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Abstract. In simulation studies of parallel processors, it is useful to consider the following abstraction
of a parallel program. A job is partitioned into n processes, whose running times are independent ran-
dom variables X1,..., X,,. As a measure of performance we consider the normalized job completion time
S = max{X;}/Y ¢, X;. We consider a simple approximation to the expected value of S, valid asymp-
totically whenever the X;’s are bounded, and assess its accuracy as a function of n both theoretically and
experimentally. The approximation is easy to compute and involves only the first two moments of X;.

1 Introduction

In this paper we study a simple performance metric for parallel programs. We are interested in so-called
fork-join programs, of the following type. A job splits into n processes that run independently, then wait for

the last one to complete. As a measure of performance we consider the ratio

max{7T;

S = m%-z—}, (D
where T} is the time taken by process i, and D = Y .., T; is the total demand. Roughly, this ratio tells us
how fast one can solve a problem in parallel, relative to the cost of solving it sequentially. Thus it is the
inverse of the usual “speedup” studied in parallel programming. It can also be thought of as a job completion
time, normalized by demand.

This ratio, assuming process times are i.i.d. samples from a uniform distribution, has been used in
simulation studies of multiprogrammed parallel processor scheduling policies [9, 11]. In such studies it is

useful to know the expected value of S, which is proportional to the mean completion time of a simulated
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jobs. In [13] two expressions for

S=F [5“%@-1] (2)

are given: a closed form (not usable beyond n = 50 due to cancellation) and an infinite series, which leads to
an O(n?) algorithm to approximate S. Both of these results assume process times are uniformly distributed.

In this paper we propose a simple two-moment approximation for S under more general assumptions for
process service times than [13]. More specifically, we assume that the total demand D is partitioned into

processes of length

X.
T; = E"—JY-D’ (3)
i=1 4+

where X;,..., X, are i.i.d. bounded positive random variables, independent of ). We use the Central Limit
Theorem to estimate S as a function of n when n — oo, thereby obtaining approximations useful for large
n. We validate our approximation against simulation for several job length distributions.

The results of this paper extend previous work in several ways. Several authors have studied the distribu-
tions of S and 1/S under various assumptions about the parent distribution. (See [1, 2, 5, 6] and references
therein.) The emphasis in these works was on asymptotic results for unbounded random variables, in part
because 1/S is asymptotically normal otherwise. (Unfortunately, this doesn’t tell us much about the ex-
pected value of S: when Z is normal, E[1/Z] fails to exist.) In contrast, we are interested in numerical
estimates for S and in formulas that relate the expected performance of fork-join programs to simple system
parameters, such as mean and variance of process length. Such formulas are important because detailed
distributional information is rarely available in a real situation. In the uniform case, our approximation
leads to an asymptotic series for S. As this series is more accurate as n increases, this complements the
methods of [13].

Although we are primarily concerned with bounded random variables, it it is worthwhile to remark that
E[S] can be estimated rather precisely in the important unbounded case where X, ..., X, are 1.1.d. samples
from a T'(k) distribution. This distribution is often used as a model for process times; for example, the
exponential distribution has k = 1. In this case, one could use the asymptotic distribution of 1/S given by
Darling [6] to estimate E[S]; we discuss an alternative approach below.

The remainder of this paper is organized as follows. Section 2 derives the approximation for S in terms of

the first two moments of X. Section 3 provides validations of the approximation against simulation estimates



of 5.

2 Approximations for S
In this section we derive an approximation for S, as defined by (2) and (3), in terms of n and the first two
moments of X. Our approximation Sis asymptotically exact, in the sense that im0 S/ S =1. As we are
concerned only with ratios of completion times we will ignore total demand and without loss of generality
set 12 = 1 in the remainder of this paper.

The idea behind our approximation is as follows. We have

max{X;}

S = 7
Zi:l Xi

(4)

If the X;’s are 1.i.d. and n is large, then any particular X; will contribute very little to the sum and we incur
little error in replacing one of them, say X,, by its maximum value M. On the other hand, M will be a
good approximation to max{X;}, since it is unlikely that all of the X;’s are small. Therefore the mean value
of S should be close to

. M

=F | ———— . 5
|:Z?:_ll Xi+ M (5)

By the law of large numbers, we have

A 1
S TF = DEX)M

and we can refine this by applying the central limit theorem to 27;11 X;. (Technically we should use E[X;]
rather than E[X], but our convention will be to drop such subscripts.)

We now carry out this program precisely,. We will assume that 0 < X < M and that M is the essential
supremum of X. (That is, no random variable agreeing with X almost everywhere has a smaller bound.)
Thus all moments of X will exist; to avoid degenerate cases we assume that the mean and variance of X are

positive. We first prove that we can replace S by S asymptotically.

Proposition 2.1 We have limy— o0 §/.§’ =1.



Proof. We first prove a lower bound. Choose ¢ > 0. Since X, < M, we have

max{X;} M
ML X+ M

max{.Xi}]
E [—“n— >F
2 i=1 Xi

Letting v be the probability measure, this is at least

M N
max{X:}>(1-eM » 3 Xi+ M max{X:}<(1-e)M » ;1 X + M

The second integral is bounded by o™, where & = Pr[X < (1 —¢)M]. (Note that @ < 1.) Since S>1/n, we
have § > (1 —¢)(1 - na™S.
We now prove an upper bound. Since max{X;} < M and X, > 0, we have

max{X;} < M (14 M
2= Xi T Z?:_ll Xi+ M E?_—_-ll X

)- (6)

Choose any ¢ satisying 0 < ¢ < 1. We will call Y7771 X; “small” if S0 X; < ¢(n ~ 1)E[X], and “large”
otherwise. From large deviation theory (see Appendix), there is a # < 1 for which PI[Z?;ll X; small] < gn~L.

We may in fact take

f = min {Ux_emx1 (=N}, (7)
where ¥ denotes the moment generating function. We now express S as
E [ 205" X small | Prl 205 X small ] + B [SISRS! X large | Prl 75 X lange |

The first term is at most 87!, since S < 1. Since E[T|A]P:[A] < E[T] whenever T > 0, we can use (6) to

bound the second term by

A 1
R

Since § > 1/n, this proves §/5 < 14 nf™ + (c(n — 1)E[X])"t =14 O(1/n). |

Given sufficient information about the distribution of X, the bounds in this proof can be used to find

numerical estimates for S/ S. Alternatively, one can use the following quick and dirty universal bounds.



Proposition 2.2 We have

E[X] < E[max{X;}] < § <2
M - M -5
Proof. To prove the upper bound, observe that
E _max{X;} Y "Xi4+ M max{X;} E?;ll Xi+M
§TT M S K, S X, M

and estimate the first expression if Z;:ll X; > M, the second otherwise.

To prove the lower bound, let X(1y < X(2) < -+ < X(n) be the order statistics of the X;’s. We have

max{X;} M
-E
Z?:l XZ I:

M M+ 50 X ‘max{Xi}H ‘

Given any value of max{X;}, Xqy+ ...+ X(n-1) 18 stochastically bounded by the unconditional random

variable Xy + ... Xn-1, |80

M M
El————Imax{X;}] > E[———5=]
NI+Z;1X() ]V[-l—z Xi
This proves 5/5 > E[max{X;}]/M; clearly this is at least E[X]/M. |

We now explain how to obtain numerical estimates for S fweletVi=X; /M, we have

1 1 1
1+Z?;11W}:1+(”“1)E[V]El1+2n]’ (8)

where

Since the V;’s are i.i.d. with 0 < V; < 1, we expect Z, to be small, comparable to 1/1/n, and this suggests
using a Taylor series for 1/(1+4 Z,). These ideas lead to an asymptotic series for S, in terms of the moments

of X. Below we give the two-moment version.

Proposition 2.3 Let Cx = ox/E[X] be the coefficient of variation of X. As n — oo, we have

) 1 2 1
S = X DEXM (1 oot O(;ﬁ)) "




Proof. From a finite Taylor expansion, we have

1 zt
== - Zn g 2 s 3 Y n .
E[l«{-Zn] 1 — E[Z,]+ FE[Z7] E[Z"]+F[1+Zn] (9)
Let m = n — 1; then we have
1 1 Yin(Vi— E[V])
— 1 1 i=1 A
Zn =g+ ey m

We recognize the second factor as a sample mean, whose moments are known from sampling theory (see

Appendix). Therefore

PARE (10)
B[7?) = ‘E[;]2(1.+m;[v])—2%:%-m(miz); (11)
7Y = 0(=) (12)

(Here and below, the implied constants depend on the moments of X.) We now prove a sharp bound on the

expected value of Z2}/(1+ Z,). Observe that

m(1 - E[V]) _
Zn < T+mEV] o(1)
and
L _ LamBV]

1+Z, 1435,V

From large deviation theory (see Appendix), there is a constant 7y with 0 < y < 1 such that PI[ZT:I Vi <

mE[V]/2] < 4™, and this leads to

z| &

o Zn} < 2E[Z4] + O(mAy™). (13)

We bound the fourth moment of Z,, using the central limit theorem. We have

S (Vi — E[Vi])
ov/m k

gy 1

N T T T




and the second factor converges in distribution to a standard normal random variable. In our case, all
moments of the second factor converge to the corresponding moments of a N(0, 1) random variable (see

Appendix), and we have

1
47
Bz = 0(—). (14)
We substitute (9) in (8) and apply (10)—-(14) to get the result. |

Using Propositions 2.1 and 2.3, we have the approximation

g 1 Cc% 1 ]
S~ T3 (= DEX]/M (1 oot 0(;:7)) : (15)

which uses only the first two moments of X. Further approximations, using higher moments, could be
computed by a straightforward extension to the proof of Proposition 2.3.

For the uniform case (X; i.i.d. U(0, 1)), our method gives an asymptotic series for §. We observe that
S has the same distribution as 1/(1 + Z?:_f‘ X;), as is easily proved by conditioning on the maximum.

(Compare [6, page 451].) Therefore,

2 14 1 2 + 4
n+1 3n  3n?2  4bn8

§=5=

+ .-

On the other hand, one should not expect (15) to converge quickly for distributions with rapidly vanishing
tails. Consider, as a limiting case, X;’s that are i.i.d. I'(k) random variables. It is of independent interest
to compute E[S] in this case, and this can be done as follows. Since each X; can be represented as a sum
of k i.i.d. exponential random variables, (X1/ 3 req Xi, ..., Xn/ D i=y Xi) and 377, X; are independent.

Therefore

() 1)

and we can relate the maximum to an occupancy distribution, with a known expected value. (See [10].) If

this is done we obtain

max{X;}\ _ logn+ (k —1)loglogn + C —log((k — Y + o(n)
ST %) n



(here C' = 0.57721... is Euler’s constant), a very accurate approximation for fixed & [7]. If we approximate
the gamma distribution by truncation to [0, M] and M > k, then S will be close to this. On the other hand,

for any fixed n,

M
by the bounded convergence theorem.
Roughly speaking, then, we expect (15) to be good for distributions with significant mass near the upper
bound M. Since max{X;} and Y ., X; are asymptotically independent [12], there is probably some merit
in replacing (15) by

E[maX{Xi}]S,
M

if this is not the case. We note, however, that this heuristic correction requires knowledge of the expected

maximum.

In the next section we will validate the approximation (15) for several distributions and assess its accuracy

as a function of n.

3 Validations

We validated approximation (15) for several distributions of X. Clearly, for the trivial case of equal task
service times, i.e., X; =1,i=1,...,n, the approximation is exact since Cx = 0, E[V] =1 and S =1/n as
required. To validate the approximation for more variable X we used simulation to estimate S for uniform,
beta, triangular, and truncated exponential distributions for X. Table 1 provides the density, mean, and
coefficient of variation for each of these distributions. (Note that Beta(1,1) is equivalent to Uniform(0,1),
and Beta(1,2) is a scaled version of a Triangular distribution.) The Truncated Exponential(a, b) distribution
is obtained by truncating an exponential with mean a at the point 4, and replacing the tail by a mass point.
All simulation estimates were for a sample size of 10000 and had 99% confidence intervals with less than 1%
half-widths. The sample standard deviation was used to estimate the confidence intervals. All approximate
estimates of S were computed using (15) after dropping the O(1/n?) error term.

Figures 1(a) and (b) plot S versus n for various settings of the Beta and Truncated Exponential distri-

butions. In Figure 1(a) the curves are in increasing order of Cx. We observe that for the Beta(2,1) and



Table 1: Distributions used in Validations

X Density fx(z) EX] Cc%
I'la+b) .y -1 a b
Bet b el LA Y [
eta(a, b) F(a)I‘(b)w (1—=2)""*, s P EET
0<z<l
. 2(b—=x) b 1
Triangular(b) — O<e<h 3 5
Truncated %e“z/“, 0<z<b, - 2{a — (a+ b)e~l'/a} )
— be 1
Exponential(a, b) e~tegb), =0 (a — be-b/a)2

In all cases above @, b >0

Beta(1,1) distributions approximation estimates of S coincide with the corresponding simulation estimates.
As Cx increases the accuracy of the approximation degrades slightly when n < 500 as seen from the curves
for Beta(1,2) and Beta(0.5,1.5). For n > 500 the approximation estimates are almost identical to the sim-
ulation estimates. From Figure 1(b) we observe that for the Truncated Exponential(1,1) distribution the
approximation is very accurate. When the truncation point of the exponential is increased from 1 to 2 the ap-
proximation is less accurate for n < 1000 and when b is increased still further to 10 the approximation is rather
poor for n < 1000. For this choice of b we found the approximation to be quite accurate for n > 2500 (not
shown). The reason for the poor accuracy for the Truncated Exponential(1,10) distribution when n < 1000
is that our approximation is based on the fact that max{X;,..., X} — M as n — oco. For the truncated
exponential distribution n has to be quite large for Plmax{Xy, ..., X,} > M —¢] > 1§, for small positive
¢ and §. For example, for n = 1000, M = 10, and ¢ = 0.05, Plmax{X1,..., Xn} > 9.95] = 0.05. In contrast,
for a Beta(1,1) random variable, n =100, M = 1, and € = 0.05, Plmax{X1,...,Xn} > 0.95] = 0.994, which
is why the approximation is extremely accurate for the Beta(1,1) curve for all n > 100.

One might conclude from the experiments that S, for which (15) is an approximation, always overesti-
mates S. The following example shows that this is not the case. Let X = 1/2 with probability 1/4, and 1

with probability 3/4. For n = 2 we have S = 0.5625, whereas S = 0.54166....
Appendix

In this appendix we collect some technical results from probability theory.
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Figure 1: Validations: S versus n

1. Sampling Theory. For any random variable , let

p(€) == E (€ — El€)*]

be its k-th central moment. For sample means, we have

w(E2E) 5 {(mle{ E{V]))"} |

Let pp := pr(V) denote the k-th central moment of the parent distribution. Cramér [3, page 345] gives the

following formulas for the i.i.d. case:

i Vi) _ .
H1 < m - 0)

i Vi _  Hz2,
H2 ( m - m’

Yie1 Vi _ ks
#3 m - m27

10



b

i Vi 33 pa—3p3

pa ( m =l
and observes that for fixed k, pp(d izq Vi/m) = O(m~T#/21). Higher moments could be computed using
a procedure outlined by Kendall and Stuart [8], although the formulas become increasingly complex as k

grows. In particular, it is not obvious how the constant in the above O-tesult depends on k.

2. Large Deviations. For a random variable &, let W¢(f) := E[e*¢] be its moment generating function.
The following result appears in Chernoff [4]: If V1, Vs, ..., Vin are ii.d. with the same distribution as ¢ and

a < E[€], then

Py Vi <aml < (jug (e} )
i=1 -

We must check that the infimum is actually less than 1. To do this, note that e**¥¢(—2) is the moment
generating function of a — ¢. This is 1 for A = 0, and its derivative at 0 is Ela — €] < 0. Since moment
generating functions are analytic, there will be some A >0 where the function has a value less than 1.

3. Convergence of Moments. Let Vi,..., Vi, be ii.d. with 0 < V; < 1, and consider the normalized sum

iz (Vi = E[V])
O'V\/7_ﬁ '

O

As is well-known, Y;, — N(0,1) in distribution, but we need the corresponding relation for moments. We
will use the Second Limit Theorem from Kendall and Stuart [8, page 115], which states that for a sequence
of distribution functions { Fi(z)} that converge to the distribution function G(z), the k** central moment of
Fro(z), pi(m), converges to the k" central moment, A, of G(z) (assuming that px(m) exists for all m > mg
and for all k£ > 0) provided that p(m) is bounded above by some constant Ay that is independent of m.
Clearly E[Y;%] exists for m > 1 since the V; are bounded. We need to show that E[VE] < Ay for some
Ay independent of m. To do this we use the following result by Whittle [14]:
Proposition. Let Wy, = Y ie, b;U;, where Uy, ..., Up are i.i.d. with mean zero. Let vi(k) = E[|U;|F]Y/%.

Then for k > 2,

m k/2
E[|[Wnl*] < 2°C(k) <Z b?vf‘(‘ﬁ) ;
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where

Qk/Z
C(k) 1= = T(k+ 1)/2)

To apply Whittle’s result we set U; = (Vi — E[V])/(ovy/m) and b; = 1. Thus ¥y, = S, Ui, and

Ak 1 1/k
— o k ’
] = 7 BV - BVIFTT,

Vi — E[V]

; k) = E[|U; S - 7
) = Bl = v || A0

which is independent of i as Vi, ..., Vi are ii.d. As a result,

E[|Ym|"]

AN
[N
o
Q
o~
o~
p—
INgE
2
=
—_
o
e
N’
o
—
)

I
[N)
2
Q
=
/\ prr— /_\
™
—
INgE
s :
=
|
=
=
=
=
3
~~
e
N
a
~
(3%

fl
b
2.

O (k) ;%F 1V — BV,

which is independent of m. Therefore, by the second limit theorem,

B[] — bof 2 N(0,1) {0, k odd;
J[Y.0] — k" moment of a 1) = W%W’ k even.

whenever k > 1. Whittle’s result also gives an explicit bound for the k-th absolute moment of Yy,; we have

22427 (1)

E[|Yml¥] < W

B[V - B[V]}*].
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