HASH JOIN PROCESSING ON SHARED
MEMORY MULTIPROCESSORS

Ambuj Shatdal
Jeffrey F. Naughton

Technical Report #1299

February 1996

Hash Join Processing on Shared Memory Multiprocessors

Ambuj Shatdal Jeffrey F. Naughton
Computer Sciences Department
University of Wisconsin-Madison

Computer Sciences Technical Report # 1299

February, 1996

Abstract

While most scalable database systems are designed for a shared nothing architecture,
advances in hardware technology suggest that in the near future shared memory multipro-
cessors (SMPs) will be capable of handling all but the largest applications. This raises
important questions about how scalable database systems should be architected; in particu-
lar, do SMPs require specially targeted algorithms, or will algorithms developed for shared
nothing hardware suffice? As a first step towards answering the question, with an imple-
mentation on an SGI Challenge multiprocessor, we investigate the performance of hash join
algorithms on SMPs. We first show that the shared nothing approach, if ported to an SMP
by using a transparent message passing library, yields poor performance. However, we show
that by using an optimized message passing library and modifying the join code so that it
does not reuse message buffers, shared nothing algorithms become viable on an SMP. Next
we study the performance of a commonly proposed simple parallel join algorithm designed
for shared memory. We show that it performs only marginally better than the optimized
shared nothing approach. Finally, we show that further performance improvements are
possible over the simple shared memory algorithm by employing optimizations designed to
maximize processor cache hits and minimize memory coherence traffic.

1 Introduction

There is an increasing interest in using shared memory multiprocessors, henceforth called SMPs,
for high performance database systems. Since the scale of SMPs lies between those of unipro-
cessors and the shared nothing large scale parallel machines, it makes them suitable for all
but the largest systems. They can handle this range effectively because they offer superior
cost/performance as marginal performance gain in terms of parallelism and throughput due to
addition of a CPU tends to be slightly higher than the cost of the hardware. Also, the shared
address space allows natural extension of uniprocessor algorithms into the parallel domain mak-
ing the SMPs easier to use than other parallel platforms. Finally, even without the technical

arguments for SMPs, the reality is that today most parallel machines sold are SMPs.

Today, however, most scalable parallel database systems are designed for the shared nothing
hardware paradigm. This includes Informix XPS [Ger95], IBM DB2/PE [BFG*95], Sybase
Navigation Server [Syb], Tandem [Tan87], and Teradata [Ter83]. While one can certainly run a
shared nothing system on an SMP (using the shared memory as a fast communication network),
SMP’s offer alternatives to algorithm design not present in shared nothing machines which
include load balancing and easier management (as there are fewer independent nodes). The
question is: should we redesign all the query evaluation algorithms specifically for the SMPs or
will the shared nothing algorithms suffice? In other words, do we need to maintain two software
architectures, one for SMPs and the other for shared nothing hardware? The answer is not clear.
On one hand, SMPs allow simple algorithms due to shared memory; they require none of the
massive data redistribution that is inherent in shared nothing parallel join algorithms. This
suggests that shared memory algorithms should dominate shared nothing algorithms on SMPs.
On the other hand, naive shared memory algorithms have poor cache behavior due to their lack
of locality of memory reference. Shared-nothing algorithms have better locality of reference,
which suggests that they should be faster than shared memory algorithms. Hence it is not clear
how big the difference in performance between shared memory and shared nothing algorithms
on SMPs will be; it is not even clear which class of algorithm will dominate.

To begin to answer the question, we studied one part of parallel DBMS performance: the
memory resident portion of join evaluation on an SMP, with an implementation on the SGI
Challenge multiprocessor. Since the goal of our study is to compare options for architecting the
memory resident portion of the join processing, by not including I/O costs in our performance
study, we are perhaps exaggerating the differences between the algorithms. That is, if we added
I/0 to all of the algorithms, the running time of each would shift upwards by the same amount,
making the deltas between the running times a smaller fraction of the total running time. The
main conclusion of our paper, detailed below, is that optimized shared nothing algorithms and
shared memory algorithms have similar performance on SMPs; this conclusion would only be
supported more strongly if we added in I/O. To put it another way, our study is biased to
emphasize differences between algorithms. It was surprising to us to find that even given this
bias the algorithms did not differ significantly except where memory copy overheads dominated.

We first studied the performance of the shared nothing algorithms on an SMP. First we
implemented a transparent shared nothing-like message passing library. We found that the
algorithm performs quite poorly using such a library. Then we optimized the message passing
by explicitly exploiting the shared memory so as to avoid any extra memory copies which
resulted in a restriction that a sent buffer could not be reused. However, the performance of
the algorithm was 90-190% better as there were no extra memory copies.

Then we studied the performance of the traditional shared memory hash join algorithin
which extends from the uniprocessor hash join where all nodes build a shared hash table and
then each node probes its tuples in the shared hash table [LTS90]. The traditional algorithm

and its optimized version performed only marginally better than the shared nothing algorithm
with optimized message passing. Next we attempted to optimize the shared memory algorithm
in terms of better memory contention and locality by using repartitioning in shared memory,
instead of using messages. However, these algorithms performed only comparably to the tra-
ditional simple approach. Finally we exploited the fact that the repartitioning algorithm can
be cache optimized as the join processing after repartitioning is local to a processor [SKIN94].
The cache optimized algorithms performed 9-90% faster than the traditional shared memory
algorithm.

In related work, [LTS90] did an analytical performance of algorithms in a shared everything
environment. However, they considered different basic algorithms comparing hybrid hash, hash
loop, etc. The analytical model did not truly reflect an SMP environment. Furthermore, the
considered data domain was too restricted which resulted in misleading conclusions. [SKN94]
shows that the cache misses on a uniprocessor machine are expensive as the data has to be
fetched from (slow) main memory and therefore the algorithms must be designed taking the
cache into account. An access to a shared variable is even more likely to result in a cache miss
because of the maintenance of cache coherence. Consequently, cost of data sharing can not
be ignored while designing efficient query processing algorithms for the SMPs. [CLR94] shows
that for some scientific applications, optimized shared memory and message passing programs
perform comparably on comparable hardware.

The remainder of the paper is organized as follows. In Section 2 we review the basic
SMP architecture. Section 3 describes the experimental platform. We study the traditional
approaches, the hybrid and the cache-conscious algorithms for the SMPs in Section 4 followed
by their comparative performance evaluation in Section 5. Conclusions are offered in Section 6.

2 Review of SMP Architecture

The generic structure of a shared memory multiprocessor is as follows. There is a shared address
space and each processor has a private cache memory for speeding up the access to the shared
address space. Thus the processors rely on the cache memory for achieving high performance
as going to the main memory is fairly expensive. Commonly, in the SMP architecture the
processors share the memory bus and the main memory as illustrated in Figure 1.

The data in the private cache memory is kept coherent. Coherence implies that the data
values are guaranteed to be consistent under some coherence semantics, the most common being
the sequential semantics i.e. a read returns the value of the most recent preceding write. There
are several cache coherence algorithms mentioned in the literature [AB86]. For SMPs, which
have a shared bus, a common algorithm is the snooping bus write invalidate. In this algorithm,
all cache controllers listen on the bus and when a write occurs on a cached address, the cached
value is invalidated. This is possible because the cache is write through i.e. all writes go to the
memory. On a read, the value is read into the cache from the shared memory.

CPU CPU CPU

SHARED MEMORY

Figure 1: Block Architecture of an SMP

For example, a “message,” i.e. a write to an address followed by a read of the same address on
a different processor, necessarily requires two (slow) memory accesses under the write invalidate
protocol, one for write and another for read as any cached copy will be invalidated on the write.
Thus making the communication of the data value comparatively slow compared to non-shared
memory accesses most of which are expected to be hits in the local cache.

The naive PRAM (Parallel Random Access Memory) model of parallel computation assumes
that all memory accesses are of uniform cost. This assumption is commonly made in design
and analysis of query processing algorithms. However, it is clear that SMPs do not match the
PRAM model. In fact, another, and perhaps better, way to look at the shared memory machine
is to assume that the machine is a distributed-cache machine and that the communication takes
place when two processors access the same address at different points of time.

The main question that remains is whether the communication cost is sufficiently large so
as to justify changing our programming model implying designing the algorithms to minimize
communication. In the remainder of the paper we show that 1. doing pure message passing
(shared nothing) is viable, and 2. PRAM model is reasonable but designing algorithms tak-
ing the SMP architecture—shared memory, caches and not-for-free communication—performs
better.

3 The Experimental Platform

We compare the performance of the algorithms by implementing them on a SGI Challenge SMP.
The hardware configuration of the SMP is 12 MIPS R4400 processors, 1 GB of shared address
space and 1 MB off-chip private cache memory per processor. There is a 16KB data cache

on-chip. The performance of the algorithms is compared on five different work loads detailed
in table 1 where both relations are equally large.

| work load approx. result size
1 | a tuple of R matches many (~8) tuples of S 8+ |R]

2 | a tuple of R matches zero (with % prob.) or many (~8) tuples of S |R)]

3 | same as 2 except R and S are changed |R|

4 | a tuple of R matches one tuple of S on average |R|

5 | a tuple of R finds a match in S with (§) prob. % *|R|

Table 1: Description of Experimental Work Loads

The relative performance of the algorithms is sensitive to the join selectivity, which affects
how repeated memory access intensive the join is. The work loads are designed to explore the
range of join selectivity from large to small as described below where relation R is used for
building the hash table, and relation S is probed in the hash table. Other workloads studied
did not give any further insight.

wl#1 Since a tuple of S matches many tuples of R, the hash table is accessed multiple times. ‘
The work load represents the work loads with high join selectivity where a tuple matches
several probe tuples and the result size is larger than the input relation.

wl#2,3 These work load represent the case of key, foreign key join, with a possible select on

the foreign key. A tuple can match either zero or several tuples of the other relation.

wl#4 This is an ideal case where each tuple matches about one tuple of the other relation

resulting a result size similar to that of input relations.

wl#£5 In this work load a tuple of one relation matches zero or one tuple of the other relation.
possibly due to a select, resulting in a small join selectivity.

The timing runs were obtained by running the algorithm multiple times and taking the
average after ignoring the best and worst runs. We used 8 processors with 40K tuples (104
byte/tuple) per node. The join attribute was 16 bytes long. We also ran scaleup experiments
using work load # 4 above, varying the number of processors from 2 to 8.

4 Parallel Hash Join Algorithms

The basis of all parallel hash join algorithms is the uniprocessor hash join. The basic unipro-
cessor in-memory hash join algorithm works as follows. Assume R and S are the two relations
(or fragments of relations of a bigger join) being joined. Furthermore, the relations are now in
. the main memory in slotted pages after having been read from the disk or are in the memory

of a main memory DBMS. In the hash join algorithm, first a hash table of the tuples of R is
created by hashing them on the join attribute. Then the tuples of the relation S are probed in
the hash table by hashing them on the join attribute and searching the attribute value in the
hash table. The matching tuples are output.

First we studied the performance of the shared nothing approach on the SMPs to evaluate

its viability.

4.1 The Shared Nothing Approach

Shared nothing algorithms are generally based on the assumption that the communication
between processors is slow. A common, though not necessary, feature of a shared nothing
hardware is that the communication in the algorithms is through message passing. T'wo factors
influence the performance of any message passing library: 1. the underlying communication
hardware and 2. how well the library is implemented. Though it is common to ignore the second
effect, it is nevertheless important and much work has gone into making it more efficient.

As evident from the SMP architecture discussed earlier, the hardware cost of communication
in an SMP is roughly equivalent to doing main memory accesses, instead of cache accesses,
accompanied with some cache coherence protocol overheads. This is generally much faster than
speeds achievable in a traditional MPP interconnection network. Since the hardware is fairly
fast, the software cost of message passing becomes important and we find the same in our
experiments detailed below.

A shared nothing hash join algorithm, as in Gamma [DGS*90], first repartitions the relations
by hashing the tuples on the join attribute, each hash value being assigned a specific node. Each
node then joins the partitions of the relations locally as if it were the only node in the system.
A property of the algorithm is that a tuple is moved only once across the nodes minimizing
communication between nodes. Tuples are actually sent in large (4 KB in our case) batches,
except the last one, to minimize the communication cost. The algorithm, in two threads running
in parallel, is as follows.

/* node i, repartitioning thread */

foreach t in R;

hash ¢ to find the destination node p
send ¢ to node p /* in 4KB batches */

foreach t in S;
hash t to find the destination node p
send t to node p /* in 4KB batches */

/* node i, join thread */
while (¢ in R not exhausted)
receive t of R sent to me
insert ¢ in the hash table

while (¢ in S not exhausted)
receive t of S sent to me
probe ¢ in the hash table
if (match)
generate output tuple
In shared nothing architectures, the repartitioning involves sending the tuple over an inter-
connection network across the node boundaries using a message passing library. The question
as mentioned earlier is: how will the algorithm perform if the SMP provides a message passing
library just like a shared nothing architecture?
Since no standard implementation of message passing, like MPI [Mes94], was available on the
machine, we implemented two different message passing libraries to evaluate the performance
of the shared nothing algorithm. In the first, sending and receiving a message involves the

following steps:

1. copying the source buffer provided by send() to a library buffer which is augmented with
some header information like sender id,

[S™]

. letting the receiving process know that it has a pending message by putting the message
in a queue for that process,

3. upon a receive() copying the library buffer to the buffer supplied by the receive() function
and returning some of the relevant header information like length of the message.

The library is quite transparent to the rest of the algorithm and is therefore similar to a message
passing library on a shared nothing system. However, it has two memory copy operations for
each send/receive pair. The shared nothing algorithm using the transparent library is henceforth
called the Transparent Shared Nothing algorithm.

In the second version we exploited the shared memory and eliminated all extra memory
copies. We call this version the Optimized Shared Nothing algorithm. In this version. the
sending and receiving of a message involves the following steps:

1. the buffer supplied by the send() can’t be reused by the sending process and is augmented

with some header information like sender id,

2. the receiving process is notified of a pending message by placing the message in a quene
for the process,

3. upon a receive(), a pointer to the buffer and some relevant information, like length of the
message, is returned to the receiving process and the receiving process can use the huffer

as its own.

As is evident, there are no memory copies involved in the sending of a message. However,
this approach is not transparent because the sending process can not reuse a sent buffer as

buffer address now “belongs” to the receiving process. This, of course, is not the case in a real
message passing system where the address spaces are completely disjoint, but should reflect
how efficient can we be if we want to directly use the shared nothing algorithms on the SMPs
in order to reduce software development cost.

7.0
6.5—
6.0
5.5
5.0
4.5
4.0
" 35
£ 3.0
o 2.5
£ 20—

1.5

1.0

Transparent

Optimized

econds)

WL 1 WL 2 WL 3 WL 4 WL 5
Work Loads

Figure 2: Performance of the Shared Nothing Approach

The performance of the shared nothing algorithm with the two libraries is shown in Figure 2.
It shows that, as expected, the Optimized Shared Nothing algorithm performs significantly
better showing a performance gain of 90-190% because it does fewer memory copy operations.
As shown later, the Optimized Shared Nothing algorithm compares well with the other shared
memory algorithm showing that the shared nothing approach is viable on an SMP.

In order to investigate the relative performance of the shared nothing algorithm further, we
evaluated the performance of the simple shared memory approach described below.

4.2 The Shared Memory Approach

The uniprocessor hash join algorithm is easily extended for SMPs as follows. All processors
read their partition of the relation R and build the (global) hash table by hashing the tuples
on the join attribute. The access conflicts to the hash table are taken care of by latching.
Thereafter, all processors read their partition of the relation S tuples and probe them in the
shared hash table. This approach is explicitly used in [LTS90] and is implicit in the XPRS
database system [HS91].

The Tuple-based Shared Memory algorithm, detailed below, builds the hash table on the
tuples themselves. Under the constant time memory access (PRAM) model this algorithm is
the most efficient as it does the least amount of “work” i.e. it has least number of memory
accesses (and instructions). Hence we use it as a basis for comparison with all other algorithms.

/* node i */
foreach t in R;
hash ¢ to find the bucket b of the hash table
latch bucket b to avoid conflicts
insert t in the hash table bucket b
unlatch bucket b

foreach t in S;
hash ¢ to find the bucket b of the hash table
probe t in the hash table bucket b
if (match)
generate output tuple
At the outset, this algorithm looks ideally parallel, except for the small latching overhead
to handle access conflicts to the hash table in the build phase. However, a look inside the
functioning of the algorithm on an SMP shows a few shortcomings.

1. Latching overhead may be non-trivial as latching can be expensive in SMPs.

2. Access to the shared hash table has extremely poor processor locality of access because
any processor at random may access a bucket of the hash table.

3. A very small portion of the hash table can fit in the cache, effectively reducing the speed
at which the hash table may be accessed.

A possible variation and optimization to the algorithm is to extract the join attribute and
keep a pointer to the original tuple, as is done in sorting, before building or probing the tuples.
This should improve the effective utilization of the cache as the join processing doesn’t need to
access the entire tuples except when building the result tuples but it incurs the small overhead
of the extraction of the join attribute from the tuple. We call this the Attribute-extraction
Shared Memory algorithm.

/* node 7 */

foreach t in R;

hash t to find the bucket b of the hash table
extract attribute/pointer from ¢ into e,
latch bucket b to avoid conflicts

insert e; in the hash table bucket b
unlatch bucket b

foreach t in S;
hash ¢ to find the bucket b of the hash table
extract attribute/pointer from ¢ into e;
probe e; in the hash table bucket b
if (match)
generate output tuple

As mentioned earlier, the Tuple-based Shared Memory algorithm is expected to perform
the best. However, the performance study shows that the attribute/pointer extraction does
improve the performance of the basic algorithm in most cases as evident in Figure 3. In the
first work load, the result size is larger than the input relation size i.e. a build tuple is being
accessed multiple times. Hence the attribute extraction is not of much use because one has to
access the tuple in the buffer page multiple times anyway eclipsing the optimization. On the
other hand, when the tuple is accessed only once (or less) then attribute extraction pays off
because many comparisons do not involve fetching the tuple. One may note that the relative
performance gain of the Attribute-extraction Shared Memory algorithm is even larger for the
last work load as expected because it has a small result size.

Finally, we notice that the Optimized Shared Nothing algorithm performs only a little worse
(in fact better for work load 1) than the Tuple-based Shared Memory algorithm thus showing

that it is a viable alternative on an SMP given that the message passing is highly tuned.

4.8 =
4.4 Tuple-based
4.0~ ,
o 3.6 . . Attribute-exir.
2 32 -
o) Optimized SN

WL 1 WL 2 WL 3 WL 4 WL 5
Work Loads

Figure 3: Performance of the Shared Memory Approach

However, the traditional approach is not the only way of performing a hash join on an
SMP. In order to achieve superior performance, we attempted eliminating the shortcomings
of the shared memory approach. The first two shortcomings which are present in the shared
memory technique can be removed by borrowing some characteristics of the shared nothing
approach. This mainly includes repartitioning the relations using shared memory instead of

sending messages before performing the local join.

4.3 The Hybrid Approach

The hybrid approach adapts the shared nothing paradigm of repartitioning and then performing
" the local join on SMPs. The algorithms first repartition the relations by hashing on the join

10

attribute. Then each processor performs a local join independently as in a shared nothing
algorithm as detailed in pseudo-code below.

/* node i */

foreach t in R;

1

hash ¢ to find the destination node p
repartition t by putting it in @ “run” for node p

foreach t in S;

2

hash ¢ to find the destination node p
repartition t by putting it in a “run” for node p

foreach t of R from each processor “run” for node ¢

insert ¢ in the hash table

foreach t of S from each processor “run” for node 4

probe t in the hash table
if (match)
generate output tuple

Whereas in shared nothing machines, the repartitioning involves sending the tuple itself to

the buffer pool of the destination node, the shared memory permits different ways of reparti-

tioning the relations. The details of the repartitioning, lines 1 and 2 above, differentiate the

three algorithms.

1.

3.

Repartitioning the relation by copying the tuples to the local buffer pool of the destination
node, henceforth called the Tuple-copy Hybrid algorithm. This is similar to doing efficient

message passing in terms of memory copy costs.

. Leaving the tuples in the original (shared) buffer pool and creating partitions on the

destination node by having pointers to the tuples in their original buffer pool, henceforth
called the Pointer-based Hybrid algorithm.

Like the approach 2 above, but the partitions also have a local copy of the join attribute
along with the pointer to the tuple, henceforth called the Attribute-extraction Hybrid
algorithm. (This is similar to the attribute/tuple pointer extraction optimization because
it improves the spatial locality of access for the join attribute.)

The performance of the three variants in Figure 4 shows the following.

1. Analogous to the shared memory case, the Attribute-extraction Hybrid algorithm per-

forms best when the result sizes are small. When the result size is large i.e. a tuple is
being accessed multiple times, as in work load 1, the attribute extraction is not of much
use because one has to access the tuple in the buffer page multiple times anyway to build
the result tuple making the algorithm slower.

11

2. Though Pointer-based Hybrid algorithm has less partitioning overhead, it performs quite
poorly because one has to go through the pointer to access the join attribute and also to
access the tuple, both possibly off the local cache.

3. In fact, the Tuple-copy Hybrid algorithm performs better than the Pointer-based Hybrid
algorithm showing that the overhead of tuple copying is significantly compensated for by
the increase in the locality of access.

4. Overall, we notice that the overhead of repartitioning is large and it eclipses the gain
in the performance of the join due to removal of latching and improvement in proces-
sor locality. Hence the algorithms perform only comparably to the Tuple-based Shared
Memory algorithm.

Pointer-based
Attribute-extr.
Tuple-copy

Tuple-based SM

WL 1 WL 2 WL 3 WL 4 WL 5
Work Loads

Figure 4: Performance of the Hybrid Approach

The main reason for the poor performance is that the algorithms still has very poor cache
behavior though it has incurred the overhead of repartitioning. This is because even though
the tuples are partitioned, the partitions are large enough that only a small portion of the
hash table can fit in the cache, effectively reducing the speed at which the hash table may be
accessed. Therefore, though the misses occurring in cache due to cache coherence are reduced
by the repartitioning, the algorithm still suffers. Partitioning the data further into small cache-
size partitions is likely to mitigate this shortcoming, as now the entire partitioned hash table
is likely to fit in the cache while being accessed [SKN94]. Thus, the hash table is likely to be
entirely cache resident while being accessed. Note that the this optimization does not add any
noticeable additional overhead over the hybrid approach but should improve the performance
of the algorithm resulting in the following cache conscious algorithm.

12

4.4 Cache Conscious Hash Join

In this algorithm, instead of just hash repartitioning the relations on the join attribute across
nodes, we further divide each of the partitions into cache size units by hashing on the join
attribute. Each processor then repeatedly processes each of the corresponding cache size units
of R and S. The partitioning of the relations is achieved by letting each processor partition its
tuples and write them in a “run” for each cache size work unit. After the partitioning phase is
over, a processor will have to read all the runs belonging to one cache size unit.
/* node i */
foreach t in R;
hash ¢ to find the node p, and cache-size partition r
repartition ¢ by putting it in a “run” for node p, partition r

foreach t in S;
hash t to find the node p, and bucket b of the hash table
repartition ¢ by putting it in a “run” for node p, partition r

foreach cache-size partition r of my node
foreach t of R from each processor “run” for node 4, partition r
insert t in the hash table
foreach ¢ of S from each processor “run” for node i, partition r
probe t in the hash table
if (match)
generate output tuple

While partitioning the relation we extract the join attribute and only keep a pointer to the
tuple because as shown previously this has the best performance in most cases for the hybrid
approach.

We expect this algorithm, called the Partitioned Cache Conscious algorithm, to do better
because first, it minimizes data sharing across the processors as partitioned tuples never need
to be accessed by two processors and second, the partitioned hash tables are likely to be cache
resident thus making the access to the hash table effectively much faster. If the overhead of
partitioning is sufficiently small, the algorithm is expected to outperform the other algorithms.

In a variation of the algorithm, called the Queue-based Cache Conscious algorithm, detailed
below, a partition of R and corresponding partition of S are considered as a work unit. Instead
of being preallocated to processors, as above, these partitions are placed in a work queue. Each
processor, when idle, picks up the next unit from the queue and processes it. The processing
stops when the work queue gets empty. The work queue approach is possible due to the shared
memory. This algorithm could outperform the first one if there is a small non-uniformity in
the distribution of work load or if the system does not make the processors run as evenly as
is theoretically possible because of OS functions or other system/user processes. In such cases
the inherent load balancing of the algorithm, despite the small overhead of accessing the queue,
is likely to result in superior performance.

13

/* node i */
foreach t in R;
hash t to find the cache-size partition r

repartition ¢ by putting it in a “run” for cache partition r

foreach t in 5;
hash t to find the node p, and bucket b of the hash table
repartition ¢ by putting it in a “run” for cache partition r

while there is a cache-size partition r remaining in the queue
foreach ¢ of R from each processor “run” for cache partition r
insert ¢ in the hash table
foreach ¢ of S from each processor “run” for cache partition r
probe t in the hash table
if (match)
generate output tuple

4.8

444 Partitioned

Queue Based

. Tuple-based SM

WL 1 WL 2 WL 3 WL 4 WL 5
Work Loads

Figure 5: Performance of the Cache Conscious Algorithms

Figure 5 compares the performance of the two cache conscious approaches and the Tuple-
based Shared Memory algorithm. It shows that the Queue-based Cache Conscious algorithm
usually outperforms the Partitioned Cache Conscious algorithm despite the additional overhead
of maintaining and accessing the work units from a queue which shows that the small variations
in the different nodes can be successfully overcome using the queue based approach. Further-
more it shows that doing cache optimization using repartitioning, cache-size partitioning, and
attribute pointer extraction does have significant, 9-90%, performance improvement over the
basic Tuple-based Shared Memory algorithm.

14

5 Performance Summary

The above discussion is summarized in Figure 6. It compares the performance of the Transpar-
ent and Optimized Shared Nothing algorithms, the Tuple-based shared memory algorithm and
the Queue-based Cache Conscious algorithm.

Transparent SN
Optimized SN

Tuple-based SM

Queue-based CC

WL 1 WL 2 WL 3 WL 4 WL 5
Work Loads

Figure 6: Relative Performance of the Algorithms

From the figure it is evident that:

1. The Shared Nothing approach is viable on an SMP but it needs to use an optimized
message passing library that minimizes memory copies.

2. The Tuple-base Shared Memory algorithm performs marginally better for most workloads.
However, for the first workload which is memory access intensive as it has a high join
selectivity, the shared nothing algorithm performs better because it has better memory
access contention and locality.

3. Specializing algorithms for the SMPs architecture, exemplified by the Queue-based Cache
Conscious algorithm, does have performance dividends.

Figure 7 shows the scaleup characteristics of the Queue-based Cache Conscious, the Op-
timized Shared Nothing and the Tuple-based Shared Memory algorithms on work load 4. It
shows that all three algorithms have comparable scaleup performance.

6 Conclusions

Our study shows that running traditional shared nothing algorithms on SMPs performs ac-

" ceptably well provided that the message passing library is optimized to remove unnecessary

15

2.0

18 = Qbased CC
=== Optimized SN
17 — = Tuple-based SM e
B 1.4 e
» /-"

S 1.2- =
o ==
N 1,0 -
£
= 0.8~
o
£ 0.6

0.4—

0.2

0.0 1 T T 1

2 4 6 8
Number of Processors

Figure 7: Scaleup Characteristics of the Algorithms

memory copies. The shared memory algorithms perform marginally better than the shared
nothing algorithm. The performance of the shared memory algorithms can be enhanced by
optimizing the algorithms by making them aware of the cache and the SMP architecture.

One argument against shared nothing algorithm has been their poor performance when the
data is skewed [WDJ91]. However, techniques that have proven effective for shared nothing
algorithms, e.g. [SN93], would trivially apply to SMPs. It would be interesting to compare the
two approaches for skew handling. Also, cluster of SMPs seems to be gaining popularity for
building large scalable database systems, instead of the traditional shared nothing hardware.
Investigating the algorithms for a cluster of SMPs is part of our future work.

References

[AB86] J. Archibald and J.-L. Baer. Cache Coherence Protocols: Evaluation Using a Multiprocessor
Simulation Model. ACM Transactions on Computer Systems, 4(4):273-298, 1986.

[BFG*95] Chaitanya Baru, Gilles Fecteau, Ambuj Goyal, Hui i Hsiao, Anant Jhingran, Sriram Pad-
manabhan, and Walter Wilson. An Overview of DB2 Parallel Edition. In Proc. of the 1995
ACM-SIGMOD Conference, San Jose, CA, 1995.

[CLR94] Satish Chandra, James R. Larus, and Anne Rogers. Where is time spent in message-passing
and shared-memory programs? In Proc. of the 6th ASPLOS Conference, pages 61-75, Octo-
ber 1994.

[DGS*90] D. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H.-I Hsiao, and R. Rasmussen. The
Gamma database machine project. IEEE Transactions on Knowledge and Data Engineering,
2(1), March 1990.

16

[Ger95]

[HS91]

[LTS90]

[Mes94]

[SKN94]

[SN93)

[Syb]

[Tan87]

[Ter83]
[WDJ91]

Bob Gerber. Informix Online XPS. In Proc. of the 1995 ACM-SIGMOD Conference, San
Jose, CA, 1995.

W. Hong and M. Stonebraker. Optimization of Parallel Query Execution Plans in XPRS. In
Proceedings of the 1st Int’l Conf. on Parallel and Distributed Information Systems, Miami,
Florida, December 1991.

Hongjun Lu, Kian-Lee Tan, and Ming-Chien Shan. Hash-Based Join Algorithms for Multi-
processor Computers with Shared Memory. In Proceedings of the 16th VLDB Conference,
pages 198-209, Brisbane, Australia, September 1990.

Message Passing Interface Forum. MPI: A Message Passing Interface Standard. Int’l Journal
of Supercomputing Applications, 8(3/4), 1994.

Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton. Cache Conscious Algorithms for
Relational Query Processing. In Proc. of 20th Int’l Conference on Very Large Data Bases,
pages 510-521, Santiago, Chile, September 1994.

Ambuj Shatdal and Jeffrey F. Naughton. Using Shared Virtual Memory for Parallel Join
Processing. In Proc. of the 1993 ACM-SIGMOD Conference, pages 119-128, Washington,
D.C., May 1993.

Sybase Inc. Sybase Navigation Server
URL: http://www.sybase.com/Offerings/Servers/navserver.html.

Tandem Database Group. Nonstop SQL, A Distributed, High-Performance, High-Reliability
Implementation of SQL. In Workshop on High Performance Transaction Systems, Asilomar,
CA, 1987.

Teradata Corp. Teradata: DBC/1012 Database Computer Concept and Facilities, 1983.

C. B. Walton, A. G. Dale, and R. M. Jenevein. A taxonomy and performance model of data
skew effects in parallel joins. In Proceedings of the 17th VLDB Conference, pages 537-548,
Barcelona, Spain, September 1991.

17

