts absolutely be simulated efficiently by a quantum machine which also halts ab-
solutely for the case of bounded error? For example, do either of the relationships BP ySPACE(s) C
BQySPACE(s) or RgSPACE(s) € RQySPACE(s) hold? Also, can probabilistic simulations
of space-bounded quantum machines be performed in such a way that bounded error probabil-
ity is achieved? For example, are any of the quantum classes EQ,SPACE(s), RQ gSPACE(s),
BQySPACE(s), or NQSPACE(s) contained in BPSPACE(s), say?

A number of other classical space-bounded classes (e.g. symmetric space, probabilistic classes
allowing multiple access to random bits, etc.) have not been mentioned in this paper (see [23]).
Are there natural quantum analogues of these classes, and how do these classes relate to those
discussed in this paper?

We have restricted our attention in this paper to space-bounds which are at least logarithmic
in the input size. In the case of constant space-bounds, polynomial time QTMs are more powerful
than polynomial time PTMs [21]. What else can be said about sub-logarithmic space-bounds?

10

A Appendix
A.1 Proof of Lemma 3.1

Let @, © and u denote the state set, alphabet and transition function of M, where we assume p
can be specified by V;, D;(q), Dw(q), and Z(q) for each ¢ € ¥ and q € Q, as described in Section 2.

Each internal state of M’ will be of the form (q,7,7), where ¢ € @, 7 € ¥ and r is one of a
collection of states allowing M’ to behave in the manner described below. For the initial state of
M, it is assumed that ¢ = o (the initial state of M), and 7 = #. The work tape of M’ will consist
of six tracks, which will be used as follows.

Track 1: Records the position of the input tape head of M.

Track 2: Records the position of the work tape head of M.

Track 3: Represents the contents of the work tape of M.

Track 4: Records the number of steps of M which have thus far been simulated.
Track 5: Records the time at which M halts (or 0 if M has not halted).

Track 6: Records whether M has accepted, rejected or neither.

We will assume that integers are efficiently encoded as strings over {0,1} in such a way that (1)
the empty string represents 0, and (2) the integers and representations are in one-to-one correspon-
dence. (Such an encoding appears in [15]: letting Oz represent the positive integer with binary
representation 1z and letting 1z represent the negative integer having absolute value with binary
representation 1z, we have a suitable encoding.)

The manner in which M’ functions is described in Figure 2. It is assumed that after each step
is performed, the input and work tape heads of M’ return to the tape squares indexed by 0.

First we note that the loop (step 1) can be performed reversibly. Let us suppose that the body
of the loop corresponds to some sequence of actions beginning with states of the form (g, 7,71) and
ending with states of the form (g, 7,r}), and that step 2 begins with states of the form (g, 7,72).
Since track 5 contains 0 if and only if square 0 on track 5 contain a blank (given our encoding of
integers as described previously), the transition function of M’ can induce the following reversible
transformation on its internal state in order to perform the loop as required.

(q,7,70) (g, 7,71) symbol being read on track 5 is #
770 (g,7,72) symbol being read on track 5 is not #

(1) s (g,7,r1) symbol being read on track 5 is not #
hhh (g,7,72) symbol being read on track 5 is #

Next, note that the coin-flip in step 3 could easily be simulated by performing the Hadamard
transform on some initially 0 bit (in the internal state of M’, say). Since we require that all am-
plitudes of our machines be rational, however, we may use the 4-dimensional Hadamard transform

Hjy instead:
3
1 (a,b)
= 52 (=D |p)
b=0

where (a,b) denotes the number of 1’s in the bitwise-and of a and b written in binary.
Each remaining step described in Figure 2 is clearly reversible (save the remaining “quantum”
step which, once o has been located on the input tape, is performed in a single step and involves

11

1. Execute the following loop with starting/stopping condition “track 4 contains 0”:

i. If track 5 contains 0 (M has not yet halted), simulate M for 1 step. Specifically:

Swap the tape symbol currently represented in the internal state of M’ with the
symbol on track 3 at the position encoded on track 2.

Perform the transformation V,, on the state/symbol pair currently represented
in the internal state of M’, where o is the symbol on the input tape at the
location recorded on track 1.

Again swap the tape symbol currently represented in the internal state of M’
with the symbol on track 3 at the position encoded on track 2.

Letting g denote the state of M currently represented by M’', add D;(g) to the
number on track 1 and add D, (q) to the number on track 2.

ii. Letting ¢ denote the state of M currently represented by M’, check if Z(q) # €
(i.e. M produces output in this state). If this is the case, and if track 6 is empty
(i.e. square 0 on track 6 contains #), then add the number on track 4 to the number
on track 5 (recording the halting time).

iil. If the numbers on tracks 4 and 5 are equal, perform a reversible transformation
on square 0 of track 6, mapping # — 1 if Z(q) = 1 and # — 0 if Z(q) € T\{1}
(otherwise, leave track 6 unchanged).

iv. Increment the number on track 4 modulo ¢(|z]).

2. If track 6 contains the symbol 1, output 1 (accept). In the case that o = 1, output 0
(reject) if track 6 contains the symbol 0.

3. In case 8 = 0, output 0 (reject). Otherwise, simulate a fair coin-flip and output 1
(accept) or 0 (reject) accordingly.

Figure 2: Description of M’ for Lemma 3.1.

only the internal memory of M’). Furthermore, we claim that each step can be performed reversibly
using O(s) space and in such a way that the amount of time required for each step is independent
of whatever configuration of M is represented by M’ at that time. (This is routine to show for
each step, given that M runs in space s.)

It is straightforward to see that M’ mimics the behavior of M. In the case that M yields some
accepting or rejecting configuration during the ¢ steps simulated, M’ records the step at which this
occurs as well as the particular accepting or rejecting configuration reached (since the configuration
represented does not change after some particular halting time has been recorded). It follows that
probabilities of acceptance and rejection are as claimed. The number of steps t' required for M’ to
complete step 2 is readily seen to be computable in space O(s). n

12

A.2 Proof of Lemma 3.3

M' will simulate M for t steps in a manner similar to the machine contructed in the proof of
Lemma 3.1. In this case, however, the simulation will be repeated ad infinitum so as to to amplify
the probabilities of acceptance and rejection accordingly. The problem, of course, is that we cannot
simply restart the simulation after t steps have passed, since deleting any left over information from
the previous simulation would constitute an irreversible action. This problem can be eliminated in
the manner described below.

The work tape of M’ will consist of six tracks, precisely as in the proof of Lemma 3.1. Similarly
the internal states of M’ will of the same form as in that proof. The execution of M’ is described

in Figure 3.

1. Execute the following loop with starting/stopping condition “track 4 contains 0”:

i. If track 5 contains 0 (M has not yet halted), then simulate M for 1 step. This
will be done exactly as in the proof of Lemma 3.1, except that instead of simply
adding Dy (q) to the number represented on track 2 (here denoted k), the following
transformation is performed:

ks [(k+ Dy(g) +s) mod (2s+1)] — s,

whenever k € {—s,...,s} (and k — k otherwise).

ii. — iv. Same as in the proof of Lemma 3.1.

bo

If track 6 contains the symbol 1, output 1 (accept). If track 6 contains the symbol 0,
output 0 (reject). (Otherwise, do not produce any output.)

3. Perform the inverse of step 1.

4. Tf the current configuration of M represented is not the initial configuration (i.e. track
1 or 2 does not contain 0 or track 3 does not contain all blanks), then multiply the
current amplitude by -1.

5. Goto step 1.

Figure 3: Description of M’ for Lemma 3.3.

Under the assumption that M runs in space s, the work tape head of M never leaves the region
{~s,...,8} when started from the initial configuration. However, there is no guarantee that the
same is true when the simulation is inverted in step 3. (This is because output may have occurred
in step 2, possibly resulting in space-expensive paths being followed with nonzero amplitude, even
if these paths had zero amplitude in the forward direction.) However, because we substitute the
transformation

kv [(k+ Dy(g) +s) mod (2s+1)] —s,

13

for adding Dy, (g) to k (the position of the work tape head of M stored on track 2 of M’), we guaran-
tee that the inverse simulation in step 3 can always be performed in space O(s), as k € {—s,...,s}
is an invariant throughout the simulation (step 3 may not correspond to simulating ¢ steps of a
QTM for this reason, but this is irrelevant). It follows that the entire simulation can be performed
in space O(s), as only space O(s) configurations of M are reached. Of course this transformation
is the same as adding Dy (q) to k in the forward direction of the simulation, and so the correct
probabilities of acceptance and rejection are preserved.

Now we will show that the claimed probabilities of acceptance and rejection are obtained. Let ¢
denote the initial configuration of M’, and let F' be the operator which corresponds to performing
step 1, i.e. simulating M for ¢ steps. Since M " does not produce output during step 1, F' is unitary.
Let |) = F'|cp), and write

1) = [¥1) + [%o) + %) ,
where |11), [tho) and |t¢) represent the projections of [1) onto those subspaces spanned by classical
states for which square 0 of track 6 contains 1, 0 or #, respectively. We have that || [11) 12 = pace
and || [4ho) || = pre;. During step 2, M’ outputs 1, 0 or € (no output) accordingly, and hence accepts
with probability pecc and rejects with probability prej. Otherwise, the superposition collapses to
1) (renormalized) and the computation continues. Next, the inverse of step 1 is performed, which
maps |1)¢) to a state of the form

F7) = |e) = F74 1) — 7 Jeho)
(except that the third component r of the internal state of M’ is different, reflecting the fact
that we are at step 4 rather than step 1, etc.). Writing |£1) = F71 |$h1) — Pacc|ch) and |&o) =
F~Y tho) — prej |cp), we have
F1 W’e> = (1 ~ Pace "prej) lcé)> - l£1> - 1&o) ,

and (cj|&1) = (ch|&) = 0. Thus, after applying step 4 and returning to step 1, the state of the
machine is

(1 - Pacc — pre,j) |06> + l£1> + '50) .
After again performing the simulation in step 1, the new superposition of M’ will be
(1 — Pacc — prej)F 106> + F]€1> + F]£0>
= (2 — 2Pace — 2prej)]¢l> + (2 — 2Pace — 2prej) W}O> + (1 = 2Pacc — 2prej) W’E) .

The probability that M’ accepts may now be calculated as

- 2 —Pace
- Pace > 0
Dacc + Z ((l - 2pacc - 2pre])k(2 - Qpacc — 2p7‘8])) Pace = PacctPrej acc B
k=0 0 pacc . O,
and the probability that M’ rejects may be determined similarly. -

Note that we did not renormalize superpositions after each step in performing the above calcula-
tion; this is a shortcut for calculating unconditional probabilities. For example, if we renormalized
|¢) after the first time step 3 was performed, we could have obtained the probabilities with which
M' accepts and rejects on the second iteration of the loop, given that no output was observed
during the first iteration. Adjusting these answers to find the unconditional probabilities with
which M' accepts and rejects on the second iteration of the loop would have been equivalent to not
renormalizing |1.) in the first place.

14

A.3 Proof of Lemma 4.1

The work tape of M’ will consist of four tracks: tracks 1 and 2 will be used to encode configurations
of M, track 3 will contain a counter which will be described below, and track 4 will record the
number of steps for which M has been simulated. The tape symbols which will be used on tracks
1 and 2 will be elements of the set {#,0,1,2,3}. Included in the internal state of M’ is a variable
a which may take values in {0,1,2,3}, and has initial value 0.

The behavior of M’ is described in Figure 4.

1. Compute the length s binary encoding of ¢y and write this encoding on track 1. Also
mark off s zeroes on track 2.

2. Execute the following loop with starting/stopping condition “track 4 contains 0”:

i. If track 3 contains 0, perform Hy on each digit on track 2. If, in addition, track 1
encodes a configuration with 2 successors, perform Hy on a.

ii. If any of the symbols on track 2 are in the set {2, 3}, or if a # 0, or if the contents
of track 2 do not encode a configuration ¢’ which is a successor of ¢, then increment
the number on track 3.

iii. Swap the contents of tracks 1 and 2.

iv. Perform Hj on each digit on track 2. If track 2 contains any nonzero digit, incre-
ment the number on track 3.

v. Increment the number on track 4 modulo ¢(|z|).

3. If track 3 contains 0 and track 1 encodes an accepting configuration, then output 1
(accept). If track 3 contains 0 and track 1 encodes a rejecting configuration, then
output 0 (reject).

4. Qutput 0 (reject).

Figure 4: Quantum simulation of a PTM

Clearly the contents of each track of M’ has length O(s), and further each step can be performed
by a QTM within O(s) space. (Note that space constructibility of s, along with [22], implies that
M’ can compute s(|z|), mark off s(|z|) squares, etc., in space O(s).) Again we assume that the
time required for each step does not depend on the particular configurations of M represented by
M' at that particular step. Thus, there exists ¢/, as in the statement of the lemma, which is the
number of steps required for M’ to complete step 3 along all computation paths.

Now we will determine the probability with which M’ accepts and rejects after t' steps. The
counter on track 3 acts as a flag; whenever the number represented on track 3 is nonzero, the
simulation has failed (a counter is used so that this can be done reversibly). We will say that any
configuration of M is good whenever track 3 contains 0. Suppose that M’ is in a good configuration

15

in which track 1 encodes ¢ € C(M), track 2 contains all zeroes, and a = 0, and let a single iteration
of the loop in step 2 be executed. If ¢ has exactly one successor ¢, then we see that the amplitude
with which M’ evolves into another good configuration with c replaced by ¢’ (and the number on
track 4 incremented) is 272° (each of 2s bits is mapped to the correct bit with amplitude 1/2).
Similarly, if ¢ has two successors ¢’ and ¢”, then the amplitudes in this case are each %2‘25 (since
now a must be mapped to 0). All other good configurations are yielded with amplitude 0. In this
way, the amplitudes of the transitions between good configurations mimic the probabilities of the
corresponding transitions of M, except that a factor of 2725 is introduced during each iteration
of the loop in step 2. Given that M satisfies the assumptions in the statement of the lemma,
we have that the amplitudes associated with the good configurations of M’ encoding the single
accepting and single rejecting configuration'of M after ¢ iterations of the loop will be (272 pace(z)
and (2“2”)]3,.3]-(3:), respectively. Hence, we have that M’ accepts and rejects with probability

((.‘2‘2“);17(166(37:))2 and ((2‘2$t)prej(z))2, respectively, after ¢’ steps as claimed.]

A.4 Proof of Proposition 4.4

The class C=SPACE(s) may be defined in an analogous way to the class C=L, defined in [2].
However, we will use the following equivalent definition.

Definition A.1 The class C-.SPACE(s) consists of all languages L for which there exists a PTM
M, running in space O(s) and satisfying conditions (1) - (3) of Lemma 4.1, such that z € L if and
only if M accepts z with probability exactly %—

See [2] for further discussion on this class.

Proof of Proposition 4.4. Let L € C_SPACE(s), and let M be a PTM for L in the sense of
Definition A.1. Define a QTM M’ in a similar manner to the machine constructed in the proof of
Lemma 4.1, but modified as described in Figure 5.

1.- 2. Same as in the proof of Lemma 4.1 (see Figure 4).

3. If track 1 encodes an accepting configuration, then add 1 to a (otherwise, leave a
unchanged).

4. Perform H, on every digit on track 1. If track 1 does not now contains all zeroes, add
1 to the number written on track 3.

5. Perform Hs on a. If track 3 contains 0 and now a = 1, then output 1 (accept),
otherwise output 0 (reject).

Figure 5: Description of M’ for Proposition 4.4.

We will now determine the probability with which M' accepts each input z. Recall the definition
of a good configuration from the proof of Lemma 4.1. There are only 2 good configurations which

16

M’ can be in after performing step 4: one in which ¢ = 1 and the other in which @ = 0 (and
all other aspects of these two configurations are equal). The amplitudes associated with these
two configurations are 2~5(2t+1p, . and 275@+Up, ; (for a = 1 and a = 0, respectively). Since

(1| Hy|0) = — (1| Hq|1), we see that after performing Hy on a we will have a nonzero amplitude
associated with @ = 1 if and only if pacc # Prej. Hence M’ accepts with nonzero probability if and
only if z & L. n

A.5 Proof of Lemma 5.1

For given input z, define a 2° x 2° matrix D, indexed by the set {0,...,2° ~ 1}, as follows.

Dli, j] = (' |UP:|c) 1,7 encode ¢',c € C(M), respectively
B 0 otherwise
(where we identify numbers in {0,...,2° — 1} and their binary representations as length s bit

strings). Next, define a (2% + 1) x (2% + 1) matrix E, indexed by the set {0,... ,2251, as follows.

For each i, < 225, write i = ig +112° and j = jo + /12°, where i, i1, 0,51 € {0,...,2° — 1}, and let
E[7'3]] = D[ZO,]O]D{“)]I]

Also let

25 . 1 7 =70+ j02° jo encoding an accepting configuration of M
E[2%°,4] = A
0 otherwise,

and let E[i,2%] = 0 for every i. Taking yZ,. be the vector consisting of the first 22° entries of the
last row of E, we see that the matrix £ has the form

D®D 0}

yle. 0

where D ® D denotes the Kronecker product of D with itself.

Lemma A.1 For any space s bounded QTM M and input z, let E be as defined above. Let
Ginit = Jo + jo2°, where jo encodes the initial configuration of M. Then for each k € N, the
probability that M accepts x on the kth step is Ek“[ZQS,jmit].

Proof. Let y;n; be the 22° dimensional vector indexed by {0, ... , 2% — 1} with yinst[jinit] = 1 and
all other entries zero. We see that

. 2
B[22 jin) = vhe (D® D) Yinis = vlee (DF © D¥) tinie = |PUUR) Jeo)| -

Under the assumption that (UzP:)* |co) # 0, the conditional probability that M accepts on the kth
step, given that M has not previously halted, is
2
| PL(UzPe)* |co)|
“ 1(UzPe)* [co)®
(and otherwise the probability is zero). It is simple to show by induction that the probability that

M does not halt prior to the kth step is H(PEUG,)'“"1]co)[l2 = H(Ung)k |c0)H2, and hence we have
that Er+1 [223, jim’t] is the (unconditional) probability that M accepts z on the kth step. |

17

Lemma A.2 Let M be a QTM running in space s. Then there exists a polynomial f such that, for
any input z, (1) (I — (1 - 2““23)) E) is invertible, and (2) M accepts = with probability ezceeding
1/2 if and only if

3 -1 1
{1 — 9~ f) 25 ;o -
<I (1 2) E) [2 ,]zmt] > 5
where E is as defined above.

In order to prove Lemma A.2 we will first prove the following simple lemmas regarding bounds
for integer polynomials and rational functions.

Lemma A.3 Let p € Z[{X] where deg(p) < N and the coefficients of p are bounded in absolute
value by L. Then for 0 < e <1, we have

lmnmpu—enseL<N;1>.

Proof. Write p(X) = }:;V:O a;X7. Then

Lemma A.4 Let p,q € Z[X] where deg(p), deg(q) < N, coefficients of p and q are bounded in
absolute value by L, and g(1) # 0. Then for 0 < e < m, we have

p) _p1=9] _, 2 x e 10
|¢u qa~a1<4L‘N+”'

Proof. Note that |g(1 — €)| > 1/2 follows from the assumption 0 < € < 574(—1\}?1—)7’ along with
Lemma A.3. We have

]p(l) _p(l—¢) lp(l)q(l ~¢) = p(1 —€)q(1) l
q(1) q(1—¢) q(1)g(1 —¢)
lp(l)q(l —¢) —p(L)g(1) I N lp(l)q(l) —p(l —e)g(1)
q(1)g(1 —¢€) q(1)g(1 —¢)

< 4eLl?(N+1)>%

Proof of Lemma A.2. D may be viewed as a unitary operator composed with various projection
operators (corresponding to P and also corresponding to the fact that only space s configurations
are present). It follows that D cannot possibly increase length, and consequently all of its eigenval-
ues are bounded in absolute value by 1. Thus the same is true for D ® D, and hence for E (since

18

any eigenvalue of E must also be an eigenvalue of D ® D). This implies that (I — z E) is invertible
for 0 < z < 1, and that we may write

I—-zE)~ szEk

k>0

Now, it follows from Lemma A.l that we have 0 < (/~z E)"1[223, Jinit) < Dace, Where pocc is the
probability that M accepts input «. Furthermore lim.4 (I — 2 E)~'[2%%, jinit) exists and is equal to
Pace- Thus, it remains to show that if

I

lim (I - 2 E)7H2% , finat) >
4

[N

then - i 1
(I - (1 - sz()) E) [2 7.7mzt] '2'

for some polynomial f (which is independent of).
For the remainder of the proof let N = 225 + 1, let d denote the least common denominator of
the entries in F, and for brevity write ¢ = 225§ = jinit. We have

det((I —- = E);i)
det(I — z E)

det((d] — zd E)j;) _ u(z)
det(dI —2dE) ~ wv(2)’

(I -z B)7 i, 5] = (1) = (-1)""d
where u,v € Z[z] may be taken to have degree at most N and coefficients which are bounded in
absolute value by N1(2d)N. (Here, (dI — zd E);; denotes the (N — 1) x (N — 1) matrix obtained by
removing row j and column i from (dI — zd E).) Under the assumption that lim,4 (7 - zE)7 i, 5]
exists, we may write

u(z) _ (2= 1" uo(2)

v(z) (2= 1)Fw(z)’
where (z—1) fvo(2), so that (I-zE)" i, 5] = %3—% for 0 < z < 1 and lim,4) (I —2E) "1,] = ﬁgﬁ;
The coefficients of ug and vp may be bounded in absolute value by N¥N!(2d)N < (d N)2V. It follows
that if lim,4; (I — 2E) ™[z, 5] > %—, then we must have

. i o L w(l)
1;%!11(] - ZE) 1{7".7] - 5 - ’1)0(1)

1 S 1
2up(1) = 2(N + 1)(d N)2N

>

l\3|(~—-‘

Choose € < WW By Lemma A.4 we have

|
S AN F D)@V

- 1"6) <de(dN)N(N +1)°

from which it follows that (I — (1 —€)E)~![¢,5] > £. Now f may be chosen appropriately. |

Now, we are almost ready to define the matrices A and B for the main lemma. First, let F and
G be (2% + 1) x (22 + 1) integer matrices, indexed by the set {0,...,2%}, defined as follows.

G =d2/@) - 2/@) _1)(dE),

19

where d denotes the least common denominator of the entries in F, and

F — Gjinitszzs ' 0 .
0 2 (—1)dinit g 2(2°)

where GG Ginie 229 denotes G with row j;nit and column 225 removed. We now have

det(F)
det(G)

(25) det(GjinityZZS)
det(G)

det (1= (1-27E) B),)
det (I — (1 —2~/@9) E)
2 (I - (1 - 2‘”28)) E)—1 (2%, jinit) -
det(

Hence, by Lemma A.2, a'ém‘*l) > 1 if and only if M accepts z with probability greater than 1 5. We
do not know what the signs of det(F) and det(G) are, and so we define

_ | Foo O _| Gop O
A_‘[0 Fo,O]’ B"[0 Gop |’

- 9 (__1)jinitd 9f

= 9 (__1)jinit

i

Fy0 and Gog being F and G with row and column 0 removed, respectively (recall that all encodings
of configurations begin with 1, so removing row and column 0 from F' and G will not affect the ra’clo

33%2;) Now we have det(A) > det(B) if and only if M accepts = with probability exceedmg

The length in binary of each entry of A and B is 20(s) and an appropriate bound [on this
length can be computed in space O(s). It is straightforward to see that, for each i, j, the kth bit
of both A[4, 7] and B[i, j] can be computed in space O(s). This completes the proof.]

References

[1] L. Adleman, J. Demarrais, and M. Huang. Quantum computability. STAM Journal on Com-
puting, 26(5):1524-1540, 1997.

[2] E. Allender and M. Ogihara. Relationships among PL, #L, and the determinant. RAIRO
- Theoretical Informatics and Applications, 30:1-21, 1996. Preliminary version appeared in
Proceedings of the 9th Annual Structure in Complezity Theory Conference, pages 267-278,
1994.

[3] C. Bennett. Logical reversibility of computation. IBM Journal of Research and Development,
17:525-532, 1973.

[4] C. Bennett. Time/space trade-offs for reversible computation. SIAM Journal of Computing,
18(4):766-776, 1989.

[5] C.Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum
computing. SIAM Journal on Computing, 26(5):1510-1523, 1997.

20

[6]

1]

(12]

[13]

[14]

[15)

[17]

18]

[19]

E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Computing,
26(5):1411-1473, 1997. Preliminary version appeared in Proceedings of the 25th Annual ACM
Symposium on Theory of Computing, pages 11-20, 1993.

A. Berthiaume. Quantum computation. In L. Hemaspaandra and A. Selman, editors, Com-
plezity Theory Retrospective II, pages 23-50. Springer, 1997.

A. Berthiaume and G. Brassard. The quantum challenge to structural complexity theory. In
Proceedings of the 7th Annual IEEE Conference on Structure in Complezity, pages 132-137,
1992.

A. Borodin, S. Cook, and N. Pippenger. Parallel computation for well-endowed rings and
space-bounded probabilistic machines. Information and Control, 58:113-136, 1983.

P. Crescenzi and C. Papadimitriou. Reversible simulation of space-bounded computations.
Theoretical Computer Science, 143:159-165, 1995.

C. Damm. DET = L#L? Informatic-Preprint 8, Fachbereich Informatik der Humboldt-
Universitat zu Berlin, 1991.

D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum com-
puter. Proceedings of the Royal Society of London, A400:97-117, 1985.

D. Deutsch and R. Jozsa. Rapid solutions of problems by quantum computation. Proceedings
of the Royal Society of London, A439:553-558, 1992.

S. Fenner, F. Green, S. Homer, and R. Pruim. Determining acceptance possibility for a
quantum computation is hard for PH. Preprint, 1997.

L. Fortnow. Counting complexity. In L. Hemaspaandra and A. Selman, editors, Complezity
Theory Retrospective II, pages 81-107. Springer, 1997.

J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on Com-
puting, 6(4):675-695, 1977.

L. Grover. A fast quantum mechanical algorithm for database search. In 28th Annual ACM
Symposium on the Theory of Computing, pages 212-219, 1996.

H. Jung. Relationships between probabilistic and deterministic tape complexity. In 10th
Symposium on Mathematical Foundations of Computer Science, volume 118 of Lecture Notes
in Computer Science, pages 339-346, 1981.

H. Jung. On probabilistic tape complexity and fast circuits for matrix inversion problems. In
Proceedings of the 11th International Colloguiun on Automata, Languages and Programming,
volume 172 of Lecture Notes in Computer Science, pages 281-291. Springer-Verlag, 1984.

H. Jung. On probabilistic time and space. In Proceedings of the 12th International Colloquiun
on Automatae, Languages and Programming, volume 194 of Lecture Notes in Computer Science,
pages 310-317. Springer-Verlag, 1985.

21

(21]

[22]

[23]

[24]

A. Kondacs and J. Watrous. On the power of quantum finite state automata. In Proceedings
of the 38th Annual Symposium on Foundations of Computer Science, pages 66-75, 1997.

K. Lange, P. McKenzie, and A. Tapp. Reversible space equals deterministic space (extended
abstract). In Proceedings of the 12th IEEE Conference on Computational Complexity, pages
45-50, 1997.

M. Saks. Randomization and derandomization in space-bounded computation. In Proceedings
of the 11th Annual IEEE Conference on Computational Complezity, pages 128-149, 1996.

M. Saks and S. Zhou. RSPACE(s) C DSPACE(s%?). In Proceedings of the 36th Annual
Symposium on Foundations of Computer Science, pages 344-353, 1995.

P. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Pro-
ceedings of the 35th Annual Symposium on Foundations of Computer Science, pages 124-134,
1994.

P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM Journal on Computing, 26(5):1484-1509, 1997.

D. Simon. On the power of quantum computation. In Proceedings of the 35th Annual Sympo-
sium on Foundations of Computer Science, pages 116-123, 1994.

S. Toda. Counting problems computationally equivalent to the determinant. Technical Report
CSIM 91-07, University of Electro-Communications, Tokyo, 1991.

] L. Valiant. Why is Boolean complexity theory difficult? In M. S. Paterson, editor, Boolean

Function Complezity, volume 169 of London Mathematical Society Lecture Notes Series, pages
84-94. Cambridge University Press, 1992.

V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits.
In Proceedings of the 6th Annual Structure in Complesity Theory Conference, pages 270-284,
1991.

A. Yao. Quantum circuit complexity. In Proceedings of the 34th Annual Symposium on Foun-
dations of Computer Science, pages 352-361, 1993.

22

