Algebras for Object-Oriented
Query Languages

Scott Lee Vandenberg
Technical Report #1161

July 1993

ALGEBRAS FOR OBJECT-ORIENTED
QUERY LANGUAGES

by

SCOTT LEE VANDENBERG

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN-MADISON

1993

ii

ABSTRACT

Algebraic query processing and optimization for relational databases is a proven and reasonably well-
understood technology. This thesis presents a data model and query language that were developed in part to facili-
tate the study of algebraic query processing and optimization for advanced data models. It also continues the evolu-
tion of the algebraic paradigm by presenting operators and transformation rules that correspond to this data model
and thus extend the paradigm in several directions. Additional research into algebraic constructs is also presented;
this work was done in the context of a newer system that provides even more features than the previous one. A

comprehensive survey of database algebras is included to help place the work in perspective.

Many of the results were obtained in the context of the EXTRA/EXCESS system, which was intended as a test
vehicle for the EXODUS extensible database system toolkit. The EXTRA data model includes support for complex
objects (via orthogonal type constructors), sharing, and object and value semantics. The EXCESS query language
provides facilities for querying and updating EXTRA data, and it can be extended through the addition of pro-

cedures and functions for manipulating EXTRA schema types and generic set functions.

The algebraic constructs developed for EXTRA/EXCESS include operators and transformations supporting
grouping, arrays, references, and multisets. I also propose a new approach to processing and optimizing overridden
methods in the presence of multiple inheritance. The thesis presents an intuitive set-theoretic semantics for the
domains of object identifiers in the presence of multiple inheritance. I constructively prove that the algebra is equi-

pollent to EXCESS, giving a complete semantics and a translation algorithm for the EXCESS language.

In the context of a more powerful data model, the thesis will describe techniques for handling abstraction in an
algebraic setting; differing notions of equality in an algebra and their relation to non-determinism; and algebraic

techniques for processing and optimizing some queries over tree structures.

Taken as a whole, the techniques and results presented in this thesis indicate that the algebraic approach to

query processing and optimization is both feasible and beneficial in object-oriented database systems and beyond.

fii

ACKNOWLEDGEMENTS

I owe a great deal to the guidance and encouragement of my advisor, Professor David DeWitt. It has been a
privilege to work with him during my years in Madison. Without his clear thinking, enthusiasm, understanding, and

faith in me this thesis would never have happened.

Professors Michael Carey and Raghu Ramakrishnan have always made themselves available to answer my

questions and to discuss my ideas, and their time is sincerely appreciated.

1 would also like to thank the other members of my committee, Jeffrey Naughton, Marvin Solomon, and
Michael Byrd, who all made useful comments about my work. Professor Olvi Mangasarian deserves credit for

being in the right place at the right time.

I have had the pleasure of working with a large number of excellent fellow graduate students over the years,
and I would like to thank the following for technical advice and for making the process of graduate school bearable:
Dan Frank, Goetz Graefe, Paul Bober, Robert Netzer, Dan Schuh, Joel Richardson, Eugene Shekita, Mike Zwilling,

Dan Licuwen, and all members of the appropriately-named Slow Moving Vehicles hockey team.

More recently I have been involved in some research outside of Wisconsin, and I would also like to ack-
nowledge the following people for their encouragement: Stan Zdonik, Gail Mitchell, Ted Leung, Bharathi

Subramanian, David Maier, and Bennet Vance.

David Stemple’s advice has been invaluable, and I would like to thank Arnold Rosenberg for his help in locat-

ing some theoretical results.

Finally, I would like to thank my parents and my wife, Kristin Bennett, for sticking with me during some very
difficult times and some very difficult decisions. Kristin’s patience, understanding, and energy have helped make

the completion of this thesis a reality.

TABLE OF CONTENTS

ACKNOWLEDGEMENTSocviiiviiernrerismsessssessesessissseressassisesesssstasisssesssssasassssassssssosssassssesasssssonssssssisssssines
TABLE OF CONTENTS ootoiitivrsrerresesiseisss e ssssesssesssssesesessessssessaassaresssssstsnsssssssesmssssnssvasssssssssssassassasassssssasens
Chapter 1: INTRODUCTIONcoounmiimnriintusnsssssissssssis s ssssssssssstssssessssseesnsesssesasrsstssssssomsssssssssssssass

1.1 Object-Oriented Data MOGEISc.ccerirereininiienninricinit st

1.2 Algebraic Query Processing

and OptMIZALON ...t ses s easens

1.2.1 WhY an AIZEDIa? ..ottt s

1.2.2 A BIHEf HISOTY voceeeceerceriiisiesinntsisine st ssms st rssst st sttt

1.3 OULHNE OF the THESIS .eveervrrrereeriressserrristssesersetsierisririsesessastssssesesastssssstetsstassasesssssressossssassssenesssorssssse
Chapter 2: A SURVEY OF DATABASE ALGEBRAS ...t
2.1 The Relational ALZEDIacocvvvimriniiniirirniinieicsise i essisssnsnss st st s s s st sn s

2.2 Nested Relational Algebras
2.2.1 The DASDBS Algebra

...

...

2.2.2 The ATM AIZEDIAcoueiririiirrrcistessrsts st s s s bR s bt
2.2.3 The Vanderbilt ALZEDIa ...t s nes
2.2.4 The SQL/NF AIZEDIA ...c.cvvirniiirireneriisetnirtsssinssssssssssmssens sttt ss s ansasnss

2.2.5 The VERSO Algebra ..
2.2.6 The NRDM Algebra ...
2.2.7 The Waterloo Algebra
2.2.8 The Powerset Algebra
2.3 Other Database Algebras ...

..

..

..

..

2.3.1 An Algebra fOr AZEIEEAtESccouerrmriieirmrsrrnsrsstsss st s s s

2.3.2 The Summary Table Al
2.3.3 The LDM Algebra

ZEDIA vt e s s

..

2.3.4 A Complex OBJECt AIGEDIAocuvveriurmieieiniieniisissitsc ittt s snaes
2.3.5 An Algebra for Office FOISooeurrinimirenritiesncineietsesetsss e

2.3.6 ENCORE/EQUAL

..

2.3.7 An Object-Oriented Database AIZEbra ..ot

2.3.8 The R? Algebra
2.3.9 Other Algebras

2.3.9.1 Relational-Like ALZEDIAS ...ccorvereveiiiiiciiite et
2.3.9.2 NF2Like and Other AIZEDIASeecommeorereesssssosssnerssssssssssssssssesssssssessesesesssssesssssscesissosses

2.4 SUIMINATY ..oovvernireerersnnareenes

Chapter 3: SUMMARY OF MOTIVATIONS AND RELATED WORK ..o
3.1 Object-Oriented Models and LANGUAZESeceevuvermeriiimieiriminitsrnssns sttt s s
3.2 Motivation for the EXCESS and AQUA AIZEDbrasocoaeiemieincciinercteiinninnennns

3.2.1 The EXCESS Algebra

3.2.2 The AQUA AIZEDTA ..ottt e s
3.2.3 Summary of the Algebraic GOalSsooieeiinnieirerec e e

Chapter 4: EXTRA AND EXCESS

iv

— D 00 ~3 N B BN —

AW b B B R R BB W W W R NN = e e
GO SO T o™= O ~1 N WO O X & W WO H ool

SR A AR

-~ O
[ew N

4.1 The EXTRA Data Model
4.1.1 The Basic EXTRA Type

SYSIEIM Lottt ettt eie e e bbb s s et e s bt e saeeebessbessaenenans

4.1.2 Modeling Complex Objects in EXTRA ..o nssessesscsssaes

4.1.3 Other Attribute Types
4.1.4 Data Model Summary

...

4.2 The EXCESS Query Languagecovvaniicnnnnisinieiosnnn e eeeeess s es e

4.2.1 Set Query Basics

...

4.2.2 Range Variables and Theil TYPESccccoivireeiniiiinienniiiiriitisscnntesesiscissins e sesssnsesnsssssossssssanes

4.2.3 Query Result Types

...

4.2.4 EXCESS JOIN QUETIES ..ceecvrverriuerirececseneneriocsesmsssssscsnsississmosssssssssassssessissiosssssssssstessassesssnsssssssssns
4.2.5 Aggregates and Aggregate FUNCHONS ...ttt rsse s nesans

4.2.6 Updates in EXCESS

...

4.3 Extensibility in EXTRA and EXCESS ...ttt ssesvssssssssssssssneesss

4.3.1 Abstract Data Types

...

4.3.2 EXTRA Schema Types, Functions, and Procedurescovvvieeennrrieinntinsnsinseseessisssnnes
4.3.2.1 EXCESS FUNCHONScovvtirieerentimsressrnereesersaesssistssesssssesserssssessssssensamsrssessssensassrsssassessssnssseasses

4.3.2.2 EXCESS Procedures

..

4.3.2.3 Achieving Data ADBSITACIONocccvvvveiriveniiensineriensisiis e sssseres s sasssssssssssssssasessanes
4.3.3 GeneriC St OPETALiONSc.couriimsiiirmnmiscriisesisisnssssrsssnissssseissssssasssssasstessassssrsstssssassssssansssssasessvases

Chapter 5: THE EXCESS ALGEBRA revessresesa s aresnasraas

5.1 The AZEDIaiC SIIUCITES ...coceceeemrmiecremrrrrecrresisissssssssssis s sessssssssesssmssssssessssssissrensssssasnossssasasssnsenes

5.2 The Algebraic Operators

..

5.2.1 MULLISEL OPETALIONS .oovvverreesrrreecssereiassssssosessimssssssisssisisissssisssssssssssssesssosssssssasssesesessssesssssssssnsanses
5.2.2 TUPIE OPETALONSeceereerecercrreremenceereetsesss s ssssssisessss s s s e e st sas s ses s asa e e e assarnarssasenssssssasss
5.2.3 AITay OPEratiOnscccocvivmsercrmresiimnimsiniinsesiassisssssssessssnsisssssssressssssssasessassassssssssarasassssassssenssss
5.2.4 Reference OPerationsccueiicninnnsisinsssirssssssssssssssssssstsssssnanssssssssssssssassssssstsisssassns
BL25 Pre(iCALES ..uoeuceveecreeereriesraieserraseonsseomseseentnsesistssssatsssessstsssssonsssasssissiossmesessssssnontssanssnsasnsassassasssssssasas
5.2.6 Generic Multiset/Array Operations and Extensibilitycccccovvvrmnicrecnnenens

5.3 Algebraic Query EXamplesccveevemvivicrniiseescnnisennsesncssnenns rreeestsnens s sstsasanas

5.4 Algebraic EXPreSSIVENESS ..cc.crremiesisesmiinismsississrsssrensasssreesssessssesssssssssssassassassnssanes

5.5 Algebraic Treatments for Overridden Methodscooevcieemnnneniniesinectneeeisennnnas
5.6 Algebraic Transformations ettesererareseterettentestates s et eh e bR e et Lo RO RN SRS SR e B SRR bR b e R s n et et
5.7 Comments on a Partial IMpIEMeNntationceeeeivcrrecnirnsirieietsiisssnnenessssisssissessesssessssssssasssanasanss

Chapter 6: THE AQUA ALGEBRA
6.1 The AQUA Model and Type

...

SYSLEIM Luvevrirrrmereereeceserenssessenssssassesssesestsastsassesssseassasssbesnssessnsasnsssasesnans

6.2 Abstraction in AQUA ...ttt saes bbbt st aa s e R s s et s as e s R e s e nnsenents
6.3 Definitions Of EQUALILYccocoevunmmrmniiriiiiicininineteee e rsnes st stes s stese et sra s s sssnssssasssnassasaseseas
6.3.1 Duplicate Elimination and Non-DeterminiSImcocvuverersiecrieimssnsisisnssssinasnsssonsessssnsescssssecas
6.3.2 Other APPIOACHESeereciriiriniriiiitisii ittt e tntessts s rensr s ses st s s s assasasssaansssnatonsssusstacasasasanas
6.4 Selection QUETIES ON TIEESc.cvcvrveerrecrrerrirerercenronereseesesesisiesessssisssmssmsmsmssosesssersssessnsonssstasssssessassssnsas
6.4.1 Ordered Types in AQUA ...t ssnsnsns s
6.4.2 QUETIES ON TIEES ..ovevveeeeiecveriererreerrerrirmessesisetsssaecbesstss s st st sssasr e s asssens s st esssnanssessassssesssantanasasens
6.4.2.1 PAErns i TIEES .eooveveetererrereeeereenietaseiecitecerasesesensesestssessessssissassniosssssassbossossssssssnassensressanaas
6.4.2.2 Selecting Portions 0f @ TLEE ..ot resre e sns s ansnssessssssasens
6.4.2.3 Selecting Trees from @ FOTEStcococviiiiiiiiicriiienetnre st s asssssssasesaescs
6.4.3 Other Algebraic Operations 0N TIEES ...ttt essassssssssssssessseas

6.4.4 Algorithms and Indexes

70
70
73
76
77
77
79
80
82
83
84
86
88
88
92
92
93
95
95
97
98
102
103
105
106
108
109
112
112
113
117
121
125
128
129
130
133
136
138
139
139
144
145
152
153
153
160

Chapter 7: CONCLUSIONS ..ottt sttt st ss st s sesnot 10
To1 SUMNALY crvviirrerirereeeseseseisinresestssis s sts st st s eb b b e s Lo e b a4 e e R s s Ea g b Re b e R e b e b e R e TS a R 4R s b s b SR s b s b et st ettt s n s
T2 CONCIUSIONS ..vovvveveiniirreeierreseneesres e e s s te e te bt sae b e beas e s b sar R e s as s Rt s s s e s R b se o R e s bs s m e e be s s ebea b s sasnrsabaaraesnsien
T3 FULUTE WOTK ..ovverreiveeriririee et steessee e st et s e e s e s me e estsne s e s s b b e s r e s b s s s s se s R e b Ao e e R s e s Rt e b e s Re b e banan s ensasssanas
APPENDIX A: Transformation Rules of the EXCESS Algebra ..o
APPENDIX B: A Proof of the Equipollence of EXCESS and its Algebra ..o

REFERENCES

..

vi

162
162
163
163
165
173
188

CHAPTER 1

INTRODUCTION

The relational model of data [Codd70] has been very successful both commercially and in terms of the research
opportunities it has provided. One of the major reasons for this is that the model lends itself to an execution para-
digm that can be expressed as an algebra [Codd70, Ullm89]. An algebraic execution engine is used to process
queries and to optimize them by rewriting algebraic expressions into different algebraic expressions that produce the
same answer in a (hopefully) more efficient manner. Algebraic implementation/optimization techniques are well-
understood and algebraic specifications of data retrieval languages lend themselves to theoretical examination in
terms of expressiveness and other issues. These features make algebraic specification desirable for a data

model/retrieval language.

In recent years it has become apparent that the relational model is not always the right choice for a particular
application [Kent79, Care88a, Schw86], and many new data models have been proposed [Abit88b, Lecl87, Fish&7,
Maie86c, Bane87, Mano86, Roth88, Sche86, Kupe85, Abit88a]. Thus an important open question is this: Exactly
how far can the algebraic approach be taken? Is it a reasonable way to implement and optimize all data models, or
is there some level of complexity of the data model at which the approach is no longer justified? This thesis will
extend the paradigm to object-oriented models and slightly beyond, demonstrating that the paradigm is viable for

advanced data models.

The basic ideas of this thesis, then, are twofold: first, to present a complete object-oriented model and query
language and to describe an algebra that models it in such a way as to provide a semantics for the model and
language and to allow optimizations to occur; and second, to describe certain portions of a second, more advanced
data model and present algebraic formulations for several of its new features, again with the goals of useful seman-
tics and optimizations in mind. The next sections provide some background in the data modeling and algebraic

areas, respectively.

1.1. Object-Oriented Data Models

Here we assume that the reader is familiar with the basic concepts of object orientation such as identity, encap-
sulation, and subtyping. It is the intent of this section to describe the origins of the EXTRA/EXCESS and AQUA

systems, not to define the term "object-oriented data model”.

While a number of new data models have been proposed in the past few years, there appears to be no con-
sensus on the horizon. A number of database researchers seem to believe that object-oriented database systems are
the future [Fish87, Khos87, Banc88, Lecl87, Horn87, Andr87, Bane87, Maie86c], and several flavors of object-
oriented models have been identified [Ditt86]. However, there is little consensus as to what an object-oriented data-
base system should be; such systems today range from object-oriented programming languages with persistence to
full database systems based on data models that would have been called "semantic data models" in the past. In fact,
the former kind of object-oriented DBMS almost seems like a step back to the days of navigational data manipula-
tion languages, as it is not obvious how one will support ad-hoc queries (or optimize accesses effectively) for such

systems [Bloo87, Ullm87]. This thesis will address these issues, among others.

Another direction in data model evolution, one which has spawned such efforts as [Codd79, Dada86, Sche86,
Schw86, Rowe87], is to extend the relational model in some way. A common goal of these efforts (and of this work
as well) is to provide better support for complex objects and new data types than that offered by the relational
model, while still retaining such important features as a powerful, user-friendly, data manipulation language. One
approach to dealing with complex objects (also known as "structural object-orientation” [Ditt86}) is to provide pro-
cedures as a data type [Ston87a]. Another approach is to permit relation-valued attributes [Dada86, Sche86]. A
third approach is to take a functional view of data [Ship81, Mano86, Bato87]. In addition, a common theme among
many of these efforts is to extend the database system’s data definition facilities with support for some form of sub-
typing.

The EXTRA/EXCESS system was designed partially to test the viability of the EXODUS extensible DBMS
toolkit [Care88a], and partially to provide a platform for research into advanced data models. Chapter 4 will present

the EXTRA data model and the associated EXCESS query language, which are intended to subsume much of the

modeling and querying functionality of object-oriented and other advanced systems.! The result is a synthesis and
extension of ideas from other data models and systems, including GEM [Zani83], POSTGRES [Rowe87], NF?
models [Dada86, Sche86], DAPLEX [Ship81], ORION [Bane87], Trellis/Owl [Scha86], O, [Banc88], STDM
[Cope84], and STDM’s descendant, GemStone [Maie86c]. The most important extensions include: support for
complex objects based on a novel mixture of object and value semantics; a user-friendly, high-level query language
reflecting this mixture; facilities to allow objects of any type to be made persistent and accessed via the query
language; and an integration of user-defined types and operations with the query language at two levels, for both
abstract data types and for conceptual schema-level types. Thus EXTRA/EXCESS supports many of the features

commonly present in object-oriented systems and supports some additional features.

More recently, a system called AQUA (A QUery Algebra) is the result of a joint effort among researchers who
have participated in the design of previous object-oriented algebras [Shaw90, Vanc92, Vand91]. AQUA has been
designed to address a number of detailed modeling issues that we believe needed further work, but the primary goal
of this work has been the design of an algebra that would serve as the input to a broad class of query optimizers.
AQUA and the data model on which it is based are strongly typed and are designed to deal correctly and uniformly

with abstract types.

Any query language or algebra must be embedded in some data model. AQUA provides a simple model that is
general enough to cover the modeling concepts in other object-oriented models. We have adopted a model in which
everything is an object in the sense that it has a well-defined interface and can be referenced from other objects, yet

we also support value-based semantics.

Another goal of AQUA has been to support many different bulk types in a uniform manner. We have designed
AQUA in such a way that it will not preclude additional bulk types like arrays or matrices. The AQUA design also
addresses the problems introduced by type-specific equalities by providing special functions that deal with
equivalence classes and duplicate elimination in a bulk type object based on some equality specific to the element
type.

There are many current applications in which ordered types are required. Scientific applications have a need to

store ordered types such as time-series data and genome sequences, and textual databases may store information that

' EXTRA stands for EXtensible Types for Relations and Attributes; EXCESS is short for EXtensible Calculus with Entity
and Set Support.

is structured as a tree. These applications store huge volumes of data and must locate information from these struc-
tures efficiently. Trees, for example, are useful for non-traditional database applications such as spatial and
geometric data modeling. Chapter 6 introduces some fundamental techniques for processing and optimizing queries

on trees.

Query languages and algebras support declarative retrieval from a database. They are based on a set of high-
level operations over collections of objects. These operations hide the looping structure that would be present in an
algorithm that executes them. By and large, these operations have been confined to manipulations on sets. While
there has been some recent work on extending query languages to other bulk types like sequences [Rich92], addi-

tional research is needed. Thus AQUA provides support for the ordered data types graph, tree, and list.

The results presented in Chapter 6 are some of my individual contributions to AQUA.

1.2. Algebraic Query Processing and Optimization

As computers become larger (in capacity), smaller (in size), and more powerful, it becomes easier to do more
complex things with them than could be done in the past. This is as true of database management systems (DBMSs)
as of any other type of software. The central feature of a DBMS is its data model, the formal abstraction which it
uses to map real-world entities onto (logical) database entities. Many different DBMSs may implement the same
abstract data model (e.g. the relational model [Codd70]). As seen in the previous section, data models are becoming
increasingly powerful and complex, and with this power and complexity comes the need to ensure correct and

efficient execution of queries on data with increasingly complex structure.

1.2.1. Why an Algebra?

When executing a query in any database system, we wish to minimize the utilization of CPU, memory, /O, and
communications resources. Given current hardware technology (i.e., the availability of cheap memory), what we
really want to minimize is a query’s response time, which for centralized systems is usually dominated by the /O
transfer time. An orthogonal issue to speed is correctness. Clearly, the fastest query is useless if it returns the
wrong answer (or never returns any answer at all). To achieve correctness with respect to a data model, one nor-
mally designs a calculus for manipulating the objects in a database. This becomes the definitive standard for lower-
level implementation of the system in the sense that any lower-level query languages should be equivalent to the

calculus in expressive power. Most of the calculi proposed for this purpose have been first-order. (A first-order

calculus is one in which variables and quantifiers may range only over set elements, not over calculus formulae.)
This calculus often becomes the basis of the user-level query language for the system, as it is non-procedural in
nature. It has become clear, from experience with the relational model, that it is much easier 1o pose queries using a
non-procedural language than with a procedural language, in which the query must specify not only what data is

desired, but how to go about retrieving that data.

Of course, at some point we must decide on a sequence of operations to retrieve the data physically. For this
purpose there must be routines to access the data and to perform operations on them (e.g., the relational join). But
going directly from a user’s query to procedure calls on the actual database will generally result in very inefficient
query plans. We need to be able to rearrange the operations to produce an optimal (in the sense described above)
sequence of data accesses. The formality of an algebra allows us to do this. Naturally, this algebra must be equipol-
lent (equivalent in expressive power) to the calculus and translatable into actual calls on the database. It is an inter-
mediate language. The relational algebra performs this function in the relational model, and is one reason why the
model of query processing in relational systems is so attractive. Other paradigms, such as rule rewriting strategies
(for recursive queries), query graphs, tableaux, and other methods [Kim88] have been proposed to fill this role, but
algebras remain the favorite, probably due to their simplicity and mathematical rigor. In addition, equipollence

proofs between algebra and first-order calculi have well-known proof techniques.

The processing of a query, then, occurs conceptually in four steps: 1) translation from the calculus representa-
tion to a functionally equivalent algebra representation; 2) logical transformations of the algebraic query to stand-
ardize and simplify it; 3) generation of alternative algebraic strategies combined with alternative access and operator
methods to produce plans for retrieving the data; and 4) selection of the cheapest plan based on a designer-specified

set of criteria (usually a weighted sum of CPU, I/O, and (in distributed systems) communication costs).

Some systems [Shen87, King81] include another phase in the optimization process. This phase is called
semantic query optimization, and consists of generating syntactically different but semantically equivalent versions
of the original (calculus) query using user-supplied information such as integrity constraints. Each such semanti-
cally equivalent query is then processed as in steps 1-4 above, and the cheapest plan is chosen from among all the
plans generated from all the semantically equivalent queries. Other issues regarding integrity constraints include
how and when to enforce them and how to specify them; these issues are not discussed here. Other types of seman-

tic information can be used in this phase of optimization, for example knowledge about allowable value ranges of

user-defined types or abstract data types (ADTs).

An excellent survey of query optimization appears in [Jark84]. An overview of some recent rescarch in the

area can be found in [Grae89].

1.2.2. A Brief History

The word "algebra" is derived from the Arabic "al-jabr”, a word first used for this purpose by the 9th-century
Arab mathematician al-Khwarizmi, and brought over into the Latin by Robert of Chester in 1145. The original Ara-
bic word means a restoration or completion, and refers to the now common act of applying equal expressions to
both sides of an equality in order to transform it into something more pleasing to the mathematician (or, in our case,

the DBMS query processor).

In 1970 Codd proposed the relational data model and algebra {Codd70]. Informally, a relational system models
all data as 2-dimensional tables of values. These tables are manipulated using the five operators of the relational

algebra.

In 1977, Makinouchi [Maki77] proposed eliminating the flat 2-dimensional restriction, resulting in a body of
work on non-first normal form (NFZ) relational models (also called nested relational models). These models allow
values in a relation to be either scalars (as in the relational model) or entire relations. The relational algebra was

extended with two operators to reflect the new structuring capabilities.

More recently, algebraic techniques have been applied to complex object data models [Abit88a], which extend
the NF? models by removing the restriction that all data has to be either a relation or a scalar. In these models, data
can be represented by sets (of anything), tuples (which are no longer constrained to appear only in sets), or any com-
bination of the “set” and "tuple" type constructors (so called because they are used to construct types). In the rela-
tional model the use of these constructors was limited to a single application of the tuple constructor followed by a
single application of the set constructor. In NF? models, this “tuple-set” sequence of type constructor applications
was allowed to be nested. In the complex object models, there is no restriction on the ordering or number of appli-
cations of these constructors. There is no standard algebra for such objects, but several algebras have been pro-

posed.

Finally, algebras have been defined for some object-oriented data models [Yu91, Shaw90, Vand91, Vanc92].

These models can be viewed as extending the complex object models with the notions of object identity,

inheritance, and methods (procedures defined to operate on objects of a certain type). There is no accepted standard

here either. Most recently, AQUA extends the structures to accommodate ordered types such as trees and graphs.

1.3. Outline of the Thesis

In the following chapter, we present a detailed survey of database algebras, from the relational algebra to
object-oriented algebras. Chapter 3 points out the specific algebraic deficiencies to be addressed in subsequent

chapters and discusses work related to the development of the EXTRA/EXCESS and AQUA systems.

Chapter 4 presents the design of the EXTRA/EXCESS system. In this chapter we also present examples of the
use of EXTRA to model data and the use of EXCESS to compose queries. The extensibility and orthogonality of

the model and language are emphasized.

The algebra designed to formally model EXCESS queries is described in Chapter 5. This algebra is proved
equipollent to the EXCESS query language. We discuss the operators and some of the more interesting transforma-
tions and optimizations that they enable, especially those involving grouping, arrays, references, and multisets.
These are also illustrated by example. Formal definitions of the domains from which the data are drawn are also
presented. The equipollence proof makes use of some interesting proof techniques and also includes a complete

semantics for the EXCESS query language as well as an algorithm for translating EXCESS into the algebra.

Chapter 6 describes work done in the context of the AQUA data model, which is currently under development
at Brown University and the University of Massachusetts at Ambherst. In this chapter we are concerned specifically
with algebraic constructs to model abstraction, varying notions of equality, and queries over trees. We present the

fundamental concepts underlying the processing and optimization of selection queries over trees and forests.

In the last chapter we summarize the results of this thesis and draw some conclusions based on those results.
We also include suggestions for future work in the area. Appendix A contains a list of the transformation rules of

the EXCESS algebra. Appendix B presents the complete proof of equipollence between the algebra and EXCESS.

CHAPTER 2

A SURVEY OF DATABASE ALGEBRAS

An algebra is formally defined as a pair (S, ©), where S is a (possibly infinite) set of objects and © is a (possi-
bly infinite) set of n-ary operators, each of which is closed with respect to S [Dorn78]. These operations will have
certain properties (e.g. commutativity) which make rearrangement of some algebraic expressions possible; this is
what makes algebras so desirable for query optimization. Such equivalences are proved by demonstrating an iso-
morphic mapping between the sets represented by two different expressions. Notice that this definition says nothing
about "updates", or changes to the set of objects to which the operators apply. This is the reason that update seman-

tics in most systems are governed by a concept separate from the algebra, namely, integrity rules [Codd80].

A large number of recent systems operate on objects much more complex than those found in relational sys-
tems. A few of these have a corresponding algebra which they could use to optimize queries, but most do not. In
addition, several "generic" algebras for non-relational systems have been proposed. These are not geared toward
any particular system or implementation. (It should be mentioned that several calculi for objects with complex
structure have been defined; some notable ones are found in [Banc86, Maie86a, Abit88a].) In the following sections
we describe the basic concepts and operations of these algebras, regardless of their connections with actual systems.
For each algebra, we will provide the following as appropriate: a short summary of the system and algebra (includ-
ing goals of the system, structure of the objects operated on, and all of the algebraic operators), descriptions of any
normal forms or other restrictions imposed by the model, some of the more important results about algebraic
equivalences, whether the operators work on object-based or value-based structures, a rough idea of the expressive
power of the algebra, whether or not there is a corresponding calculus, implementation status (where applicable and
known), and examples of two algebraic queries (the same queries will be used as often as possible throughout to
facilitate comparison). As the discussion moves beyond NF models and systems, the implementation status and

examples will largely be omitted.

We will not discuss the relative power of the underlying data models, exhaustive sets of algebraic equivalence
rules, or other theoretical language issues. Many of these issues are covered in [Pare88, VanG87, VanG86, Hull87,

Hull89a, Chan88]. The purpose of this survey is to convey some idea of the general nature of database algebras in

the hope of gaining some insight into why certain operations exist and of identifying common themes among these

algebras.

It is inevitable that some algebras have been either omitted or described only briefly. This is by no means a
dismissal of any kind, but reflects the fact that including them in this particular survey would have added little to its
value and greatly to its length. Section 2.1 reviews the relational model and algebra. The next section covers nested
relational algebras. Section 2.3 discusses algebras for more powerful data models, including the complex object and
object-oriented models. In Section 2.4 we summarize the major features of each algebra and draw some conclu-

sions.

2.1. The Relational Algebra

The relational model was first described in [Codd70] and became the model of choice for standard business
data processing applications in the 1980s. The model consists of three things: 1) Relations, 2) An algebra to
operate on those relations, and 3) Rules and guidelines for database design and maintenance (including integrity

constraints, etc.). We do not discuss (3) here.

In the relational model, real-world entities are represented by tuples (or records). A tuple has a fixed integral
number of named attributes (or fields). An important restriction is that these fields be filled only with scalar values
(character strings are scalars for the purposes of this survey). This is known as the first normal form (or 1NF) res-
triction. A relation (or table) is a set of tuples with identical layouts. This layout is called the relation’s schema. As
a simple example, suppose we want to store information about books and their authors. We could have a relation
consisting of tuples with 2 fields, one for the book’s title and one for its author. Both fields could be character
strings. See Figure 2.1 for a possible syntax defining such a relation (this syntax defines the tuple format and then

creates a set of such tuples). Figure 2.2 contains an example instance of the Books relation.

Relations are manipulated using the relational algebra, which is equipollent to the relational calculus (and
hence to first-order predicate calculus). We give brief descriptions of the five standard relational operators as

defined in [Kort91] or [Ullm&9]:

1) Union (U): Two relations can be combined into one using a standard set-theoretic union (duplicate tuples are

eliminated). The two relations must have the same schema.

10

define type Book:
(

title: char [],
author: char []

)

create Books: { Book }

Figure 2.1: The Books relation definition

title author
Don Quixote Miguel de Cervantes
Moby Dick Herman Melville
Wuthering Heights | Emily Bronte
Marmion Walter Scott

2)

3)

5)

Figure 2.2: An instance of Books

Difference (~): The expression R—S describes a relation consisting of all tuples in R which are not also in S

(a standard set-theoretic difference). The two relations must have the same schema.

Cartesian Product (x): RxS indicates the relation whose schema consists of all attributes of R followed by all
attributes of S. Each tuple of R is "concatenated" with each tuple of S to form the set of tuples in RxS. This

is almost (but not quite) identical to the set-theoretic Cartesian product.

Projection (m): This operation, when applied to a set of tuples and given a list of attributes, returns the same
set of tuples, removing from each tuple all attributes but the ones listed in the 7 expression. If any duplicates

were created during this process, they are removed.

Selection (0): Given a relation R, this operator applies a predicate to each tuple in the relation. If the tuple

satisfies the predicate, it becomes part of the result of the selection expression; otherwise, it is dropped.

11

2.2. Nested Relational Algebras

This section describes several algebras which operate on non-first normal form relations, We will illustrate
each algebra via two examples. The example queries range over a database which stores information about a collec-
tion of books (in this case, works of fiction with one author, printed by an American publisher, and consisting of one
volume). There will be two top-level objects in the database, one for the set of books and one for the set of publish-
ers. The Books and Publishers objects are structured as in Figure 2.3. We have used the notation of the EXTRA
data model as it is fairly generic and utilizes reasonably intuitive syntax in its type definitions. No knowledge of

EXTRA or EXCESS should be required to understand the type definitions.

define type Book:
(
title: char [],
author: char [},
copies: { (publ_name: char [],
num_pgs: int4,
date: int2) }
)

create Books: { Book }

define type Publisher:
(
name: char [],
locations: { (city: char[],
state: char [2],
phones: { (area_code: int2,
numbers: { (num: char [8]) }
)}
)}
)

create Publishers: { Publisher }

Figure 2.3: Books and Publishers schemas

12

A book is represented by a tuple with two string-valued attributes, title and author, and a relation-valued attri-
bute (copies). Each element of a copies set represents a particular physical copy of the book, and lists (as a tuple)
the publisher’s name, number of pages, and date of publication for that particular volume. A publisher is modelled
as a tuple containing two attributes: a name and a set of locations. Each location of a particular publisher lists the
publisher’s city, state, and phone numbers as a tuple of degree 3. The phone numbers, in turn, are represented as a
sct of (area code, numbers) pairs. A set of actual numbers (represented as tuples of degree 1) is associated with

each area code (presumably to avoid redundant storage of the area code).

The example database instance to be used in the following subsections appears in Figures 2.4 and 2.5
(representing the Books and Publishers objects, respectively). The example queries are as follows:
1) Find the names of all publishers of Moby Dick who have an office in the state of New York.

2) Retrieve the title and number of pages of every book by Herman Melville.

2.2.1. The DASDBS Algebra

The main feature of the DASDBS (Darmstadt Database System) [Sche85, Sche86, Scho86, Scho87a] is an
application-independent kernel based on non-first normal form (NF2) relations. (An NF relation is one in which

attribute values are not restricted to scalars--they can be relations (sets of tuples) as well.) Specific applications will

title author copies
publ_name num_pgs | date
Don Quixote Cervantes | Quick&Dirty Publ. Co. | 936 1950
Quick&Dirty Publ. Co. | 594 1986
Moby Dick Melville
Expensive Publ. Co. 414 1931
Pulp Publ. Co. 351 1977
Wauthering Heights | Bronte
Expensive Publ. Co. 278 1922
Antique Publ. Co. 377 1808
Marmion Scott Expensive Publ. Co. 501 1898
Pulp Publ. Co. 400 1972

Figure 2.4: Books instance

i3

name locations
city state phones

area_code numbers

num
Pulp Publ. Co. Cleveland OH 216 555-0000
555-0001
Expensive Publ. Co. Philadelphia | PA 215 555-0000
New York NY 212 555-1234
555-4444
Antique Publ. Co. Boston MA | 617 555-0000
555-9999
Cincinnati OH 513 555-1234
555-4444
Quick&Dirty Publ. Co. | Baton Rouge | LA 504 555-1111
555-2222
555-3333
555-4444

Figure 2.5: Publishers instance

be implemented on top of this kernel (the DASDBS can thus be classified as an extensible system). The kernel itself
supports a subset of the NF? algebra which will be presented here. The kernel also provides transaction manage-

ment facilities.

The DASDBS supports NF? relations at the storage structure level but not at the user interface level. The alge-
bra operates on NF? relations, but the initial algebraic expression is obtained via substitution of NF operators for
operations from the application layer (e.g., relational operators, geographic operators, etc.). This is followed by
algebraic transformations and access path selection. There is no limit to the level of nesting of the relations. (How-
ever, the earliest version of this algebra [Jaes82b] did not allow for general nested relations, but only for nesting of
single attributes defined over scalar domains. That is, the domain of a column could be a scalar, a set of scalars, a
set of sets of scalars, etc. However, the same collection of operations (with slightly differing semantics, of course)

was supported.)

The following seven operators for the NF? algebra are proposed:

D

2)

3)

4)

5)

6)

7)

the unnest operator to the "copies" attribute of the Books object; this is specified algebraically as
nurn_pgs, date}

Figure 2.6;i.e., Vv

14

Cross-product (X): This is defined exactly as it is for the relational model; that is, RxS, where R and S are
relations, is the set of all tuples t over (attrs(R) L attrs(S)) such that t{attrs(R)] € R and tlattrs(S)] € S. Itis

assumed that attrs(R) < attrs(S) = &.

Union (U): This is also defined as in the relational model; it is a simple set union. The sets must have identi-

cal underlying schemas.

Difference (-): The difference of two relations is defined as their set-theoretic difference, as in the relational

model. The underlying schemas of the two sets must be the same.

Selection (0): Set comparators (=, #, €, <, G, 2, 2) and set constants (e.g. @ and { 1, 2, 3 }) have been
added to the selection clause. Also, the ability to use ¢ and T within the selection formula has been added.

Otherwise, it is the same as the relational G.

Projection (%): This has been extended by allowing arbitrary algebraic expressions to appear in projection
lists in order to facilitate retrieval of nested data from a relation. Thus T acts as a sort of navigator through a
nested relation--once the proper location has been reached, other operations may be performed. The © opera-

tor also includes a renaming facility.

Nest (v): This operator is applied to a single relation and must specify what attributes are to be nested and the
name of the single attribute which will replace them. Specifically, v A%eA (R), where A is a set of attributes
and A* is a single relation-valued attribute whose tuples have members of A as columns, is a new relation,
R*. R* is formed by using the attributes in (attrs(R) — A) as a key. That is, for each value x over (attrs(R) -
A) that appears in R, we form one tuple of R*. In the A* attribute of this tuple we place one tuple (defined

over A) for each appearance of x in R. An example will be given below.

Unnest (u): This is the inverse of v. {1 A*ZA (R) is obtained by replacing the single attribute A* with the set of
attributes A and for each tuple of R, forming a set of tuples over ((attrs(R) - {A*}) U A) such that for each of

these tuples t, t{A] was a tuple in the A* attribute of this tuple of R.

An example should help to illustrate the use of the v and yt operators. Figure 2.6 shows the result of applying

copies = {publ_name,
(Books). The reader should verify that Figure 2.4 represents the result of applying the nest operator to

) (Books).

copies = { publ_name, num_pgs, date

15

title author publ_name num_pgs | date
Don Quixote Cervantes | Quick&Dirty Publ. Co. | 936 1950
Moby Dick Melville Quick&Dirty Publ. Co. | 594 1986
Moby Dick Melville Expensive Publ. Co. 414 1931
Wuthering Heights | Bronte Pulp Publ. Co. 351 1977
Wuthering Heights | Bronte Expensive Publ. Co. 278 1922
Marmion Scott Antique Publ. Co. 377 1808
Marmion Scott Expensive Publ. Co. 501 1898
Marmion Scott Pulp Publ. Co. 400 1972

Figure 2.6: An unnesting of Books

It should be noted that only two new operators, v and [, have been introduced. The first five operators are the
standard operators needed for relational completeness. In [Scho86], it is proved that some of these seven operators
are actually redundant. A truly minimal subset need only consist of G, U, W, and n. The use of ¢ and 1 within

selection formulae is also redundant.

There are no normal form restrictions imposed on the data in DASDBS; that is, these operators may be applied

to any nested relation. This has some consequences in the realm of algebraic equivalences, as will be seen shortly.

The most important property of the |1 and v operators is that, while | is always the inverse of v, it is not always
the case that V(I(R)) = R. This equality holds iff a certain functional dependency holds on the relation: all non-
scalar fields must be functionally dependent on the set of scalar fields. This is known variously as Partitioned Nor-
mal Form (PNF) [Roth88, Desh87], Nested Normal Form [Hull88], hierarchical structures, and the ability to provide
a set-free denotation for set-valued objects [Hull88]. Here we will refer to it as PNF. (Several other algebras dis-
cussed in the following sections do impose the PNF restriction, and it will be seen that these algebras are in reality
no more powerful than the relational algebra, while the DASDBS and similar algebras are strictly more powerful
than the relational algebra.) Another interesting property of v is that this operator can be used to perform the group-
ing phase of aggregate function computation (but not, of course, the actual computation phase) in a fairly straight-

forward way.

16

The DASDBS algebra is also interesting in its construction of the join operator from primitive operators. Join

processing is handled differently in DASDBS than in the relational model, where it is usually defined in terms of x

and o:! this notion is extended (but not entirely disposed of) in the DASDBS join operator. In DASDBS, joins are
performed by using X, U, 0, and — inside projection lists. This is due to the fundamentally navigational nature of the
DASDBS = operator. For example, since X is defined only for relations at the top level, some way is needed to join
a top-level relation with one nested several levels deep. The 1 operator allows such referencing of arbitrarily deeply
nested relations and attributes. An alternative would be to extend the X operator to include products between rela-
tions at different levels and optional join conditions. The join is defined as an outer join to avoid the problem of
dangling tuples and to ensure the invertibility of the mapping from the application-level (e.g., relational) operators

to NF? operators. This necessitates support for null values, which here are given the “unknown" interpretation. The

closed-world assumption2 is made in the DASDBS algebra.

As the DASDBS algebra is a fairly straightforward extension of the relational algebra, it is value-based (as
opposed to object-based), just as is the relational algebra. That is, to get a handle on an object, one must use its
value(s), not some abstract sort of name or identifier or surrogate for the object. In other words, the system is not
object-oriented. No formal calculus has been defined for the DASDBS system, but the algebra presented here would
need to be extended with an operator known as the powerset operator (IT; see subsequent sections) in order for it to
be equivalent to any of the calculi defined for nested relations [Hull87]. Such a calculus would have to be strictly
more powerful than the relational calculus in the sense that it would have to allow the construction of relation-
valued as well as tuple-valued objects--this gives it some of the flavor of a second-order system. In particular, this
calculus would be able to compute some recursive queries not normally expressible in the algebra without the

powerset operator, so we see that IT adds some power to the algebra.

To illustrate the use of the algebra, we give expressions corresponding to the queries (1) and (2) described in
the introduction to section 3:

1) Find the names of all publishers of Moby Dick who have an office in the state of New York. This is expressed as

! Codd's original proposal [Codd70] consisted of a different, but equipollent, set of operators: T, column permutation, join,
composition, and restriction. Since then, however, the standard definitions have treated G, %, X, U, and — as the fundamental
operations [Kort91, Ullm89].

2 The closed-world assumption (CWA) states that anything that can not be inferred from the data in the database is false.

17

follows.

[n{publ_name] (c{name = publ_name] (copies
x (m{name, o[state = "NY"] (locations)]

(Publishers))))] (oftitle = "Moby Dick"] (Books))

A more understandable portrayal of the query is presented in Figure 2.7 (this figure and others like it are not
meant to be a formal notation in any sense of the phrase, merely an intuitive aid). The results of the query can be

found in Figure 2.8.

2) Retrieve the title and number of pages of every book by Herman Melville. The result is found in Figure 2.9, and

the query is written thus:

nt[copies] ~T[name,c[state="NY"](locations)]
oftitle = "Moby Dick"] Publishers

Books

Figure 2.7: Tree representation of Query 1 (DASDBS)

publ_name
Expensive Publ. Co.

Figure 2.8: Result of query in Figure 2.7

18

n(title, T{num_pgs] (copies): num_pgs] (clauthor = "Herman Melville"] (Books))
In the first query, the join is performed by specifying the cross-product and the selection on name = publ_name over
this cross-product. In the second query, notice that the output attribute "num_pgs" is defined using the renaming
facility which is a part of the T operator. The use of the renaming facility is necessary in this situation because in
general any algebra expression may appear where we have the expression "nt[num_pgs]". Thus it is not always pos-
sible to use existing attribute names there. Also note that we chose to call the result "num_pgs", but we could have

called it anything.

Currently, a prototype implementation of DASDBS is running and several geographical and bibliographic sys-

tems have been implemented on top of the kernel.

2.2.2. The AIM Algebra

The AIM project at IBM-Heidelberg [Dada86, Pist86, Jaes85a] is designed to handle an extension of the NF
data model, with the goal of supporting non-traditional database applications. The major extension is the ability to
handle ordered lists (arrays), multisets, and tuple-valued attributes. Their algebra is similar to the NF? algebra
presented in the previous section, but also incorporates features from the VERSO and SQL/NF algebras (see else-
where in this section for descriptions of these). It is an extension of the powerset algebra described in [Jaes82a],
which is essentially identical to the earliest version of the DASDBS algebra [Jaes82b]. (Briefly, the extension to
INF relations in this early algebra consisted of the ability to have the domain of a column in a relation be Pi(D),
where D is a scalar domain and P' represents the powerset operator applied i times to its argument. This algebra had
the same seven operators as the DASDBS algebra.) The seven operators described above for the DASDBS system

appear essentially unchanged in the AIM algebra, with the exception of selection. Also, the AIM algebra treats

title num_pgs
Moby Dick | 594
Moby Dick | 414

Figure 2.9: Result of Query 2

19

renaming (p) as a scparate operator, not as part of the 7 operator. The algebra has been published in two forms, a
recursive form [Jaes85a] and a non-recursive form [Jaes85b]; here we discuss the recursive form since it is more
natural considering the hierarchical nature of the data and has been proved equivalent to the non-recursive algebra.
(The difference between these versions of the algebra is that the operator definitions in the recursive version are
sometimes defined in terms of themselves as well as being composable with themselves. See the select and project
operations for examples. The corresponding non-recursive versions are merely composable. The non-recursive

version resembles some of the algebras to be discussed in subsequent sections.)
The operations are the following:

1)-6) Nest (v), unnest (1), projection (7), Cartesian product (x), union (L), and difference (-): These are defined

exactly as in the DASDBS algebra.

7) Selection (6): This is similar to the DASDBS o, but the AIM selection allows an arbitrary algebraic expres-

sion to appear in a ¢ formula. This mimics the SQL notion of nested queries [Astr76].

8) Keying (x): This operator is introduced to eliminate the problem of non-invertible unnestings (see previous
section). ¥ appends a key column to a relation before it is unnested then renested, and this ensures that nest-
ing after an unnest will result in the original NF” relation [Jaes85a]. This is needed only when there is not
already a key column in the relation. Note that if the AIM model supported object identity, and each tuple

were regarded as an object, this operator would be superfluous.

9) Renaming (p): This operator renames an attribute of a nested relation. The renamed attribute may appear
anywhere in the schema. Such an operator is needed only because no ordering is assumed to hold on the
columns of a relation. If such an ordering were assumed, renaming would not be necessary and column

numbers could be used instead.

Above we stated that the AIM project contains other extensions to the relational model besides the ones men-
tioned in the previous section. These, and the operators associated with them, are presented below. They were not
included above as they do not form a part of the formal AIM algebra, but they do form a part of the query process-

ing portion of the AIM system.

1) Tuple operations: These operate on single tuples. Binary concatenation appends one tuple to the end of

another, and projection extracts a set of fields from a single tuple (as opposed to a set of tuples).

2) List operations: There are three operators added for list support. The n-ary concatenation operator forms one
list from n lists by appending the second to the end of the first, etc. The sublist extraction operator (which has
subscripting as a special case) will return a list which forms a continuous segment of another (usually longer)
list. The ends of the sublist are specified by their positions in the original list. The duplicate elimination

operator removes repeated elements from a list.

3) Multiset operations: These include the usual set operations U, N, and —, as well as restriction (selection) on
multisets. There is also a duplicate elimination operator which transforms a multiset into a set. All multisets

are homogeneous (contain elements of exactly one type) to preserve certain closure properties.
4) Time: Historical (as-of) queries are supported to retrieve the state of the database as of a particular time.
5) Aggregates: The standard aggregate functions (max, min, sum, count, and avg) are supported.

6) Conversions: There are operators to impose an ordering on lists and multisets, to convert between lists and
multisets, to convert between INF and NF? structures, and to materialize references. Explicit and implicit
constructors for lists and multisets, and explicit tuple constructors are also provided. Together, these opera-

tions allow for the explicit specification of result structures.

Even though many of the AIM extensions do not play a role in the AIM algebra, there are still some interesting
points to be made about this algebra. First, null values are not supported in the formal algebra. This entails the pos-
sibility of losing information when unnesting. Specifically, if we try to unnest a tuple which has & as the value of
the attribute being unnested, the tuple disappears in the result, and we have lost any information it contained (& is
an allowable field value). Another important issue involves the , operator, which is used to simulate a PNF require-
ment on the data. That is, whenever the absence of PNF within a relation can cause a problem, the keying operator
may be used to artificially impose PNF on the relation. However, there are no restrictions placed on the actual data
in the database. Also, it has been observed [Scho87b] that the 1 operation can be modelled, optimally, using joins
(we do not present the actual transformation here). Joins in AIM are defined using the M operator as follows: if the
join attributes are both scalar, two tuples will join with one another if the attribute values are equal (as in the rela-
tional natural join). If the join attributes are both relation-valued, the tuples join iff the intersection of the two
relation-valued join attributes is not @. This definition of the join operator seems to imply that the AIM system is
value-based rather than object-based, but this is only partially true. There is a system-supported facility which pro-

vides for surrogate-valued fields; a surrogate can identify any object or subobject in the database. Use of this

21

facility is optional, however, so that joins can be performed as just described whether surrogate values are used or

not. Furthermore, the referential integrity of these surrogates is not guaranteed.

The algebra has some intriguing equivalence properties as well; we will list only a few of the more important
ones here. Both the [and 7 operators are commutative, for example. The v operation, though, is commutative only
if a certain multi-valued dependency (MVD) holds: v A VB R) = Vg Va (R)if D —— A, where D = attrs(R) - {A,
B}. This becomes an iff relationship if we replace the MVD by a weak MVD? [Jaes82b]. (Of course, these rela-
tionships also hold for the DASBDS algebra, and for any algebra with the same operator definitions.) As mentioned
above, one interesting thing about the operator is that it enforces (albeit at a low level) the PNF restriction on the
relations in the database. However, ¥ is only applied when needed to preserve the invertibility of the |1 and v opera-
tors. That is, other queries may operate on data which is not in PNF. This is of interest since it has been shown that
restricting one’s data to PNF, for both user-defined and intermediate data, reduces the algebraic power to that of the
relational algebra [Hull88]. Intuitively, this is because in PNF one no longer needs to explicitly describe a set in
order to get a handle on that set. That is, a set will always be denoted by a scalar value, and this scalar value will be
the key for the particular level of the nested relation at which the set resides. References to sets are in this sense
object-based rather than value-based when PNF is enforced. We thus have a set-free denotation of any set. In the
AIM algebra, the y operator is viewed as being invoked automatically as needed to preserve PNF, and this implies a
loss of expressive power. Alternatively, [Jaes85a] could have chosen to make the) operator optional and explicit
(rather than something that happens "under the covers") and thus not give up the extra expressivity provided by the
NF? algebra. There is some disagreement as to how restrictive PNF will actually be in real-world modelling
scenarios--it may be largely a matter of taste whether one’s data is more naturally modelled using PNF or an unnor-

malized representation.

As with DASDBS, no formal calculus has been defined for the AIM system, and no IT (powerset) operator

exists in the algebra, so the same remarks about calculus equipollence apply here as well.

3 A MVD x—-—>y says that, if there are 2 sets of y values corresponding to a certain x value, these sets are the same. A
WMVD says that if there are 2 such sets AND their intersection is nonempty, they are the same. Alternatively, an MVD says that
if a relation R contains the tuples (x, y1, z2) and (x, y2, z1) then it also contains the tuples (x, y1, z1) and (x, y2,22). A WMVD
says that if R contains any three of the above tuples, it must also contain the fourth. The term "weak" arises because the
definitions imply that all MVDs are WMVDs, but not vice-versa. For example, the relation R consisting of the tuples (x, y!, z2)
and (x, y2, z1) satisfies the WMVD x——y but not the MYD x—~»y. More intuitively, a MVD says that there is a unique set of
y values associated with each x value; a WMVD says that there can be several sets of y values associated with each x value as
long as these sets are disjoint.

22

Our two example queries would be formulated as follows in the AIM algebra; note the almost identical syntax
to that of the DASDBS algebra (the only exception being the use of a semi-colon rather than a colon in naming the
result attribute "num_pgs"):

1) Find the names of all publishers of Moby Dick who have an office in the state of New York (see Figure 2.8 for

the results of this query):

nt[={publ_name] (G[name = publ_name] (copies
x (n[name, G{state = "NY"] (locations)]

(Publishers))))] (oltitle = "Moby Dick"] (Books))

A more appealing form of this query may be found in Figure 2.7.
2) Retrieve the title and number of pages of every book by Herman Melville (see Figure 2.9 for the results of this
query):
ntitle, t[num_pgs] (copies); num_pgs] (c{author = "Herman Melville"] (Books))
The AIM system has been partially implemented and also includes support for user-defined data types and

user-defined functions. Neither of these features is reflected in the algebra, however.

2.2.3. The Vanderbilt Algebra

The algebra for NF? relations described in [Fisc83] was not defined for use with a particular system, but rather
as a general algebra for use with any NF? system, just as Codd’s relational algebra [Codd70] was intended to apply
to any number of relational systems. The objects operated on by the Vanderbilt algebra are exactly the NF? rela-

tions, as with the DASDBS algebra. That is, a relation can have atomic- and relation-valued attributes.

Schemas are defined using rules, with one rule for each relation, regardless of the level at which the relation

occurs in the schema. For instance, our example Books-Publishers database would be defined as follows:

Book = (title, author, copies),

copies = (publ_name, nuin_pgs, date),
Publisher = (name, locations),
locations = (city, state, phones),

phones = (area_code, numbers),

23

numbers = (num).

The following operations can be applied to nested relations:
1) Project (n): This is defined exactly as in the relational algebra.
2) Union (v): This is also deﬁned‘ exactly as in the relational algebra.
3) Difference (): This is the standard set-theoretic difference, as in relational algebra.
4) Cartesian Product (X): Again this is defined as in the relational model.

5) Select (5): This is similar to the relational G operator but has been extended with set comparators and set-

valued constants.
6) Nest (NEST): This is defined exactly as is the v operator in the DASDBS and AIM NF? algebras.
7) Unnest (UNNEST): UNNEST is identical to the |1 operator of the DASDBS and AIM algebras.

8) Flatten (UNNEST*): This operator simulates a sequence of UNNEST operations on a relation which will
transform it into an equivalent flat (INF) relation. That is, all possible unnestings are performed. Note that
the order in which these are performed is irrelevant, since UNNEST A=S (UNNESTB=T(R)) =
UNNESTBZT(UNNEST A=S(R)) [Fisc83].

These operators are all of course composable and are defined to operate on any NF? relation(s). In other

words, there are no normal form or other restrictions imposed on the data. However, since there is no mention of

null values in [Fisc83], we assume that they are not supported.

A large number of algebraic equivalences for these operators are given in [Fisc83], but here we will only men-
tion that several desirable algebraic properties do not hold without certain restrictions on the data. Among these is
the commutativity of the NEST operator, as described in a previous section. While Fischer and Thomas point out
the usefulness of the NEST and UNNEST operators for things such as view definitions, user-posed queries, and
descriptions of logical to physical mappings of the database, they also question the fundamentality of these opera-
tors. Indeed, several research efforts have rejected these operators in favor of more "basic" operations [Aris83,

Abit88a].

Joins in the Vanderbilt algebra are defined as they are for the AIM algebra; i.e., they are identical to the rela-

tional natural join when scalar attributes are involved and are defined using the M operator when relation-valued

attributes are being joined. This exemplifies the fact that the algebra is strictly value-based. Also, it should be clear
that this algebra has the same expressive power as the DASDBS and AIM algebras described in the previous two
sections. The lack of a navigational 7 operator in the Vanderbilt algebra is made up for by making more extensive
use of the v and | operators. Also, the UNNEST* operator does not really add any power to the language--for any
particular nested relation, it is merely a shorthand for a sequence of UNNEST operations. Finally, it should be

noted that no calculus corresponding to the Vanderbilt algebra has been defined.

We conclude by giving the algebraic formulation of our two example queries (the results of which may be
found in Figure 2.8 and Figure 2.9, respectively) over the Books-Publishers database of Figures 2.4 and 2.5:

1) Find the names of all publishers of Moby Dick who have an office in the state of New York:

(c

npubl__name name = publ_name

(UNNEST (Publishers)))

(O yate = Ny
x (UNNEST

locations = (city, state, phones)
copies = (publ_name, num_pgs, date)

(Gtitle = "Moby Dick" (Books)))))

This query is more easily deciphered when presented as in Figure 2.10.

2) Retrieve the title and number of pages of every book by Herman Melville:

(c

ntide, num_pgs * author = "Herman Melville"

(UNNEST (Books)))

copies = (publ_name, num_pgs, date)

Notice that the lack of nested selections and projections necessitated the use of the UNNEST operator here.
(This does not mean, however, that these operators can be dispensed with in the previous algebras--there exist
examples where they are necessary.) In the second example, we could have switched the UNNEST and G operators
and obtained the same rtesult. The same is true for the second UNNEST of the first example but not the first

UNNEST of that example.

2.2.4. The SQL/NF Algebra

SQL/NF [Roth87, Roth88] is an extension of the SQL relational query language to handle non-first normal
form relations. SQL/NF makes some other improvements and adjustments to SQL as well, but we do not describe

these here. As with the previous three algebras, the domain of interest here is the set of NF? relations. For the

25

npub] _name

c5name=publ_name

X
UNNESTcopies:(publ,_name,num_pgs,date) ostate="NY"
0title="Moby Dick"(BOOkS) UNNESTlocations=(city,state,phones)(PuthherS)

Figure 2.10: Tree representation of Query 1 (Vanderbilt)
purposes of the formal algebra for SQL/NF, database schemas are defined using rules, exactly as with the Vander-
bilt algebra. One important restriction made in the SQL/NF algebra is the PNF restriction mentioned previously.

This has an effect on how the operators are defined, as will be seen shortly.
The set of operators for the algebra is as follows:

1) Select (o): [Roth88] claims not to extend the relational © operator, but their proofs use a ¢ which is extended
with the ability to specify set-valued constants. This is the notion of ¢ we adopt here. Note that no set-based

comparisons have been added; only equality may be tested for.

2) Union (U%): Union is defined recursively for pairs of relations with the same schema. For flat schemas, it
works exactly as does the relational U. But when a relation-valued attribute is encountered, the U° operator is
applied to this relation, recursively. That is, to preserve PNF, tuples with common values on the scalar fields
(i.e., tuples with the same key values) will be combined into a single tuple in which the relation-valued fields
will in turn be operated on by °. See Figure 2.11 for an example (Figure 2.11 is taken directly from

[Roth88]).

26

Rl RIU°R2 Rl ~ER2
A S A X A X
B B Y B Y
c D cl D T b
al |bl| cl |dI al | blcl|dl al | bl |cl |dI
¢l | d2 cl |d2 a2 | b3|c2|d2
b2 C; 3; b2 i 3? RI-°R2
c
. c2 | d2 A X
22| z; j; b3 | c4 | a4 B ¥
c3 di a2 | bl |cl |dl al | bl icl!|d2
b3 | c2 |d2 2 | d3 b2 | cl | dl
c3 1dl 2 ld2
a3 | b4 | cl |d2 Blala " YRRSEIT
a3 | bd|cl|d2 2l d3
R2 a4 | b2 | cl | d2 c3 | di
A X cl|d3 a3 | b4 | cl | d2
B C D
al | bl] ¢l [dl
¢3 | d2
b3 | c4 |d4
a2 | b3 ¢2 |d2
ad | b2 cl |d2
cl |d3

3)

4)

Figure 2.11: Extended set operations (taken from [Roth88])
Difference (-°): This is defined recursively in a fashion similar to the U® operator. That is, a tuple is kept in
R1-°R2ifitis in R1 and its scalar values do not match those of any tuple of R2. A tuple of R1 is also kept if
it does match the scalar values of some tuple in R2 but the difference between at least one of its nested attri-
butes and the corresponding nested attribute of some tuple of R2 is non-empty. In this second case what we
keep is not the original tuple but the original tuple with the ~° operation applied to these disagreeing nested

attributes, recursively. See Figure 2.11 for an example.

Intersection ("°): This is also defined similarly to U®. Two tuples intersect if they agree on their scalar (key)

attributes and the intersections of all of their nested attributes are non-empty. See Figure 2.11 for an example.

27

5) Cartesian Product (x); This is defined as in the relational algebra.

6) Projection (n°): This consists of a normal relational % (i.c., only a top-level attribute may be projccted out, but

it need not be scalar) followed by a unioning () of all the resulting tuples to remove duplicates.

7) Natural Join (X[°): The natural join of two relations is defined only if all the common (joining) attributes are
top-level attributes of the relation. Two tuples join only if they agree on all common scalar attributes and the

intersections (N°) of their common set-valued attributes are all non-empty.
8) Nest (v): This is defined exactly as in the Vanderbilt algebra.
9) Unnest (): This is also defined exactly as in the Vanderbilt algebra.
The set operations ("%, U, and <°) apply only to sets with identical schemas.

The restriction to PNF clearly has some interesting effects on the definitions of the algebraic operators. In par-
ticular, it can lead to recursive definitions of some of them (union, difference, etc.). It also has an interesting conse-
quence regarding the v operator. We are assured that a v operation results in another PNF relation iff the set of
scalar attributes not being nested functionally determines the set of non-scalar attributes not being nested. It is also
pointed out that, if a relation is not in PNF, it is possible to add a key column to it to enforce this property and then
remove this column after all operations on the relation have been completed (as is done with the AIM y operator).
Recall that the motivation for PNF was the non-invertibility of certain applications of the p operator. Thus when
such operations arise, we can add a key column. Neither null values nor empty sets are supported in the algebra,
which avoids some interesting problems regarding the unnesting of an empty set in a system not supporting nulls.

Also, it is clear that, like the rest of the algebras discussed thus far, this algebra is purely value-based.

It should be noted that the extended versions of U, M, and — are expressible in terms of the five standard rela-
tional operators plus nest and unnest. In other words, for any particular instance of such an operator, it can be
replaced by a sequence of these seven operators (but there is no such definition of them in the general case)

[Roth88].

A formal calculus corresponding to the SQL/NF algebra has been defined [Roth88] and proved equivalent to
the algebra. This calculus has been proved to be strictly more powerful than the given algebra unless one adds the
I1 operator to the algebra. However, when we are restricted to the domain of PNF relations. as here, the algebra and

calculus become equivalent. Basically, this is because not even intermediate results are allowed to violate PNF in

28

this algebra. In the proof of equivalence to the calculus, this property is also forced on the calculus by adding a key
column as described above. The next section gives an intuitive explanation of why PNF reduces expressive power.

An implementation of this algebra is in the planning stages.

Before leaving the SQL/NF algebra, we give their versions of our two example queries:

1) Find the names of all publishers of Moby Dick who have an office in the state of New York:

e
T publ_name (Gname = publ_name ((Gstate ="NY"

(Publishers)))

(1 locations = (city, state, phones)

X (l.l copies = (publ_name, num_pgs, date)

(O iite = "Moby Dick* (BOKSN))

This query is more easily deciphered when presented as in Figure 2.12.

2) Retrieve the title and number of pages of every book by Herman Melville:

e
T title, num_pgs (Gauthor = "Herman Melville" (u copies = (publ_name, numn_pgs, date)

(Books)))

publ_name

Gname=publ__name

H copies=(publ_name,num_pgs,date) Gstate:"NY"

cStitle="Moby Dick"(BOOkS) ulocations:(city,state,phones)(PUthhers)

Figure 2.12: Tree representation of Query 1 (SQL/NF)

29

These queries are posed exactly as in the Vanderbilt algebra. Note that this is so because our schema and rela-
tions satisfy the PNF restriction. In the first query, the Ix|° operator could have been used in place of the 6-X combi-

nation; in this case the result would have been the same since the join attributes are scalar.

2.2.5. The VERSO Algebra

VERSO is a relational database machine developed at INRIA [Abit86]. The intention of the design was that all
of the algebraic operations were to be performed by a filter, with the exception of the restructuring operation (see
below). Not surprisingly, the VERSO algebra is defined to operate on nested relations. Like SQL/NF, however, it
imposes the important PNF restriction. In addition, each relation at each level must have at least one scalar attri-
bute. This is stricter than PNF since PNF allows a relation with no scalar attributes. In this case (no scalar attri-
butes), there can only be one tuple in the relation, otherwise PNF is violated; the only difference in VERSO, then, is
that such single-tuple relations are not allowed. There are five unary operations, five binary operations, and a res-

tructuring operator, defined as follows:

1) Extension: This operation takes an instance of a VERSO schema (a V-relation) and transforms it into an
instance of a schema which contains, at each level, at least the attributes of the schema of the original relation.

The "new" parts of the relation are assigned the value &.

2) Projection (m): This is a recursive extension of the relational m. In VERSO, one can project out an arbitrary
subformat (the VERSO term for subschema) of a V-relation. (One format is a subformat of another if the first
can be obtained from the second by pruning one or more terminal subtrees of the tree representation of the
second format.) Note that in order to perform arbitrary projections of fields in a format (rather than just entire
subformats) we need the restructuring operator. Also note that a scalar field may not be projected out (i.e.

removed) unless the entire relation (at that level) associated with it is projected out also.

3) Select: Selections are defined over single formats, recursively. At each level of the format, the standard
scalar comparisons may be applied to the scalar attributes. In addition to these scalar comparisons, one may
test for the existence or non-existence of the result of each nested selection, if desired (i.e., is the result non-
empty or empty?). One thing to note is that set equality and membership tests are not permitted; only tests for
equality to & can be performed on sets. There is also an extended version of selection, known as "super-

selection”. This extends selection by allowing the conjunction of several nested selections to be expressed for

4)

5)

6)

7)

8)

9)

10)

30

any nested attribute, rather than just one nested selection on this attribute. However, this super-selection can

be expressed using the =, join, and regular selection operators.

Restriction (restrict): The result of restrictAzB(I), where [is a VERSO instance, is the set of all tuples of 1
which agree on the A and B attributes (A and B must refer to scalar attributes). This operation is not recur-

sive, although [Abit86] mentions that a recursive version could easily be defined.
Renaming (rename): This operator allows one to give new names to any part of a VERSO format.

Union (U): This is exactly the same as the SQL/NF U° operator. It can also be applied to V-relations having
different formats, if these formats are compatible. (Two formats are compatible iff they are both subformats
of some other format. This means that the two formats must have the same scalar fields.) To perform the
union (or intersection or difference; see below) on compatible formats, the two original instances are padded
with empty sets to give them the right schemas, and then a U is performed on these extended instances (see

the extension operator, above).

Intersection {M): This is almost the same as the SQL/NF ~° operator. The difference is that in the VERSO
M, all tuples agreeing on the scalar attributes will be in the intersection, regardless of whether or not their
intersections on the relation-valued attributes are empty. Thus the resuit of N may have empty sets as nested
attribute values. Since SQL/NF does not support empty sets, this possibility was eliminated. This operator

can also be applied to compatible formats, just like the L operator.

Difference (—): This is exactly the same as the SQL/NF -° operator. This operator can also be applied to
PP

compatible formats.

Join: This turns out to be identical to the intersection operator when the schemas of the two relations being
joined are identical. But when these schema are not equal (but merely compatible), the join includes more
information than an intersection: the join will also include information (attributes) that was in exactly one of
the original instances. Such attributes will come through unscathed, as it were, while in the intersection for
compatible types, the intersection of these attributes with the artificially extended attributes of the other

instance would yield an empty result.

Cartesian Product (x): This is defined only if the left operand is a flat relation. The result is a set of tuples,

each of which has a tuple of the left input as scalar value and the right input (which may or may not be a flat

31

relation) as the only nested attribute. That is, for each tuple of the left input, we tack the entire right input
onto the end of it. This is one tuple of the result. Note that X is thus not commutative, even in the flat rela-

tional case.

11) Restructuring (restruct): This operation takes a V-relation over a certain schema and transforms it into a V-
relation over another format. The result of restructm(J) is the largest relation over the format f which does not
add any information to the V-relation J. Here we have omitted a great deal of theory which lies behind the
"restruct” operator. For our purposes, it is enough to realize that it subsumes the functionality of the nest and
unnest operators and that it can be used for essentially arbitrary restructuring, as long as the result format
makes sense relative to the original format (where "makes sense" is given a precise formal meaning in
[Abit86]). An example of a VERSO format specification is:

title author (publ_name num_pgs dalef<

This is our Book schema as defined earlier.

The VERSO algebra does not provide for null values. This leads to the possibility of information loss when
using the restruct operator, just as certain combinations of nest and unnest can cause problems in the previously
described algebras when @ is permitted as a value and null is not (i.e., unnesting & without null values is not a
well-defined process). Necessary and sufficient conditions for an information-lossless application of restruct are

given which, upon closer inspection, will probably be seen to have PNF as a special case.

Note that here it is not the case that A "\ B = A - (A - B), as is true in the relational algebra. This is because the
intersection as defined retains the scalar-valued portion of a tuple even if all the nested intersections are empty,
while the difference operator removes a tuple entirely if its nested differences with respect to some tuple in B are @

and its scalar parts are equal to those of that tuple.

In terms of expressive power, VERSO falls into the same category as SQL/NF. The reason for this stems from
the PNF restriction; however, the reason is not this restriction itself but rather the fact that some of the operator
definitions are so heavily dependent on PNF. That is, operators defined to operate on any NF? relation(s) will have
the same expressive power whether the data happens to be in PNF or not. Intuitively, the real reason is the fact that
no intermediate results in a VERSO computation can violate PNF. This makes the VERSO algebra suspiciously
similar to the relational algebra, and in fact it has been shown that these two algebras are equipollent, and that PNF

relations have a direct correspondence with 4NF (fourth normal form) relations. Again intuitively, this is because

32

the continual retention of all of the scalar (key) attributes at every level lends itself to an easy simulation using rela-
tional algebra operators; we never need to operate explicitly on sets, and can use the key property of the scalar attri-

butes to simulate a INF (or 4NF) relation.

The VERSO algebra is value-based, and no calculus has been defined to correspond to it. Implementations
were completed both on an SM90 computer and under MULTICS. Our two example queries appear as follows in
the VERSO algebra:

1) Find the names of all publishers of Moby Dick who have an office in the state of New York:

T (restruct (restrict
name

[name (title author publ_name num_pgs date)*] name = publ_name

(reSU‘UCl[name title author publ_name num_pgs date]
((r__ . (name: (3(location: (I(state: state = "NY"))))))

x ((title author): title = "Moby Dick")))))

This query is more easily deciphered when presented as in Figure 2.13.

n
name

res‘t'l'UCt[name(title author ﬁ)ubl__name num_pgs date)*]

restrict
name=publ_name

resml(:t[name title author publ_name num_pgs date]

X P
/ ™~
T (title author):title="Moby Dick"
name

name:(3(location:(I(state:state="NY"))))

Figure 2.13: Tree representation of Query 1 (VERSO)

33

2) Retrieve the title and number of pages of every book by Herman Melville:

(restruc

n(itle, num_pgs t[tillc num_pgs (author publ_name date)*]

(reSUUC[[iitle author publ_name num_pgs date]

((title author): author = "Herman Melville")))

A few comments are in order here. In example 1, we could not use the join operator since the formats (sche-
mas) being operated over were not compatible, so we used the x followed by a restriction. In order to satisfy the
definition of X, we had to ensure that the first operand was a flat relation, hence the projection on name. Then we
brought the publ_name attribute to the top level so that a restriction could be performed. Finally, some restructuring
was necessary to allow us to 7 only on the name field (since scalar attributes cannot be projected out of a result).
The second example is a little simpler. It merely requires some restructuring to get the proper attributes to the top

level and allow their projection.

2.2.6. The NRDM Algebra

The Nested Relational Data Model (NRDM) is a system being developed and implemented at Indiana Univer-
sity [Desh88]. Once again, the domain of objects is the set of relations with relation-valued attributes, just as in the
previous algebras. This algebra also enforces the PNF restriction on its data, which again has an effect on the

definition of the algebraic operations. These operators are defined as follows:

1) Union (U%): This is defined in the same manner as the VERSO and SQL/NF union operators.
2) Difference (<%): This is also defined as in the VERSO and SQL/NF algebras.

3) Project (n%): In order to preserve PNF, this is defined as in the SQL/NF algebra.

4) Select (Ge): This is extended from the relational ¢ to allow membership testing in sets, set comparators, and

selections from any level of the hierarchical structure.

5) Join (jx|): Joins are allowed only when the join attributes are atomic. Joins are identical to the relational
natural join, and can occur only when the join attributes are at the top level (presumably--this is not explicitly

stated).

6) Nest (v): This works essentially as in the previous algebras, but is restricted to yield a structure with only one
set-valued attribute at the highest level. That is, a v operation must nest at least all of the relation-valued attri-

butes at the top level of the structure. resulting in just one relation-valued attribute. This can be worked

34

around by joining two or more relations which have only one set-valued top-level attribute.
7) Unnest (y): This merely inverts the v operator.

While this has somewhat less robust join and nest definitions than some of the other algebras, it has the advan-
tage of being implemented in a prototype version. It also enjoys some nice algebraic properties. Specifically, the
PNF restriction of course allows invertible unnesting, and the restricted v definition ensures the preservation of PNF
when an arbitrary v is performed. Null values are not supported. No calculus has been defined to correspond
specifically to this algebra, but, like with the other algebras, it is not hard to envisage an adaptation of the SQL/NF
calculus [Roth88] to this algebra. It also shares with all of the previously defined algebras the characteristic of
being value-based. There are no formal results on the expressive power of this algebra, but it almost certainly has

the same expressive power as VERSO and SQL/NF, due to the PNF restriction.

The two example queries, whose results appear in Figure 2.8 and Figure 2.9, respectively, would be expressed
as follows in the NRDM algebra:

1) Find the names of all publishers of Moby Dick who have an office in the state of New York:

- « c°

publ_name

I><lpubl_name = name

[+
(O 4te = "Moby Dick” (BOOKS)))

(Publishers))

(..NY..(locations) +)

"

(S
S state =

copies = (publ_name, num_pgs, date)

This query is more easily deciphered when presented as in Figure 2.14.

2) Retrieve the title and number of pages of every book by Herman Melville:
=] o]
n title, num_pgs (0 author = "Herman Melville"

(u (Books)))

copies = (publ_name, num_pgs, date)
These queries are similar to the corresponding SQL/NF queries, but in the join query notice that the recursive
nature of the NRDM c° operator avoided an unnesting. In the second query, it is still necessary to use the p before

doing the projection, since T is not as "extended" as .

2.2.7. The Waterloo Algebra

The algebra for nested relations developed at the University of Waterloo [Desh87], like that designed at Van-
derbilt, was not designed with any particular system in mind, but as a general tool for studying and guiding the

implementation of nested relational database systems. The Waterloo algebra, like the SQL/NF, VERSO, and

35

e
n publ_name

X
| |publ,.name:name

€ . Publishers
6 (Gestatez..NY.-(1003110n3)¢®)() K copies=(publ_name, num_pgs, date)

(<
G litle="Moby Dick"(BOOKS)

Figure 2.14: Tree representation of Query 1 (NRDM)

NRDM algebras, enforces the PNF restriction on its data. The operators of the algebra are defined as follows:
1) Union (W): This is defined exactly as is the SQL/NF X operator.

2) Intersection (M): This is defined in the same way as the VERSO M operator for identical VERSO formats.
That is, the Waterloo algebra allows @& as a value, as does VERSO, and thus the intersection of two tuples is

allowed to have empty set-valued components.
3) Difference (—): This operator is the same as the SQL/NF difference operator.

4) Projection (m): This is defined to have the same effect as the SQL/NF n° operator; that is, only top-level

(scalar- or relation-valued) attributes may be projected out, and duplicates are eliminated using the U opera-

tor.

5) Selection (o): Selection predicates are extended to allow set comparators (g, 2, etc.). The objects being
compared may be constants (scalar or set-valued), attributes which are defined within the nested relation
being selected over, or an entire nested relational algebra expression which operates on relation-valued attri-
butes which are defined within the nested relation being selected over. This is essentially the same as the

DASDBS [Sche§6] ¢ operator.

36

6) Cartesian Product (x): This is defined exactly as in the relational algebra.

7y Nest (v): This is defined just as in the DASDBS and AIM algebras, with the exception that at least one of the

attributes not being nested must be scalar to help ensure the preservation of PNF.
8) Unnest (u): This is defined as in the DASDBS and AIM algebras.
9) Rename (3): This facility allows the renaming of any top-level attribute.

10) Subrelation constructor: Notice that the nt operator differs from that of the DASDBS algebra in that it is non-
navigational in nature. The Waterloo algebra simulates this using a fairly complicated subrelation construc-
tor. Put simply, this operation specifies a path within a top-level relation; this path specifies a point in the
structure at which we may now apply nested algebra expressions as if we were at the top level (notice the
similarity in effect to the DASDBS = operator). We thus can create a "subrelation” with as many attributes as
we like. Each of these attributes will be the result of some algebra expression applied to the path specified in
the subrelation constructor. (Note that these algebra expressions may themselves contain subrelation con-

structors.)

In [Desh87] the join and natural join operators are also defined, but these are not fundamental as they are

defined in terms of x and ©, just as in the relational algebra.

Note that here we have the problem with the unnesting of empty subrelations as we did in VERSO. Since null
values are not allowed, and & obviously can not appear as a value in a flat relation,) may lose information, so the
result of, for example, unnesting two relations then taking their union then renesting them may not be the same as
simply taking the union of the original nested relations. The same problem can occur when intersection or differ-

ence is used in place of union.

The Waterloo algebra can be viewed as a combination of the DASDBS and SQL/NF algebras; however, due to
the PNF restriction, it is equivalent in power to the VERSO, SQL/NF, and NRDM algebras, hence weaker than the
DASDBS, AIM, and Vanderbilt algebras. This of course implies that the calculus of {Roth88] could also be adapted
for use with the Waterloo algebra with only minor modifications (no calculus has been designed to correspond
specifically to the Waterloo algebra). Also, like all the previous algebras, the Waterloo algebra is value-based in

nature.

37

A system known as LauRel [Desh87] is being developed at the University of Waterloo. LauRel is based on the
nested relational model and presumably will make use of the Waterloo algebra. Planned extensions to the algebra
include support for aggregate computations. The LauRel system also supports references to objects, much as in
[Care88b]. The user-level language of this system, called SQL/W, is designed to support null values (the original

Waterloo algebra as described here is not). The LauRel system is still in the design phase.

We now give Waterloo algebra versions of our two example queries:

1) Find the names of all publishers of Moby Dick who have an office in the state of New York:

n[publ_name] ((c[o[state = "NY"](locations)] (Publishers))
x| [publ_name = name] (it[copies = (publ_name, num_pgs, date)]

(oftitle = "Moby Dick"] (Books))))

This query is more easily deciphered when presented as in Figure 2. 15.

2) Retrieve the title and number of pages of every book by Herman Melville:

n[publ_name]

l

IX|[publ_name=name]

// \\

rd

olo[state="NY"](locations)](Publishers) i[copies=(publ_name, num_pgs, date)]

|

oftitle="Moby Dick"}(Books)

Figure 2.15: Tree representation of Query 1 (Waterloo)

38

w{title, num_pgs] (clauthor = "Herman Melville"]

(u[copies = (publ _name, num_pgs, date)] (Books)))

In the first query we make use of the recursive nature of the ¢ operator; we also use the join operator, which
could be simulated easily using ¢ and x. Notice that these queries are identical (modulo syntax) to those of the
NRDM algebra. This is slightly unfortunate, as the two algebras are different in several respects, but the differences

are not captured by these queries. In particular, the v and join operators are not the same.

2.2.8. The Powerset Algebra

This algebra [Gyss88] came about as a result of the fact that, when the PNF restriction is not imposed, the
nested relational algebra is less powerful than the nested relational calculus [Hull87]. This algebra was developed
to demonstrate certain theoretical aspects of nested relations, and is not associated with any particular system.

There are no restrictions on the nested relations that can be operated upon by this algebra. The operators are:
1) Union (U): This is defined as a set union, as in the relational algebra.

2) Difference (~): This is set difference, also as in the relational algebra.

3) Cartesian Product (x): This is the same as the relational X operator.

4) Projection (1t): This is also like the relational nt--only top-level attributes (of any kind) may be projected out.

Duplicates are eliminated automatically.
5) Nest (v): The Powerset algebra’s v operator is identical to the DASDBS v operator.
6) Unnest (u): This operator is equivalent to the DASDBS [operator.
7) Renaming (p): Any attribute at any level of the schema may be renamed.

8) Selection (0): Selection predicates can test for the equality of a top-level attribute (scalar or relation-valued)
to another value (scalar or relation-valued). In the case of relation-valued comparisons, equality is tested for

at all levels of the structure (deep equality).

9) Powerset (IT): This operator takes a relation (set of tuples) and produces the set of all subsets of the relation,

usually written as ZR, where R is the relation.

There are some fairly clean and interesting results concerning the power of this algebra. For our purposes, it is

most important to note that, when it is not restricted to PNF relations, it is equipollent to the NF~ calculus of

39

[Roth88] (no calculus was defined specifically for the Powerset algebra). It is also interesting to note that the
Powerset algebra is equivalent to adding a least fixpoint operator to the nested algebra without powerset and is also
equivalent to adding some programming constructs to the nested algebra without powerset (e.g., looping) [Gyss88].

The addition of IT also makes exactly one of the v and — operators redundant (but not both) {Gyss88].

Null values are not supported in this algebra (but & is), so we encounter a problem similar to that described
above for the VERSO algebra when we wish to unnest empty relations. The algebra is also value-based. Our two
examples can be expressed as follows in the Powerset Algebra:

1) Find the names of all publishers of Moby Dick who have an office in the state of New York:

}(Publishers)))

npubl_name (Gnamc = publ_name ((Gslate ="NY" (u {city, state, phones

X (u{publ"name, num_pgs, datc}(Gtitle = "Moby Dick" (Books)))))

This query is more easily deciphered when presented as in Figure 2.16.

2) Retrieve the title and number of pages of every book by Herman Melville:

(Gauthor = "Herman Melville" (u{ } (Books)))

T,
title, num_pgs publ_name, num_pgs, date

npubl__name

cyname=publmname

|

X
l'L{publ_ﬂname,Fum_pgs,date} Gsta[e:"NY"
0title="Moby Dick"(BOOkS) H {city,state,phones)(PUthherS)

Figure 2.16: Tree representation of Query 1 (Powerset algebra)

40

Since the Powerset algebra is essentially an extension of the Vanderbilt algebra, it is not surprising that the
queries are virtually identical. Of course, these examples do not highlight the salient feature of this algebra, namely
the IT operator. An example of a query in which this is necessary is the computation of the transitive closure of a
general binary relation. Such a general transitive closure expression can not be formed using the standard NF* alge-

bra.

2.3. Other Database Algebras

This section describes algebras for advanced data models other than the nested relational model. Naturally, the
same set of example queries as used in the previous section is not adequate to illustrate these algebras, nor is any
one set of data definitions or queries. However, we attempt to use similar examples to those of the previous section
to facilitate comparisons. Algebras described in detail here include algebras for relational aggregates, summary
tables, images, complex objects, object-oriented systems, and office documents. In the final subsection we briefly

describe some other algebras encountered in the literature.

2.3.1. An Algebra for Aggregates

In [Klug82] an algebra is developed which extends the relational algebra to include aggregate computations.
This algebra is intended to be used by any relational system which might need it, and was also part of a system
called ABE (Aggregate-By-Example, an extension of IBM’s Query-By-Example, or QBE). The set of objects over
which this algebra operates is the set of INF relations. The operators are thus identical to the relational algebra
operators, with the addition of an operator to handle aggregates, which will be described below. For completeness,

we present all of the operators:

1)-4) Projection, cross product, union, and difference are the standard relational operators. The syntax for projec-

tion is e[X], where ¢ is some algebraic expression and X is the list of desired attributes.

5) Restriction: This is used in place of selection, and results in an equivalent algebra. It is written as e[X ©
Y)(I), where e is an algebraic expression and I is an instance of a relation. It restricts the result to contain
those tuples whose X component stands in relation © to its Y component, where © is either = or <. It differs
from selection in that many definitions of selection allow constants to appear in the predicate as well as values

from the actual tuples.

41

6) Aggregate formation: This is denoted by e<X, f>(I), where e is an algebraic expression, I is an instance of a
relation, X is a set of attributes of the relation, and f is a function. The result of this operation is the set of
tuples over the attributes (X U {F}), where F is an attribute indicating the result of applying the function f to
the X attributes of each tuple of the original relation. More precisely, this operator partitions its input on the
attributes X, applies the function f to each partition, and returns the X-value and associated f-value for each
partition. As a limiting case, X can be empty, and we return simply a single value (for example, the average

value of a single column, taken over the entire relation).

One motivation for this algebra is that aggregate computations can accept arguments which are multisets. This
causes some of the usual algebraic identities to not hold, making query optimization more difficult. Essentially, the
solution adopted was to define aggregate functions to operate over entire relations rather than on projections of these
relations. This eliminates the need for the notion of duplicates. In [Klug82] a calculus is defined for this algebra

and their equipollence is proved. Clearly, these languages are value-based. Null values are not allowed.

Since the aggregate algebra was not designed to handle NF? relations, instead of our two previous examples we
provide two examples of relational aggregate usage and their corresponding representation in the aggregate algebra.
Suppose we have a relation schema Emp = {Name, Dept, Salary}.

1) To obtain the average salary of all employees, we would pose the following algebraic query:
Emp<avg3>

This will return a single 1-ary tuple, with a value which is the average salary of all the employees. The function
avg, is defined to compute the average of the third column of its input. The empty list of partitioning attributes indi-
cates that there is only one partition to be aggregated over, namely, the entire relation.
2) To obtain the average salary earned by the employees of each department, we would write the following:

Emp<2, avg3>[2,4]
Notice that "2" here means the second column, i.e., the Dept attribute, and "4" refers to the result of the aggregate.
This query would return a set of binary tuples, one for each department, containing the department name and the
average salary of the employees in that department. The projection is performed after the aggregate and keeps only

the second and fourth columns of the result of the aggregate.

42

2.3.2. The Summary Table Algebra

The algebra for summary tables [Ozso83, Ozso87] is basically an extension of Klug’'s algebra for aggregates
(described in the previous section) to handle set-valued attributes. The domain of interest is thus relations that have
both scalar fields and fields that are sets of scalars. Note that this is different from the NF? models, in which attri-
butes may be sets of tuples but not sets of scalars. Clearly, this model involves no nesting of sets or relations, as

set-valued attributes can not contain anything but scalar elements. The operators are defined as follows:

1)-4) Projection, Cartesian product, union, and difference are defined exactly as in the algebra for aggregates, both

syntactically and semanticaily.

5) Restriction: This is also defined as in Klug’s aigebra, but here © can be = or < for scalars, = or for sets, or

€ for set membership tests.
6) Aggregate formation: This is defined exactly as in the algebra for aggregates.

7) Unpack (U): This is very similar to an unnesting. For each tuple of R, UX(R) creates a set of tuples, one for
each value appearing in the X attribute of the original tuple. Each such tuple is formed by taking the original
tuple and replacing its X value with one of the values present in the X value. These sets of tuples are then
unioned to form the result. If X is a scalar attribute, the set from which the new value to be associated with

each tuple is drawn is a singleton, and the result is simply R.

8) Pack (P): The effect of PX(R) is exactly that of VX(R) if X is a scalar attribute. If X is a set-valued attribute,
then the sets corresponding to a particular set of values on the non-X attributes are unioned to form the new
set. Thus new levels are not created when X is already a set-valued attribute. This is the difference between

P and v.

Three more non-fundamental operators are also defined in [Ozs0o87]. The ©-join and selection are defined as a
cross-product followed by a restriction. A join is defined only if the join attributes are ©-compatible; thus either
both attributes are scalar or both are set-valued or © is €. An operation called aggregation-by-template, which can
be defined using aggregate formation (and vice-versa) is introduced. Aggregation-by-template differs from aggre-
gate formation in that aggregate formation is based on a strict partitioning of tuples (i.e., no tuple can appear in more
than one partition). Aggregation-by-template is based on "grouping”, and here this has the result that a tuple may

appear in more than one group. The elements of another relation direct (i.e. form a template for) this grouping; we

43

do not go into the details here.

An equivalent calculus has been defined for the summary table algebra [Ozso87]. Like the algebra, it is an
extension of the calculus defined in [Klug82]. It should also be noted that the aggregates operate only on a single
scalar column and that the result of applying an aggregate to an empty set is null, which here means "does not
exist”. When an aggregate itself encounters a null value, it is ignored. Clearly this algebra is value-based, just like

Klug's aggregate algebra.

There are no formal results regarding the expressive power of this algebra, but it is certainly at least as power-
ful as that presented in the previous section. The algebra has been implemented as the basis of two statistical data-
base languages, STL and STBE. STL (Summary Table Language) is based directly on this algebra, while STBE
(Summary Table By Example) is based on a modified version of the calculus equivalent of the summary table alge-

bra.

Once again, we are prevented from expressing our example queries due to the nature of the objects operated on
by the algebra. However, we can give two other examples of the summary table algebra in action. Consider the
schema Emp = {Name, Dept, Salary} as described in the last section:

1) To obtain the average salary earned by the employees of each department, we would write the following:
Emp<2, avg3>[2,4]
This is exactly example (2) of the previous section.
2) Suppose an employee could be associated with more than one department, and assume that salary is functionally
dependent on name. To put these department names into a set-valued attribute, we would use the P operator as fol-
lows:
P EMP)

For each (Name, Salary) pair we will now have a set of Dept attributes.

2.3.3. The LDM Algebra

The Logical Data Model (LDM [Kupe85]) is an extended complex object model which uses surrogates to refer
to every object in the database (and in that sense it is an object-oriented model -- everything is an object). Objects
are built recursively from scalars, sets, tuples, and the union type constructor. Every object in a set, tuple or union is

denoted by an "l-value" (unique surrogate identifier). The union constructor supports constructs for generalization

44

by stipulating that the domain of a union node in an LDM schema graph is the union of the domains of its children
in the schema graph. Cycles are allowed in the schema graph since the object-based nature of the model prevents
infinite data from resulting. One interesting thing to note is that all schema graph nodes correspond to collections of
surrogates (including tuple nodes, which add an ordering property to their children). Unlike the schema graphs of
some other models, then, a tuple node in an LDM schema graph represents a collection of tuples rather than a single
tuple, a set node represents a collection of sets, etc. Even leaf nodes of the schema graph can contain more than one

surrogate.

The following operators are allowed on objects conforming to an LDM schema (we present the algebra as

defined in {Kupe85]):

1) Copying (0): This operator takes either a scalar schema graph node or a simple constant (not yet placed into
any actual LDM schema graph node) as input. In the former case, it creates a copy of the node and removes
any duplicates (based on equality of the referenced objects, not on object identity). That is, a new surrogate
(and a new copy of the value) will be generated for each distinct value referenced by the surrogates in the ori-
ginal node. In the latter case, [] creates a schema graph node of type "scalar" which contains the constant and

a surrogate for it.

2) Powerset (O): O(v) for any schema node v is the powerset of all the surrogates present in node v. Each ele-
ment of this powerset is assigned a new, unique surrogate, and each element of these elements is a copy of a

surrogate appearing in v.

3) Cartesian product (0): This operation produces the (set-theoretic) Cartesian product of a finite number of
input nodes. Each pair in the Cartesian product is represented by a new surrogate, and each element of each

pair is a copy of a surrogate from one of the inputs.

4) Generalization (A): This operator creates a new schema node which contains a new surrogate for each ele-
ment of all of its input nodes (all of these nodes must be distinct). The input nodes can be of different, arbi-
trary types. Each new surrogate refers to a copy of a surrogate from the input node. This operates on actual

data, not on metadata.

5) Selection (Gioj): For a tuple node in a schema graph (i.e., a collection of surrogates referring to tuples), this

operator creates a new tuple node with the same children as the input node. The new node contains new sur-

6)

7

8)

9)

45

rogates (and copics of the original tuple’s fields) for all tuples such that iOj holds for attributes i and j of the
tuple. Here, O can test for set membership, equality, identity, projection (i.e., if j is a tuple-valued field, the
operator will check if i is in one of its fields), and union type equality (i.e., if j is a union-valued field, is field i

the object contained in j?). All of these comparisons (except equality) are based on object identity.

Containment selection (O'in(u,v)): This operator works for any type of schema node (except scalar). Ifuisa
child node of v in the schema graph, then the result is of the same type as u and contains new surrogates (and
copies the referenced values) for every object in node u that is "contained" in node v. "Contained” here can
mean three different things, depending on the type of v: If v is a tuple node, it means the surrogate from u
appears somewhere in some tuple in v. If v is a union node, it means the surrogate from u appears as a value
of one of the union-type surrogates in v. If v is a set node, it means that the surrogate from u appears as an

element in some set in v.

Union (U): This operator performs the union of any number of nodes as long as all the input nodes are of the
same type. The result node is also of this type, and contains new surrogates (and copies of the values) for all
of the distinct values appearing in all of its input sets. Duplicates are eliminated based on value, not object
identity.

Difference (—): For two nodes u and v of the same type, u — v is a node of that type containing newly created

object identifiers (and copies of the referenced values) for values that are in u but not in v.

Projection (IT): This is nearly identical to the relational 7 operator. A new node is created and for each tuple
in the input tuple node, a new tuple is created which contains only the requested fields. Note that duplicates
are eliminated in the sense that tuples with identical surrogates in all fields will appear only once (but tuples

with equal values in all fields may appear more than once).

Note that the LDM algebra’s operations explicitly create copies of referenced data. In most other algebras such

copying is implicit. It was made explicit here to conform to the model’s formal definition, which leaves database

schemas and instances unchanged during query processing (it merely adds to what is already there).

2.3.4. A Complex Object Algebra

In [Abit88a), an algebra and calculus are developed for a model whose objects are sets of values constructed

from the set and tuple type constructors in an arbitrary fashion; this is a pure complex object model. The model is

46

also purely value-based, thus equality of two entities is determined by traversing their entire structures. Sets in the

model are strictly homogeneous, and cyclic schemas are not allowed. The following operators are provided for

complex objects:

1)-3) Union (), Intersection (M), and Difference (—): Each of these takes two inputs of the same set type and pro-

4)

5)

6)

7)

8)

duces a result of that type. They are defined exactly as in set theory. As in set theory, M is redundant.

Cross product (cross A): This is an n-ary operator which forms a set of n-tuples from n inputs, each of which
must be a set. The value is the cross product of the input sets. The subscript indicates the name of the new

tuple type contained in the result set.

Rename (rename): This renames all occurrences of type A in the input expression to type B. No values

A—B
are changed.
Powerset (powerset A): This returns the set of all subsets of its input, which must be a set. The subscript indi-

cates the name of the type contained in the result set.

Set-collapse (set-collapse): Given a set of sets, the member sets are all unioned together to produce a single

set.

Replace (p<G>(R)): This operation iterates through a set of objects and performs the transformations indi-
cated by G. G is a "replace specification". G is built recursively as follows: base specifications are constants,
names of types appearing in the input type, and input parameters (each specification G can have input parame-
ters which are algebraic expressions of a specified type; these are distinct from the input to the "replace”
operator). Recursive specifications are built up from base specifications using the tuple and set constructors
(i.e., a tuple or set of specifications is also a specification). Conditional and applicative specifications are also
used recursively to build other specifications. A conditional specification can use the comparators “=" and
"e" and returns an object as its result only if the predicate is true. It acts like a relational selection. Finally,
an applicative specification applies one of the other algebraic operators to each element of the input set (each

element may, of course, have had other specifications applied to it prior to being given to the algebraic opera-

tor).

Note that all types are named (e.g., see (4) and (6) above), even those that represent the types of set elements

(types of tuple fields are of course named to distinguish them from the other fields). This is simply to facilitate the

47

expression of queries on nested sets; other mechanisms could be used to achicve the same effect. An interesting
theoretical result was obtained by removing the powerset operator from the algebra. The resulting algebra was
proved equipollent to a version of the calculus which does not have the capability of specifying a formula which
constructs all subsets of a given set. It was also proved that adding arbitrary functions and predicates to both the
algebra and calculus does not affect their equivalence [Abit88a]. The algebra can easily simulate the nest and

unnest operators of the NF? algebras, although they are not primitives in the complex object algebra.

2.3.5. An Algebra for Office Forms

In [Guti89] an algebra for structured office documents is presented. The model is essentially a nested relational
model with sets replaced by sequences (ordered lists). The types of the algebraic objects are numeric, boolean, text,
and complex, where "complex" indicates nested sequences of tuples. The algebra has 34 operators and 11 predi-
cates. Mathematical operations, a conditional statement, the five standard aggregate functions, and the logical con-
nectives are all operators of the algt;,bra. This algebra was not designed with query optimization in mind. Three
types of null values are supported, one of which is interpreted as "no information” and corresponds to the lack of the
CWA (closed-world assumption) in this model. Due to the presence of nulls, two forms of equality are supported.
Symbolic equality compares two symbols without interpreting them. Semantic equality takes into account the

meaning of nulls and returns an appropriate answer.
The following operators are provided:
1)-4) Mathematical operators (+, —, *,/): These have the obvious definitions and operate on numeric scalars only.
5)-7) Logical connectives (and, or, not): These are also obvious, and operate only on scalars of type boolean.
8)-12)
Aggregates (count, avg, sum, min, max): These operate on sequences of tuples and return a scalar numeric

value. Count counts the number of elements in a sequence. The other four perform the appropriate computa-

tions on a given (numerical scalar) field of a sequence.

13) Conditional (if <boolean expr> then <exprl> else <expr2> fi): The first expression is any one which yields
a boolean result. The next two algebraic expressions must be of the same type (boolean, numeric, text, or

complex). The result is either <expr1> or <expr2>, depending on the resuit of <boolean expr>.

48

14)-24)

Predicates (isempty, exists, forall, =, #, <, >, <, 2, ¢, [£): Each of these returns a boolean after performing
the proper comparison. They all perform standard comparisons except for [, which tests for one sequence
being a subsequence of another. For two sequences A and B, A [B iff there exist two sequences X and Y

(possibly empty) such that B = XAY.

25) Union (U): This is done by concatenating two input sequences of the same type (see the concat operator
below) the removing duplicates using rdup (defined below also).

26) Intersection (M): For two input sequences of the same type, the result contains all elements that are in both.
The ordering is that present in the first sequence.

27) Difference (—): For two input sequences of the same type, the result contains all elements that are in the first
but not in the second. The ordering is that present in the first sequence.

28) Cartesian Product (x): For any two sequences, this operates like the relational X operator. The only differ-
ence is that an ordering is imposed in the NST algebra. For A = <al, ..., an>and B = <bl, ..., bm>, A X B=
<albl, alb2, ..., albm, a2bl, ..., anbm>.

29) Sequence concatenation (concat): For any two sequences of the same type, the result is the first sequence fol-
lowed by the second.

30) Pairing (pair): For any two sequences A = <al, ..., an> and B = <bl, ..., bm>, this operator returns <albl,
a2b2, ..., akbk>, where k = min(m,n).

31)-32)

Projection (%, p): T is exactly like the relational 7 (except that it preserves ordering and does not remove
duplicates). p is similar but it specifies fields to leave out of the result rather than fields to include in the
result.

33) Sorting (ord): This allows a sequence to be sorted with respect to an ordered list of scalar attributes. Ascend-
ing or descending order can be specified for each attribute.

34) Duplicate elimination (rdup): This operator removes all but the first occurrence of an element from any

sequence.

49

35) Grouping (y): This is similar in effect to the NF? nest operator, except that orderings are preserved in the
newly nested sequences.

36) Distribution (8): This operator takes 2 top-level attributes and makes them attributes of a second-level attri-
bute. Its effect can be simulated by unnesting then renesting in the NF? al gebra, the difference being that ord-
erings are preserved with 8.

37) Unpacking (u): This acts like an order-preserving version of the "set-collapse” operator of [Abit88a). For a
sequence of unary tuples, where the field is a sequence, it concatenates all the sequences.

38) Packing (v): Given asequence A, v (A) is a sequence consisting of one unary tuple whose only field is A.

39)-41)

Subsequences (head[k], tail[k], portion[k1,k2]): These operators return the first k elements, last k elements,
or elements k1 through k2 of a sequence.

42) Reversal (reverse): The input sequence is reversed.

43) Selection (6): This is defined much as in the DASDBS algebra, where select and project expressions may be
nested within the top-level selection clause. Here, however, any algebraic expression may appear there (i.e.,
the selection can be based on any predicate involving any part of the top-level structure).

44) Join (x|): This is defined as x followed by G, just as in the relational model.

45) Looping (A): This operator loops through a sequence, applying a set of algebraic expressions to each tuple.

Each field in a result tuple is either unchanged or is operated on by one of several expressions parameterizing

the A operator. This operator can also add fields to the tuples if desired.

2.3.6. ENCORE/EQUAL

An algebra for the ENCORE/EQUAL object-oriented database system is presented in [Shaw90]. This is a

purely object-based system. The model is a standard object-oriented one with the capacity to distinguish between

sets of object identifiers and multisets of object identifiers, although the exact semantics of multisets are left

unspecified. The operations available are as follows: The select operator is similar to the relational selection.

There are "image” and "project” operators which retrieve, for each object in a set, the result of one ("image") or

more ("project”) functions defined on the objects of the set. These functions can be arbitrary methods, as in most

50

object-oriented models. There are also union, intersection, and difference operators, all based on object identity.
The “flatten" operation is like the "set-collapse” operation of [Abit88a]: it turns a set of sets into a set. The NF*
operators nest and unnest are also provided. An explicit duplicate elimination operator is available and there is an
operator called "coalesce" to eliminate duplicates at a certain level of nesting within an object. That is, if the same
attribute of two different tuples refers to objects which are equal (contain the same collection of object identifiers)

but have different object identifiers themselves, one of the objects is destroyed and the reference to it is replaced

with a reference to the other equal object.

As an example of the coalesce operator, consider the following relation R:

A B C
al bl cl
a2 bl cl
al b2 ¢2
a2 b2 c2

If we perform the operation Nest(R, BC) we get the following result:

A B O
al bl cl
b2 «¢2
a2 bl cl
b2 ¢2

The second components of each of these two tuples contain the same objects. But in an object-oriented system, this
operation might result in the creation of two separate set objects which in this case just happen to contain the same
elements. The coalesce operator would ensure that only one such set is created in this example, and the (BC) atiri-
bute of each result tuple would contain the object identifier of that set. This avoids the creation of multiple copies of

the same nested set. Note that it has no use outside a pure object-oriented context.

The system maintains type extents (but allows subsets of these to exist), and queries are always over these col-
lections of objects. Also, these top-level sets (and top-level multisets) contain only OIDs. Query results are collec-

tions of an existing type or of a tuple type constructed during the query. Some relational-like query optimization

techniques are also presented in [Shaw90].

51

2.3.7. An Object-Oriented Database Algebra

[Osbo88] describes an object-oriented data model and algebra. Structurally, the model supports scalar values

and the tuple and set type constructors, as well as inheritance among tuple types. One important extension, though,

is that sets need not be homogeneous. Everything in a database is an object with its own unique identity, thus every-

thing in a field of a tuple and every element in a set (homogeneous or not) is an object identifier. Unlike many

object-oriented models, however, this one does not support the notion of methods associated with object types

(classes). Tests for both identity and equality of two objects are allowed. Equality here means "deep equality"; i.e.,

an entire hierarchical structure is traversed, and all parts of it must be equal to the corresponding parts of the other.

The algebra supports the following operators:

1)-3) Union (Union), Intersection (Intersect), and Difference (Subtract): Each of these takes 2 sets of

4)

5)

6)

object identifiers and produces a new (set-valued) object. Each is defined exactly like its set-theoretic coun-
terpart, and equality of object identifiers (i.e., identity of the objects referred to) is used to test the set elements

for equality.

Combining two objects (Combine): This operation is defined on any pair of objects such that either i) both
are tuples, ii) both are sets, or iii) one is a set and the other a tuple. In case (i), the result is a new tuple
object with all the fields of each input tuple. In case (ii), the result is computed by invoking Combine on
each element of the Cartesian product of the inputs. In case (ili), Combine invokes itself on every pair (z,

e), where ¢ is the input tuple and e is an element of the input set.

Partitioning an object (Partition): The input to this operator must be either a tuple or a set. If

attr_list
it is a tuple, the result is a new tuple containing only the attributes in attr_list (or null if the tuple does not con-
tain all the attributes in attr_list). If the input is a set, the output is a new set containing the result of applying

Partition to every tuple in the set which contains all of the attributes in attr_list. Thus it can perform rela-

tional projections.

Predicates (ChoosePre d): A predicate (Pred) consists of terms of the following form connected by A and
—: obj IsNull, obj1 = 0bj2, obj! = obj2 (identity test), and obj InClass C (where C is the name of some class).
In the expression Choosepred(obj y,if obj is a set, the result is a new set containing (the identifiers of)

all objects in the set for which Pred is true. Otherwise the resultis obj if Pred applied to obj is true

52

and null if it is false.

Several algebraic transformation rules are given in [Osbo88]. An interesting consideration is whether one
wants to allow transformations that preserve equality or only those that preserve identity as well. [Osbo88] also
states that the expressive power of the algebra is somewhat limited, as it can not simulate the nest and unnest opera-
tors of the NF* algebras, nor can it do, for example, general transitive closures. However, some results in [Hull89b]

suggest that allowing inhomogeneous sets may actually add a great deal of expressivity to the algebra.

2.3.8. The R? Algebra

This algebra [Houb87] is an extension of a nested relational algebra; it is not associated with a particular imple-
mentation or system. The goals of these extensions are to capture the notions of aggregates, computed (derived)
attributes, and recursion, thus we describe it here rather than with the more "pure” nested relational algebras of Sec-
tion 2.2. An orthogonal goal of R is the issue of user interfaces: the operators are defined with a mouse-oriented
interface in mind. This is especially suited to the two-dimensional nature of nested relations (e.g., graphical
representation of schemas). The domain of discourse is the set of all NF? relations--no restrictions are imposed on

the data. The following operators appear in the R algebra:
1) Union (UNI): This is defined as a set-theoretic union, as in the relational model.
2) Difference (DIF): This is simply set-theoretic difference, also as in the relational model.

3) Join (JOI): This is basically a Cartesian product, the only difference being that top-level attributes (scalar or

relation-valued) common to both relations being "joined" appear only once in the result.

4) Selection (SEL): SEL[S; f; L; n] is defined to be the set of all tuples over the schema S which satisfy the
boolean function f; f is applied to the attributes in the attribute list L. The name of the result schema is n. The
important thing to note about SEL is that f can be an arbitrary boolean function applied to any parts of the

schema.

5) Projection (PRO): PROIS; L; n] is defined to be the set of tuples over the list of attributes L from the schema
S. The name of the result schema is n. PRO is similar to the VERSO projection in that only entire subtrees
may be cut away from the result schema. That is, any attribute (from any level) appearing in L will carry
along with it all of its successors and predecessors. The only difference is that in R%, we are allowed to pro-

ject scalar columns out of the result, avoiding excessive nesting.

53

6) Nest (NES): This is defined as in the DASDBS algebra.
7) Unnest (UNN): This is defined as in the DASDBS algebra.

8) Aggregation (AGG): AGGIS; f; L; R; n] is the application of an aggregate function f (any computable func-
tion with a scalar result) to a relation with schema S. The relation is restricted to the attributes of S appearing
in L, and the name of the result attribute is R. This result attribute will be a new attribute one level up in the
structure from the attributes in L, which must all be siblings and scalar and can not be attributes at the top
level of a relation (some combination of NES, UNN, and AGG must be used for this special case). The name

of the result schema is n.

9) Computation (COM): Here, an atomic value is computed for a single tuple based on values of other atomic
attributes of the tuple, and the computed value becomes a new attribute of the tuple. COMIS; f; L; R; n] is the
application of the arbitrary (computable) scalar-returning function f to the (scalar) attributes of schema S

appearing in the list L. The name of the new attribute is R, and n is the name of the result schema.

The definition of a renaming operator was consciously omitted from the algebra due to its essential triviality.
There is also a facility in R? for defining operations as sequences of algebraic operators which will be stored and can

then be executed by name (known as canned programs or stored commands in other systems).

The ability to make use of arbitrary computable boolean functions, aggregates, and tuple computations sets this
algebra apart from the other algebras studied thus far. No formal results exist describing the expressive power of
this algebra, but it is certainly at least as powerful as the normal NF algebra (e.g. DASDBS) and the summary table
algebra. In addition, no formal calculus has been defined for the algebra. Whether or not an existing calculus will
serve the purpose will be determined by formal equivalence results relating the R? algebra to the DASDBS and
summary table algebras. This expressive power is a current area of research within the R? project, as is the use of
stored commands to help express recursive queries. The ability to express recursion was one of the major goals of
the project, but it is not clear that the algebra as defined here fulfills that goal directly. It does allow for the presence
of @ as a value, but this can lead to the same problem as occurs with VERSO since nulls are not allowed (at least,

they are not mentioned). Finally, we note that the R? algebra is value-based.

The two example queries can be expressed in the R? algebra as follows:

1) Find the names of all publishers of Moby Dick who have an office in the state of New York:

PROI[r1; publ_name; result] (SEL[r4; f1; name, publ_name; r!] (JOI{12; r3; 4]
(SEL[Publisher; f2; locations; r2] (Publishers),

(UNNI[rS; copies; r3] (SEL[Book; f3; title; r5] (Books))))

This query is more easily deciphered when presented as in Figure 2.17.

2) Retrieve the title and number of pages of every book by Herman Melville:
PRO(r1; title, num_pgs; result] (SEL[r2; f4; author; r1]

(UNN[Book; copies; 12] (Books)))

In the bracketed lists associated with each operator, recall that the first element (or first two, in the case of JOI)
specify the input type(s) and the last specifies the output type of the operator. Here, f1 names a pre-existing func-
tion taking two inputs of types name and publ_name and returning a boolean value; in this case, the result of an
equality test is returned. Similarly, f2 indicates a function that returns true if its argument has a tuple with state =
“NY", and f3 returns true if the title passed to it is "Moby Dick". In the second example, f4 returns true if the author

passed to it is "Herman Melville". The unrestricted nature of these functions allows us to express just one selection

PROI[r1; publ_name; result]

|

SEL[r4; f1; name, publ_name; rl]

|

JOI[r2; r3; r4]

e

SEL[Publisher; f2; locations; r2](Publishers) UNN [r5; copies; r3]

SEL[Book; f3; title; r5](Books)

Figure 2.17: Tree representation of Query 1 (Rz)

55

predicate for f2 where normally we would express two nested selections (e.g. see the DASDBS version of this

query).

2.3.9. Other Algebras

Here we briefly mention some other systems which propose or make use of a post-relational algebra. Most of
the algebras described in this section are similar enough to one or more of the preceding algebras that it was felt that
adding a more complete description of any of these would not really add to the discussion. In addition, some of
them are less "post-relational” in the sense that they rely too heavily on existing relational systems and algebras.
The first subsection describes algebras which are nearly relational or based mainly on the relational algebra. Alge-

bras closely resembling the NF? or complex object algebras are presented in the next subsection.

2.3.9.1. Relational-Like Algebras

In [Clif85] an extension to the relational model is presented which allows for historical queries on a relation.
Attributes are viewed as either unchanging, time-varying, or time-valued (i.e., their value is, e.g., a date). Three dif-
ferent forms of nulls are introduced to handle incomplete information about time. A time-varying attribute is really
a set of (value, valid-time-interval) pairs. The five relational operators are augmented by two time-oriented opera-
tors: "time-slice” (1), which retrieves the state of a relation as of a given time, and "when" (Q2), which returns a set
of times during which the database was in a specified state. An alternate historical algebra is presented in the same
paper; this algebra supports the aggregate formation operator as described in [Klug82, Ozso83] and the pack and
unpack operators as described in [Ozso83]. For this algebra, the fundamental operators (in addition to the relational
operators) are pack, unpack, and two operators which convert time-varying attributes into regular attributes and

vice-versa,

An interesting algebra for the relational model with duplicates appears in [Daya82]. This algebra redefines the
set-theoretic operations to be the corresponding multiset-theoretic operations and adds a duplicate elimination

operator. It also includes the (redundant) multiset intersection operator.

In [Pare85] an algebra for Entity-Relationship [Chen76] databases is presented. Its operations include a rela-
tionship join (similar to an outer join) to build results based on stored relationships, Cartesian product (defined as in
the VERSO algebra), selection, duplicate elimination, renaming, union, intersection, and difference. Existing rela-

tionships are "inherited" by the results of queries in the obvious manner. A similar algebra is defined for the

56

EXTREM data model [Scho87b]; the operations differ only in some details. EXTREM is a semantic data model
implemented on top of a flat relational system and using some of the constructs of the IFO semantic data model
[Abit88b]. Chen [Chen84] also proposed an algebra for the E/R model. This algebra operates on data which is res-
tricted to allow only binary directional relationships. The operators provided for this model are as follows: Select,
union, difference, and intersection can be applied to sets of values or to entity sets. Cartesian product may be
applied to value sets only. There are also operators to compose, decompose, invert, and create relationships. The

last operation has the Cartesian product of two entity sets as a special case.

An algebra has also been developed for FAD [Banc87], but in FAD (as in IRIS [Fish87]) the real optimization
work is performed by a relational optimizer -- FAD expressions are first translated to flat relational algebra. FAD
was used as a backend for the LDL system developed at MCC [Tsur86]. The filter operation, for example, is
translated into a series of binary filters which are then processed using relational joins. FAD is an object-based sys-
tem. The operations include the standard set functions, user-defined ADT or FAD operations, a filter operation
which applies a function to all elements of a cross-product of sets, a grouping operation, and a pump operation

designed to facilitate parallelization of aggregate computations.

A least fixpoint (LFP) operator is defined in [Aho79] and some algebraic transformations using it are also
given. Whether or not a relational algebra with a powerset operator would be equivalent to this algebra is an
interesting question (recall that this equivalence holds for the NF? algebra). The ALPHA aigebra [Agra87] also
extends the traditional relational algebra to support recursion, but in this case it is extended with Klug’s support for
aggregates [Klug82] and one more operator, known as o. The o operator provides support for a limited form of
recursion and is integrated into the algebra in such a way as to allow traditional algebraic query optimization to take

place. The form of recursion supported is one that traverses a directed graph from a set of initial nodes.

The ASTRID algebra [Gray84] is an extension of the relational algebra which provides the following opera-
tions: union, difference, Cartesian product, intersection, join, set division, selection, projection, grouping, renaming,
and tuple extension. Only the last three operators extend the original relational algebra. Grouping is similar to the
EXTRA/EXCESS GRP operator (see [Vand91] and Chapter 5). The tuple extension operator adds a field (which is

functionally dependent on the key) to a tuple. Renaming changes column names.

Codd’s RM/T (Relational Model/Tasmania) model [Codd79] is a fairly complicated object-oriented extension

to the relational model with both object- and value-based semantics. It also supports many of the concepts

57

described in the semantic database literature. In addition to the standard relational operators extended to allow null
values, it provides operations to apply functions to sets of relations (such sets are algebraic objects jus: ‘ike relations
are), operators for forming and partitioning sets of relations, and operators which retrieve information about the
meta-data--i.e., the hierarchical structures of the relations in the system. The operators involving the meta-data
allow graph traversal and transitive closure. Itis interesting to note that in RM/T everything is stored in a relation--
i.c., an entire database as described in [Codd79] is a set of relations, as in [Codd70]. There is no notion of "complex

objects"; rather, the concepts associated with such objects are modeled using additional relations.

2.3.9.2. NFZ-Like and Other Algebras

The PDM algebra was developed for use with the PROBE project at CCA [Mano86, Daya87]. The model is
derived mainly from DAPLEX [Ship81], and it is object-based. The operations of the algebra inciude those of the
relational algebra (projection, Cartesian product, union, difference, intersection, and selection) plus several others:
outer versions of the union, difference, and intersection operators (PDM supports two types of nulls, "don’t know"
and "don’t care"). There is also an operator called "apply_append" which applies a function to every object in a set
and appends the result for each object to that object. The operation "createobj" creates a new object with its own
identity, and the "unique" operation removes duplicate identifiers based on the values of certain columns of the

objects pointed to by the identifiers.

In [Gyss89] an algebra was introduced for an intriguing model which represents all hierarchical structures as
formal context-free grammars. This seems to be a very powerful formalism, but its utility has yet to be determined.
Its operators are renaming, insertion (replace a terminal with a non-terminal), deletion (inverse of insertion), copy-

ing, and permutation. No expressivity or complexity results exist for this model yet.

The MAD (Molecule-Atom Data Model) algebra described in [Mits89] has some interesting features. The
model consists of "atoms", corresponding to real-world entities, and "molecules”, corresponding to collections of
atoms related by "links". Links between atoms are preserved (to the extent possible) during query processing. The

algebra is an extension to the relational algebra, with the same operators but each extended to operate on molecules.

The ALGRES system [Ceri87] is intended to be used for rapid specification and prototyping of complex data-
base systems. It supports the NF? model with several additions: tuple-valued attributes, a closure operator to enable

Jeast fixpoint computations, aggregates, and an embedding in a computationally complete logic programming

58

language. The operations supported are the five relational operators (suitably extended), nest and unnest, closure,
aggregates, and type coercion operators. Aggregation operates much as in the summary table algebra. Ordered sets
and multisets are also supported. Queries are actually executed over an INFORMIX relational database--that is, an

ALGRES query is translated to a flat algebra expression before execution. ALGRES is a value-based system.

SIRIUS is a distributed DBMS developed at INRIA [Scho87b]. It is designed to be a somewhat extended rela-
tional (value-based) system which uses an NF? model much in the same way that DASDBS does (i.e., as a vehicle
upon which more sophisticated models may be developed). In addition to the DASDBS-like NF? model, SIRIUS
provides user-defined ADTs, derived attributes (as seen in Rz), null values, and full integrity constraint specification

capabilities.

Another extended algebra has been developed in the context of the ANNEX project at the University of Nice
[Scho87b]. The algebra for their "B-Relational” data model includes the standard NF? extensions as found in the

DASDBS and AIM algebras as well as support for semantic concepts such as generalization and association.

In {Aris83], Arisawa et al develop update algorithms for nested relations, but along the way define some very
primitive operations on tuples (primitive in the sense that they may be used to define more complex operations such
as nest and unnest as well as to describe subtler changes to a relation). The composition operator is used to produce
a new tuple from two tuples which have the same attributes and the same values on all attributes except one. The
new tuple is the same as the old ones but the differing attribute, which must be set-valued, becomes the union of the
two sets from the original tuples. This operation can be used in a straightforward way to simulate the nest operation.
Similarly, decomposition creates a copy of a tuple by extracting exactly one value from the original tuple and mak-
ing a new tuple which is a copy of the original except that it has just the one value in the set-valued attribute
specified by the operation. This value is removed from the proper attribute of the original tuple. In addition,
[Aris83] defines a canonical form for nested relations, which is the nesting of a 1NF relation along each of its attri-

butes in any order. Only one level of nesting is considered.

In [Tans89] an algebra is described which extends the NF? algebra to handle time-varying data. The entities in
this temporal model are called temporal atoms, which are ordered pairs consisting of a value and a set of times dur-
ing which that value is valid. The seven standard NF? operators are extended with a new one, TRANSFER-TIME.
This operator takes two attributes from a tuple and replaces the set of valid times for one attribute with that of the

other attribute. In other words, attributes (not tuples) have timestamps. There are also operators to build up and

59

destroy individual temporal atoms.

The algebra of the Revelation system [Grae88, Dani91] uses extended relational operators and requests objects
to "reveal” an expression (in this algebra) for execution (the request may be refused). The algebra of [Kort88] is
designed for a similar system and contains several implementations of the join operator on nested relations; the alge-
bra used there is similar to the Vanderbilt algebra. Essentially, the approach is to treat an object-oriented query as a
nested relational query, if possible, and to recast the method invocation as a nested algebra expression. The join
algorithms proposed all proceed by first unnesting the relations involved. Some restrictions include the requirement

that objects be instances of exactly one class and that recursive structures are not permitted.

[Stra90] presents an algebra (and equivalent calculus) for an object-oriented system. The operators provided
are union, difference, selection, and mapping. The "map" operator performs a sequence of class method applica-
tions to every element in a set. The selection operator returns the members of a set which satisfy a predicate. Each
of these operators has an additional argument which is a list of sets of objects. This list is used to parameterize the
method invocations (in the case of the "map" operator) or selection formula (in the case of "select"). The semantics
in the case of the "map" operator are that each member of the set has the sequence of methods applied to it once for
every combination of elements from the list of sets of objects. For the "sélect" operator, the semantics are that a set
member becomes part of the result if it satisfies the predicate for every combination of elements from the list of sets

of objects. These two operators can be used, for example, to simulate a relational join.

An algebra for nested relations which defines each of the seven standard operators recursively is described in
[Colb89]. The recursive nature of the DASDBS select and project operators is incorporated here, as is the recursive
nature of the SQL/NF set operations. Recursive join definitions are also included. The point of all this recursive-
ness is to eliminate the use of nest and unnest except when they are truly needed; this leads to queries which are

more easily optimized. The algebra does not assume PNF,

There are two more algebras which resemble the NF* algebra. The first is NTD (Nested Table Data model)
[Scho87b], which is an algebra for office forms; it has the same goals and domain of application as the algebra of
[Guti89] discussed above. The NF?‘D model (also described in [Scho87b]) is essentially the NE? model with the
added ability to provide for schema evolution. With this in mind, the description in [Scho87b] provides an expan-
sion operator to alter the structure of attributes in the schema. This allows an attribute to change its structure

dynamically without changing its meaning. Attributes for which this property is desired must be singled out as

dynamic so that the expansion operator can make use of information about the possible domains of that attribute at

run-time.

Finally, we mention an algebra defined to operate on the domain of images [Ritt87]. This algebra demonstrates
the utility of the algebraic paradigm outside of the standard data models found in the usual DBMS literature, giving
further evidence of the universality of the approach. In this algebra, the objects to operated upon are real-valued
images (elements of R" for some n). There are also objects known as "templates”, which are capable of defining
very general image transformations. The operators available include the usual matrix and vector arithmetic, opera-
tors to apply templates to images, and operations between templates, in addition to the normal set-valued operations.

This algebra is intended to be used to optimize image processing systems.

This concludes our description of post-relational algebras. The next section gives a brief summary of the sur-

vey.

2.4. Summary

We conclude the survey by summarizing the salient features of the algebras described above. Figure 2.1 8 sum-
marizes the NF algebras presented in Section 2.2. For NF® algebras the interesting features include any restrictions
(e.g. normal forms) required of a database in order for the operations of the algebra to be applicable; whether or not
the algebra allows for value-based or object-based operations or both; and an unannotated list of the algebraic

operators provided.

In the preceding sections we have seen many different ways of defining an algebra. What is apparent is the
central nature of the relational algebra--virtually all of the algebras described above are based on this algebra in
some way. The most important common theme here, clearly, is the inadequacy of the relational model and its alge-
bra. Specifically, these algebraic extensions imply that the relational model falls short in the areas of modelling con-
structs (not rich enough), expressive power (cannot do, e.g., a general transitive closure), computational power
(absence of aggregates, etc.), historical databases (i.e., we cannot express the query "what was true at time x?7"), and

object-based notions (which can help alleviate some of the anomalies encountered in INF relations).

A main purpose of this survey has been to examine the operators defined for post-relational algebras and to
identify the ways in which they extend or supplant the relational operators. The most popular sets of primitives

seem to be based on the relational algebra, and fairly standard sets of operators seem to be catching hold in the area

61

Restrictions Objects/Values Operators

DASDBS none \Y X,U, -, 0,7, V, L
AIM none both X, W, =, O, %, V, U, % P
Vanderbilt | none v X, U, =, 0, ®, NEST,
UNNEST, UNNEST*
SQL/NF | PNF Y x, U, =%, A%, o, n°,

X5, v, 1

VERSO PNF and at least one | V extension, T, selection,
scalar column restrict, rename, U, N,

-, join, X, restruct

NRDM PNF \% B, =%, 6% 1% IxL v, 1

Waterloo PNF A" U, -, N, G, T, X, V, i,
5, subrelation con-
structor

Powerset none \Y% U, = O, T, X V, IL, P,
Il

Figure 2.18: Nested relational algebras

of NF? relations. Another interesting point of comparison is the definition of NF* join operators. Sometimes join is

defined as in the relational model (i.e., as X followed by &) and sometimes as an M-based operator.

But for data more complex than NF? relations, a clearly favorite set of primitives has not yet emerged (indeed,
only a handful of algebras for complex objects exist). More work remains to be done in this area. In particular, the
amenability of such monolithic operators as the VERSO "restruct” and the "replace" of [Abit88a] to standard alge-
braic optimization techniques needs to be investigated. That is, a small set of extremely powerful operators may
allow too few alternatives for query processing. Conversely, a large set of extremely primitive operators may allow

too many alternatives (in the sense that optimization may become too slow).

There are several dimensions along which we can compare algebras in general: 1) Is the algebra set-oriented?
This makes many proofs much easier (e.g. [Abit88a]) but may lead to less natural data representations. 2) What
drove the design of the algebra? Most operators of VERSO [Abit86], for example, were designed as recursive
filters for the VERSO virtual machine, while other were driven by the need to correspond to a calculus. 3) Which of

its operators are recursive? For example, the NF? algebra of [Colb89] has 5 recursive operators, but other NF? alge-

62

bras have 0, 1, or 2, etc. The more recursive operators, the less need for nesting and unnesting. Other models may
not be so amenable to recursive operators, as they depend on a known, consistent object structure, which is not
present in complex object models. 4) Which of its operators are second-order? A true second-order operator will
allow its function parameter to be optimized in the same way as its data input is optimized, removing the need for

special sublanguages for operators as required in [Abit88a].

63

CHAPTER 3

SUMMARY OF MOTIVATIONS AND RELATED WORK

This chapter discusses work that is more directly related to the remainder of the thesis. In Section 3.1 we
describe other work that was relevant to the design of EXTRA and EXCESS. Section 3.2 contains a summary of the
survey of algebras in Chapter 2 and highlights the deficiencies of these algebras that led to the design of the

EXCESS algebra and to certain constructs of AQUA.

3.1. Object-Oriented Models and Languages

Here we discuss the relationship of various features of EXTRA and EXCESS to other systems and languages.

EXTRA and EXCESS are described fully in Chapter 4.

The EXTRA data model and EXCESS query language designs represent a synthesis and extension of ideas
drawn from a number of other data models. The data structuring facilities of the EXTRA data model are probably
closest to those of GemStone [Maie86c], as GemStone provides both tuple and array constructors, and data is organ-
ized into user-maintained extents rather than system-maintained type extents. EXTRA’s ref notion was based on
GEM reference attributes [Zani83], and own ref is closely related to weak entities in the E-R model [Chen76] and
composite objects in ORION [Bane87]. EXTRA also goes beyond these systems in certain ways, however. In par-
ticular, EXTRA’s mix of own, ref, and own ref attributes yields a relatively unique mix of (structural) object- and
value-orientation. Neither GemStone nor Orion have support for own attributes (except perhaps in implementing
their small atomic types). And while GEM had both own and ref attributes, its type system was less rich and sets of
references were not permitted. Since the original development of EXTRA/EXCESS, O2 [Banc88] has adopted own

and ref attributes.

The EXCESS query language is related to those of DAPLEX [Ship81], GEM [Zani83], NF? systems [Dada86,
Sche86], and POSTGRES [Rowe87]. Implicit joins were taken directly from GEM, and originated in DAPLEX.
The EXCESS treatment of queries over nested sets is similar in flavor to that of NF query languages, although the
path syntax for handling deeply nested queries was influenced by DAPLEX and the early STDM paper [Cope84].

Our handling of range variables was heavily influenced by that of POSTGRES [Rowe87]. In addition, EXCESS

64

goes beyond its predecessors in several respects. Our mix of object- and value-oriented semantics, again, was
unique among query languages, until the introduction of certain constructs to the O2 [Banc88] query language.
Also, EXCESS provides a cleaner treatment of arrays than we have scen elsewhere. The only point for comparison

here is POSTQUEL, which only operates on one-dimensional arrays of base types.

Finally, ADT and access method extensibility in EXTRA/EXCESS were heavily influenced by the work of
Stonebraker [Ong84, Ston86] and the resulting extension facilities in POSTGRES [Ston87b]. Our work here differs
mostly in minor respects. Because ADTs in our system are written E, the system’s internal language, adding ADTs
is perhaps simpler here. Another difference is that we view ADT operators as synonyms for function calls rather
than something to be handled differently for query optimization purposes. Lastly, our approach to user-defined set
functions is more general than the corresponding POSTGRES approach to user-defined aggregates. With respect to
schema types, our support for EXCESS functions is similar to the functions of DAPLEX [Ship81] and IRIS
[Fish87], and also to the parameterized procedures of POSTGRES [Ston87a]. Our approach to user-defined pro-
cedures is rooted in the stored commands of the IDM database machine {IDM500], as is our approach to encapsula-
tion through authorization, but EXCESS procedures are a much more general mechanism. The recently proposed

procedures of SQL3 are similar to those provided by EXCESS.

3.2. Motivation for the EXCESS and AQUA Algebras

This section discusses specific shortcomings of the algebras of the previous chapter. Based on the information
in Chapter 2, and on the goals of the EXTRA/EXCESS and AQUA projects, we outline the issues that the EXCESS

and AQUA algebras are intended to address.

In general, we can identify several things that are missing from algebras designed for complex, advanced data
models similar to EXTRA and EXCESS. We list them now, then describe them more fully below: transformation
rules; support for grouping, inheritance, multisets, and arrays; orthogonality of structures and operators; equipol-
lence proofs; simple operators; support for different forms of equality; support for abstraction; and operators and

optimizations for queries over trees, lists, and graphs.

3.2.1. The EXCESS Algebra

Several novel features enable the algebra to successfully model the structures of EXTRA (the DML) and pro-

cess the queries of EXCESS (the DML). One such feature is the "many-sorted” nature of the algebra. This means

65

that the algebraic structures need not all have the same type (or “"sort”), as is the case with all other database alge-
bras that we are aware of, which require all database objects, and thus all query inputs and outputs, to be sets. Our
relaxation of set-orientation means that we do not need to model a real-world entity as a set if it is not really a sct
(e.g., a single tuple is not a singleton set of tuples). This allows more natural algebraic representations of some enti-
ties. This many-sortedness allows us easily to model the arbitrary structure of EXCESS types and entities. The
algebra of [Guti89] is many-sorted in the sense that arithmetic is part of the database algebra, but the portion of the
algebra corresponding to the usual notion of database algebras is not many-sorted, giving it a much different flavor

than the EXCESS algebra.

Another unique feature of our algebra is its complete algebraic treatment of multisets (sets that allow dupli-
cates). We provide original operators for additive union, grouping, set creation, and looping, as well as other opera-
tors that have appeared elsewhere. The transformation rules involving these new operators are new, as are most of
the other multiset transformations we provide. ENCORE/EQUAL [Shaw90] and ALGRES [Ceri87] provide both
sets and multisets, but the semantics of their multiset operations are not specified. Some of our multiset operators
are similar to those of [Daya82], but [Daya82] restricts itself to the (value-based) relational model and includes the
redundant intersection operator. The SET_APPLY looping operator described below was inspired by LISP’s map-
car function. It resembles other algebraic operators [Abit88a, Guti89, Daya87], but is unique in that it allows the
application of any algebraic expression to the elements of the multiset and needs no special syntax to apply the

expression (as is needed with the p operator of [Abit88a], e.g.).

Several of the array operators and all of the array transformation rules are new. There is an array looping
operator similar to SET_APPLY. The ARR_EXTRACT operator extracts a single element from an array, and the
result is not an array containing the element but simply the element itself. There is also an array creation operator
and an operator to collapse an array of arrays. The notion of sequences supported in the NST algebra [Guti89] is
similar. but not identical, to our notion of arrays. NST does not support unordered sets or fixed-length arrays. Also,
our operators can be used in such a way that the ordering properties of the arrays can either be preserved or not,

depending on the requirements of the query.

Object identity is supported by introducing a new type constructor, called "ref”. This constructor-based
approach allows the algebra to mix object- and value-based semantics at will. We introduce two new operators,

REF and DEREF, as well as transformations involving them. This allows us to treat object identifiers (OIDs) as

66

values in the domain of the algebra, enabling a simple, intuitive, and original set-theoretic semantics to be imposed
on them in order to ensure that OID domains contain "legal" values (especially in the presence of multiple inheri-
tance). This treatment also enables the algebra to be defined using only one form of equality, instead of one form for
OIDs and one for values, as is done in [Shaw90, Osbo88]. [Abit89] defines two separate languages, one enforcing
object identity and one not supporting it at all, but we mix the two semantics in a single algebraic language, and we
give references the status of a type constructor with the same privileges as the multiset, array, and tuple construc-

tors. The LDM algebra [Kupe85] forces object identity on everything in the database.

A new approach for processing queries involving overridden methods is proposed. The problem addressed is
that of determining the appropriate method to invoke when we do not know the exact type of an entity until run time
(due to the capabilities provided by inheritance). We explore tradeoffs between this method and a more "obvious"

approach.

Here we briefly review the the contents of the survey in Chapter 2, by tracing the basic development of data-
base algebras and transformation rules: The relational algebra (as presented in [Ullm89]) has five operators: select
(o), project (), Cartesian product (x), union (), and difference (-). The relational algebra was followed by alge-
bras for nested (non-first normal form) relations [Abit86, Roth88, Sche86, Aris83, Colb89, Desh87, Fisc83,
Jaes82b]. This model is an extension of the relational model which allows both scalar- and relation-valued attri-
butes. Algebras for integrating set-valued fields [Ozso87] and aggregates [Ozso87, Klug82] into the relational
model have also been designed. All of these algebras are direct extensions of the relational algebra. Complex
object models [Abit88a, Hull87] generalize nested relations by removing the restriction that every entity must be a
set of tuples containing either scalars or other sets of tuples as attribute values, recursively. A "complex object” can
use the set and tuple type constructors arbitrarily. An algebra that operates on ordered nested relations (plus tuple-
valued attributes and ordered sets of scalars) was proposed in [Guti89]. The ALGRES algebra [Ceri87] is similar
but it also supports a least fixpoint operation and unordered relations. Object identity was added to complex struc-
tures in the LDM algebra [Kupe85] and in IQL [Abit89]. Finally, the algebraic approach has also been extended to

cover temporal databases [Tans89, CIif85].

Algebraic transformation rules for the relational algebra can be found in [Ullm89)]. [Scho86] presents such
rules for the nested relational model. Some rules for complex object models with identity are proposed in [Osbo88,

Shaw90]; these rules are mainly straightforward extensions of relational or nested relational transformation rules.

67

Finally, [Beer90] proposes a meta-level algebra for collections of complex objects with identity and includes some
transformation rules that go beyond what is done in the relational model. This algebra, however, does not
correspond to a specific data model but rather to a higher-level notion of collections of objects. Its rules are tem-
plates that are intended to be "instantiated" in actual systems according to certain parameters of the specific data
model being implemented. It also does not support several of the constructs of EXTRA/EXCESS, such as refer-

ences and grouping.

3.2.2. The AQUA Algebra

Here we address only the features of AQUA that are most relevant to the contributions of this thesis. One of
the primary goals of AQUA [Leun93] is to provide a model general enough to simulate the constructs of any
object-oriented data model (and most value-oriented models), no matter what choices it makes with respect to cer-
tain features (bulk types, encapsulation, identity versus value, notions of equality, inheritance, and operations).
Other models have claimed similar goals, but not necessarily in all these areas at once, and our mechanisms for
achieving these goals differ substantially from those of our predecessors. Many of the specific constructs of AQUA
were inspired by or drawn from the EXTRA/EXCESS system [Vand91], ENCORE/EQUAL. [Shaw90], and Revela-

tion [Vanc92].

In attempting to support both values and objects, some systems (e.g. EXCESS [Vand91]) choose to support
only values in the type system and to model objects by using explicit identifiers. Other systems (e.g. Smalltalk and
ORION [Gold83, Bane87]) choose to support only objects in the type system and to model values as a special case
of objects. IQL [Abit89] defines two separate languages, one enforcing object identity and one not supporting it at
all. AQUA characterizes the distinction between ‘‘objects’” and ‘‘values’ as the difference between entities
(objects) with mutable and immutable semantics; this provides a much cleaner formalism, and was partially inspired
by systems such as Larch [Gutt85]. By cleanly separating the notions of type (a syntactic concept) and semantics
we provide a model that treats both values and objects as first-class citizens and has a simpler type system. We are
not aware of another model that takes this approach, nor of one that takes the clearly-separated, 3-level view of an
object that we do (type, semantics, and implementation). Buneman and Ohori exhibit a similar philosophy, though,
in their distinction between a kind and a rype [Bune91]. Unlike ILOG [Hull90] and others, we avoid explicit
identifiers in the model, viewing them as an implementation concern, and reflecting the distinctions between objects

and values by using varying semantics.

It has been pointed out by Atkinson et al [Atki91] that in object-oriented systems, a type may supply its own
method for testing equality. This capability, however, introduces problems such as what the meaning is of operators
like set union that depend on equality for their own semantics. The AQUA approach to enforcing a notion of equal-
ity among the elements of a set is without precedent in that it avoids any built-in notion of equality other than object
identity, but still allows the (non-deterministic) creation of sets in which the uniqueness of the members is deter-
mined by an arbitrary equivalence relation. Many models (e.g. MDM [Rich91]) do not have this flexibility. The

AQUA approach to this problem is closely related to duplicate elimination and non-determinism, as shall be seen.

Duplicate elimination for both sets and multisets, as defined in AQUA, is original. AQUA’s dup_elim can be
thought of as a generalization of other duplicate elimination operators (e.g. that of ENCORE/EQUAL [Shaw90]). A
set-theoretic choose operator appears in the algebras of Osborne and MDM [Osbo88, Rich92]. Non-determinism is
also present in [Abit90], which describes a witness operator which operates in a logical (rather than an algebraic)

setting and creates a set of possible interpretations of a formula, resulting in non-determinism.

Most ‘‘pure’’ object-oriented models (such as [Gold83, Maie86c] and others) provide and enforce encapsula-
tion of data types. In AQUA the notion of type is more general: not everything is forced to be of an encapsulated,
abstract data type whose only interface is that provided by the definer of the type. But AQUA does support such
types, and does so using the ‘‘abstraction’’ type constructor, allowing any database object, encapsulated or not, to be
described using a single uniform type system. This is similar to the ADT concept provided by POSTGRES
[Rowe87] but much more general in the sense that any type definable in the AQUA type system can be abstracted
into a true encapsulated type, and an abstraction in AQUA is a first-class citizen of the type system -- the abstraction
constructor has the same status as any other constructor. The distinction is that an object of an abstraction type has
only the user-defined methods as an interface, while an object of (for example) a set type has an interface consisting
of union, difference, etc. This is similar to POSTGRES's notion of user-defined POSTQUEL functions and the
functions and procedures of EXCESS [Care88b], but in those systems, the ability to define functions allows one to
add operations to an existing, non-encapsulated type (i.e., encapsulation is not enforced in those systems but it is in
AQUA). The use of a type constructor to represent abstraction enables all objects in an AQUA database to exist in
one seamless type system. Our approach is similar to that of [Alba91], but in that model not everything is an object,
so their equivalent to our abstraction constructor must enforce many more of the facets of *‘objectness’” than must

ours.

69

Another goal of AQUA is to provide algebraic support for ordered data types such as lists, trees, and graphs.
In Chapter 6 of this thesis we are concerned mainly with trees. For an introduction to AQUA’s support for other
ordered data types, sce [Subr93]. Much of the previous work with ordering deals with order as in sequences or
arrays; very little work has been done on trees or graphs. [Beer90] proposes an object-oriented query processing
paradigm where the objects are built of primitive objects, an explicit object identity type constructor, and bulk type
constructors. Then operations and optimizations are presented which apply to any bulk type constructor definable in
their paradigm. In this approach, lists, arrays, and trees can all be defined, and a subset of the useful operations on
such structures is described in the paper. These operations include a ‘‘pump’’ function, which is similar to AQUA’s
fold operation [Leun93]. Since the operations described in [Beer90] are intended to be applicable to any bulk type,
not just to lists and trees, they are too general for our purposes -- we wish to distinguish between ordered and unor-
dered types, and we provide a richer set of operations. Furthermore, many of their operations are not described pre-
cisely, the existence of certain other operations is assumed, and they do not have any operations like the ones we
propose. [Ross92] extends [Beer90] by providing precise conversion operations between various bulk types and

transformation rules involving the pump and aggregation operators on trees.

We develop a notation for expressing patterns in trees based on results presented in [That68, Done70].

3.2.3. Summary of the Algebraic Goals

The goals of the EXCESS algebra are to provide operators and optimizations for EXCESS, especially for mul-
tisets, arrays, optional object identity, and grouping; to formally define the structures of the algebra so that they con-
form to the specifications of EXCESS; to demonstrate the applicability of the algebra by proving its equipollence to
EXCESS and providing a complete semantics for EXCESS; and to discuss some techniques for optimizing certain
queries involving overridden methods. In the context of AQUA, the algebraic goals relevant to this thesis are to
provide mechanisms for various notions of equality; a consistent treatment of abstraction; and operators and optimi-

zations for selection queries on trees. See [Vand89] for more discussion on algebraic design in general.

70

CHAPTER 4

EXTRA AND EXCESS

This chapter describes the EXTRA data model and EXCESS query language. The chapter is organized as fol-
lows: Section 4.1 presents the data modeling facilities of EXTRA, including a number of examples. In Section 4.2,
we present the EXCESS query language, including its facilities for querying complex objects, performing updates,
and computing aggregates. Section 4.3 discusses the support provided in EXTRA and EXCESS for user-defined
types and operations. [Vand88b] is a complete user's manual for the EXTRA and EXCESS languages, and

[Vand88a] describes an EXTRA database for storing catalog information about an EXTRA/EXCESS DBMS.

4.1. The EXTRA Data Model

In the EXTRA data model, a database is a collection of named, persistent objects. These objects can be as sim-
ple or as complex as desired; EXTRA does not constrain the type structure of the named (or "top level") objects in
the database. The advantages of going beyond a simple record-based model are detailed in {Kent79]. EXTRA
separates the definition of types from the declaration of their instances, and it provides a type system based on a type
lattice with multiple inheritance. The type system includes tuple, set, and array as type constructors that may be
composed arbitrarily to form new types. EXTRA also provides support for user-defined abstract data types. We
will elaborate on each of these features in this section, and we will illustrate them by iterative refinement of a simple

example database.

4.1.1. The Basic EXTRA Type System

In EXTRA, the definition of a type and the declaration of instances of that type are completely separated from
one another. This makes it possible for a database to include more than one collection of instances of a given type,
which can be quite useful in scientific and engineering applications [Lohm83, Kemp87]. While this separation is
common in programming languages, it is less common in the database world [Bloo87]. As an example, the com-
mands in Figure 4.1 define a new schema type called Person, which is a tuple type. Two sets for storing Person
instances are then created, the Students set and the Employees set. (We will explain the own ref syntax shortly: it

can be ignored for the purposes of the current discussion. For now, the Students and Employees sets can be thought

n

of as relations.) In EXTRA, sets are allowed to contain duplicates, so when we refer to a "set” in this chapter we
really mean a multiset. Duplicates may be eliminated, if desired, using a "unique” clause, as in QUEL. This is simi-
lar to the approach taken in most commercial systems, where relations are actually multisets rather than sets, but are

still referred to as relations or sets.

EXTRA provides a variety of base types and type constructors for defining schema types, some of which are
used in Figure 4.1. Predefined base types include integers of various sizes, single and double-precision floating
point numbers, booleans, character strings, and enumerations. EXTRA also supports the addition of new base types
(through an ADT facility similar to those of [Ston86, Ston87b]) like the Date type in Figure 4.1. ADT support will
be covered in a later section. The type constructors of EXTRA include tuple (e.g., Person is a tuple type), fixed
length arrays, variable length arrays, sets, and references. We will have more to say regarding reference, set, and

array type constructors later on, when we describe EXTRA’s support for complex objects.

The example of Figure 4.1 is unrealistic in the sense that we will probably want to associate more information
with Student and Employee objects than that which is contained in a Person object. Figure 4.2 refines our example,
illustrating type inheritance in EXTRA and a more realistic declaration of the Students and Employees sets. The
Student tuple type inherits all of the attributes of the Person tuple type, and in addition it has a grade point average
(gpa) attribute and a department (dept) attribute. The Employee tuple type adds the attributes jobtitle, dept,

manager, and salary to those of the Person tuple type.

define type Person:
(
ssnum: int4,
name: charf },
street: char[20],
city: char[10],
zZip: int4,
birthday: Date
)
create Students: { own ref Person }
create Employees: { own ref Person }

Figure 4.1; Creating schema types and instances

72

define type Student:
(

gpa: float4,
dept: char[30]
)
inherits Person
define type Employee:
(
jobtitle: char[20],
dept: char[30],
manager: charf],
salary: int4
)
inherits Person
create Students: { own ref Student }
create Employees: { own ref Employee }

Figure 4.2: Creating subtypes and their instances

A tuple type may also inherit attributes from more than one type, as the general form of the inheritance clause
is inherits typel, rype2, If a type inherits two (or more) attributes with the same name, a conflict arises. If these
attributes are inherited from a single common supertype, coaflict resolution unites them into a single attribute for the
new type -— since the conflicting attributes have the same source, they also have the same meaning. However, if a
name conflict arises between attributes from different sources, no attempt is made to handle the problem automati-
cally. Instead, we require the definer of the type to resolve the conflict explicitly via renaming. For example, sup-
pose we wish to create a new type called "WorkStudyStudent” as a subtype of both the Employee and Student types
of Figure 4.2. This would be disallowed due to a name conflict under our rule since the dept attribute would be
inherited from two sources with two different meanings: the Student type’s dept attribute specifies a student’s
major, while the Employee type’s dept attribute specifies the department where an employee works. Figure 4.3
shows how this conflict can be resolved via renaming. POSTGRES would ignore this conflict because the
conflicting dept attributes are of the same data type [Rowe87], while TAXIS would simply disallow the conflict
[Nixo87]. EXTRA is closest to ORION [Bane87] in its handling of conflicts, except that we provide no automatic
resolution. In the absence of explicit renaming, ORION would select one of the two dept definitions automatically,

based on the order of entries in the inherits clause, dropping the other one.

73

define type WorkStudyStudent:

(
weeklyHours: int4
majorDept: Student.dept,
jobDept: Employee.dept

inherits Student, Employee

Figure 4.3: An example with multiple inheritance

4.1.2. Modeling Complex Objects in EXTRA

A complex object is an object that is composed of a number of component objects, each of which may in turn
be composed of other component objects. In general, an object can be a component of more than one object.
EXTRA provides four type constructors in addition to the tuple type constructor to support complex object model-

ing: the ref type constructor, the own type constructor, the set (or "{ }") type constructor, and the array type con-

structor.

The example in Figure 4.4 shows the schema of Figure 4.2 redefined using ref attributes for the dept attribute

define type Student:
(
gpa: float4,
dept: ref Department
)
inherits Person
define type Employee:
(
jobtitle: char[20],
dept: ref Department,
manager: ref Employee,
salary: int4

)

inherits Person

create Students: { own ref Student }
create Employees: { own ref Employee }

Figure 4.4: Reference attribute example

74

of the Student type and for the dept and manager attributes of Employee. These are like reference attributes in
GEM [Zani83], with each Student object containing (a reference to) its corresponding Department object. The
referenced department object is required to exist elsewhere in the database (or else the value of the reference must
be null). In addition, the referenced object must be of type Department or else some subtype of the Department
type.

Another type constructor that EXTRA provides for modeling complex object types is the set constructor,
whose use has already been illustrated for creating the equivalent of a relation in EXTRA. EXTRA allows sets of
any data type to be defined/created, and such sets can then contain objects of the specified type and also any of its
subtypes. Sets of base types, constructed types, and reference types are all possible in EXTRA. This leads to a very
powerful facility for modeling complex objects, as nested relations (ala NF? data models) can be supported via sets
of tuples, and sets with shared subobjects (ala [Bane87, Lecl87]) can be supported via sets of references. As an
example, Figure 4.5 shows the definition for the Department type and the creation of a persistent set (Departments)
of objects of this type. The definition of the employees attribute of the Department type specifies it as being a set of
references to objects of type Employee. Thus, for a given department, the employees attribute effectively contains

all of the employees that work for the department.

While reference attributes and their interaction with the set type constructor permit the development of com-
plex object (graph) structures, there are cases where the database designer wishes to treat an object and its com-
ponents as a single object that simply happens to have a complex value structure. There are also related cases where

the components of an object need to be "full-fledged objects," but where the object should still be treated as a whole,

define type Department:
(
name: charf],
floor: int4,
numemps: int4,
employees: { ref Employee }
)
create Departments: { own ref Department }

Figure 4.5: Combining sets and references

75

as in ORION's composite objects [Kim87]. To support these different cases, EXTRA provides three different kinds
of attribute value semantics: own attributes, ref attributes, and own ref attributes. An own attribute is simply a
value, not a first-class object; it lacks identity in the sense of [Khos86]. By default, all attributes are taken to be

own attributes unless otherwise specified. An own ref attribute is a reference with the added constraint that the

referenced object is owned by the referencing object'; thus, if the referencing object is deleted, the referenced own
ref object is deleted as well. Finally, a ref attribute is simply a reference to another (independent) object, as
described earlier, without cascaded deletion semantics. In addition to their semantic importance, own and own ref

provide EXTRA with information that can potentially be exploited for performance reasons (e.g., for clustering).

The combination of set and array type constructors, together with ref, own ref and own modes for attributes,
yields a flexible and powerful facility for modeling complex object structures. The database designer can tailor a
design appropriately, rather than adapting it to one particular semantics for modeling complex objects. For exam-
ple, we could extend our Employee type with an additional field for keeping track of employees’ children by adding
the field definition "kids: { own Person }". This says that the kids attribute of an Employee is a set of tuples of type
Person.2 Note that these Person instances are tuple values, and not tuple objects. They do not have object identity
as objects do, and therefore they cannot be referenced from elsewhere in the database via a reference attribute. In
addition, if an employee is deleted, so are his or her kids. This provides a capability very similar to that provided by
NF? data models [Dada86, Sche86]. If the kids attribute were instead declared to be of type "{ own ref Person }",
the deletion semantics would be the same, but children could then be referenced from elsewhere in the database (by
ref attributes of other objects). As with composite objects in ORION [Kim87], however, a Person instance in the
kids set of one Employee instance could not be in the kids set of another Employee instance simultaneously. To
overcome this limitation, the kids attribute could be defined simply as "{ ref Person }," in which case sharing is per-
mitted and the deletion of an employee instance will not automatically delete the kids. As we will see in the next
section, despite their semantic differences, own, ref, and own ref attributes are all treated uniformly in the EXCESS
query language for query simplicity. Thus, casual users can ignore the distinction, viewing attributes simply as

other objects, as in most object-oriented data models {Lecl87, Horn87, Andr87, Bane87, Maie86c].

! Note: All objects must have a "home" as an ewn ref component of some other object in order to exist in the database.
Named, persistent, top-level objects are automatically made own ref components of the database in which they are created. This
ensures that automatic garbage collection is not needed.

2 Since own is the default, this is equivalent to "kids: { Person }".

76

In addition to sets and references, fixed and variable-length arrays are provided and are useful for modeling
complex objects. Variable-length arrays are “insertable", meaning that array elements can be inserted or deleted
anywhere in the array; such an array can be viewed as a sequence or an indexable list. An array type constructor
can be used anywhere a set constructor can be applied, which means that (for example) one can have variable-

length arrays of objects. This is useful for modeling complex objects where order is importaat (e.g., documents).

4.1.3. Other Attribute Types

In addition to the facilities described thus far, EXTRA provides support for two other kinds of attributes: attri-
butes of various types defined by users (i.e., user-defined ADTs), and attributes defined in terms of other values in

the database, or derived attributes.

As an example of an ADT attribute, if we wished to include a picture of each employee in the database, we
could extend our definition of the Employee type by specifying an attribute "face: Picture" for storing this informa-
tion. Including this in the definition of the Employee object type says that each Employee will have a face attribute
of type Picture, which is a user-defined ADT for storing bit-map images. We will describe EXTRA’s ADT facilities
(and distinguish them from schema types) in more detail in Section 4.3; basically, though, an ADT can be used

wherever any of EXTRA's built-in types can appear.

As for derived attributes, EXTRA allows object attributes to be defined via queries in the EXCESS query
language. This facility allows objects to appear to contain certain information which, rather than being stored, can
be computed on demand from the current database state. As we will discuss in Section 4.3, derived attributes in
EXTRA are similar to the derived or "procedural” data notions of other data models, and they are supported through
a facility for associating both EXCESS functions and procedures with EXCESS types. For example, we could
extend our Person type definition by defining a derived age attribute, which could be referenced just as if it were a

real attribute, as follows:

define Person function age returns int4

(
retrieve (Today - this.birthday)

)

In this example, this is a special range variable that is implicitly bound to the Person instance to which the function

is applied, Today is a top-level database object of type Date containing today’s date, and the minus operator is a

77

Date operator that computes the difference in years between two Dates. We will say more about EXCESS functions

and procedures in Section 4.3, after the EXCESS query language has been described.

4.1.4. Data Model Summary

To summarize, an EXTRA database is a collection of named persistent objects of any typc. EXTRA separates
the notions of type and instance; thus, users can collect related objects together in semantically meaningful sets and
arrays, which can then be queried, rather than having to settle for queries over type extents as in many data models
(e.g., [Ship81, Bane87, Lecl87, Mylo80, Rowe87]). EXTRA provides tuple, set, fixed-length array, and variable-
length array as type constructors. In addition, there are three kinds of values, own, ref, and own ref (although
casual users such as query writers need not be concerned with this distinction). Combined with the other type con-
structors, these provide a powerful set of facilities for modeling complex object types and their semantics. Finally,

EXTRA provides support for user-defined ADTs and for derived attributes. Figure 4.6 illustrates some of the sort of

database structures that can be defined in EXTRAY, showing how one could create Students, Employees, and
Departments "relations,” a named object for accessing the best employee directly, an array for keeping track of the
top ten employees, a calendar object (represented as a nested array of ADT values of type Day), and an object for
storing the current date. The next section will explain how such a database can be queried and updated via the

EXCESS query language.

4.2. The EXCESS Query Language

While some may question the need for a general-purpose query language in a database system designed to sup-
port emerging application areas such as CAD/CAM, we believe that the inclusion of such a language is indeed
justified. Functionality like associative searching can be important in any application domain, even CAD/CAM.
For example, if reuse of design components is to become a reality, designers will need to be able to query the data-
base of design objects in order to see if an appropriate component already exists. In addition, a full-function query
language makes it possible for the same database system to be used for both business and engineering data, support-
ing queries such as those needed to compute design costs or to order parts for assembling a design object. Lastly,

and most importantly for the purposes of this thesis, associative query languages are important because they are

3 While Figure 4.6 does not show it, named non-tuple types may also be defined. For example, "define type Month: array
[] of Day” would let "create Calendar: array [1..12] of Month" be used to create the calendar object in our example.

78

define type Person: (

ssnum: int4,
name: char|],
street: char{20],
city: char[10],
zip: int4,
birthday: Date
)
define type Student: (
gpa: float4,
dept: ref Department

) inherits Person

define type Employee: (

Jjobtitle: char[20],

dept: ref Department,
manager: ref Employee,
salary: int4,

kids: { own Person }

) inherits Person

define type Department: (

name: char{],

floor: int4,

manager: ref Employee,

employees: { ref Employee }
)
create Students: { own ref Student }
create Employees: { own ref Employee }
create Departments: { own ref Department }
create StarEmployee: ref Employee
create TopTen: array [1..10] of ref Employee
create Calendar: array [1..12] of array [] of Day
create Today: Date

Figure 4.6: A complete employee database exarnple

amenable to query optimization techniques.

In this section we present the design of the EXCESS query language. While EXCESS is based on QUEL

[Ston76], we have borrowed ideas from the QUEL extensions developed for GEM [Zani83] and POSTGRES

[Rowe87, Ston87b] as well as work on SQL extensions for handling NF data [Dada86, Sche86]. Salient features of

the EXCESS language include: a uniform treatment of all kinds of sets and arrays, including nested sets; a type-

oriented treatment of range variables; a clean, consistent approach to aggregates and aggregate functions; and an

79

update syntax that supports the construction of complex objects with shared subobjects. In the remainder of this
section, we will describe each of the major features of the EXCESS query language. Our examples will be based on

the employee database in Figure 4.6.

4.2.1. Set Query Basics

EXCESS provides a uniform syntax for formulating queries over sets of objects, sets of references, and sets of

(own) values. For example, consider the following EXCESS query:

range of D is Departments
retrieve (E.name) from E in D.employees where D.floor = 2

This query finds the names of all employees who work in departments located on the second floor. The initial range
statement specifies that the range variable D is to be bound to the set of department objects in the Departments set;
this is the conventional (QUEL) use of a range variable. The phrase "from E in D.employees" in the query specifies
that the range variable E is to be bound to the set of employees for each department that satisfies the selection predi-
cate "D.floor=2". Since D.employees is a set of Employee references, this illustrates how sets of references can be
easily manipulated via EXCESS queries. The standard predicates on sets are also provided ("<=" for subset, "in"
for membership). EXCESS also supports predicates on arrays -- "in" tests for membership in an array. The predi-
cate "<<=" tests for subarrays. We say that A <<= B if all elements of A appear in the same order in B, with no

other elements in between them.

As another example, the following query finds the names of the children of all employees who work for a

department on the second floor:

range of E is Employees
retrieve (C.name) from C in E.kids where E.dept.floor =2

Despite the fact that E.kids is a set of values rather than a set of objects, this query looks the same as the previous
example because all sets are treated alike in EXCESS queries. (Minor differences do arise for updates, though, as

we will describe shortly.)

EXTRA also allows the creation of named persistent objects as single instances of any type (e.g., Today and
StarEmployee in Figure 4.6). Such objects can be referenced directly in the EXCESS query language. For exam-

ple:

80

retrieve (Today)
retrieve (StarEmployee.name, StarEmployee.salary)
retrieve (TopTen{1].name, TopTen[l].salary)

Finally, any query result may be saved and assigned a name, making it a top-level object in the database. This is

achieved using the keyword "into", as in the following example:

retrieve (StarEmployee.name) into BestEmpName

4.2.2. Range Variables and Their Types

EXCESS provides several different mechanisms for specifying the set of objects over which a variable is to
range. Most are similar to the mechanisms of GEM ([Zani83] and POSTQUEL [Rowe87], but EXCESS also pro-
vides support for universal quantification (to simplify certain kinds of set queries). The simplest form of range
statement has the traditional QUEL syntax, i.e., "range of <Variable> is <Range_Specification>". For this form of
range variable, the <Range_Specification> must identify either a named, persistent set (e.g., Employees), array (e.g.,
TopTen), or subrange of an array (e.g., TopTen[2:5]). Unless restricted by lower and upper bounds, arrays are
treated as sets (except for duplicate semantics on updates). Thus, the statement "range of E is TopTen" results in E
ranging over all objects in the TopTen array, while the statement "range of E is TopTen[2:5]" restricts E to ranging
over the 2nd through 5th objects. As far as the user is concerned, it is immaterial whether the set or array contains
objects, references, or values. Also, like GEM, an implicit range variable is provided for each set or array specified
in the target list or in the qualification of a query. Thus, our earlier query involving children of second floor

employees could have been written as:

retrieve (C.name) from C in Employees.kids
where Employees.dept.floor = 2

EXCESS also provides a path syntax in order to simplify the task of formulating queries over nested sets of
objects [Ship81, Cope84]. As an example, the statement "range of C is Employees.kids" means that for each
employee object in the Employees set, C will iterate over all the children of the employee. If one of the elements of
a path is a single object, it is treated as though it were a singleton set. Thus, the statement "range of C is

Departments.manager.kids" results in C ranging over the manager’s children for each department.

While the first form of range statement is used strictly for associating a range variable with a persistent, named

set or array, the remaining forms are used for associating a range variable with any set or array. One such form of

81

range statement has the syntax "from <Variable> in <Set_Specification>[:< Type]". Here, <Set_Specification> may
be: a persistent, named set or array (e.g., Employees, TopTen, or TopTen[2:5]); an attribute defined using a set or
array type constructor (e.g., E.kids or Departments.employees); or a set formed by taking the union (+), intersection

(®), or difference (-) of two or more sets (¢.g., "TopTen + StarEmployee" or "Students - Employees™).

In an EXCESS query, each range variable has an associated type, and the query may only refer to attributes
associated with this type. In many cases, the appropriate type can be inferred easily from the query. For example,
in our queries involving children of second floor employees, the type of the variable ranging over the Employees set
is Employee, the type of the elements in the set. If the set over which a variable ranges is the union, intersection, or
difference of two or more sets (e.g., "from P in Students - Employees"), it is required that the sets share a common
supertype. If this supertype is unique, then the type of the range variable is inferred to be the most specific common
supertype of the sets’ types. If no unique supertype exists, then the normally optional Type specification in the
range syntax must be used to identify the particular supertype relevant to the query. If the set over which a variable
ranges is not a binary combination of other sets, the ":< Type" syntax may still be used; in this case it means that all
elements that are not of type Type (or one of its subtypes) will be ignored during the query. The syntax ": Type" is
also provided, and means that all elements that are not of exactly the type Type will be ignored. For example, ™:

Person" means ignore all Students and Employees, but process all other Persons.

The last two forms of range statement in EXCESS are used to specify universally or existentially quantified
range variables. The syntax for this form of range statement is "forall <Variable> in <Set_Specification>[:
<Type>]" or "forsome <Variable> in <Set_Specification>[: <Type>]". Its use is illustrated in the following query,

which retrieves the names and ages of all highly paid employees whose children are all under 5 years old:

retrieve (E.name, E.age) from E in Employees
where E.salary > 100000 and (forall C in E.kids C.age < 5)

Universal quantification simplifies the specification of queries where it is desired that all elements of a set or array
satisfy some property. Otherwise, such queries must be specified using an awkward combination of aggregates

(probably making them more difficult to optimize).

82

4.2.3. Query Result Types

In the preceding section, the result of each example query was a set of tuples for which the type of each attri-
bute was own. In general, however, the result of a query can be a set of objects or a set of tuples in which one or
more attributes is an object (ref or own ref). As an example, consider the following query which, for each

employee making over $100,000, returns the name of the employee and his or her department:

range of E is Employees
retrieve (E.name, E.dept) where E.salary > 100000

If this query were embedded in a programming language, then the object identifier for each department could be
bound to a host variable for subsequent manipulation. However, in the case of an ad-hoc query (where retrieve
really means print), printing the object identifier of each department is not acceptable. Since there does not seem to
be a single "right" answer to the question of what to print, the solution we have adopted is that when a retrieve query
returns an object as the result of an ad-hoc query, the system will print each own attribute of the object (recursively,

if it is a structured attribute). Thus, the above query is equivalent to:

range of E is Employees
retrieve (E.name, E.dept.name, E.dept.floor)
where E.salary > 100000

To facilitate the specification of "deep" retrieval operations, fields in the target list of a retrieve query can be
tagged with a "*" operator to indicate that the object plus all of its component (own ref as well as own) objects are
to be recursively retrieved. This capability will be especially useful for those applications (e.g., CAD/CAM) that

need to extract an object and all of its component objects from the database with a single retrieve statement.

We now present a few examples to illustrate the structure of the result of an EXCESS query. Consider the fol-

lowing query:
retrieve (K) from K in Employees.kids

This query returns the set of all children of employees. The elements of this set are of type Person. The following

query returns a set of sets of children, one set for each employee:
retrieve (Employees.kids)

These interpretations were chosen for several reasons. First, it is useful to be able to produce results in either form.

Second, it is intuitive--the presence of only "K" in the target list seems to indicate that the user wants a set of objects

83

of the type that "K" ranges over. With "Employees.kids" in the target list, it scems as if a structured result is desired,
and this is also consistent with the treatment of multi-argument target lists, such as "retrieve (Employees.kids,

Employees.name)”, in which the kids and the names retain their relation to their containing structure.

Finally, this interpretation is consistent with our interpretation of range variables over nested sets. For exam-
ple, in the following statements, B takes on values that are sets of int4, C takes on values that are intd, the first

retrieval prints out a set of sets of int4, and the last statement prints out a set of int4:

create A: { { intd } }
range of Bis A
range of Cis B
retrieve (B)
retrieve (C)

EXCESS also provides syntax to allow for the creation of a singleton set. For example the following query

takes the named, top-level object TL and returns a set containing only TL:
retrieve ({ TL })

Similar syntax is provided to create a singleton array (using "[" and "]"), a tuple with one field (using "(" and ")")

and a reference to another object (using "<" and ">").

4.2.4. EXCESS Join Queries

Like GEM, EXCESS provides three types of joins: functional joins (or implicit joins, using the dot notation);
explicit identity joins, where entities are directly compared, and traditional relational value-based joins. A number

of our examples have involved functional joins. As a further example, consider the following query:

retrieve (Employees.dept.name)
where Employees.city="Madison"

This query selects the employees living in Madison and then finds the name of their departments using the Depart-
ment reference attribute of the Employee type as an implicit join attribute. The same query can also be expressed

using an explicit identity join:

retrieve (D.name) from D in Departments, E in Employees
where E.dept is D and E.city = "Madison”

In this form, the value of the reference attribute E.dept is directly compared with the range variable D using the is

operator. The is operator is useful for comparing references, returning true if two references refer to the same

object. Thus, is is a test for object equality rather than (recursive) value equality in the sense of [Banc86]. An isnot
operator is also provided for convenience in testing that two references do not refer to the same object. As in GEM,

these are the only comparison operators applicable to references.

It is expected that most joins in EXCESS will be functional joins, as the important relationships between enti-
tics can be expressed directly through reference attributes; most other joins are expected to be explicit identity
joins. However, traditional value-based joins are also supported in the EXCESS query language, as in GEM. For

example, the following query finds the names of all persons living in the same city as Jones:

retrieve (Pl.name) from P1,P2 in (Students + Employees)
where Pl city = P2 city and P2.name = "Jones"

4.2.5. Aggregates and Aggregate Functions

Since aggregates add important computational power to a query language, we felt that it was important to
address them carefully in EXCESS. In deciding how to integrate aggregates into the EXCESS query language, we
have tried to provide an intuitive semantics for aggregates and range variable binding. We have also tried to make a
clear distinction between the attributes used for partitioning, the attributes being aggregated, and other query attri-

butes. The following syntax is used for expressing EXCESS aggregates and aggregate functions:

agg-op(X {over Y] [by Z]
[from <Variable> in <Set_Specification>] [where Q])

The execution of an aggregate can be viewed logically as follows: First, the qualification Q is applied to each ele-
ment ranged over by the range variable (i.e., a selection is performed). The resulting set of values is then projected
on the attribute(s) specified in Y, with duplicates (if any) being eliminated in the process; if no over Y clause is
specified, duplicate elimination is not performed.* If a by Z clause has been specified, the set is then partitioned
using the Z attribute(s) as a key. Note that if Z=Y, then each tuple forms its own partition; if no by clause is
specified, then there is just one partition (in which case the aggregate is being used as a scalar aggregate). Finally,
the operation agg-op is applied to the attribute(s) specified by X, yielding one result value for each partition. Both X

and Z must be subsets of Y. For agg-op, EXCESS provides all of the usual built-in aggregates (e.g., sum, count,

* Using over in this way facilitates certain queries that would otherwise be difficult to express using QUEL unique aggre-
gates or aggregates with SQL-like unique clauses, and it also renders such uniqueness clauses unnecessary [Klau85].

85

avg, max, and min).
As a first example, the following EXCESS query will find the average salary of all employces:

retrieve (avgsal = avg(E.salary from E in Employees))

In order to fulfill our design goal of a clear, consistent rule for range variable binding, we use Pascal-like scop-

ing rules for range variables.’ First, a range variable declared in the outer query can be used within the where clause
of an aggregate; however, if the same variable is redeclared within the aggregate, the effect is to define a new range
variable. Second, since aggregates can be viewed as self-contained queries, all range variables declared inside an
aggregate are strictly local to that aggregate expression. These rules considerably improve the semantics of range
variables in aggregates over QUEL. A consequence is that the result of an aggregate must be bound explicitly to the
remainder of an aggregate query. For example, the following query finds the name of each employee plus the aver-

age salary of all employees who work for his or her department:

range of EMP is Employees
retrieve (EMP.name, avg(E.salary by E.dept
from E in Employees where E.dept is EMP.dept))

In this example, the variable E ranges over the Employees set within the aggregate function. In order to bind the
results of the aggregate function to the outer query, the clause "E.dept is EMP.dept" must be included. In QUEL,

this binding could be accomplished implicitly by using a single range variable for the entire query.

An example will illustrate the separation of aggregation and partitioning attributes; it will also show how one
can operate on attributes from one level of a complex object while partitioning on attributes from other levels. The
following query retrieves the name of each employee; for each employee, it also retrieves the age of the youngest

child among the children of all employees working in a department on the same floor as the employee’s department:

range of EMP is Employees

retrieve (EMP.name, min(E kids.age by E.dept.floor
from E in Employees

where E.dept.floor = EMP.dept.floor))

In this example, the variable E ranges over Employees within the scope of the min aggregate, and E within the

aggregate is connected to EMP declared in the range statement via a join on Employee.dept.floor. The query aggre-

% Qur scoping rules are similar to those of POSTQUEL [Rowe87].

86

gates over Employee kids, a set-valued attribute, and partitions the data using an attribute of Employee.dept, which

is a single-valued reference attribute.
As an example of the use of the "over" clause, consider the following query:

range of EMP is Employees
retrieve (avg(EMP.salary over (EMP.salary, EMP.name)))

If employees can work for more than one department, the "over" clause ensures that each employee’s salary is only

counted once in computing the average.

4.2.6. Updates in EXCESS

EXCESS provides four commands for updating a database: insert, copy, replace, and delete. The insert
command takes an object and adds a reference to it to a collection (set or array). The copy command is similar to
the insert command except that it creates a new object, either by making a copy of an existing object or by using
values supplied as parameters to the command. To make a copy of an existing object, the own components of the
object are copied recursively, new objects are created recursively for all components of type own ref, and refer-
ences are simply copied for components of type ref. Thus, the original object and the copy will share component

objects referred to by attributes of type ref. For both insert and copy, the target collection must already exist.

The following example illustrates the use of the copy command to create a new employee object and add it to
Employees set. The effect of this update is to add Smith to the Employees set, and to have him work for Jones in

the Computer Science Department.

copy to Employees

(name = "Smith", street = "1210 W. Dayton St.”,

city = "Madison", birthday = "1/1/64", dept = D,

manager = M, jobtitle = "programmer", salary = 50000)

from D in Departments, M in Employees

where D.name = "Computer Sciences" and M.name = "Jones"

The following insertion query completes the hiring process by adding a reference to Smith to the employees attri-

bute of the Computer Science object in the Departments set:

6 It would be nice also to ensure that the employees attribute of the appropriate department object is updated whenever an
employee is hired or fired. Using the extensibility features described in Section 4.3, it is possible to define a HireEmployee pro-
cedure that encapsulates the appropriate pair of update queries as a single command. This effect could be achieved automatically
by adding a facility for inverse relationship maintenance, similar to that provided by DAPLEX {Ship81].

87

insert into D.employees (E)
from D in Departments, E in Employees
where E.name="Smith" and D.name = "Computer Sciences"

To add a child of Smith’s to the database, the following query would be used:

copy to E kids

(name="Anne", street = E.street, city = E.city, zip = E.city,
birthday = "10/10/79") from E in Employees

where E.name = "Smith"

Since any object can be owned by only one own ref referencing object, the following insert command will fail:

create overpaid {own ref Employee}
range of E is Employees
insert into overpaid (E) where E.salary > 100000

The problem here is that employee objects are already owned by the Employees set object. However, this would
work if overpaid were created as "{ref Employee}"; alternatively, it would work with copy to used in place of

insert into (thereby copying each employee object).

Support is also provided for updates to arrays. For example, the following query will put the employee with

the highest salary in the first position of the TopTen array (declared in Figure 4.6).

range of E is Employees
insert into TopTen [1] (E)
where E.salary >= max (X.salary from X in Employees)

An insert or copy operation on a fixed length array is performed by replacement beginning at the specified index
position. If there is more than one employee with the maximum salary, the next employee will be inserted at Top-
Ten[2], and so on. Updates on variable length arrays are performed by inserting immediately before the specified

position.
The replace command is used to modify objects. For example,

replace E (salary = E.salary * 1.1)
from E in Employees where E.name = "Jones"

will give Jones a 10% raise. Lastly, to illustrate the use of the delete operator, the following pair of EXTRA update

queries would be used to fire Smith:

delete E from E in D.employees, D in Departments
where D.name = "Computer Sciences" and E.name = "Smith"

delete E from E in Employees where E.name = "Smith"

The deletion semantics for own values and own ref objects are that (i) they are deleted when their owner is deleted,
and (ii) deleting them causes them to be removed from the database as well as from the containing object. Thus,
when "Smith" is deleted from the Employees set, his object is deleted from the database and his children are recur-

sively deleted. (Deleting a ref object deletes only the reference itself, and not the object.)

4.3. Extensibility in EXTRA and EXCESS

A goal of the EXTRA data model and EXCESS query language was to provide users with the ability to define
new types, along with new functions and operators for manipulating them. EXTRA supports two kinds of type
extensions: schema types and abstract data types (ADTs). Schema types were the subject of Section 4.1, where we
described how new schema types can be constructed from base types and other schema types using the EXTRA type
constructors. In this section, we describe how the set of base types can be extended by adding ADTs. We then con-
sider schema types again, describing how functions and procedures written in EXCESS can be associated with
schema types and how data abstraction can be achieved. We distinguish between these two kinds of type extensions
because of the different facilities that are provided for implementing them: ADTs are written in the E programming
language [Rich87], using the type system and general-purpose programming facilities provided by E. Schema types
are created using the type system provided by the EXTRA data model and the higher-level but more restrictive pro-
gramming facilities offered by the EXCESS query language. Finally, we discuss how EXCESS may be extended

with new set functions (e.g., new aggregates).

4.3.1. Abstract Data Types

New base types can be added to the EXTRA data model via the EXTRA abstract data type facility. To add a
new ADT, the person responsible for adding the type begins by writing (and debugging) the code for the type in the
E programming language. E is an extension of C++ [Stro86] that was developed as part of the EXODUS project. E
serves as the implementation language for access methods and operators for systems developed using EXODUS. It
is also the target language for the query compiler, and (most importantly for our purposes here) the language in

which base type extensions will be defined. E extends C++ with a number of features to aid programmers in data-

89

base system programming, including "dbclasses" for persistent storage, class generators for implementing “"generic"
classes and functions, iterators for use as a control abstraction in writing set operations, and built-in class generators

for typed files and variable-length arrays [Rich87].

Suppose that we wanted to add complex number as a new ADT. First, we would need to implement the ADT
as a dbclass (much like a C++ class) in E. Figure 4.7 gives a slightly simplified E interface definition for the Com-
plex dbclass. The hidden internal representation of an object of this dbclass stores the real and imaginary com-
ponents of complex numbers. The Complex dbclass also provides a number of public functions and procedures
(known as member functions in C++ terms). In addition to their explicit arguments, all member functions have an
implicit first argument, this, which is a reference to the object to which the function is being applied. The Complex

dbclass has two "constructor” member functions for initializing newly created complex numbers, one that uses

externally-supplied values’ and another that assumes a default initial value (e.g., 0’s). In addition, the dbclass has
member functions to add and multiply pairs of Complex numbers, and member functions to extract the real and ima-
ginary parts of a Complex number. Finally, the dbclass also has a Print member function. The EXCESS query

language interface requires a Print member function for all ADTs.

Once a new data type has been implemented in E and fully debugged, it must be registered with the system so

that the parser can recognize its functions and the query compiler can generate appropriate E code. To register the

dbclass Complex {

float realPart, imagPart;
public:
Complex(float&, float&);
Complex();
Complex Add(Complex&);
Complex Multiply(Complex&);
float Real();
float Imaginary();
void Print();

Figure 4.7: Contents of /usr/exodus/lib/adts/complex.h

7 This constructor is invoked when a Complex object is created and arguments are specified. e.g., when the target list for a
copy includes an entry of the form "... complexValue = (25.0, 10.0)".

90

new ADT Complex, the implementor of the type would enter the following (assuming that "complex.h” contains the

Complex interface definition and that "complex.e" contains the E code that implements it):

define adt Complex
(

interface = /usr/exodus/lib/adts/complex.h,
code = /usr/exodus/lib/adts/complex.e

This tells EXTRA/EXCESS where to find the definition and implementation of the type. The system uses the
definition to extract the function name and argument type information needed for query parsing and type checking.
Types included in the public portion of the definition must also be registered EXTRA base types, of course. The
implementation file (or list of files, in general) will be compiled and stored by the system for use when queries that

reference the Complex type are encountered.

After Complex has been registered as a new ADT, it can be used like any other base type in EXTRA/EXCESS
schemas, queries, and updates. The default notation for member function invocation is similar to that of C-++ and E
(but "()" may be omitted for functions with no explicit arguments). For example, if CnumPair is an object in the
database with two complex-valued fields vall and val2 (or a range variable bound to such an object), then the
expression "CnumPair.vall.Real" will invoke the member function that extracts and returns the real portion of the
vall field. Similarly, the expression "CnumPair.vall.Add(CnumPair.val2)" will add the vall and val2 fields
together, producing a result of type Complex. Since some users may prefer a more symmetric function call syntax,

EXCESS will also accept this expression in the form "Add(CnumPair.vall, CnumPair.val2)".

In addition to supporting standard ADT function invocation, we follow the lead of [Ong84, Ston86, Ston87b]
and support the registration of operators as an alternative function invocation syntax. For example, to define "+" as

a infix operator synonym for the Add member function of the Complex dbclass, we would enter:

define adt-op "+" infix for Complex Add

With this definition, the previous example’s addition can be rewritten more naturally as "CnumPair.vall +
CnumPair.val2". Existing EXCESS operators can be overloaded, as illustrated here. In addition, it is possible to
introduce new operators (any legal EXCESS identifier or sequence of punctuation characters may be used). For
new operators, we require the precedence and associativity of the operator to be specified, much as in [Ston87b].

Prefix operators can also be defined, and the number of arguments that an operator can have is not restricted. How-

91

ever, functions with three or more arguments cannot be defined as infix operators, and functions that are overloaded

within a single dbclass may not be defined as operators. .

In order to ensure that ADTs fit into the EXTRA query language in much the same way as built-in base types
do, we restrict the form and functions of their dbclasses somewhat. In particular, we require that they be true
abstract data types — their data portion must not be public. We also require function (and thus operator) results to
be returned by value to ensure that expressions behave in the expected manner. And, while procedures are permit-

ted to have side effects, side effects are currently forbidden for functions so that query results will not be dependent

upon query predicate evaluation order.® ADT functions and operators may be used anywhere that built-in base type
functions and operators may appear in queries, but ADT procedure calls may only appear in update query target
lists. By default, equality and assignment operators for ADTs are predefined with bit-wise comparison/copy seman-
tics (as in C++ and E); if this is inappropriate for a given type, the implementor of the type can replace the default

definitions by explicitly overriding them in the E dbclass definition.

Finally, it is important that the query optimizer be given sufficient information to recognize the applicability of
alternative access methods and join methods when optimizing queries involving ADTs. We will follow an approach
similar to that outlined in [Ston86, Ston87b] for addressing this issue, with a few differences. First, optimizer-
specific information will not be specified via the EXCESS/EXTRA interface. Instead, it will be given in tabular
form to a utility responsible for managing optimizer information. The EXCESS query optimizer will do table
lookup to determine method applicability for ADTs (so that ADTs can be easily added dynamically). These tables
will be similar to the access method templates of [Ston86], but expression-level optimizer information (e.g., associa-
tivity, commutativity, complementary function pairs, etc.) will also be represented in tabular form at this level.
Second, ADT functions and operators will be treated uniformly for query optimization purposes. This is different
than [Ston87b], where operators but not functions are optimized. Third, we will support the addition of both new
access methods and new join methods (written by expert users, or "database implementors") to the DBMS through

the rule-based optimization techniques detailed in [Grae87].

® The function/procedure distinction here is based on the existence or absence of a return value. We may relax our side-
effect-free assumption for functions eventually, and it is a convention and not a constraint that the system will enforce.

92

4.3.2. EXTRA Schema Types, Functions, and Procedures

Schema types, which were described in Section 4.1, are defined using the type system provided by the EXTRA
data model. In addition, we provide facilities analogous to member functions of ADTs for defining EXCESS func-
tions and procedures to operate on schema types. However, the fact that they are defined using the EXTRA type
system and the EXCESS query language means that query optimization techniques can be applied to them.
EXCESS functions and procedures are inherited through the type lattice in a manner similar to inheritance for attri-
butes, giving EXTRA an object-oriented flavor. The goal of these facilities is to provide support for derived data,
for writing "stored commands" (as in the IDM-500 query facility {IDM500]), and for data abstraction of the kind

described by Weber [Webe78].

4.3.2.1. EXCESS Functions

As illustrated in an example in Section 4.1.3, associating functions with schema types provides a mechanism
for defining derived attributes. Such functions can be defined via a single EXCESS query of arbitrary complexity,
involving other portions (possibly derived) of the object being operated on and/or other named database objects.
For example, we could associate a function with the Employee type to return the floor that an employee works on as

follows:

define Employee function floor returns int4

(
)

retrieve (this.dept.floor)

Such functions can then be used in queries just like regular attributes, e.g.:

retrieve (Employees.floor) where Employees.name = "Smith"
retrieve (Employees.name) where Employees.floor > 10

EXCESS functions can also have arguments other than their implicit this argument. For example, we could define

the following function and query:

93

define Employce function
youngerKids(maxAge: int4) returns int4
(
retrieve (count(C from C in this.kids
where C.age < maxAge))

)

retrieve (Employees.name, Employees.youngerKids(10))

This example, involving a function that counts the number of children under a certain age that an employee has,
illustrates several points. First, it shows how function arguments may be defined and used. Second, it shows that a
function can be defined in terms of other functions. (Recall that age was defined as a Person function in Section

4.1.3.) EXCESS function and procedure arguments are passed by reference.

A function may return a result of any type, including a schema type, a set of some schema type, etc. Updates
through functions are not permitted. By way of comparison, EXCESS functions are similar to functions in
DAPLEX [Ship81] and IRIS [Fish87]. They can also be viewed as a simplified form of POSTGRES procedure
attributes [Ston87a); in particular, they are like parameterized procedure attributes. We do not support true pro-
cedure attributes, or "EXCESS as a data type,” because procedure attributes are not needed for representing com-
plex object structures in EXTRA as they are in POSTGRES. Also, since such attributes are known only to be of
type POSTQUEL in POSTGRES, and may contain an arbitrary series of POSTQUEL queries, they are problematic
with respect to type-safety and knowing what to expect when writing application programs involving such attri-

butes.

4.3.2.2. EXCESS Procedures

In addition to functions, we support the definition and invocation of EXCESS procedures. These differ from
functions in that they have side effects, they can involve a sequence of EXCESS commands (instead of a single
command), and they do not return results. As an example, suppose that we wished to write a procedure for the
Employee schema type to move an employee from one department to another. We might define such a procedure as

follows:

94

define Employee procedure
ChangeJob(oldDept, newDept: Department)

(
delete E from E in oldDept.employees where E is this
insert into newDept.employees (this)
replace (this.dept = newDept)

)

Then, if we wanted to move all of the employees in the Database Systems department into the Knowledge Base Sys-

tems department, we could use our new procedure to do the job as follows:

Emp.ChangeJob(Emp.dept, NewDept)

from Emp in Employees, NewDept in Departments
where Emp.dept.name = "Database Systems"

and NewDept.name = "Knowledge Base Systems”

As this example shows, procedures are called using a syntax similar to that of the EXCESS update commands.

Since not all procedures may be naturally associated with a single EXTRA schema type, and some might argue
that the example above is a case in point, we also support procedures that are not bound to a particular type. (We
support this option for functions as well.) For example, the procedure above could alternatively be defined as
"define procedure ChangeJob(emp: Employee; old, new: Department)”, with Database Systems employees being
passed in explicitly. This kind of procedure is similar in flavor to the stored commands of the IDM database
machine {IDM500]. However, it is much more general, as we support the use of a where clause for binding pro-
cedure parameters and we invoke the procedure for all possible bindings (instead of just once, with constant param-

eters).

Aside from their syntactic differences, the major difference between procedures that are associated with an
EXTRA schema type and those that are not type-specific is a matter of inheritance semantics. In the type-specific
case, we may choose to redefine the ChangeJob procedure for some subtypes of Employee, such as WorkStudyStu-
dent, but not for others, like NightEmployee. Then, if ChangeJob is invoked on elements of a set containing
instances of Employee and its subtypes, WorkStudyStudent’s ChangeJob will be used for WorkStudyStudent
instances, while Employee’s ChangeJob will be used for Employee and NightEmployee instances. That is, pro-
cedures can be inherited via the inheritance mechanism outlined in Section 4.1. If Changelob is not associated with
a particular type, its definition may still be overloaded. However, a single definition (i.e., the definition applicable to
the Employee type) will be statically selected for such a query. This is similar to the distinction between virtual

member functions and regular member functions in C++ [Stro86].

95

4.3.2.3. Achieving Data Abstraction

We provide an authorization mechanism along the lines of the System R {Cham75] and IDM [IDMS500] protec-
tion systems; this mechanism is described in [Vand88a, Vand88b]. Both individual users and user groups (including
a special "all-users” group) will be recognized, and protection units will be specified via EXCESS queries.
Grantable/revocable rights will include the ability to read and modify specified objects or individual attributes, the
ability to invoke specified functions and procedures, the ability to define new functions and procedures for specified
types, etc. This protection system will serve two purposes: First, it will act as an authorization mechanism for pro-
tecting database objects against unauthorized access and modification, as is typical. Second, it will provide a means
for achieving data abstraction (i.e., encapsulation) for EXTRA schema types. For example, one could choose to
grant access to a given schema type only via its EXCESS functions and procedures, effectively making the schema
type an abstract data type in its own right. (In fact, IDM stored commands are recommended for regulating data-
base activity in a similar way [IDM500].) Features such as the modules of [Webe78] or the object semantics of an

object-oriented data model can thus be captured via a single, more general mechanism.

4.3.3. Generic Set Operations

The final form of extension that we intend to support in the EXCESS query language is a facility for adding
new, user-defined set functions to the language. At a logical level, such a function can be viewed as taking a set of
elements of some type T1 as its argument and returning an element of type T2 as its result. T1 can be any type that
satisfies certain constraints, while T2 must be either a specific type or the same type T1. Aggregate functions are a
classic example here: The "min" function takes a set of values of any type on which a total order is defined, return-
ing the smallest element of the set. The "count" function takes a set of values as its argument, returning the number
of elements in the set (i.e., an integer result). One could imagine adding new functions of this sort, such as

“median" or "std-deviation" for use in statistical applications.

Support for this form of extension has been included in POSTGRES, but in a limited form. In particular, one
could introduce a "median” aggregate function for sets of integers, but not one that works for any totally ordered
type [Ston87b]. The EXCESS approach to such extensions is based on features provided by the E programming
language [Rich87]. E provides a facility for writing generic functions, and it supports the specification of con-

straints on the generic type (e.g., any type that has boolean "less_than" and "equals” member functions). E also pro-

96

vides a construct, called an iterator function, for returning sequences of values of a given type. Implementing a new
aggregate will involve writing a generic E function with one argument, an iterator that yields elements of an
appropriately constrained type T; the generic function should produce a result of either the same type T or else
some base type. This function can then be registered with EXCESS and used with any type that meets its con-

straints.

97

CHAPTER 5§

THE EXCESS ALGEBRA

As described in Chapter 4, the EXTRA/EXCESS system supports the following advanced features that are of
interest here: types and top-level database objects of completely arbitrary structure, multisets, arrays, methods
(written in the EXCESS query language) defined on any type, multiple inheritance of tuple attributes and methods,
and a form of object identity that allows (but does not force) any part of any structure to have identity separate from
its value. None of these features is satisfactorily supported in relational algebra or in any of the more recent
advanced algebras. This chapter demonstrates that these constructs can be managed algebraically. The algebra con-
tains the following original features, which we discuss in more detail below: a type constructor-based approach to
defining the operators; operators and transformations for multisets and arrays; support for object identity via a new
type constructor with associated operators; domain definitions that give a clear semantics to domains involving
object identifiers (OIDs) and arrays; and several alternatives for processing queries involving overridden methods.
Another interesting contribution is the nature of the proof that EXCESS and the algebra are equipollent. Most such
proofs are between algebras and calculi; we omit a calculus and prove direct correspondence with a user-level query

language. The proof is constructive and demonstrates some new techniques.

The remainder of the chapter is organized as follows: Sections 5.1 and 5.2 define and motivate the algebra’s
structures and operators, which are further explained by example in Section 5.3. Section 5.4 demonstrates the
algebra’s equipollence to EXCESS. This section is not intended to establish or discuss the algebra’s equipollence
(or lack thereof) to any other algebra, although we make some general comments on how this might be done in the
future. Some algebraic alternatives for processing queries involving overridden method names are presented and
discussed in Section 5.5. In Section 5.6 we illustrate some of the more interesting new transformation rules of the
EXCESS algebra by giving some examples that make use of them. Section 5.7 concludes the chapter with some
comments on the implementation of EXTRA/EXCESS. A list of the algebraic transformation rules for EXCESS

can be found in Appendix A. The complete equipollence proof is in Appendix B.

98

5.1. The Algebraic Structures

The full definitions of algebraic structures are presented here to explain the semantics of OID domains and for
completeness. A database is defined as a multiset of structures. A structure is an ordered pair (S, I), where S is a
schema and 1 is an instance. Schemas are digraphs (as in LDM [Kupe85]) whose nodes represent type constructors
and whose edges represent a "component-of" relationship. That is, an edge from A to B signifies that B is a com-
ponent of A.

More formally, a schema is a digraph S = (V, E), where V is the set of labeled vertices and E is the set of
edges. Each node is labelled with either "set", "tup", "arr”, "ref", or "val" (corresponding to the four type construc-
tors plus "val", which indicates a simple scalar value with no associated structure). Notice that the "set" constructor,
as discussed in Chapter 4, is really a multiset constructor; "set" is used as a convenient shorthand. There is no pure
"set” type in EXTRA. We also associate a type name with each node. Some of these names will correspond to

named types defined by the user and others will not. Every node has a unique name. Components (fields) of tuples

are also named. Every schema has a distinguished root node. We impose the following conditions on a schema S:
i) Nodes of type "val" have no components.

ii) A node with no components is either a "val" or "tup” node (the empty tuple type is allowed).

noan

iii) Any node of type "arr”, "set", or "ref" has exactly one component. This is equivalent to the statement that
multisets, arrays, and references are homogeneous (contain or point to elements of the same type), modulo

inheritance.

iv) Let deref(S) be S with all edges emanating from nodes of type "ref" removed. deref(S) must be a forest. This
also captures the intuition that, when references are viewed as simple scalar values and not followed, every
type is represented by a tree. Note that this condition implies that every schema cycle contains at least one

node of type "ref".

Figure 5.1 shows an example schema. The root node is at the top and the type names and tuple component
names have been omitted. This schema is a multiset of 3-tuples. Each tuple has a scalar field, a field that is an array

of scalars, and a field that is a reference (OID) to a scalar object.

Next, the domains of values which are defined over the schemas are described. In the definition we will make

use of an operation on multisets, the duplicate elimination operator (DE). DE(S) reduces the cardinality of each ele-

99

Figure 5.1: A schema

ment of a multiset to 1. The complex domain of a schema S, written dom(S), is a set (not multiset) defined recur-

sively as follows, based on the type of the root node of S:

i)

it)

iii)

iv)

v)

val: dom(S) =D, where D is the (infinite) domain of all scalars (excluding OIDs).
n
tp: dom(S)= X dom(S;), where the S, are the components of S. Note that dom(S) = {()}iforder(v)y=n=

i=1

0. This is the standard notion of tuple.
set: dom(S) = { x | DE(x) < dom(SI) A |x|< e}, where S/ is the (single) component of S. The domain is

the set of all multisets such that every element of the multiset appears in the domain of the child of the mul-

tiset node.
e]
arr: dom(S) =(U (X (dom(S1)))) U { []}, where SI is the (single) component of S and "[]" is used to
=1 =
represent an array with no elements (it is legal for a variable-length array to be empty). Since arrays in the
algebra are of varying length, the domain of an array node should contain all possible arrays of all possible

lengths, including empty. So for each length (index variable j) we construct all possible arrays using the set-

theoretic X operator.

ref: dom(S) = R(SI), where S! is the (single) component of S. R(n), for any type n, is an infinite subset of R,

the infinite set of all OIDs. The function R partitions R so that if m # n, R(m) N R(n) = &. Thus any type has

100

an infinite set of OIDs that can only be used on objects of that type. To see that such a construction is possi-
ble, consider the set P of all positive integers and the (countably infinite) set T of all possible type names, and
let f:T->P be a 1-1 function. Then simply let R(n) for the type named n be the set of all integers whose

decimal representation begins with f(n) 1's followed by a 0.

An instance I of a structure with schema S is an element of dom(S). An example instance of the schema in Fig-
ure 5.1 is the following, where {}, [}, and () denote multiset, array, and tuple type constructors, respectively:

{(26,{1,21,%x),(25,[1,y) }. Here, "x" and "y" are distinct OIDs whose value is not available to the user.

Note that so far this definition does not take (multiple) inheritance or null values into account. Intuitively, if we
have A — B (B inherits from A), we want the "real” domain of A to be dom(A) w dom(B). Also, we provide two
types of null values, unk and dne. The unk null appearing as the instance part of a structure indicates that we do not
know the value of the structure, but it does have a value. The dne null indicates that the structure does not really
exist and can be discarded at an appropriate time during query processing (e.g., when no information will be lost by
discarding it). More formally, then, we redefine a domain for schema S to be DOM(S), defined as follows:

n
DOM(S) = {unk, dne} U dom(S) w (v dom(S;)), where we have S — S; in the type hierarchy for each
i=1

1<ign.

This is substitutability, the usual semantics for single or multiple inheritance (see e.g. {Bane87]). However, the
domains of multisets, arrays, and tuples are actually constructed using the domains of their components, while the
domain of a "ref" node is simply a set of OIDs with no relationship to the structure of the component objects. For
example, if we have A — B, then our definition assures us that arrays of A can also have B’s in them, but does not

provide for references to B’s appearing where references to A’s are expected.

To see why this is so, notice that A — B implies that the domain of type A includes the domain of type B. Also
notice that the formal definition for the domain of a set of entities of type A includes all subsets of the domain of A.
Thus something of type "set of A" can take on a value that is a set of B entities. However, part (v) of our definition
says that the domain of the type "ref A" is a set of object identifiers. These include the object identifiers for the type
A and (via the DOM definition) the object identifiers for all subtypes of "ref A". But our inheritance lattice consists
only of A — B, so we are left with a DOM consisting of only the identifiers for objects of type A exactly, and in

particular not containing any identifiers for B objects.

101

Thus the definitions presented so far do not quite model the EXTRA semantics (substitutability). To reflect
those semantics with the current definition we would explicitly need "ref A — ref B", which is different than "A —
B". This is the motivation for the following results, which explicitly specify that OIDs for subtypes can appear
where OIDs for supertypes are expected. Again, the reason for this is that the constructions of parts (i)-(iv) above
use actual domains in constructing other domains, but in part (v) we merely used abstract OIDs without explicitly

including subtypes.

We present (intuitively and formally) five rules that specify the semantics of OID domains, where Odom(A)

will indicate the domain of all OIDs for the type named A.

1) All domains must be infinite. Let => represent logical implication:
(Vo (te T = |Odom(t)|=)

2) The portion of a domain that remains after subtracting the domains of all its subtypes must be infinite. This is

n
expressed as follows, where S =S , ..., 8_is alist of type names and Odom(S) = Odom(S;) :
i=1

R —> S = |Odom(R) — Odom(S)|= oo

3) If S inherits from R then the OIDs available for S are also OIDs available for R (every object of type S is also
an object of type R). In our formalism, this becomes:

R - S = Odom(S) c Odom(R).

4) If R and S share no descendants in the type hierarchy then they have no OIDs in common. Let —* indicate
the transitive closure of the — relation:

Vt(te T = (S =*t) A —(R -3*1)))) = Odom(S) N Odom(R) = B.

5) This rule specifies the semantics of multiple inheritance for OID domains. Intuitively, if each type in a set of
tvpes B inherits from each type in a set of types A, then the OIDs of all types in B are also OIDs for all types
in A. Formally, let A = A], - An and B = Bl’ - Bm be sets of type names, withm=1landn>1. Let A —

B signify that all types in B inherit from all types in A. Then the rule is as follows:

m n
A —B = uOdom(B;)= N Odom(A;)
i=1 i=1

We modify part (v) of our definition to reflect these semantics:

102

v') ref: dom(S)=R(SI)u ({knJl R(S;)), where we have S/ — S; in the type hierarchy for | <i < n.
i=
The domain definitions, including DOM and (v’), now satisfy the semantics for all types. There is a set-
theoretic way of formally specifying the constraints on the domains of schemas of type REF. There is a simple,
intuitive construction that satisfies these formal constraints and can be incorporated into the general definition of
dom(S) for any schema S. We thus have a consistent semantics for the domains of all EXTRA types, including
those using multiple inheritance among named tuple types and optional object identity. Note also that these seman-

tics allow type migration [Fish89] to occur, as long as substitutability is preserved along the way.

5.2. The Algebraic Operators

The orthogonal nature of the type constructors of EXCESS (and those of the algebra) has been incorporated
into the operator definitions. The algebra is many-sorted, so instead of having all operators defined on "sets of enti-
ties", we have some operators for multisets, some for arrays, some for tuples, and some for OIDs (these are the four
"sorts" of the algebra). Since EXCESS has the ability to retrieve, combine, and break apart any EXTRA
structure(s), the algebra should have this ability as well (otherwise it is not a complete execution engine). This is
one motivation for the operator definitions -— for each type constructor we introduce a collection of primitive opera-

tors that together allow for arbitrary restructurings involving one or two structures of that type.

The many-sorted nature of the algebra gives rise to a large number of operators and thus to a large number of
transformation rules (see Appendix A for a list of these rules). At first this may seem to cause an unacceptable
increase in the size of the search space the optimizer will need to examine, but as will be seen, this is not really the
case. The many-sortedness ensures that only a subset of the operators (and thus of the transformation rules) will be
applicable at any point during query optimization. For example, if the optimizer is examining a node of the query
tree that operates on a multiset, the rules regarding arrays need not be applied, in general. The following subsec-
tions describe multiset, tuple, array, reference, and predicate operators, respectively, giving examples of each opera-
tor. Finally, we describe how generic multiset functions (which include aggregates) fit into the algebra. Null values
are treated as constants unless specified otherwise. Each operator of the algebra takes one or two structures as input

and produces a single, entirely new structure as output.

103

5.2.1. Multiset Operations

A multiset [Knut81, Liu77] (also called a "bag" or "collection") is a set that allows a specific element to appear
more than once in the set. Every existing object has an associated cardinality in every multiset S, referred to as
cardS(x), and cardS(x) > 0. Two multisets are equal if every element appearing in either multiset has the same car-

dinality in both.

We provide the following primitive operations on multisets: difference, additive union, Cartesian product,
duplicate elimination, grouping, creation of a multiset, destruction of a multiset, and application of an algebraic
expression to all elements of a multiset. It is interesting to note that the identity A B = A - (A - B) holds for mul-

tisets (when nulls are not involved) as well as sets.

The first two operators (difference and additive union) and two of the array operators, ARR_CAT and
ARR_DIFF, are defined only if the schemas of the elements of the inputs are compatible; i.e., if they are the same
schema or have a common supertype in the tuple inheritance hierarchy (or, if they are references to tuple types, if
their referenced types have a common supertype). Four of the multiset operators (GRP, &, —, and X) can also have
any input be of type array; however, the results are still multisets, so we describe them here. In these operators, if

an input structure is an array, we simply ignore the ordering property of the structure and treat it as a multiset.

Finally, three of the operators take parameters that enable them to mimic the ": Type" and certain uses of ":<
Type" syntax of EXCESS. The GRP, SET_APPLY, and ARR_APPLY operators all may take a parameter that
describes the types of elements to be ignored during the query. These parameters are described below. Note that in

the operator definitions we treat null values in such a way as to preserve as much information as possible.

1) Difference (—type): This operation is defined as a multiset difference. The subscript indicates the type of the
result and will usually be omitted unless the operands are of unequal compatible types with no unique least common

supertype. The cardinality of an element in A — B is:

cardA_B(x) = cardA(x) if X = unk,

max (0, cardA(x) - cardB(x)) otherwise

Example: Let A={1,1,2,3}and B={1,2,2}. Then A~B= {1, 3}.

104

2) Additive Union (w(ype): The subscript indicates the type of the result (see above). The cardinality of an
clement in the additive union is the sum of the two original cardinalities:

cardAwB(x) = cardA(x) + cardB(x)
Example: Let A={1,1,2,3}and B={1,2,2}. ThenA & B={1,1,1,2,2,2,3}.

3) Cartesian Product (X): This is essentially the same as the set-theoretic Cartesian (cross) product operator.
Each occurrence of every element in A is paired with each occurrence of every element in B to give a multiset of 2-

tuples, each of which has an element of A in the first field and an element of B in the second field.
Example: Let A={1,2} and B={3,3}. Then AxB={(13),(13),(23),(23)}.

4) Duplicate Elimination (DE): This operator converts a multiset into a true set. Any element with cardinal-

ity > 1 has its cardinality changed to 1:

card card A(x) if X = unk,

pEA)®) =

1 otherwise

Example: Let A ={1,1,2}. Then DE(A) = {1, 2}.

5) Grouping (GRP): This operator partitions a multiset (or array; see above) into equivalence classes based
on the result of an algebraic expression applied to each occurrence in the multiset. The result will be a multiset of
pairwise disjoint multisets, each of which corresponds to a distinct result of the expression applied to the
occurrences of A. Each of these multisets will contain the original occurrences appearing in A, not the results of

applying the expression to these occurrences. The special symbol "INPUT" is used to indicate an occurrence of the

input multiset; it is a primitive form of variable binding'. Recall that GRP also has an optional parameter (not
shown in the example below) that can be of the form ": Type" or ":< Type". The first form indicates that the multiset
should be interpreted as if only occurrences of type T that are not also occurrences of any subtype of T are in the
multiset. The second form indicates that the multiset should be interpreted as if only occurrences of type T and its

subtypes are in the multiset; all other elements are ignored.

! To simplify the presentation we use only this special symbol. More complete and flexible variable binding is easily ob-
tained by specifying an additional parameter to GRP (and to SET_APPLY, ARR_APPLY, and COMP) which indicates the name
to be used, instead of "INPUT", to represent successive elements of the input. All comments and results regarding the algebra
still hold if this extension is made.

105

Example: Let A= { (1 2), (1 3),(25)}. Then GRP A)={{U2),03)1}, {25})}, where i is the

n]UNPUT)
tuple projection operator (described later). This GRP operation partitions the tuples of A into equivalence classes

based on the value of the first attribute of the tuple.

6) Create a Set (SET): This operator takes a single structure and makes a singleton multiset out of it. The
SET operation is always defined--that is, any structure may become the only occurrence in a newly created multiset.
This operator is useful (in conjunction with &), for example, when one wishes to add a single element, which does

not already occur inside some multiset, to an existing multiset.
Example: LetA=[1235]. Then SET(A)={[1235]}.

7) Destroy a Set (SET_COLLAPSE): The SET_COLLAPSE operator takes a multiset of multisets and returns

the & of all the member multisets. A similar operator appears in [Abit88a].
Example: Let A= { {1,2,3},{2,3,3}}. Then SET_COLLAPSE(A)={1,2,2,3,3,3}.

8) Apply a Function to all Occurrences (SET_APPLY): This operator applies an algebraic expression E to
all occurrences in the input structure, which must be a multiset. The new instance is simply the multiset consisting
of the results of applying E to each occurrence of every element in the input multiset. If the result for any
occurrence is dne, this constant is not placed in the result multiset. The special symbol "INPUT" is used to indicate
an occurrence of the input multiset; it is a primitive form of variable binding. SET_APPLY is an important looping
construct without which we could not even simulate the relational algebra. The optional parameter (not shown in
this example) can be of the form ":T" or ":<T". The first form indicates that the multiset should be interpreted as if
only occurrences of type T that are not also occurrences of any subtype of T are in the multiset. The second form
indicates that the multiset should be interpreted as if only occurrences of type T and its subtypes are in the multiset;

all other elements are ignored.

Example: LetA= { {1,1,2},{2,3,4},{1}}. ThenSET_APPLY Ay={{1,2},{2.3,4},{}}

INPUT-{1}

5.2.2. Tuple Operations

The notion of a tuple in EXTRA/EXCESS is the usual notion of tuple. It consists of a fixed number of ele-
ments, each of which may be of a different type. The following operations are provided for tuples: concatenation of
two tuples, creation of a tuple, and extraction of a field from a tuple (the result of this operator is not a tuple, as in

relational projection, but a single field from within the tuple). A projection operator is easily simulated in terms of

106

these (see Appendix A).

1) Concatenate (TUP_CAT): This operator takes two tuples and produces a tuple whose fields consist of all
fields of the first tuple (in order) followed by all fields of the second tuple (in order). Notice that if either input is the
empty tuple then the result is simply the other input structure. One important use of this operator is to help simulate

the relational cross product operator.
Example: Let T1=(567) and T2 = (9 14). Then TUP_CAT(T1,T2)=(5679 14).

2) Create a Tuple (TUP): This operator takes a single structure and makes a unary tuple out of it. The TUP
operation is always defined--that is, any structure may become the only field in a newly created tuple. TUP can be

used, for example, along with TUP_CAT to add a field to an existing tuple.
Example: Let T =[abc]. Then TUP(T)=([abc]).

3) Field Extraction (TUP_EXTRACT): This operator takes a tuple and returns a single field of the tuple as a
structure. This differs from the relational T operator, which merely removes some fields from the tuple but still pro-

duces a tuple.

Example: Let T = (9 18 27). Then TUP_‘EXTRACTz(T) = 18.

5.2.3. Array Operations

As is the case with multisets, arrays in EXTRA/EXCESS are homogeneous modulo tuple type inheritance. An

EXTRA array is one-dimensional,? and has either a fixed finite positive integer number of elements or a variable
(finite but unbounded) number of elements. In the latter case, the array can grow and shrink at any point. In the
algebra, however, we do not distinguish between these two cases. The operators have been designed so that arrays
of either type can be manipulated with the proper semantics provided the right operators are used. An array has O or
more elements (with “[]" used to indicate an empty array), and the indices begin with 1. In EXTRA/EXCESS,
arrays can be associated with a range variable just like multisets can. This implies that the functionality of multisets
should also be provided for arrays. However, it is not clear that we always want to destroy the order of an array
during query processing. There are applications where it might be useful, for example, to see the results of a join of

two arrays of tuples printed out in an order specified by their ordering in the original arrays.

? Multi-dimensional arrays can be constructed using arrays of arrays, as in the C programming language [Kern78].

107

The operations which can be performed on arrays are: extract a subarray, concatenate two arrays, create an
array, extract an element from an array, apply an algebraic expression to all elements of an array, collapse an array
of arrays into an array, take the Cartesian product of two arrays, eliminate duplicates from an array, and subtract one

array from another.

1) Subarray (SUBARR): This operator extracts all elements in an array from a given lower bound to a given
upper bound and produces an array consisting of these elements in the order found in the original (input) array. The
bounds are integers 2 1 or the special token "last", indicating the current last element of the array (which could be 0

if the array is empty).
Example: Let A=[11235813]. Then SUBARR3 5(A) =[235]

2) Concatenate (ARR—CAszpe): This operator takes two arrays and produces an array whose elements con-
sist of all elements of the first array (in order) followed by all elements of the second array (in order). The subscript

serves the same purpose as that for multiset —.
Example: Let Al ={12357]and A2=[111317]. Then ARR_CAT(A1,A2)=[12357111317].

3) Create an Array (ARR): This operator takes a single structure and makes a 1-element array out of it. The

ARR operation is always defined--that is, any structure may become the only element in a newly created array.
Example: Let A={47,3}. Then ARR(A)=[{47,3}]

4) Extract an Occurrence (ARR_EXTRACT): This operator takes an array and returns a single element of it
as a structure. This differs from the SUBARR operator, which removes some elements from the array but still pro-

duces an array.
Example: Let A=[{1,2}{9}{3}] Then ARR_EXTRACTZ(A) ={9}.

5) Apply a Function to all Occurrences (ARR_APPLY): This operator applies an algebraic expression E to
all occurrences in the input structure, which must be an array. The special symbol "INPUT" is used to indicate an
occurrence of the input multiset; it is a primitive form of variable binding. The optional parameter (not shown in
this example) can be of the form ":T" or ":<T". The first form indicates that the array should be interpreted as if
only occurrences of type T that are not also occurrences of any subtype of T are in the array. The second form indi-

cates that the array should be interpreted as if only occurrences of type T and its subtypes are in the array; all other

108

elements are ignored. By "ignore" here, we mean "replace by dne™.
Example: Let A=[(ab)(cd)]. Then ARR—APPLYnl(INPUT)(A) ={(a)(c)]

6) Destroy an Array (ARR_COLLAPSE): The ARR_COLLAPSE operator takes an array of arrays and
returns the concatenation (in order) of all the member arrays.
Example: Let A= [[1,2,3],[2,3,3]]. Then ARR_COLLAPSE(A)=[1,2,3,2,3, 31

7) Array Difference (ARR_D[FFtyPe): This operation is defined similarly to the multiset difference. The sub-
script is as for — (see above). The difference of two arrays A and B contains, in order, every element in A which
does not also appear in B. If an element appears in A i times and in B j times, this is interpreted as follows for i,j 2
1: If j 2 i then no occurrences of the element in A will appear in the result. Otherwise the last i—j occurrences of the

element in A will appear in the result.
Example: Let A=[565]and B={75]. Then ARR_DIFF(AB)=[65].

8) Array Duplicate Elimination (ARR_DE): This operator removes all occurrences but the first of every ele-

ment in an array.
Example: Let A={565]. Then ARR_DE(A)=[56].

9) Array Cartesian Product (ARR_CROSS): This is essentially the same as the x operator defined for mul-
tisets. Every element in A is paired with every element in B to give an array of 2-tuples, each of which has an ele-

ment of A in the first field and an element of B in the second field.

Example: Let A=[12]and B=[33]. Then ARR_CROSS(A,B)=[(13),(13),(23),23)1].

5.2.4. Reference Operations

References in EXTRA/EXCESS can be thought of as object identifiers (OIDs) which refer to objects that exist
in the database independently of objects that reference them (except for their owners; see Chapter 4). Two opera-

tors are available on references: dereferencing and creation of a reference from an existing entity.

1) Dereference (DEREF): This operator effectively collapses a node in the schema graph of a structure. The

node corresponding to the part of the structure being dereferenced (materialized) is replaced by its child. The new

3 A version of ARR_APPLY in which dne nulls are not placed into the result can be simulated using ARR_DE and
ARR_DIFF.

109

instance, instead of being just an object identifier, is now a complete element of the domain of the child node.

2) Reference (REF): This operator adds a ref-node to the schema graph of a structure and converts its
operand into a reference to the operand. This operation is defined for all inputs. This might be useful, for example,

if we wish to create and manipulate references rather than actual data during the processing of some queries.

5.2.5. Predicates

Since algebras are functional languages, we treat predicates in a functional manner. That is, a predicate is an
operation (called COMP) which returns its (unmodified) input exactly when the predicate is satisfied (true). Other-

wise a null value is returned. COMP is a partial function. (Similar approaches are taken in [Osbo88, Abit88a].)

Comparisons (COMP): This operator takes a single structure as input and compares it to an arbitrary alge-
braic predicate using one of a fixed set of comparators. It bears a resemblance to the relational select operator
[Ullm89], but it operates on a single structure rather than a set of tuples. There are three truth-values in our predi-
cate system: T (true), F (false), and UNK (unknown). Note that UNK is a truth value, while unk is a data value. If
the predicate (P) evaluated against the input is T, COMPP(S) = S. If the value of the predicate is UNK the COMP
operator returns unk. If the value of the predicate is F then COMP returns dne. Dne nulls are discarded whenever
possible during query processing -- for example, a relational selection is easily simulated because dne nulls appear-

ing in a multiset are ignored.
A predicate is defined recursively as follows:
i) For arbitrary algebraic expressions E1 and Ez’ the following are (atomic) predicates: E1 = Ez’ El == Ez’ E1 €
E2, E ee E,l,E1 cE, E, CE, and El E E,.
iy For two predicates P and Q, (P A Q) is a predicate and (—P) is a predicate.
iiiy Nothing else is a predicate.

Expressions in the predicate can contain the shorthand symbol INPUT, referring to the input structure S. The
comparison symbols =, €, and ¢ are given their usual mathematical interpretation. The == and € € comparators are
explained below; essentially, they represent pure symbolic equality as opposed to placing a semantic interpretation
on the null constants. The [symbol is an array analog to the € symbol for multisets. We say A [B for an array
B iff A can be obtained from B by performing an ARR_EXTRACT operation on B. The [T symbol is an array ana-

log to the < symbol for multisets (the same symbol is used for the same purpose in [Guti89]). Wesay that A [B

110

for two arrays A and B iff A can be obtained from B by performing a SUBARR operation on B. (Note that A may
be obtainable in several different ways; i.e., it may appear more than once as a subarray of B.) Figure 5.2 shows the
applicability of the comparison symbols to the different kinds of structures available in EXTRA. The comparators
== and € € have the same applicability as = and €, respectively. An entry in the table means that the corresponding
comparison is defined for the predicate A <op> B, where <op> is the comparison symbol found in the table and A
and B are algebraic expressions or integers indicating (a component of) the input structure. Entries in parentheses
indicate that the comparison symbol is redundant and merely a shorthand for a more complicated predicate. For
example, two tuples are = iff each of their fields is =. The shorthand simply avoids a potentially cumbersome con-
junction. The [T and array equality comparators exist for the same reason. For multiset-multiset comparisons,
equality is clearly redundant since two multisets are equal if each is a subset of the other. The subset comparator, in
turn, can be simulated using lower-level comparators and more operators, but in the algebra this becomes extremely
messy, while in a calculus-based language it is trivial. The COMP operation is undefined if an atomic predicate

does not follow the rules of this table.

In the COMP operator, equality (and thus multiset membership, which is conceptually an equality test against
every occurrence in a multiset) is based solely on value equality. The special null constants are given a semantic
interpretation, as shown in the following table from [Gott88], which shows the truth-values resulting from the com-

parison of two constants to determine either equality or multiset membership:

set tup arr ref | val
set | €,(9,=) (E)
tup € =) (E)
arr € (E)7 (=)1 (E)
ref € (E) =
val € (E) =

Figure 5.2: Comparator applicability table

=, € val2 unk dne
vall vall=val2 | UNK F
unk UNK UNK F
dne F F T

Notice that dne = dne. There is only one instance of "nothing"; it is always the same.

It is also useful to pose queries which treat null values as a symbolic constant rather than as a semantic constant
[Zani83, Gott88]. Thus we allow two auxiliary comparators, == and e €, which force the null constants unk and

dne to be treated like any other constants. That is, the above truth-table is replaced with this one:

==, €€ val2 unk | dne
vall vall=val2 F F
unk F T F
dne F F T

The final truth-value of a predicate will be determined using the following truth-tables for A and —, also

derived from [Gott88]:

PlA P2 F T UNK
F F F F
T F T UNK
UNK F | UNK | UNK

P —=P

F T

T F

UNK || UNK

Examples:

i) Jet A=(14641) Then COMPE(A) =(14641)=A, where E is the algebraic expression
TUP_EXTRACT, (INPUT) = TUP_EXTRACT 4(INPUT). The predicate is satisfied, so the qualifying input struc-

ture is returned.

112

ii) Let A be as above. Then COMPE(A) = dne, where E is the algebraic expression

TUP_EXTRACT3(INPUT) =9, The predicate is not satisfied (it evaluates to F), so dne is returned.

5.2.6. Generic Multiset/Array Operations and Extensibility

As mentioned in Chapter 4, EXTRA/EXCESS provides generic multiset functions. Such functions take a mul-
tiset or array of objects of some type (say T1) as input and produce an object of type T2 as output. T2 is either the
same type as T1 or is some other type. T1 may be a type which satisfies certain constraints rather than a specific
type (hence the word "generic"). The only such constraints currently provided for are those that specify a collection
of operators which must be defined for type T1. Each generic function in effect defines a new operator in the alge-

bra.

When a generic multiset function, say G, is invoked in the query language, semantic checking of the constraints
on T1 will occur before algebraic query processing begins. Within the algebra, G(E), for some algebra expression
E, will be defined iff E is a multiset or array. G will return a structure of type T2. Since T1 and T2 are EXTRA
types, there are no problems in composing G with any of our other operators as defined above. G can treat null

values in any way its implementor chooses.

5.3. Algebraic Query Examples

This section is intended to give the reader the flavor of the algebraic queries and to illustrate the utility of some
of the operators. We present two EXCESS queries and an algebraic (but not necessarily optimal) representation for
each. The queries are over the database of Figure 4.6 of Chapter 4. In the second example we use a graphical nota-
tion to simplify the presentation. An arc from A to B in such a graph is used in place of the linear algebraic expres-
sion B(A), meaning of course that the input of B is the result of A. More examples can be found in [Vand90] and in

Section 5.6.
Example 1:

Figure 5.3 is a simple query that returns the name and salary of the 5th element of the TopTen array.
Example 2:

The query in Figure 5.4 is a functional join [Zani83] that retrieves the names of the departments of all employ-

ees who work in Madison. The first expression here converts Employees to a multiset of tuples from a multiset of

113

references (each occurrence in the input multiset is dereferenced). The next node up in the graph selects the tuples
such that the employee works in Madison. Then we dereference the "dept” attribute of the qualifying tuples and
replace these tuples with the dereferenced "dept” value. The result is a multiset of 1-tuples obtained by projecting

the "name" attribute.

5.4. Algebraic Expressiveness

The EXCESS algebra was designed to implement the EXCESS query language, not to reflect a database-style
calculus such as those of [Banc86, Abit88a]. Thus the interesting question of expressive equivalence for this alge-
bra is not whether it can express exactly the queries of some formal calculus but whether it can express exactly the
queries of EXCESS. Furthermore, we do not address here the issues of computable queries and complexity classes,

as is discussed in [Chan88].

It is, of course, crucial that any EXCESS query be expressible in the algebra. This direction of the proof is
constructive, and thus it also provides a complete semantics for the EXCESS query language. The tortuousness of
the EXCESS to algebra reduction is a result of EXCESS’s derivation from relational query languages. It is more

amenable to the standard "set-of-tuple" queries than to anything else in particular.

The other direction of the equipollence is also interesting in that it restricts the optimization alternatives to the
smallest set possible given the power of EXCESS and the structure of the algebra and its rules. It also ensures that
intermediate steps in the optimization process are always correct representations of EXCESS queries--no special
“tricks" are needed to bring an optimized query back into a form that represents an EXCESS query. Finally, this

also means that any expressiveness results regarding the algebra can be applied to EXCESS as well.

retrieve (TopTen(5].name, TopTen{5].salary)

(DEREF (ARR_EXTRACT 5 (TopTen)))

n
name,salary

Figure 5.3: Query Example 1

114

range of E is Employees
retrieve (E.dept.name) where E.city = "Madison"

SET_APPLY

T (INPUT)
, name

SET__APPLYDEREF(TUX__EXTRACT dept(IN PUT))

SET_APPLY ,
COMPrrUP—EXTRACrI«CIty(INPUT)::nMadlsonn (INPUT)
A

SET“APPLYDEREF (INPUT)
A

Employees

Figure 5.4: Query Example 2

Notice that the proof proceeds without an intermediate calculus—-the algebra is reduced directly to the user-
level query language and vice-versa. We sketch the proof here and point out its interesting features; the complete

proof is in Appendix B.

Theorem:

The EXCESS query language and algebra are equipollent.
Proof:

i) Reduction of EXCESS to algebra: The proof that EXCESS is reducible to the algebra is an induction on the syn-
tactic structure of an EXCESS query. It is interesting to note that this inductive proof forms the outline of an algo-
rithm to translate EXCESS to an initial algebra expression for optimization; thus, it is a constructive proof. This
algorithm works basically like one of the methods for translating a QUEL-like relational query into relational alge-

bra [Kort91]: everything in the retrieval list is combined using either joins or cross-products, then the criteria of the

115

"where" clause are applied, then the actual information desired is "projected” to form the final result. Some of the
complications in EXCESS arise because elements of the retrieval list are not merely attributes of a range variable —
they now correspond to queries constructed using SET_APPLY, TUP_EXTRACT, DEREF, and ARR_EXTRACT
(among other operators). These queries and queries for "where" clause comparands are built up using queries that

represent the appropriate range variables.

In addition to providing a construction for an initial algebra version of a query, this half of the proof quite
naturally gives a complete semantics to EXCESS queries. Specifically, using the constructions of the proof, every
possible EXCESS query now has a precise meaning in terms of the formally defined algebra, making the retrieval
portion of the EXCESS language completely specified and unambiguous. Also, it is interesting to note that all of the

algebra’s operators are used in the proof, indicating that the set of operators is probably minimal.

The proof employs an interesting technique in its translation of an EXCESS query, the basic form of which is
"retrieve (<result_list>) from <from_list> where <where_clause>". The need for this technique, described below,

arises from a consideration of queries such as the following, based on the EXTRA database defined in Figure 4.6:
retrieve (Employees.name, Employees.kids.name, Employees.kids.age)

Clearly the desired result is a set of pairs. Each pair in the result corresponds to an employee, and each of these
pairs contains the employee’s name and a set of pairs -- one for each child of the employee. These are the semantics
of the query. Thus we want a range variable to range over Employees and within each employee, a range variable
over his kids. Furthermore, we want the same range variable to be used in the last two elements of the result list, to
ensure that a kid’s name and age are presented together. We specifically do not want a single range variable which
ranges over just employees and, for each employee, retrieves his name, the set of all his kids’ names, and the set of

all his kids’ ages. This would lose the relationship between names and ages.

Thus it is important to somehow correlate the two entries of the result list in the above example to ensure that
the same range variable, ranging over a set of kids, is used for each of them, and that the names and ages are pro-
jected from this same range variable. The technigue we introduce to account for these semantics is called primary
components. Briefly, the primary component of an element in the result list is the largest prefix of the result that is
shared with any other result in the result list. In our example, the last two results in the result list have the same pri-
mary component, "Employees.kids". The primary component of "Employees.name” is "Employees”. The complete

proof (presented in Appendix B) describes the details of how primary components are used to ensure the semantics

116
of EXCESS queries.

i) Reduction of algebra to EXCESS: The other direction of the proof is a traditional case-based inductive proof like
those found in [Ullm89, Abit88a, Roth88]. We omit most of the cases of the inductive step as our goal here is sim-
ply to give a flavor of the proof and to demonstrate that the proof is straightforward, due mainly to the simplicity of
the algebraic operators and their resemblance to constructs in EXCESS. The proof proceeds by induction on the
number of operators in an algebraic expression E. An expression in the algebra consists of one or more named,

top-level database objects and 0 or more operators.

Base Case: 0 operators in E
In this case, E = R, a named, top-level database object. The EXCESS query is:
retrieve (R) into E
The "into" syntax is used because the inductive case assumes that smaller algebra expressions have been

retrieved into top-level database objects and these named objects can be used for further processing.

Inductive Case: 1 or more operators in E
Assume that all expressions with < n operators (n 2 1) have EXCESS counterparts. There are 23 cases

(operators) to consider. These include (among others):

° E = El - E2. In this and subsequent cases, assume that E1, E2 have been retrieved into top-level database
objects of the same names (this is possible via the induction assumption and the "retrieve ... into"
statement). The EXCESS code for this query is:

retrieve (x) from x in (E1 - E2) into E

e E =El x E2. In EXCESS:

retrieve (El1, E2) into E

® E = SET (E1). Each type constructor can be used in the target list of a retrieval for output formatting pur-
poses. This translation uses the set constructor:

retrieve ({ E1 }) into E

° E= ARR_A]:'PLYEl (E2). We first define a type for the elements of the input array (E2). Then a function is
defined that applies E1 to structures of this type (this is possible because of the induction assumption; <E1>

indicates the EXCESS statement(s) corresponding to algebra expression E1). Finally, this function is invoked

117

on the clements of E2 (any type may have a function defined on it, and the function is invoked using the dot

notation, whether the type is a tuple type or not).

define type e2_elt : <type(el(E2))>
define e2_elt function f () returns <type(El(elt(E2)))>
(
<El>
)

retrieve (x.f) from x in E2 into E

This concludes the inductive case, completing the proof that any query of the EXCESS algebra can be

expressed in EXCESS. Since both directions of the equipollence hold, the theorem is proved. [

A few general remarks about the algebra’s expressive power are in order. First, it is capable of simulating most
of the algebras mentioned in Chapter 2 as long as these algebras do not contain the powerset operator (with the
obvious exception of [Beer90], which is really a "higher-level" algebra). We state without proof that our algebra is
incapable of expressing the powerset. (A proof would simply involve demonstrating that none of our operators can
generate a result whose size is exponential in terms of the size of its inputs -- such an ability is required to compute

a powerset.)

This result provides an important upper bound for the algebra’s expressiveness and computational complexity.
This is because the powerset operator, which returns the set of all subsets of its input set, is inherently exponential in
nature and (in at least some algebras) allows for the formulation of least fixpoint queries in the algebra [Gyss88].
Second, it has been observed that the addition of the powerset operator to some algebras has the same effect as
adding while-loops with arbitrary conditions [Gyss88]. We emphasize that such loops are fundamentally different
from the style of loop exemplified by the SET_APPLY operator. The latter style of loop executes a statement on
each element of a (multi)set in turn. The former kind of loop executes a statement many times, but is not capable of

executing the statement on each element of a set (it is not an iteration loop).

5.5. Algebraic Treatments for Overridden Methods

This section describes method overriding in EXTRA/EXCESS and a new algebraic approach for processing
queries that invoke overridden methods on collections of objects that may be of different types due to the (multiple)

inheritance hierarchy for tuple types. Both attributes and methods are inherited by a subtype. A method, in

118

EXTRA/EXCESS, is simply an EXCESS statement (or sequence of them) defined to operate on structures of a cer-
tain EXTRA type and returning a structure of some EXTRA type. (In some proposals [Grae88, Kort88], methods
are written in a general purpose programming language and database-style optimization is used only if the method is
expressible in the algebra.) When an EXCESS method is defined, it is translated into an algebraic query tree that
will execute the method. When the method is invoked, its stored query tree is "plugged in" to the appropriate place
in the invoking query tree. The entire query, including the algebraic representation of the method, may now be
optimized as a single query. This is clearly better than using a "black box" version of the method, in which the
method’s query tree can not be optimized along with the invoking query. For example, if (in the database of Figure
4.6) we define the following method that returns the social security number of an Employee’s kid with name
"kname":
define Employee function get_ssnum (kname: char(])

returns int4

(
retrieve (this.kids.ssnum)
where {(this.kids.name = kname)
)
we may be able to take advantage of indices or cached attributes [Maie86b, Shek89] if a particular Employee (or set
of Employees) has such enhancements. This also allows for transformations that involve nodes in the stored query
tree interacting with nodes in the invoking query tree; some examples of this can be found in [Beer90]. Thus we

want to be able to optimize the algebraic query tree for the method while taking such query-specific information into

account.

This strategy encounters difficulties when method definitions are allowed to be overridden by subtypes, as is

allowed in EXTRA. As an example, suppose the following method is defined on the Person type of Figure 4.6:

define Person function £ (<input_types>)

returns <output_type>

{ <Pbody>)
Now we want to override the body of this method for each of the types Student and Employee. For such overriding
we require that the type signatures of all the methods be identical (although it may be possible to relax this slightly).
We add the following statements:

define Student function f (<input_types>)

returns <output_type>
{ <Sbody>)

119

define Employee function f (<input_types>)
returns <output_type>
(<Ebody>)
create P : { Person }
The only changes are to the function bodies. The set P can contain Person structures and (because of substitutabil-

ity) Student and Employee structures as well. Now suppose the following query is posed:

retrieve (P.f(<input_args>))

To process this query we must ensure that the proper stored query is invoked for each Person in P. One
approach to this is fairly straightforward: the invoking query is optimized without taking the query trees for
<Pbody>, <Sbody>, and <Ebody> into account. Whenever the query needs to call "f" given a particular Person, we
check (at run time) the actual type of the Person and then invoke the appropriate query tree (possibly with some
additional run time optimization). The necessary information could be specified to the appropriate algebraic opera-
tor (either SET_APPLY or ARR_APPLY) by providing a "switch table" that, given a type, returns a pointer to the
appropriate query tree to invoke. This switch table could be implicitly associated with the set P, eliminating the

need to have such a parameter present in the algebra.

While the previous solution is certainly correct and feasible, it eliminates the important compile time optimiza-
tion opportunities mentioned above (a more concrete example is given below). There is a second approach that will
allow this optimization to take place. We introduce a new parameter to the SET_APPLY operator that is a type
name (T). T indicates that only objects that are exactly of type T are to be processed. For example, if T is "Person”,
then Student and Employee objects are ignored. The solution is to use this version of SET_APPLY for each type in
the relevant portion of the hierarchy then union the results using & . In the above example, the initial query tree
would look like Figure 5.5 (& is binary). Each SET_APPLY now has a type name as a parameter as well as the
algebraic expression to be applied to each element of the scan (<Pbody>, <Ebody>, and <Sbody> are themselves
query trees that can be manipulated by the optimizer, as in the examples of Section 5.3). This query can now be
optimized at compile time, and can take advantage of any transformations involving <Pbody>, <Ebody>, and
<Sbody>. The query plan will become invalid if the type hierarchy of Person changes. An easy initial improvement
to this strategy would be to do only as many SET_APPLYs as there are distinct method implementations. E.g.. if

Student did not redefine f(), only 2 SET_APPLY’s would be needed (one for Employee, one for Person/Student).

120

N

SET_APP LYPerson,<Pb0dy>

TN

SET_APPLY

@

SET_APPLY

Employee,<Ebody> Student,<Sbody>

Figure 5.5: A W -based approach to overridden method invocation

In EXTRA/EXCESS both of these solutions to the method overriding problem are feasible. In some cases it
may be more efficient to use the first approach and in other cases the ¥ -based approach may provide some useful
optimizations. For example, suppose "f" is a function called "boss" which, given a person "p", returns the name of
the person in charge of p’s life. For the Person who is not a Student or Employee, this would simply return the
Person’s name (he is his own boss). For a Student it would return the name of his advisor and for an Employee the
name of his manager. Each of these method bodies would be quite simple (at most a DEREF and a
TUP_EXTRACT), not allowing for much compile time optimization, and the first technique described above would

certainly be preferable to scanning P three times, as would be required in the second approach.

However, if "f" is extremely complicated, the ability to optimize the entire query will be beneficial. In particu-
lar, if an overridden method involves scanning a component set or array that is much larger than the containing set
or array, the cost of scanning the containing set or array several times becomes negligible. For example, if P is very
small and the sub_ords attribute of each Employee is very large, then a query invoking an overridden method that
scans sub_ords should use the & -based approach so that the most expensive part of the query can be optimized at

compile time. The & -based approach is also advantageous in the presence of certain types of indices. For

121

example, if we have an index on all the Students in P, an index on the Employees of P, and an index on the Persons

of P, the need to scan P three times when using the & -based approach disappears.

5.6. Algebraic Transformations

This section describes a few of the new transformation rules that can be used to optimize EXCESS queries and
illustrates their use via example queries. A more complete list of the rules is in Appendix A, which also lists a few
rules that are familiar from the relational model to facilitate comparisons. The algebra is capable of simulating
ncarly all the transformations found in the literature (see Chapter 2), but here we emphasize the original rules. Each
example presents an EXCESS query over the database of Figure 4.6 and a series of algebraic representations of that
query, in a manner similar to that of Section 5.3. None of these query trees is necessarily intended to be the final
plan for the query. Each of them represents an alternative execution strategy to be examined by the optimizer.
Some of the trees are obtained using heuristics that are always beneficial, but the value of other transformations may
depend heavily on the nature of the data. In these examples we take some liberty with the details of the algebra in

order to clarify the presentation, but we lose none of the essence of the queries.
Example 1:

This query retrieves, without duplicates, the names of all advisors of Students, grouped by their students’
departments. For this example, assume that the "advisor” field of Student is a value (the advisor’s name) instead of
a reference to the advisor. The EXCESS query is:

range of § is Students, E is Employees

retrieve unique (S.dept.name, E.name) by S.dept
where S.advisor = E.name

Figure 5.6 is one way to execute the query — it is similar to what would be produced as an initial query tree by
the EXCESS parser. We omit the initial dereferencing of Students and Employees. The query joins the two sets
using an operator similar to relational join (defined in Appendix A), then groups the result (some details are omitted
form this node), performs the final projection (details omitted here also), and eliminates duplicates. Figure 5.7
shows the application of a rule that pushes DE ahead of grouping; this is especially advantageous when the duplica-
tion factor is large, as it is likely to be here. We simultaneously take advantage of the ability to move relational 1t
ahead of GRP if the 1 produces the attributes used by GRP. Here we assume that the new 7 has been properly

adjusted. In Figure 5.8 we create another alternative by pushing the DE and relational rt past the "join" node. This

SET_APPLY - (SET_APPLY__ _(INPUT))

1
GRPS.dept

T

rel_j Omadvisorzname
ﬂ K
S E

Figure 5.6: Ex. 1, initial

GRPS.dept

f

DE (SET_APPLY
T n<...>

rel“] Omadvisor=name
,/? €\
S E

)

Figure 5.7: Ex. 1, Ist transformation

123

GRPS .dept

.. ;
rel join |, .
- advisor=name

P %
SET_APPLY SET_APPLY

T n<...> T n<...>

S E

Figure 5.8: Ex. 1, 2nd transformation
results in DE operating on |S | +|E|occurrences rather than (in the worst case) |S | * |E|occurrences. The DE and

have been separated into two nodes in Figure 5.8 to clarify the presentation.
Example 2:

The result of this query is the names of all Students whose major department is located on the 5th floor. The

names are grouped by department division (e.g. Engineering, Arts and Sciences, etc.). The EXCESS query is:

range of S is Students
retrieve (S.name) by S.dept.division
where S.dept.floor = 5

An algebraic representation appears in Figure 5.9. Ignoring the initial dereferencing of Students, we group the
multiset on the division attribute of its dept attribute, then eliminate the students from departments not on floor 5,
then project the name field. The top three nodes in Figure 5.9 omit some non-essential details. Figure 5.10 shows
one way of optimizing the query: successive SET_APPLYs are collapsed, twice, to get this query. First we col-
lapse the top two nodes of the query in Figure 5.9 into one node to eliminate one scan of the set, then the query of
Figure 5.10 is obtained by doing the same thing to the subscript of the new top node of the query. The ¢ and & are
combined into one SET_APPLY by breaking ¢ down into its definition, which is simply SET_APPLYCOMP. This
SET_APPLY first compares the floor attribute of the student’s dept attribute to 5, and if the equality holds, the 1t is
applied. The outer SET_APPLY merely invokes the inner one on each group formed by the GRP operation. This

ability to optimize within the subscripts of operators in a straightforward manner is extremely useful.

SET__APPLYSET” APPLY.__

SET_APPLY
O g oo (DEREE(dept)=5

>

GRP
ndivision(DEREF(dept))

f

Figure 5.9: Ex. 2, initial

S_A

S_A
nname(COMPn ﬂoor(DEREF (dept))=5(INPUT))

GRP
T division(DEREF(dept))
A

S

Figure 5.10: Ex. 2, Ist transformation (S_A is SET_APPLY)

125

SET‘APPLYS ET_APPLY
T <>

GRP
T

division(dept)
SET_APPLY T
COMPnﬂoor(dept#S(nname,DEREF(dEPt

T

S

)(INPUT))

Figure 5.11: Ex. 2, alternative 1st transformation

Another way of optimizing this query is presented in Figure 5.11, which is derived directly from Figure 5.9.
Two rules are used to obtain this version of the query. First, we make use of the fact that selections can be pushed
ahead of grouping, with enormous savings if the selectivity factor is low, which it could be here. The other optimi-
zation made in Figure 5.11 is not as obvious. We rewrite the COMP operation using a rule that allows any expres-
sion to be pushed inside of a COMP, as long as operators subsequent to the COMP take into account that the result
type of the COMP has now changed. This rule heips here (though it does not always help) because now the "dept"
attribute needs to be DEREF’d only once — before the COMP, which needs to access the fields of "dept". The next
time we need to access fields of "dept", in the GRP operation, we need not DEREF it again. The input to the COMP
operator is a projection of an element of S. If the floor attribute of this element’s dept attribute is 5, the comparison
holds. Notice that if the DEREF in this query were instead a more complicated subquery, the advantage of this par-

ticular optimization would be even greater.

5.7. Comments on a Partial Implementation

EXTRA/EXCESS was partially implemented using the EXODUS extensible DBMS toolkit [Care88a] at the
University of Wisconsin-Madison. A complete parser and implementation methods for some of the algebraic opera-
tors were implemented, as was a partially functional DML processor. For the purposes of this thesis, we are most
interested in the query processing component. Query processing is designed to operate as follows: 1) Translate the
parse tree into an algebraic operator tree; 2) Optimize this tree using an optimizer generated by the EXODUS

optimizer generator [Grae87]; 3) Convert the optimized plan tree into a storable, interpretable plan tree: 4)

126

Interpret the plan tree. Here we outline what was completed and present a brief critique of the EXODUS optimizer

generator.

An algorithm for step (1) was implemented in the E programming language [Rich87]. It is based on the equi-
pollence proof presented in Appendix B. Steps (3) and (4) were partially implemented. The difficult part of the
implementation is the production of a working optimizer using the optimizer generator. This is problematic mostly
due to the difficulty of implementing auxiliary data structures that the generated optimizer needs in order to perform
its function. The generator provides no support for the design of data structures and algorithms to manage non-data
arguments to algebraic operators. For example, all code to manage predicates, test their applicability, translate them
when a query is being transformed using an algebraic identity, etc. must be provided by the implementor. In a

model as complex as EXTRA/EXCESS, this is a massive undertaking.

Another difficulty with the optimizer generator was its somewhat restrictive notion of operators. Specifically, it
makes no provision for second-order constructs such as the EXCESS algebra’s SET_APPLY operator, which can
take an arbitrarily complex query as a parameter to be applied to its input. This parameter is not itself data that is
operated upon by the SET_APPLY operation. This distinction is impossible to make in the optimizer generator’s
formalisms. A less important criticism is that it would be useful to be able to specify that the same rule (e.g. associ-

ativity) applies to each of a collection of operators.

However, an input file for the optimizer generator was written anyway, and an optimizer was generated using
this file. In order to do this, the optimizer generator had to be updated in several ways to accommodate the use of E
(instead of just C) and to allow it to model some of the constructs of EXCESS effectively. The input file is approxi-
mately 1300 lines long and expresses 150 rules. This should be compared to the number of rules needed for a
similarly-featured relational query optimizer supporting duplicates and duplicate elimination (which most commer-

cial relational systems do). Such an optimizer would need approximately forty rules.

If we consider that over 50 of these rules apply only when arrays are invoived in the query, we see that we
have not paid too great a price for the ability to optimize complex queries over complex objects. In other words, for
any particular query, a large percentage of the rules will not apply simply because they apply to the wrong type con-
structor. Furthermore, within the rules that apply to a type constructor, a large percentage of the rules will not
apply. For example, if a query does not have a "unique” clause, the 12 rules involving the DE operator will never

apply. For select-project-join style queries (i.e. those not involving binary set operations such as intersection), the

127

search space shrinks further to 30 to 40 rules. This means that the search space of alternative plans will not be much
larger than it is for a standard relational optimizer. There are a lot of rules because the system is more full-featured,
but the number of rules that can be applied at any given time is similar to that of a relational optimizer. Thus we
conclude that the optimization problem itself is not a major issue, but the engineering task of designing data struc-
tures and cost functions for use by the optimizer is an issue (but is outside the scope of this thesis). We further
speculate that the complexity of EXCESS ensures that the same problems of data structures and algorithms for

optimizer support would exist no matter what the design of the algebra or query execution paradigm.

128

CHAPTER 6

THE AQUA ALGEBRA

The goals of AQUA were discussed in Chapters 1 and 3. We first discuss the relationship of AQUA to

EXCESS.

There are several useful object-oriented features that EXTRA and EXCESS were not designed to model. First,
an abstract notion of object identity is missing from EXCESS. The ref construct is a very physical notion of
pointers. Furthermore, in EXCESS, not everything is an object, and AQUA is intended to model object-oriented
systems. Second, and related to the first point, a goal of AQUA is to permit ways of expressing data semantics.
EXCESS is a purely structural model, and provides little support for semantic specification. AQUA’s notion of
identity versus value is one example of semantics; the meanings and properties of methods, etc. are another.
Another goal of AQUA is the modelling of more complex structured data such as trees, unions, N-dimensional
arrays, etc. These structures are not supported in EXCESS. Finally, EXCESS queries have limited expressive
power. AQUA is designed to model certain recursive queries and other powerful querying facilities such as accu-

mulation [Vanc92].

The AQUA model and algebra are extensions of EXTRA and EXCESS. Any EXCESS algebra query can be
expressed in AQUA and can look nearly identical to its EXCESS counterpart, as many of the EXCESS operators
have been almost directly incorporated into AQUA. An important exception is the class of EXCESS queries involv-
ing the REF and DEREF operators. Object identity in AQUA is a semantic notion, not a structural notion. Thus
such EXCESS queries must make use of a facility in AQUA that allows a query to change the semantics associated

with an object. In this manner AQUA can simulate the REF and DEREF operators of EXCESS.

In the following subsections we describe the AQUA model and type system, AQUA’s approach to modeling
abstraction, its support for multiple definitions of equality, and operators and techniques for processing queries over

tree-structured objects.

129

6.1. The AQUA Model and Type System

AQUA [Leun93] is based on an object-oriented data model. All objects have identity, and these identities
allow us to distinguish between objects using identity-based equality. AQUA is closed in the sense that all of its

operators return objects that are defined in the model.

The type system in AQUA is a 3-tiered system. New types are created using the type constructors and existing
types. A type is defined recursively as (name, hier, C(ml T L tn)) where m, is a name, t, ..., t_are previ-
ously defined types, and C belongs to the set of type constructors defined in the model. Integer, boolean, float, and
string are the base types provided. Hier is the set of immediate supertypes of name. Type equivalence is by name.
Also, every type provides a set of interface functions, since everything in AQUA is an object. Normally, these
interface functions are automatically defined to be the interface available on the outermost type constructor of the
type. For example, a tuple type automatically has projection (among other things) defined on it. To extend or elim-

inate these automatically provided functions, we provide a type constructor for abstraction, described in Section 6.2.

The notion of a type in AQUA is purely syntactic. However, there are important notions which cannot be cap-
tured syntactically, but which are useful in data modeling or in query optimization. We therefore add a second level
to our system by requiring each type to have one or more semantics. The semantics of a type might loosely be
thought of as axioms (in the style of Larch [Gutt85]) that describe properties of the operations on a type. The partic-
ular language used for describing semantics is a topic of future research. At the bottom of this two layered system,

there is an additional layer that provides for multiple implementations (at least one) for each semantics.

This allows the database or the user to select the most desirable implementation at any point in the lifetime of
the object. Thus, an object really is an instance of a particular implementation of a particular semantics of a type.
The system currently defines two possible semantics for objects, mutable and immutable. Objects with mutable

semantics may update their state, while objects with immutable semantics may not.

Making a distinction between the type of an object and the semantics associated with it allows us to view all
objects as abstract data types by moving the traditional distinction between objects and values into the semantics

layer. So, the traditional notion of values is supported via immutable semantics for objects.

Another example of the use of semantics is the declaration that certain operations are commutative. A query

optimizer could then make use of such information when optimizing a query. The semantics describing commuta-

130

tivity for deques might be written as notEmpty (q) => enque (deque (q), x) = deque (enque (q, x)). Commutativity
axioms for sets might include: select (p2) (select (p1) (s)) = select (p1) (select (p2) (s)), etc. Notice that in this nota-
tion the first set of parentheses following select contains the predicate to be applied to all elements of the set con-
tained in the second set of parentheses. This is the standard AQUA mechanism for distinguishing between the
actual data being input to an operator (in the final set of parentheses) and any other parameters needed by the opera-

tor (in the initial sets of parentheses).

One consequence of this approach is that type can be determined statically (at compile-time), but semantics and

implementation can only be determined at run time.

One of the primary goals of the algebra and the model has been to support a large number of bulk types in a
uniform manner. A type constructor is a metatype which defines a family of types. The Set type constructor, for
example, defines the family of types that includes Set[integer], Set[Department], etc. AQUA provides the following
type constructors: sets, multisets, tuples, unions, functions, cells, lists, graphs, and trees. The algebra also supports
the abs constructor that allows creation of new abstract types. The operators of the AQUA algebra are the methods

on the AQUA type constructors.

All AQUA objects are unique, and this uniqueness can be detected by the user. AQUA objects have identity,
and can be distinguished using equality that is based on identity. We do not specify the implementation of identity,
to prevent a fixation on object identifiers. The most important point is that objects are unique, and that given two
objects, we can determine if they are the same object or not. Note that two objects of the same type but with dif-
ferent semantics will never be identical. Note also that immutable semantics imply that an object is its own identity,
since we can never change an immutable object. E.g., there is only one immutable set containing objects x, y, and z.
This set is always equal to itself. There may be many other mutable sets containing the same objects. We say more

about this in Section 6.3.

6.2. Abstraction in AQUA

Abstraction is a common feature in many object-oriented models, and AQUA is no exception. Every type is
essentially an abstract data type -- however, the base types and all types built using the usual type constructors have
a fixed set of standard operations available on them (e.g. join and union for sets). As mentioned in {Care88b] and

[Rowe87], it is often desirable to be able to add other methods to such types. In addition, it is frequently desirable

131

to specify a type whose representation is completely unknown to the data model of the DBMS.

To solve both of these problems cleanly, while maintaining a uniform type system, we introduce the abstraction
type constructor. Abs[T, f 1:T-f [fn:T__fn] is a new type and has a collection of named functions, which form the
interface of the abstraction. Each named function (or method) fi has an associated type (signature) T—fi‘ The first
parameter to abs is an optional type. If present, it signifies the representation type of the abstraction. If absent, it
signifies that the representation of the abstraction type is completely unknown. We will illustrate this with examples

below.

Abs is a type constructor just like any other -- its use defines a new type and it has operations defined on it. For
abstraction, there is only one operation, called invoke. It invokes a method on an object whose outermost type con-
structor is abs. In what follows, we use A.B as a shorthand for invoke (A, B), meaning that the method named B is

being invoked on object A.

We will use two schema definitions to show the use of the abstraction type constructor. The Personl type is an
abstract data type which uses a tuple as its representation, and which supplies some additional methods to access

and update its information:

type Personl = abs [tuple [name:string, address:string, birthdate:int]
set_address (string);
get_age () -> int

]

Notice that we omit the implicit parameter to each function that represents the object being operated on. The opera-
tions available on objects of type Personl are all the operations available on tuples (e.g. concatenate, project) plus
the set_address and get_age operations. This is similar to the ability of EXTRA/EXCESS to define new functions
and procedures on EXTRA types, but here we make no assumptions about how the user-defined methods are imple-
mented. Personl is an ADT whose representation is known (and can thus be optimized) and which defines some

new operations in addition to those defined on its representation.

Now consider another abstraction type, Person2, defined as follows:

132

type Person2 = abs [
get_name () -> string;
get_address () -> string;
get_birthdate () -> int;
set_address (string);
get_age () -> int

]

Since no representation type is provided for Person2, we do not know anything about its structure or implementa-
tion. We do know that it has methods to retrieve a name, address, birthdate, and age, and to change an address.
Thus it is functionally equivalent to the Personl type, except that the methods implicitly present in Personl
(get_name, get_address, and get_birthdate) are simple field extractions from tuples in the Personl type but could
have any implementation in the Person2 type. Furthermore, Personl objects may be directly concatenated with
other tuples. For a Person2 object, functions must be invoked and a tuple construction operator must be employed

to make it into a tuple before any concatenation can occur.
As a specific example of the syntax, consider two objects P1 and P2, of types Personl and Person2 respec-
tively. An AQUA expression to retrieve the age of P1is:
Pl.get_age()
The same syntax will retrieve the age of P2. Now consider an AQUA expression to retrieve the name of P1:
P1.select_field(name)

where "select_field" is a built-in tuple operation that retrieves an attribute from inside a tuple. (The above expres-
sion is actually shorthand for "P1.select_field(P1, name)".) To retrieve the name of P2 we use the following expres-
sion:

P2.get_name()

The distinction is that the query optimizer will have more knowledge about how to get the name of P1 than how to

get the name of P2.

Again, a major goal of AQUA is generality, and with this approach we can model a variety of forms of abstrac-
tion found in the literature, without creating an entirely new mechanism for ADTs. The entire reason for introduc-
ing abstraction as a type constructor is simply to keep the model and algebra as uniform and flexible as possible. In
addition, specifying ADTs as regular types in the AQUA type system will allow us to give them appropriate seman-

tics using the semantic definition facilities of AQUA. Thus the clear distinction between syntax and semantics

133

seems to be a powerful notion, allowing us to say what needs to be said about a type within a single formalism,

whether the type is built-in, is constructed with the type constructors, or is an ADT.

6.3. Definitions of Equality

Some types may have more than one useful notion of equality. Every type has a default notion of equality,
which is identity. The built-in primitive types (integer, float, boolean, and string) have the standard definitions for
equality. When a user defines a new type, he may also define a notion of equality for that type. Meaningful user-
defined equalities should induce an equivalence relation over all the instances of that type. In the algebra, the use of
the "=" symbol always involves only the default equality. All other equalities will be user-defined binary predicates,
e.g. my_eq(ab).

Equality is essential to the definition of some operators, like set union. The AQUA union operator is a stan-
dard set-theoretic union. Union needs to eliminate duplicates in the result. A result that is a set of people could be a
true “‘set’’ in the sense of having no two identical objects, but could have duplicates in the sense of two distinct
objects being equal according to the user’s definition of equality. For example, a user defining a person type may
also define an equality predicate which tests for the equality of the social security numbers of a pair of people,
assuming that the social security number is an attribute of the Person type. Thus two distinct Person objects may
actually have the same social security number, but for the user’s purposes they should be treated as being the same

person. The utility of such an ability has also been pointed out in [Atki91].

As other examples of the usefulness of type-specific equalities, we can of course point to shallow and deep
equality. There are other less obvious applications, however. For example, one might wish to define an equality
predicate for strings that is case-insensitive (the default equality would, of course, distinguish between upper- and
lower-case letters). Another example involves the semantics of object attributes. We may wish to say that two
tuple-structured objects are equal if all of their components are equal, regardless of the values of their properties.
As a specific example, a motor vehicle database might store cars as tuples with fields representing engine, frame,
owner, and color. The engine and frame are components of the car, while the owner and color are simply attributes
describing the car’s current condition. Thus it is reasonable to consider two cars equal if they have the same frame
and the same engine. It might also be useful to use type-specific equalities to allow for tolerances in real number

comparisons -- i.e., to check only a certain number of significant digits. This relation, however, is not transitive, and

134

thus not an equivalence relation. It does seem useful, however, and it may cause a re-examination of the

equivalence relation requirement in the future.

Now let us consider sets of objects of some type, and suppose that we wish to compute the union of two sets
whose elements are of type Person. The definition of union naturally removes duplicates when computing its result.
Identity is the default equality for set elements (and everything else) in AQUA. Thus the result of the union will
contain each uniquely identifiable person exactly once. This may be the desired result. However, a user may wish
to see only those persons from either set with unique social security numbers, to eliminate any duplication based on
incorrect data entry, etc. In that case the union operation should compute its result by using this user-defined equal-

ity, rather than identity, to determine what belongs in the result.

This suggests that we might wish to parameterize the union operation by the form of equality it uses. So, for
example, to union two sets of Person objects, PS1 and PS2, using equal social security numbers as the equality cri-

terion, we might write this algebra expression:
union (essn) (PS1, PS2)

where "essn" is a predefined binary predicate on Person objects, returning true if the two Persons have the same
social security number. This solution works, but there is a simpler, more elegant, more concise, and more illuminat-

ing way of approaching the problem.

First, we must realize that other operations of the AQUA algebra might need to make use of such a parameter
-- the set difference and set intersection operations being obvious examples. So these would need to be parameter-
ized also. In addition, any new operators defined in terms of any of these would need to be parameterized. In gen-
eral, of course, only operators in which equality comparisons between two objects implicitly occur give us this prob-
lem. AQUA’s join operators have an explicit predicate parameter already, so they pose no problem in this regard.
Grouping is not a problem as it groups into equivalence classes based on the result of a unary algebraic expression
applied to the elements of the set, as in EXCESS. The following AQUA operators use equality implicitly: union,
diff, intersect, nest (the standard NF* nesting operation), and LFP (a general least fixpoint operation). The AQUA
nest operator, however, is not a primitive operator. It is easily defined in terms of join and some other operations,

so we will not discuss it further.

135

Second, we observe that isolating the functionality of these various forms of equality into one place in the alge-
bra might help us to reason about them more effectively. Also, the use of equalily as a parameter to operators may
restrict and complicate the algebraic transformations that can be defined over those operators. These are the motiva-

tions for the approach we now describe.

If a user wishes to impose a non-default equality (i.e., an equality other than identity) on a set, he can first per-
form whatever operations he desires (these will use the default equality). When he needs to use the contents of the
set in a fashion that is sensitive to some other notion of equality, he can apply the dup_elim operator. This operator
takes an equality (in the form of a binary predicate) as a parameter, and eliminates duplicates under that equality.
This works because a user defined equality is weaker than the default equality (anything that is a duplicate under the
default equality is a duplicate under the user equality, but not vice versa). This allows us to put off using the weaker

equality until an equality sensitive operator is needed. The dup_elim operator is defined as follows:

dup_elim (eq) (S) =R = S| V x,y € R (—eq(x,y) V x=y)
A VxeS@ye R (egxy))

This approach allows any equality to be used at any point during query processing without compromising our
notion of “‘set’’. The operators remain defined in the abstract and we are assured that they can handle any kind of
equality that may arise, including anything the writer of a query might wish to pass in as a parameter. Thus the
AQUA union, diff, intersect, and LFP operators do not have an equality parameter. However, we will now present
some examples and describe precisely how the equality-parameterized versions of these operators can be defined in

terms of the non-parameterized versions, dup_elim, and other operators.

Consider the union of two sets A = { (1, a), (2, b) } and B = { (2, a), (2, b) }. Assume we want union (A, B)
using a notion of equality that says two elements are equal if their fields are pairwise equal, so that the (2,b) in A

and the (2,b) in B are equal, but no other pairs are. The result will then have three elements: { (1, a), (2, b), (2, a) }.

Now suppose we want union (A, B) using a notion of equality that says two elements are equal if their second
fields are equal. The (1,a) in A and the (2,a) in B are now also equal. The required result is then { (1, a), (2,b) } or
{ (2, 2), (2, b) }. Either result is correct since the equality only examines the second element of each tuple. Notice
that our definition of dup_elim is careful to eliminate the possibility of { (5, a), (2, b) } being a correct answer:

each element of the result of dup_elim must actually come from the input set, even though (in this case) the con-

136

union (eq) (A, B)
LFP (f, eq) (A)

diff (eq) (A, B)
intersect (eq) (A, B)

dup_elim (eq) (union (A, B))

dup_elim (eq) (LFP (f) (A))

diff (A, select (M(a)exists(A(b)eqg(a,b)) (B)) (A))
diff (A, diff (eq) (A, B))

I

Figure 6.1: eg-parameterized operations in AQUA

tents of the first field are immaterial.

Figure 6.1 contains the definition of equality-parameterized union in terms of the primitive operators. It also
defines other equality-parameterizable operators in terms of the primitives. Note that there is no simple formulation
of diff (and thus of intersection) in terms of dup_elim. It uses some other AQUA operators, namely exists (the
standard predicate calculus operation) and select (an operation which removes from a set all elements not satisfying
a predicate). Intuitively, this construction for diff is necessary because the result of the difference does not elim-
inate all eg-duplicates from A -- it only eliminates those that were equal to some element of B. This is the correct
semantics of set difference; it removes from A all and only those things that are equal to something in B. AQUA’s
LFP operator uses a standard union-based definition, so as with union we can apply dup_elim after the computa-

tion of the least fixpoint.

The dup_elim operator may be applied at any time, so any AQUA expression requiring a set reflecting some
non-default definition of equality can operate on such a set by first applying dup_elim. The operators of Figure 6.1

were special cases because their definitions implicitly make use of a (potentially non-default) definition of equality.

6.3.1. Duplicate Elimination and Non-Determinism

We now make the interesting observation that dup_elim is not a primitive operator in AQUA. Dup_elim can
be defined in terms of some other AQUA operators, including group and choose. If eq is a binary predicate, and S

is a set,

dup_elim (eq) (A) =
apply (choose)
(group (A (a) select (A (b) eq(a,b)) (A)) (A))

First, observe that the parameters to operations that apply functions, such as group, apply, and select, are expressed

137

using A-calculus notation to indicate the variable bindings. The A expressions are used only for that purpose.
Group (f) (S) groups the elements of S into equivalence classes by using the f parameter, returning a set of sets, just
as in the EXCESS algebra’s GRP operator. The apply operator is quite similar to the EXCESS SET_APPLY opera-
tor. Choose takes a set and nondeterministically selects one element of the set as its result. The dup_elimed set has

no duplicates with respect to the new equality, and it also has no duplicates according to identity.

This definition of dup_elim illustrates the fundamental nature of grouping and non-determinism in object-
oriented systems which support more than one form of equality. It also demonstrates that only one form of equality
is needed in the algebra, that of object identity. All other uses of all other forms of equality can be captured using
dup_elim and other algebra primitives, and the only meaning of the "=" symbol in the algebra is pure object identity.
This is an interesting result when contrasted with the EXCESS algebra, which also has one form of equality, value
equality. EXCESS is a value-based system that supports objects rather than an object-based system that supports

values. In either approach, however, only one form of equality is ever strictly necessary.

Since both the EXCESS and AQUA approaches can simulate each other, the question as to which approach is
better is partially a matter of taste. The EXCESS approach becomes tedious when a DBA wishes all database enti-
ties to have identity, for example. The "ref" constructor must be used everywhere. But if a DBA wishes to use
value equality as a default, the effort required in AQUA to provide all the appropriate equality predicates might be
substantial. The other consideration is that by choosing identity instead of value as the default (as in AQUA), we
have a fairly abstract notion of equality. By itself, identity says nothing about what form these identities can take,
etc., and thus does not force us into using standard definitions of equality on any of the types in the database, includ-
ing built-in base types. This extra level of abstraction is of use in reasoning about the algebra and its various ver-

sions of equality.

Duplicate elimination based on anything but identity, though, is somewhat unsettling in that the same query
may give different results on different executions, even if the database has not changed between executions. See the
union examples above for an illustration of this phenomenon. Since object identities are not supposed to be visible
to users, however, two executions that return the same result modulo object identities are not necessarily a problem.
But in our Person type examples above, where social security number was declared as the basis for uniqueness, any

data other than the social security numbers will be potentially different on different executions of the query.

138

The consequences of this are that users must be very careful in defining the equalities to be used for a type.
Any information that is not used in determining the equality may vary from one run of a dup_elim query to the
next. Our current solution to this is that any user posing such a query will have to be prepared for possibly incon-
sistent results. An alternative would be to somehow mask any data that could be inconsistent. In other words, once
you ask (for example) for duplicate elimination on a set of tuples based on the values of their first two fields, any
other fields should be invisible because they may be inconsistent between executions of the query. This considera-
tion also occurs during query processing. Any subsequent action by the query should not make use of any other

fields of the tuple, as this will lead to nondeterministic results as well.

It is also interesting to note that there is a broad spectrum of equalities, with object identity (the default) at one
end. Under identity, of course, no two distinct objects are equal. At the other extreme would be an equality that
says any two objects of a given type are equal -- for two objects A and B, "A = B" is always true. This definition of
equality is admittedly not very useful. In between are the more useful user-defined equalities. For any tuple type,
for example, there are at least as many possible user-defined equalities as there are combinations of its fields. Some
of these equalities are weaker than others (identity being the strongest form of equality), forming a lattice of possi-

ble equalities on every type.

6.3.2. Other Approaches

In the context of collections of objects of some type, there are two basic places in which an equality parameter

could be placed to indicate which equality to use in determining uniqueness within the collection:

° Equality could be a constraint associated with a collection type

° Equality could be a constraint associated with an instance
of a collection type

The first option means that equality is a parameter of the collection type in the same way that the member type isa
parameter. For example, we could define the type T1 = Set[Person] with equality based on name and the type T2 =
Set[Person] with equality based on social security number as two different types. A disadvantage of this approach is
that constraining a set instance to use a different equality notion requires changing the type of that set. Thus, type
casting would be necessary in order to union two sets of types T1 and T2. Another disadvantage is the proliferation

of types.

139

The AQUA approach is a variation of the second option listed above. Associating equality with instances of a
collection type allows a set to be constrained by different equalities at different points in time. One implication of
this is that binary operations such as union might need to be defined to handle any possible combination of equali-
ties. For example, if the Person type has three different forms of user-defined equality, used by different users for
different purposes, one might need nine union operations in order to be able to perform any possible union of Per-
son sets. This is the motivation for parameterizing operations such as set union with an equality parameter. The
equality is only "visible" when operations (such as printing, union, etc.) detect duplication. Thus equality can be a

parameter of such operations.

In AQUA we took this reasoning one step farther by demonstrating that such a parameterization is needed in
only one place in the algebra, a duplicate elimination operator that transforms a set so that it reflects a certain notion

of equality. Even more fundamentally, we showed that this operator can be defined in terms of group and choose.

6.4. Selection Queries on Trees

This section describes the fundamentals of processing selection queries on trees and sets of trees (forests). The

first subsection is an introduction to AQUA’s treatment of ordered types in general® (lists, trees, and graphs). Sec-
tion 6.4.2 describes some useful queries on trees and an extension to regular expressions that allows us to specify
patterns in trees. Some algebraic operators to model such queries are described in Section 6.4.3. The last section
discusses the utility of various forms of indexing over trees and forests and the applicability of some popular tree-

matching algorithms to the queries that we have discussed.

6.4.1. Ordered Types in AQUA

Lately there has been a lot of interest in bulk types like lists, trees, and graphs that are not supported by tradi-
tional data models and query algebras. This interest is fueled by the fact that much data in the scientific domain is
inherently ordered [Fren90, Fren91, Land91]. Scientific applications have a need to store ordered types such as
time-series data and genome sequences, and textual databases often store information that is structured as a tree.
These applications store huge volumes of data and must locate information from these structures very efficiently.

They thus require database support for ordered data structures like lists, trees, and graphs.

! Parts of this section summarize [Subr93].

140

Viewing lists, trees, and graphs as types in their own right allows us to utilize their specialized properties for
query optimization and gives us more flexibility in defining operations over them. This distinction might also help in
other related areas like specialized storage structures to speed access and specialized index structures for querying.
For example, a tree structured collection of objects could suggest a way of clustering the objects on disk. Also, with
trees as a type constructor, there is no need for any explicit attributes to indicate the relative ordering among the
nodes of the tree. Finally, for many applications, a tree is a natural way of describing the data. We might want to

store information about a family’s genealogy as a tree, for example.

Graphs are used as the fundamental building block out of which the other bulk types are derived. Sequences
(lists) and trees are viewed as specialized graphs. Duplicates are introduced into these graph structures through a
notion of a cell type (described below). A graph G = (N, E) with node set N and edge set E can be used to express
an order over the node set N. We say that for any two nodes a,b € N, a< biff (a,b) € T, where T is the set of edges
in the transitive closure of the graph G. Such an order can be restricted further to produce a tree or a list. All graphs

in AQUA are directed.

A goal of this work has been to define the operators on all the bulk types so that they are consistent with each
other. The operations on a more specific version of a bulk type follow from the operations on a more general ver-
sion. For example, select for a tree is the same as select for a graph when the tree is viewed as a graph. A graph
with an empty edge set is essentially a set. Thus, this kind of degenerate graph behaves in all ways like a set. Iden-

tities that apply to sets apply to graphs with no edges as well.

With this view, all the operators for graphs neatly transform into the corresponding operators for sets. For
example, union and intersection on graphs with empty edge sets are similar to these operations on sets. Similarly,
apply and select behave the same way for graphs with an empty edge set, as for sets. This makes the addition of

ordered types into the model seamless and consistent with the other bulk types.

All the ordered types are defined as a set of nodes N, and a set of edges E. However, there are cases when there
is a need to allow duplicates. Duplicating nodes could possibly be handled by allowing the node set N to be a mul-
tiset, but that would not allow for a distinction to be made between the edges of two identical nodes. Thus, we
introduce the concept of a cell. A cell can be thought of as a wrapper around an object that allows us to distinguish
between two nodes containing the same object. With cells, we could have the same object represented as two dif-

ferent nodes, as the identity of the cells provides the uniqueness.

141

Cells have two operators: Cell (a) creates a cell containing the object a. Cell_content (c) returns the object con-

tained in cell c.

We now focus the discussion more on trees in particular. The AQUA model supports two kinds of trees,
ordered and unordered. Ordered trees are trees in which there is an order between the children of a node and unor-
dered trees assume that there is no explicit order between the children. Ordered trees are defined as a set N of nodes
and a list E of directed edges (as opposed to a set of directed edges for unordered trees). The relative ordering
among the edges from the parent node to the child node in the list E determines the order of the child nodes. We do
not discuss unordered trees in this thesis, but most of the results in the remainder of this chapter will carry over to

that case.

The type constructor for trees is Tree [T, int], where T is some type. A tree of type T consists of nodes of type
Cell[T] and the edges between these nodes. We use cells since it allows us to handle duplicates in a consistent
manner. Duplicates in trees and lists present a problem when dealing with operators that could possibly map two or
more nodes of the original tree onto the same object. In such a scenario, preserving all the associated edges might
violate the tree (or list) structure. As a result, we adopt the ““cell’” structure to avoid duplicate nodes. For example,
in Figure 6.2 we show the result of applying an expression to each node of a tree using the apply operator. This

particular query generates duplicate node contents, and without the Cell constructor the result would have only one

Figure 6.2: Apply (M(x)A) (T)

142

node, losing the structure of the original tree. Using a muitiset to represent the nodes would lose information about

the connections present in the tree.

The "int" parameter to the Tree constructor is optional. It must be non-negative. If present, it indicates the
maximum number of children any node in a tree of this type can have. If absent, the number of children is

unbounded. If it is O, the tree is effectively a set. If itis 1, the tree is effectively a list.

We now briefly describe the relevant operators on trees. Most of the tree operators have been derived from the
corresponding graph operators (see [Subr93]). The basic tree operators of AQUA that are of interest here are:
sources (T), sinks (T), im_ancestor (T, x), im_descendent (T, x), select (p) (T), sub_select (T2) (T1), apply (f)

(T), and find_path (T, x). The other tree operators are described in detail in [Subr93].

Sources (T) returns the set of nodes of T that have no incoming edges. This set will contain only the root of T.
Sinks (T) returns the set of nodes of T that have no outgoing edges (i.e., the leaves of T). Im_ancestor (T, x)
returns the set of nodes in T that have edges to x (i.e., the parent of x in T). Im_descendent (T, x) returns the set of

nodes in T that are children of x.

Select (p) (T) selects all nodes of T that satisfy the predicate p. See [Subr93] for a discussion of how edges are

preserved in the result tree. This selection operator is not of primary concern to us here.

Sub_select (P) (T) returns copies of all subtrees of T that match P. For now, let us interpret "match" as mean-
ing "having the same structure and the same node contents”. We will extend this definition later. As an example,
the result of sub_select (T2) (T1) on the trees of Figure 6.3 is a set consisting of two trees, which are shown in Fig-
ure 6.4. These trees represent the two subtrees of T1 which match T2. These two trees in the result are distinct
because no two nodes in a tree have the same identity due to the use of the cell constructor described earlier. The
trees in the result, in particular, do not include nodes that are children of the nodes which actually matched the pat-
tern. To see why this is so, consider the case of string matching. If one is searching for all occurrences of "ab" in
"dabcabed”, the result will be the two occurrences of "ab". The result will not be {"abcabced”, "abcd"}. We explore
this correspondence with regular expressions in more depth later. We will also define some operations which are
capable of retrieving subtrees that extend "down" (and "up") the tree as far as possible. Initially, however, we will
concentrate on finding only matching subtrees, according to our definition (which is standard; see [Karp72,

Hoff82]).

143

(D ()
MONOIO » C

T1

Figure 6.3: A tree (left) and a pattern

5o o6

Figure 6.4: Result of a sub_select

Note that we could just as easily have defined sub_select to return a set of nodes corresponding to the roots of
the matched subtrees. Logically, however, we desire the entire subtree. An implementation could of course return
only the roots if desired, materializing the rest of the subtree(s) on demand. The next section discusses the
sub_select operator in more detail and explains its definition further. The definition conforms to that used in

[Karp72, Hoff82].

Apply (f) (T) applies the function f to the “‘content’’ of each cell (node) of the tree to transform the existing

object into a new object. The edge set remains the same. This ensures that the structure of the tree is not modified.

144

The result is built of new cells that contain the transformed objects (see Figure 6.2).

Find_path (T, x) returns a list of nodes encountered on the path from the root of the tree T to the node x. The
last node of the result list is x, and the first node is the root of the tree. For example, in the first tree of Figure 6.2,

the result of find_path (T, 6) would be [1, 3, 6].

Predicates for ordered types are similar to those for the other bulk types: we wish to allow the operations avail-
able on the type to appear in predicates involving objects of that type. For example, membership tests and entire
selection queries can appear in predicates involving sets. Thus we allow for position dependent functions like
im_ancestor (G, a) to appear in a predicate involving an object of an ordered type. So, a select with such a predi-

cate would return all nodes of graph G which satisfy the condition, i.e. nodes that are im_ancestors of node a:

select (A (p) p = im_ancestor (G, 2)) (G)

Ordered bulk types, unlike sets and multisets, have a notion of the ‘‘position’” of the constituent objects. This
opens up possibilities of having a richer predicate language, a regular-expression like language that would allow for
queries that would involve matching. For example, in the case of a set of genomes which are sequences of proteins,
we might want to select all genomes which contain protein A followed by a sequence of only protein U, followed by

protein A again. We would want to express this by something like the following expression:
select (AU*A) (Set_of. _genomes)

The above query can be specified with the AQUA operators. This notion can be extended to include matching

predicates for trees (and graphs). Such queries are discussed in more depth in the next section.

6.4.2. Queries on Trees

In this section we present several forms of useful queries on trees and forests. The next section describes some
algebraic techniques for processing these queries. In this section we are concerned mainly with the sub_select
operator. Recall that the standard select operator is defined to return a set of nodes based on the properties of the
contents of those nodes. The sub_select operator returns all subtrees of a tree that satisfy a certain property. In

other words, sub_select takes connectivity and structure into account while select does not.

Section 6.4.2.1 presents a notation for specifying patterns in trees; this notation is an extension to regular

expressions for lists (sequences). The next two subsections describe, using algebraic examples, some useful queries.

145
Section 6.4.3 will deal with alternative algebraic representations for these queries in order to facilitate optimization.

6.4.2.1. Patterns in Trees

The notation we develop in this section is intended to be a part of the formal algebra, not necessarily part of a
user-level query language. Ideally, our formalisms would be the result of a simple translation from a graphical

user-level query language to a format suitable for internal query processing.

The simplest kind of pattern matching for trees is that exemplified in Figure 6.3. There, we wanted to retrieve
all subtrees of a tree T1 that had the same structure and the same node contents as some other tree T2. This is a very
simple kind of tree matching. It is analogous to finding all occurrences of some specific string (e.g. "abc") inside
some other string. Such a query on trees could be used, for example, in a genealogical database, in which a set of
people is structured as a tree in the obvious fashion. In this case the example of Figure 6.3 would correspond to a
query such as "retrieve all the portions of this family tree in which somebody named a had a first child named b and

a second child named ¢".

We may wish to ask more sophisticated queries, however. For example, a query such as "retrieve all the por-
tions of this family tree in which somebody named a is an ancestor of somebody named b". In this case we are not
searching the family tree for a specific subtree, but rather for any subtree which matches the predicate "somebody
named a is an ancestor of somebody named b". In the case of lists, such conditions can be stated using regular
expressions. For example, to find all substrings of a string in which a comes before b, we would write the regular

. * . . i1 ¥)
expression a? b, where "?" is a symbol representing any character (a "don’t care” symbol).
p! Yy P! 24

To extend the standard regular expression notation to trees, we build on the results of [Done70, That68]. These
papers present generalizations of finite automata which can recognize trees rather than just strings. [That68] proves
the closure of these generalized automata under union, concatenation, and Kleene *_ These are exactly the three
operators of regular expressions, and we now describe a notation that allows their application to terms that represent

trees.

To introduce the notation, we must remember that there is a clear distinction between terms that represent trees
and terms that represent patterns, just as there is a difference between a regular expression and an actual string. For
example, consider the string "abacdeb” and the regular expression "b*de". The regular expression matches the sub-

string "bacde” of the first string. As a simple example of the notation, consider the tree (not pattern) represented by

146

"a (b c)". This is a tree with "a" at the root, "b" at the left child, and "c" at the right child. In our notation for trees,
a node is followed by "(" then by its children (in order -- in this section we do not consider unordered trees, although

most of the ideas apply there as well) then by ")". This corresponds to a preorder listing of the nodes.

As another example, consider the tree term T = "a (b (d ¢) ¢ (f g))", representing a full binary tree with three
levels. The notation for tree patterns extends the simple tree notation in a manner similar to the extension made to
strings by regular expressions. In what follows, it should be clear from the context whether a tree or a pattern is
being described by a particular term. As a simple example, consider the pattern represented by the term "a (b c)" as
a pattern. It matches a subtree of T which is represented by the term "a (b ¢)". Note that just as in the matching of
substrings to regular expressions, we are not interested in what follows the matching subtree in T. We are interested
in finding the matching subtree only, just as in the above regular expression example we noted that the matching
substring is ‘‘bacde’’, not ‘‘bacdeb’’. The sub_select operator is defined to return the matching subtrees, not what

follows them (see examples below).

The basic notation is the same as that of regular expressions: * for Kleene closure, | for union (disjunction), and
"ab" for "a concatenated with b". The only fundamental difference is in the meaning of the concatenation operator.
In a regular expression, which always represents a string (i.e., a total ordering), "ab" simply means that b follows
immediately after a. However, a node in a tree may have more than one child, that is, more than one node following
immediately after it. Intuitively, then, any notation for concatenation of tree patterns must indicate which child "b"

is supposed to be in the expression "ab".

Figure 6.5: Tree patterns

147

To represent this, we use (as in [That68]) a special symbol to indicate the concatenation points -- the points in
the expression where the second term is to be appended to the first. Let us first examine this graphically. In Figure
6.5 we have two trees. The special symbol A in a node indicates a concatenation point. This is not to be confused
with the A of lambda-calculus. Unfortunately, both are standard notations, but it will always be quite clear from the
context which A we are talking about. The concatenation of the left and right trees in Figure 6.5 gives the result in

Figure 6.6.

As a slightly more complicated example, consider the trees of Figure 6.7. Here the symbol A appears twice in
the left tree. The meaning of the concatenation point is that all occurrences of the concatenation point are to be

replaced with the tree on the right, giving the result in Figure 6.8.

The union operation on tree patterns is no different from its regular expression counterpart. The Kleene *
operator, however, is based on the concatenation of one pattern onto itself, any number of times. Thus it also needs
to make use of the notion of concatenation points. As an example, consider again the left tree of Figure 6.5, and call

it T. Then some of the elements of T are shown in Figure 6.9.

So far we have considered only one concatenation point symbol, A. In reality, more than one such symbol is
allowed, giving rise to an entire family of concatenation and Kleene * operators, parameterized by the particular

concatenation point symbol being used. This results a paradigm for tree pattern matching that is quite similar to the

Figure 6.6: A concatenation

148

Figure 6.7: Multiple concatenation points
execution model of Prolog and to unification [Seth89]. All of the subsequent results of this chapter hold when multi-

ple concatenation point symbols are allowed. For simplicity of presentation we restrict ourselves to just A.

We have just defined a semantics for the [, Kleene *, and concatenation operations, based on results of
[Done70, That68]. We now describe the syntax that will enable us to express these patterns inside an algebraic

query. The basic idea is that any concatenation, including one engendered by a Kleene * operator, must be given

Figure 6.8: Result of Figure 6.7

149

& &

Figure 6.9: Part of a Kleene closure
one or more instances of A as concatenation points. As a simple example, the concatenation of the two trees in Fig-
ure 6.5 would be expressed as

[a(bM)]c(de)

The square brackets are simply used for grouping, and in this case are not strictly necessary. The contents of a node
is followed by "(" then by each of its children in order then by ")". This corresponds to a preorder traversal of the

tree. The result of the concatenation, in Figure 6.6, is expressed as

a(bc(de))
In this expression, the node "b" is not followed by a "(", indicating that it is a leaf node. Technically, this is short-
hand for the following expression, which explicitly includes all nil subtrees using the special symbol nil:

a (b (uil nil) ¢ (d (nil nil) e (nil nil)))

We omit the nil symbol when the meaning is otherwise clear. To continue the examples, the concatenation of the

trees of Figure 6.7 is described as follows in our syntax:
lalb(ADHM]cde)

Note that the A symbol only has meaning when there is something to replace it with. The expression "a (b (A f) A)"

by itself is not a well-formed expression.

150

The Kleene * operator is indicated by placing a * on the appropriate terms of an expression. As an example,
T* for the left tree T of Figure 6.5 is expressed as

(a(bA)]*

Only a node together with all of its children may be the subject of concatenation or the Kleene * operator. For
example, the expression "a* (b c)" is not a well-formed expression. This means that the square brackets (used for
grouping) in the expression above are actually redundant; the * will be seen as applying to a node and all of its chil-

dren if it appears after the last of the children.

The union operation for tree patterns is identical to that for regular expressions. As a simple example, the fol-

lowing expression is the Kleene * of the left tree of Figure 6.5, but in which the root can be either "a" or "
[lalfl(®MI*
Again, square brackets are used for grouping.
Let us examine a more complicated example of concatenation. Consider the following pattern:
fa@M][[cid](h]

Formally, the result of a concatenation is defined as the set of all trees formed by replacing every A in every tree
matching the first pattern with a tree matching the second pattern. Not every A need be replaced by the same tree
from the second set, but every A must be replaced by one of them. Figure 6.10 shows two of the four trees that

satisfy the previous pattern.

In regular expressions, it is frequently desirable to have a "don’t care" or "wild card" character. This concept
can be extended to tree patterns as well, with some minor modifications. The symbol "?" indicates that the contents
of a node can be anything. Thus a tree with any value at the root and the values "b" and "c" as the left and right
children, and no other nodes, would be expressed as

7(c)
and a tree with "a" at the root, "b" as the left child, and anything as the right child is written as
a(b?

This "?" symbol, however, stands only for any possible contents of a node, not for any possible subtree. In other

words, "?" represents a tree with one node whose contents are unknown. To represent the most general tree pattern,

151

Figure 6.10: Two concatenations of [a AA)] [[c|d] (e)]
which will match any tree at all, we need an analog to the "7*" of regular expressions. We define the symbol T? to
stand for any binary tree as follows:
T? =[7 (A M)]*
This definition works only for binary trees. Clearly a similar definition can be provided for n-ary trees for any n.

For trees with unbounded numbers of children, however, such an expression is not possible.

An important special case of tree patterns are those in which we are only interested in the structure of the tree

[Karp72], not in the contents of the nodes. The "?" symbol makes such patterns easy to express in our notation.

As a further notational convenience, as mentioned above, we assume that any node not present in a pattern is
nil. To make this more useful, we would like to be able to number the children in a pattern, so we extend the nota-

tion appropriately. For example, the pattern
a (b3)
matches a tree whose root is "a" and whose third child is "b". All of the other children of "a" are nil, as are all of b’s

children. For n-ary trees, this is merely a shorthand.

To summarize the notation, then, it is an extension of regular expressions in which concatenation and Kleene *
apply only to a node together with all of its children. The special symbol A is used to indicate concatenation points,

nil indicates the absence of a subtree, and "?" matches any possible node contents. In what follows we will assume

152

that all of the trees are n-ary for some n (the nodes have no more than n children each). We will use T, to match

any possible n-ary tree.

In the next two subsections we give some examples of algebraic queries using the sub_select operator and the

patterns defined in this section.

6.4.2.2. Selecting Portions of a Tree

Here we present some examples of queries that select from some tree T all subtrees matching a given pattern.
As a realistic application, consider a relational query optimizer which represents queries as trees. All operators are
unary or binary, and to simplify the presentation we will ignore additional parameters, so the Tree type constructor

would have been invoked by
Query = Tree [OpNode, 2].

Given some query tree Q, the following AQUA algebra expression returns all subtrees of Q representing a join

whose left input is also a join, assuming that the left join input is the left child of the join node:
sub_select (join (join 7)) (Q)

We do not specify the children of the inputs to the first join. The query is intended to return only the portion of the

tree with this structure, not any of its children.

Now consider a query to retrieve all subtrees of Q representing a join whose left input contains a selection

somewhere in it:
sub_select (join ([[? [(A) | (? M)11* select] 7)) (Q)

The disjunction ensures that any subtree containing a selection will match the pattern. Intuitively, it ensures that any
number of left and right "turns" leading to a selection will qualify. Note that to also retrieve the entire right input to
the join (actually, all initial subtrees of the right input), rather than just the root node of the right input, the last "?" in

the query would be replaced with "T,".

In these examples we have been assuming very simple node contents -- immutable strings, to be exact. How-
ever, the syntax easily accommodates arbitrarily complex node contents. Any algebraic expression which evaluates
to something of the appropriate type can be used to specify the contents of a node inside a tree pattern. We have

kept it simple here to illustrate the concepts. It would also be possible to define an extended version of sub_select

153

which takes an additional parameter indicating an algebraic expression to be applied to each node. The result of this

expression, rather than the actual node, could then be matched against the pattern.

6.4.2.3. Selecting Trees from a Forest

In the previous subsection we saw some simple algebraic queries to retrieve all portions of a tree satisfying
some property. Here we look at another type of query. We now wish to find all trees in some set of trees that
satisfy some pattern. Continuing with our relational query processor example, suppose we now wish to do multiple
query optimization, so we maintain a set QS of queries. Identifying common subexpressions is an important part of

multiple query optimization.
The following algebra query will tell us which of our queries contains a join of relations A and B:

select (
Mq)sub_select (join (A B)) (q)
) (QS)

This expression returns a copy of QS containing only those query trees q such that the search for subtrees turned up

at least one match.

A more complicated query is "retrieve all queries q whose rightmost base relation input is relation C". This can

be expressed algebraically as follows:

select (
Mg)sub_select ([? (T, M)]* C) (9)
) (QS))

We have demonstrated the use of patterns for trees and the use of the sub_select operator which locates them in a

given tree. We now turn our attention to some other operations which will enable some interesting optimizations.

6.4.3. Other Algebraic Operations on Trees

The sub_select operator can clearly find all occurrences of any tree pattern inside any tree. However, there are
other ways of expressing the same queries. In this section we define some operations that will allow for alternative

ways of expressing many interesting queries over trees and forests.

The PT (powertree) operator takes a tree T and returns all subtrees of T. The definition of "subtree" is analo-

gous to the definition of "substring”. Justas "bc" is a substring of "abcd", the tree represented by

154

a(cd)
is a subtree of T, the left tree of Figure 6.10. Note that
a(c nil)

is not a subtree of T. A subtree must include either all or none of the nodes following a node appearing in the sub-
tree. As an example, the powertree of the tree in Figure 6.6 is shown in Figure 6.11. Like the powerset operator for
sets, PT is an operator that wili hopefully never need to actually be executed. It is, however, a very powerful opera-

tor. Using PT, we can define a new operator, called all_desc, as follows:

all_desc (P) (T) = select
(A(t) exists (A(s) choose (sources (s)) =
choose (sources (t)) A sinks (s) ¢ sinks (T))
(sub_select (P) (1))) (PT (T))

All_desc (P) (T) retrieves copies of all subtrees of T which start wirth the pattern P, and include all descendants of
that occurrence of P. As an example, consider the tree T in Figure 6.12. The result of all_desc (a (b a)) (T) is pic-

tured in Figure 6.13. The query "sub_select (P) (T)" in this case would return three distinct trees of the form "a (b

N ONONONONO
™ & ¢ O

Figure 6.11: A powertree

155

Figure 6.12: A tree

a)".

One motivation for the all_desc operator can be illustrated by the following example. Consider the tree T of

Figure 6.14 and the query
sub_select (e (a b)) (T).
This query can be rewritten using all_desc as follows:

collapse (apply (A (s)
sub_select (e (a b)) (s))
(all_desc (e) (T)))

where collapse is similar to the SET_COLLAPSE operator of the EXCESS algebra. This version of the query first

finds all subtrees of T whose root contains simply "e". The query then finds all subtrees of each of these subtrees

that have "a" and "b" as the children and "e" as the root.

The real optimization occurs when we have an index that will return all nodes containing "e". In that case, the

all_desc operation makes direct use of the index to compute its result. The sub_select operations, in this case, will

156

DN ORNORNG®

Figure 6.13: A result of an all_desc operation
only be examining subtrees with the proper root node. Assuming the situation of Figure 6.14, in which there may be
thousands of nodes in the outlined region R, none of which contain "e", the processing time for the query is poten-
tially orders of magnitude faster than in the initial version. We have eliminated examination of all nodes not des-
cended from the node labelled "e" in Figure 6.14. Note that this solution is effective only under the (reasonable)

assumption that, given a node via the index, we have a fast way of retrieving its children.

This technique is similar to the technique of splitting a conjunctive selection predicate in relational systems.
One of the attributes in the conjunction has an index, so conceptually the selection is split into two selections so that
the second comparison only takes place when the first one has succeeded. Note that the rewriting used above does
not always result in a more efficient execution of the query, even if an index is used. For example, if "e" occurred
many times in the same large subtree, many copies of parts of that subtree would be returned, resulting in a poten-

tially longer search than with the original sub_select query.

Suppose now that we have available an index which provides fast access to all nodes containing "e" that also

have "a" as their first child. A similar rewriting of the query can facilitate the use of such an index:

157

No occurrences of 'e’ or ’a’

Figure 6.14: A large tree
collapse (apply (A (s)

sub_select (e (a b)) (s))
(all_desc (e (a 7)) (T)))

In this case, the index is in general even more restrictive, leaving even less work for the expensive (sub_select)
portion of the query. Clearly, a query optimizer will have to know how to recognize such patterns in queries and to
apply the appropriate transformations when indices exist. However, if queries and patterns are represented within
the optimizer as trees, then portions of the optimization process can be viewed as queries in their own right, thus

giving the optimizer the ability to optimize its own operation as well as that of the user’s queries.

We next define an all_anc operator, which travels up the tree in the way that all_desc travels down the tree. In
other words, all_anc (P) (T) will retrieve copies of all occurrences of P in T plus the path from the root to P and all

immediate children of the nodes on that path. As an example, the query

all_anc (a) (T),

158

Figure 6.15: Result of an all_anc operation
where T is the tree of Figure 6.14, would return the two subtrees of T pictured in Figure 6.15. Using this, we can

rewrite the original query as follows:

collapse (apply (A (s)
sub_select (e (a b)) (s))
(all_anc (a) (T)))

With this rewriting, we can make use of an index that provides fast access to all nodes in T containing "a". Once
again, we avoid the large region R of the tree in Figure 6.14, resulting in a potentially massive improvement in exe-
cution time. Once again, this solution is effective only under the (reasonable) assumption that, given a node via an

index, we have a fast way of retrieving its parent.

The distinction between the all_anc and all_desc rewritings of the query is simply this: In the all_anc rewrit-
ing, we used an index to locate all occurrences of "a", and anything preceding "a" in the tree. This works because
"a" occurs at the lowest level of the pattern originally supplied to the sub_select operator, thus we do not need any
of the children of "a". In the all_desc rewriting of the query, we used an index to locate occurrences of "e", which

was at the root of the pattern originally supplied to sub_select. Thus the all_desc operation was able to ignore any-

thing occurring before "e" in T.

Finally, consider an index which provides fast access to nodes labelled "e" and to nodes labelled "a". In this

case we can use both the all_desc and all_anc operators to achieve greater optimizations as follows:

159

apply (A (x) sub_select (e (a b)) (x))
collapse (apply (A (s)
all_desc (e) (s))
(all_anc (a) (T))))

This actually gives us an extremely powerful paradigm for optimizing queries involving pattern matching over
trees. Given any pattern with a specific root object in the node, we can use any available indices to locate these root
nodes by using the all_desc rewriting of the query. It doesn’t matter if the rest of the pattern is extremely complex
-- in fact, the more complex the rest of the pattern, the more we save by avoiding the pattern-matching. This is

especially true of patterns including the Kleene * operator below the root.

Given any pattern with some specific leaf object, we can use any available indices to locate nodes containing
this object by using the all_anc rewriting of the query. Again, the more complex the pattern above this node, the

more savings will accrue.

The main thing to remember about the sub_select, all_desc, and all_anc operators is that sub_select returns
matching subtrees, but nothing coming before or after the match (just like in regular expression matching); all_desc
returns matching subtrees along with everything following them; and all_anc returns matching subtrees and every-

thing preceding them. These operators generalize similar AQUA operators for lists [Subr93].

Note that in general, the all_anc operator should return more than just the children of the nodes on the path
back to the root. The more levels the pattern has, the more levels of descendants the all_anc operation should
gather from each node in the path back to the root. To be specific, if the length of the longest path in the pattern is n
> 0, it will suffice to retrieve n complete generations of descendants from the nodes along path from the pattern to
the root. If n = 0, one generation must be retrieved. For patterns of unbounded depth (i.e. those involving Kleene
*), then, the all_anc rewriting may not always be practical. It can always be made correct, however, by going as

deep as possible in the tree.

A complete definition of all_ane thus involves an additional integer parameter to indicate how many levels of

descendants need to be returned along with their parent nodes on the path from the root to the pattern:
all_anc (n, P) (T)

operates as described in the previous paragraphs. Given some pattern P and a node in that pattern, it is clearly easy

to compute the appropriate value for the parameter n.

6.4.4. Algorithms and Indexes

In this section we briefly discuss the applicability of various tree-matching algorithms and the desirability of

various forms of indexing on trees and forests.

Most of the algorithms proposed for tree matching [Karp72, Hoff82] solve the following problem: Given a tree
T2 (or a finite set of trees) return all the locations where T2 occurs in tree T1. Note that T2 is a tree, not a pattern.
The algorithms match specific subtrees, and do not involve the standard concatenation or Kleene * operators,
although they do have the ability to imitate the "?" symbol by simply ignoring the contents of nodes and concentrat-

ing on the structure. They also can imitate union to some extent because T2 can be a set of trees.

[Karp72) presents some of the earliest tree-matching algorithms. These are improved on by using additional
preprocessing in [Hoff82]. The latter paper presents 8 algorithms for solving the tree matching problem, and

describes the space and time complexities of each. These algorithms are all ways to process our algebra query
sub_select (P1 | P2 . Pn) (1)

where the Pi have no concatenation or Kleene * operators. The algorithms can of course also be used to compute

answers to the all_anc and all_desc operators, with the same pattern restrictions.

The dominant parameters in the complexity analyses include the numbers of nodes in T and the P, the number
of possible contents for a node (which in many database applications will be infinite), the maximum number of chil-
dren for a node, and the number of actual matches found. All of the algorithms except the naive one require prepro-
cessing of the "patterns". Many of the algorithms also involve assumptions about the structure of the "pattern” trees
and the availability of inexpensive bit-string operations. The crucial question, of course, is which of the algorithms

will be efficient in a disk-based DBMS setting. This question deserves further study.

In some of the examples in the previous section we posited the existence of various indices. In particular, stan-
dard DBMS technology can be used for many useful indices over tree-structured data. In the case of queries over a
single tree, all but one of the query rewritings presented above made use of an index that took some information
about a node as input and returned that node as output. Standard B-Tree, ISAM, hashed, etc. indices all serve this

purpose fairly well under varying circumstances.

However, in processing queries over forests, we may want more information than a standard index could pro-

vide. A standard index would simply reveal which trees in a forest contained a particular value in some node. For

161

some queries this might be sufficient, but for others we may wish to also know exactly where in the tree the node
occurs. Thus an index containing both a pointer to the root of the tree and a pointer to the node within the tree

might be useful in certain environments.

A more interesting question is the issue of indexes whose input is a pattern rather than just the contents of a sin-
gle node. One of the rewritings above made use of such an index. For example, one might desire an index over a
genealogy tree which points to all people who have no siblings, or to all people named Fred with a child named

George, or to all people named Fred with a descendant named George. This area requires further research as well.

162
CHAPTER 7

CONCLUSIONS

7.1. Summary

This thesis surveyed the current state of algebraic query processing and optimization in an effort to identify
areas for improvement. We then presented an advanced data model with which to study the extension of the alge-
braic paradigm. An algebra that successfully captures the important features of this model was described. Using an

even more powerful model, we extended the algebraic paradigm even farther.

We presented the design of the EXTRA data model and the EXCESS query language. EXTRA and EXCESS
represent a synthesis and extension of many ideas from other data models, including GEM, NF? models, DAPLEX,
ORION, POSTGRES, GemStone, and 02. The extensions include: complex object support based on an interesting
mix of object- and value-oriented semantics; a user-friendly, high-level query language that captures these seman-
tics; support for the storage and manipulation of a database of persistent objects of any type, not just sets of tuples;
and support for user-defined types, functions, and procedures, both at the abstract data type level and at the concep-

tual schema level.

To model queries in EXTRA/EXCESS, we extended the algebraic paradigm by providing operators and
transformation rules encompassing such issues as array and reference type constructors, multisets, grouping, over-
ridden (inherited) method names, and other issues. This thesis also presented set-theoretic semantics for formally
specifying the domains of OIDs (as well as arrays, multisets, and tuples) in the presence of multiple inheritance. A
proof of the equipollence of the algebra and EXCESS is provided (in Appendix B), and a list of the algebraic
transformation rules (i.e., potential optimizations) is also given (in Appendix A). The rules provide valuable optimi-
zations for object-oriented queries and the proof provides a complete semantics for EXCESS queries as well as an

algorithm for translating an EXCESS query into the algebra. Clearly, the algebra is closed.

The AQUA data model and algebra has been proposed [Leun93] as an input language for object-oriented query
optimizers. It has been designed to cover the functionality of many existing query languages, and to provide the

maximum potential for optimization. AQUA supports abstraction, varying notions of equality among objects, and

163

ordered type constructors (e.g. trees). We provided algebraic formulations for these features which will allow for

query optimization, and described the fundamentals of selection query processing on trees.

7.2. Conclusions

The algebraic approach to database query processing continues to be successful long after its introduction in
the relational model. This thesis has demonstrated this using the EXCESS algebra and portions of the AQUA alge-
bra. The EXCESS algebra’s utility lies in its provable equipollence to the EXCESS query language and in its flexi-
ble operators and transformation rules, which can be applied to other systems as well. As described in the previous
section, EXTRA/EXCESS is in fact a generalization of many other data models, thus the extension of the algebraic

paradigm to this model is particularly compelling.

The EXCESS algebra contains the following original features: a type constructor-based approach to defining
the operators; operators and transformations for multisets and arrays; support for object identity via a new type con-
structor with associated operators; domain definitions that give a clear semantics to domains involving object
identifiers (OIDs) and arrays; and several alternatives for processing queries involving overridden methods. Another
interesting contribution is the nature of the proof that EXCESS and the algebra are equipollent (equivalent in
expressive power). Most such proofs are between an algebra and a calculus; we omit a calculus and prove direct
correspondence with a user-level query language. These novel features enable the algebra to successfully model the
structures of EXTRA (the DDL) and process the queries of EXCESS (the DML). The primitive nature of the alge-
braic operators allows other operators to be defined in terms of them quite readily. This results in the ability to test a

wide variety of algebraic operators for utility and optimizability.

In AQUA, the introduction of abstraction as a type constructor and the use of non-determinism to mode! certain
forms of duplicate elimination allows the algebra to capture more features of the data model and query language.
The specific operators and techniques described for queries over trees indicate that the algebraic paradigm will con-

tinue to be useful even for complicated forms of structured data and for complex queries.

7.3. Future Work

Future work on these topics falls into two categories, general data modeling and more specific investigation of

particular operators.

164

Current and future research in the area of data modeling will take place in the context of the AQUA system.
The plans include investigation of additional operators on ordered bulk types (e.g., a least fixpoint operation) and
more expressive predicate specification sub-languages for ordered bulk types. For example, we can specify regular
expression-like predicates on lists and trees, but more powerful mechanisms (such as context-free grammars) need
to be examined. In this thesis we described algebraic techniques for modeling certain queries on trees. The exten-
sion of these ideas to graphs needs to be investigated. In particular, the extension of the predicate specification
language may prove especially interesting. Indexable ordered types in AQUA (such as N-dimensional arrays) also
need to be examined further. Such structures are becoming increasingly important as the volume of scientific data
(and the ease of access to it) increases. Finally, the question of what to do with non-deterministic intermediate
results in a query needs to be addressed. The current default is that if a user asks a non-deterministic query, the
results are simply unpredictable. An alternative is to somehow restrict access to non-deterministic data, so that only

deterministic results are seen.

In the area of specific operators and optimization techniques, future work includes an investigation of cost
functions and useful statistics (and how to manage them) for complex object data models. Of particular interest are
estimation functions for second-order operators such as SET_APPLY, which takes a query as one of its inputs.
More research is needed on indexing for ordered data types (trees, lists, etc.). In this thesis we assumed the
existence of various forms of indices on trees, but it is not at all clear what form these indices should take. Imple-
mentation techniques for the tree-based operations need to be evaluated under the assumption that some data will
reside on disk. The relative efficiencies of the algorithms described in [Hoff82] may no longer hold if disk-based

data is taken into account.

165

APPENDIX A

Transformation Rules of the EXCESS Algebra

This appendix contains a list of transformation rules (involving both primitive and derived operators) in the
EXCESS algebra. These transformations capture those of the relational and multiset algebras from the literature
[Ullm82, Ullm89, Kort91, Knut81] as well as most transformations described for more advanced data models
[Beer90, Scho86]. We do not claim that this list is complete, but we believe that it is either complete or very close
to complete. The rules are presented without proof. In most cases the proof is a straightforward application of the

operator definitions.

A.1. Some Non-Primitive Operators
Before describing the transformation rules, we define a few operators in terms of the 23 primitive ones:
Multiset union: AUB=(A-B) & B

Multiset intersection: ANB=A—-(A~-B)

Multiset selection: O A= SET_APPLYCOMPE (A)
Relational-like x: rel_x=
SET_APPLY (A xXB)

TUP_C AT(TUP_E)('I‘RACT1 (INPUT).TUP_EXTRACTZ(INPUT))
Relational-like © join: rel_join (A, B) =

SET_APPLY (SET_APPLY,

COMPG(INPUT) TUP_CAT (fieldl, ﬁeld2)(A x B)),

where O is f | <op> f, A A fn_1 <op> f , the <op>s are of the appropriate forms, and the fi are arbitrary alge-
bra expressions. In addition, any conjunct may be negated. The TUP_CAT is necessary because the result of X is a

set or ordered pairs. Here we use "field1" as a shorthand for TUP_EXTRACT ., (INPUT), etc. This kind of join

field1

follows the definitions of [Kort91]. An equi-join-like operator is obtained by restricting © to be f | = f2 A e A

f = fn, where the fi are of the form TUP_EXTRACTJ.(INPUT).

Array union: ARR_UNION (A, B) = ARR_CAT (A, ARR_DIFF (B, A))

Array selection: o (A)= ARR_APP LYCOMPE (A)

166

Tuple projection: @, .

TUP_CAT (TUP (TUP_EXTRACT,,(T)), TUP_CAT (...., TUP (TUP_EXTRACT_ (T))))

An intersection operator for arrays could also be defined; the definition would be just like the multiset

definition.

A.2. Rules for Multiset Operators

The primitive binary multiset operators are &, ~, and X. The derived binary multiset operations are U and M.
The primitive unary multiset operators are DE, GRP, SET, SET_COLLAPSE, and SET_APPLY. The derived

unary multiset operator is O.

A.2.1. Binary Operators: Associativity, Commutativity, Distributivity
A <op>B=B<op>A;ope { ¥,Nn, U}
A <op> (B <op> C) = (A <op>B) <op>C;0p e (¥, v}
AUBNCO=AUBNAUC)
ANnBUC)=ANBUAKNQC
AW BUO=AYBUAWYO(
AW BNO=(ADBBINAWYO
A<op>A=A;<op>e { MU}
AUANB)=A
ANn(AuB)=A
ANn(A D B)=A
AUA Y B)=A DB
D <op>A=A;<op>e { W,V }
(AUB) W (ANnB)=A WY B

(AW B)~(AnB)=AUB

167

Ax(B & C)=(AxB) ¥ (AxC)
AXB-C)=(AxB)-(AxC)
AdY B-C)=(A Y B-BN(C)
A-B Y C)=(A-B)-C

Note that relational X associativity (i.e., AX(BXC) = (AxB)xC) and commutativity (i.e., AXB = BxA) do not

hold due to the set-theoretic nature of x in EXCESS. However, we have direct analogs:

SET—APPLYTUP_CAT(n1(lNPUT),TUP_EXTRACTZ(INPUT))(A X (BxC)=

SET_APPLY

TUP_CAT(TUP_EXTRACTI(INPUT),n’2(INPUT))((A xB)xC)

rel_x (A, B) =rel_x (B, A)

A.2.2, Unary Operators: Pushing
DE (A <op> B) = DE (DE (A) <op> DE (B)); <op>€ { W, U }.
DE (A — B) = DE (A - DE (B))
DE (SET_COLLAPSE (A)) = DE (SET_COLLAPSE (SET_APPLYDE(A)))
DE (GRPE(A)) = GRPE(A)
DE (DE (A)) =DE (A)
DE (SET (A)) = SET (A)
DE (A x B) = DE (A) x DE (B)
DE (SET~APPLYE(A)) =DE (SET_APPLYE(DE A
GRPE(DE (A) = SET_,APPLYDE(GRPE(A))

GRPE(A x B) = SET_APPLY (GRPE(A)); E applies only to A. E will need minor rewriting to operate

INPUTxB

on A elements.
GRPE(A W B)= GRPE(SET_COLLAPSE (GRPE(A) 57} GRPE(B)))
GRPE(A ~-B)= GRPE(SET__COLLAPSE (GRPE(A)) - SET_COLLAPSE (GRPE(B)))

GRP is not reflexive unless the cardinality of the result of one of the GRP expressions is 1.

168

GRPE(SET (A)) = SET (SET (A))

GRPEI(OEZ(A)) =SET_APPLY (GRPEI(A))

O‘EZ(INPUT)

SET (A W& B)=SET (SET_COLLAPSE (SET (A) ¥ SET (B)))
SET (A <op> B) = SET (SET_COLLAPSE (SET (A)) <op> SET_COLLAPSE (SET (B))); <op>¢€ { -, X }.
SET (DE (A)) = SET_APPLYDE(SET (A))

SET (GRPE(A)) = SET_APPLY (SET (A))

GRP

SET (SET_COLLAPSE (A)) = SET_APPLY (SET (A))

SET_COLLAPSE

SET (SET_APPLYE(A)) =SET_APPLY

SET_APPLYE(SET (A)

SET_COLLAPSE (A & B) =SET_COLLAPSE (A) & SET_COLLAPSE (B)
SET_COLLAPSE (GRPE(A)) =A

SET_COLLAPSE (SET (A)) = A

SET_COLLAPSE (SET_COLLAPSE (A)) = SET_COLLAPSE (SET“APPLYSET_C OLL APSE(A))

SET_APPLYE(A W B)= SET__APPLYE(A) W SET_APPLY(B)

SET__APPLYE(A X B) = SET_APPLYEl(A) X SETMAPPLYEz(B); E = E1(E2), E1 applies only to A, and E2

applies only to B.
SET_APPLYE(SET (A)) =SET (E (A))
SET_APPLYE(SET_COLLAPSE (A)) = SET_COLLAPSE (SET_APPLY

SET_APPLYE(A))

SET_APPLYEI(SET__APPLYEZ(A)) = SET_APPLY (A)

EI(E2)
GP(A UB)= O'P(A) v GP(B)

O'P(A NB)= GP(A) N ()‘P(B)

GP(A -B)= GP(A) - GP(B)

GP(A -B)= GP(A) -B

G—P(A) =A~- GP(A)

169

o A)= O'Pl(A) w Gm(A)

PIvP’Z(

A.3. Rules for Array Operators

The primitive binary array operators are ARR_CAT, ARR_DIFF, and ARR_CROSS. The derived binary array
operators are ARR_UNION and o. The primitive unary array operators are SUBARR, ARR, ARR_EXTRACT,
ARR_COLLAPSE, ARR_DE, and ARR_APPLY. Here 1 largely ignore the operators ARR_CROSS and

ARR_DIFF.

A.3.1. Binary Operators: Associativity, Identity
ARR_CAT (A, ARR_CAT (B, C)) = ARR_CAT (ARR_CAT (A, B), C)
ARR_CAT (A,B)=A;B={].

ARR_CAT (A,B)=B; A={].

A.3.2. Unary Operators: Pushing
ARR (ARR_EXTRACT (A)) = SUBARRM(A)
ARR (ARR_CAT (A, B)) = ARR (ARR_COLLAPSE (ARR_CAT (ARR (A), ARR (B))))
ARR (ARR_COLLAPSE (A)) = ARR_APPLY ARR_COLL APSE(ARR (A))

ARR (ARR_DE (A)) = ARR_APPLY ARR (A))

ARR___DE(

ARR (ARR__APPLYE(A)) = ARR_APPLY (ARR (A))

ARR,,APPLYE
ARR_,EXTRACTH(ARR (A=A
ARR__EXTRACTn(ARR,_CAT (A,B)) = ARR,,EXTRACTH(A); n<|Al.
ARR_EXTRACTn(ARR~CAT (A, B)) = ARR_EXTRACT | Al(B); n>|Al.

ARR_EXTRACT (SUBARR _ (A)) = ARR_EXTRACT (A)
p m,n m+p

ARR__EXTRACTn(ARR_COLLAPSE (A))

= ARR_EXTRACTX(ARR_EXTRACTy(A)); x = n mod|elt(A) |, y = n div |elt(A) |.

ARR_EXTRACTH(ARR_APPLYE(A)) =E (ARR_EXTRACTH(A)); E is not COMPp for some P,

170

ARR_COLLAPSE (ARR (A)) = A
ARR_COLLAPSE (ARR_CAT (A, B)) = ARR_CAT (ARR_COLLAPSE (A), ARR_COLLAPSE (B))
ARR_COLLAPSE (ARR_COLLAPSE (A)) = ARR_COLLAPSE (ARR_APPLY ARR_COLL APSE(A))

ARR_COLLAPSE (SUBARR n(A)) = SUBARRx y(ARR__COLLAPSE (A)); x =m *|elt(A) |, y = n *|elt(A) |

ARR_DE (ARR_CAT (A, B)) = ARR_DE (ARR_CAT (ARR_DE (A), ARR_DE (B)))
ARR_DE (ARR (A)) = ARR (A)

ARR_DE (ARR_COLLAPSE (A)) = ARR_DE (ARR_COLLAPSE (ARR_APPLY ARR_DE(A)))
ARR_DE (ARR_DE (A)) = ARR_DE (A)

ARR _DE (ARR__APPLYE(A)) =ARR_DE (ARR_APPLYE(ARR__DE %))
SUBARRm,n(SUBARRj'k(A)) = SUBARRj+mJ+n(A)

SUBARRm,n(ARR__CAT (A,B)) = ARR_CAT (SUBARR“L N (A),

SUBARR, ., (B));ifm<[Al.
SUBARR _(ARR CAT (A,B))=SUBARR . ., (B)ifm>|A|.
SUBARR, (ARR (A))=ARR (A);n21.

SUBARR n(ARR_EXTRACTP(A)) = SUBARR (ARR_COLLAPSE (A)); x =p *|elt(A)].

X+m,X-+n

SUBARRm n(ARR_‘COLLAPSE (A)) = SUBARR

'm mod x,(m mod x)+m-n

(ARR_COLLAPSE (SUBARR

m div x,(n div x)+1

(A))); x =|elt(A)].

SUBARRm n(ARR_APPLYE(A)) = ARR__APPLYE(SUBARRm n(A)); E is not COMPP for some P.
ARR_APPLYEl(ARR_APPLYEZ(A)) = ARR_APPLY | (EZ)(A)
ARR_“APPLYE(ARR_»COLLAPSE (A)) = ARR_COLLAPSE (ARR_APPLY ARR_ APPLYE(A))

ARR_APPLYE(ARR_EXTRACTn(A)) = SUBARR (ARR_APPLY

n*x,n*(x+1)

(ARR_COLLAPSE (A))); x =|elt(A)|, E is not COMP,, for some P.

ARR_,APPLYE(ARR (A)) =ARR (E (A))

1

ARR_APPLYE(ARR,,CAT (A, B)) = ARR_CAT (ARR_APPLYE(A). ARR_APPLYE(B))

A.4. Rules for Tuple Operators

The primitive binary tuple operator is TUP_CAT. The primitive unary tuple operators are TUP and

TUP_EXTRACT. The derived unary tuple operator is 7. This section assumes that tuples have named fields.

A.4.1. Binary Operators: Associativity, Commutativity, Distributivity
TUP_CAT (A, B) = TUP_CAT (B, A)

TUP_CAT (A, TUP_CAT (B, C)) = TUP_CAT (TUP_CAT (A, B), C)

A.4.2. Unary Operators: Pushing
nl(TUP_CAT (A, B)) =TUP_CAT (nn(A), nlz(B)); 1 =1112, 11 applies only to A, 12 applies only to B.
nu(nlz(A» = nu(A); ncl2
nl(TUP(A)) =TUP (A); 12 O@.
ﬂ:“(TUPmEXTRACTf(A)) = nn('IUP_EX'I'RACTf(nn(A))); fel2.
TUP (TUP_EXTRACT(A)) = T (A); I={f].
TUP_EXTRACT(TUP (A)=A

TUP,,EXTRACTf(TUP__CAT (A,B)) = TUP_EXTRACTf(A); f is a field of A (modulo renaming).

TUP_EXTRACT f(nl(A)) =TUP_EXTRACT f(A)

A.5. Rules for Reference Operators
The primitive unary reference operators are REF and DEREF.
DEREF (REF (A)) = A

The next rule is true only if an assumption is made about the implementation -- namely, that a dereferenced

entity still carries its old identity around with it.

REF (DEREF (A)) = A

A.6. Rules Involving COMP

COMP is a unary operator whose input is any algebraic expression.

COMP(E (A)=E (COMPPl(A)); P1(INPUT) = P(E(INPUT)).
COMPPI(COMPPZ(A)) = COMPPZ(COMPP l(A))

COMPPl(COMPPz(A)) = COMP (A)

P1&P2

COMPP(n‘l(A)) = nl(COMPP(A)); P involves only fields in L.

COMPP(A) = COMPP(nl(A)); P involves only fields in L.

172

173

APPENDIX B

A Proof of the Equipollence of EXCESS and its Algebra

Here we prove the equipollence of the EXCESS query language and the EXCESS algebra. The equipollence
proof proceeds by first proving that every EXCESS statement can be expressed in the algebra and then proving that
every algebra query can be expressed in EXCESS. We do not consider ADTs or updates in this proof. We do con-
sider all retrievals, including range statements and user-defined EXCESS functions. Finally, we ignore the ability of
EXCESS to rename the fields of result tuples, and assume a standard automatic field-name generation protocol on
the part of the algebra. In principle, of course, there would be no difficulty in introducing a "rename” operator into

the algebra, but this is not a central issue.

B.1. Reduction of Algebra to EXCESS

Theorem:

Any EXCESS algebra expression can be written in the EXCESS query language.

Proof:
The proof proceeds by induction on the number of operators in an algebraic expression E. An expression in
the algebra consists of one or more named, top-level database objects and 0 or more operators. Constants, for

the purposes of this discussion, appear only in predicates.

Base Case: 0 operators in E
In this case, E = R, a named, top-level database object. The EXCESS query is:

retrieve (R)

Inductive Case: 1 or more operators in E
Assume that all expressions with < n operators (n 2 1) have EXCESS counterparts. There are 24 cases to con-
sider, one for each operator and one for generic set operations (all of which behave identically for our pur-

poses).

1) E=EIl-; E2. In this and subsequent cases, assume that E1, E2 have been retrieved into top-level database
objects of the same names (this is possible via the induction assumption). The EXCESS code for this query

is:

2)

3)

4)

5)

retrieve (x) from x in

E=El Yo E2. In EXCESS this is written:

retrieve (x) from X in

E =El x E2. In EXCESS:

retrieve (

E =DE (El). This has a straightforward translation:

retrieve unique (E1)

El,

(E1 - E2):<T into E

(E1 + E2):<T into E

E2

)

into E

into E

174

E = GRP (B2). Here El is not the stored result of some other query. Rather, we take advantage of our

T.El

induction assumption in a different way to define an EXCESS function that computes E1. T is a type specifier

that is either of the form "t" or "<t" for some type name t. The former indicates that only objects of type t are

considered and the latter that only objects of type t or one of its subtypes are considered. The translation has

5 statements (but the define type statements may not be needed if these types are already named types

in the database):

define type e2 : <type(E2)>

define e2 function I () returns e2

(
retrieve (this)

)

define type e2_elt : <type({elt(E2))>

define e2_elt function g ()

returns <type(El(elt (E2)}))>

(
<El>
)

retrieve (I (x by x.g from x in E2:T)) into E

Here, <type(E2)> refers to the type of E2 (which will of course be a set), <type(elt(E2))> refers to the type of

the elements of E2, and <type(E1(elt(E2)))> refers to the type of the result of applying El to an element of

E2. Each of these types is expressible in the syntax of EXCESS (this is trivial). <EI> is, by the inductive

hypothesis, an EXCESS statement (or sequence of statements) that computes E1, with the appropriate param-

eter substitutions, etc. The identity function I is defined because the "by" keyword of EXCESS (which per-

forms grouping) is only legal within some generic set function. Note that EXCESS functions (and their

6)

7

8)

9)

10)

I

12)

13)

175

corresponding "." notation) may be defined on and used with any EXTRA type, not just tuple types.

E = SET (E1). This uses the target list set constructor:

retrieve ({ E1 }) into E

E = SET_COLLAPSE (E1). In EXCESS, a range variable always takes on values that are elements of the set
corresponding to the range. In this example, the range corresponding to x is E1 while the range correspond-
ing to y consists of all the elements of all the elements of the range of x:

retrieve (y) from x in El, y in x into E

E = SET_APPLY (E2). Here, T and E1 act as they did in Case 5 above:

T.El
define type e2_elt : <typel(elt(E2))>
define e2_elt function £ ()

returns <type(El(elt(E2)))>

(
<El>

)

retrieve (x.f) from x in E2:T into E

E = TUP_CAT (El, E2). In this example, note that if no targets are set- or array-valued, then no Cartesian
product is formed--the result in such a special case is simply a tuple consisting of the targets in order.

retrieve (El, E2) into E

E = TUP (E1). This uses the target list tuple constructor:
retrieve ((El)) into E
E= 'I'UP.EXTRACTf (E1). This (like Case 9) makes use of a special case: if there is only 1 target in the list
and it is single-valued, that target itself is the result of the query.
retrieve (El.f) into E
E= SUBARRLh (E1). This has a direct analog in EXCESS:
retrieve (E1[l..h]) into E
E= ARR_CATT (E1, E2). Here T is the same as in Cases 1 and 2. The semantics of "+" in EXCESS are that

it maintains order in the result only if both of its inputs are ordered.

retrieve (x) from x in (El1 + E2):<T into E

14) E = ARR (El). Here we use the array target list constructor:

retrieve ([El]) into E

15) E= ARR_EXTRACTe (E1). This is similar to Case 11 above:

retrieve { Elle]) into E

16) E=ARR_COLLAPSE (E1). This is similar to Case 7 above:

retrieve (y) from x in El, y in x into E

17) E = ARR_DE (E1). This is similar to Case 4 above, but order is preserved:

retrieve unique (El) into E

18) E=ARR_CROSS (El, E2). This is an order-preserving equivalent of Case 3 above:

retrieve (El, E2) into E

19) E= ARR__DIFFT (E1, E2). This is identical to the set difference translation in Case 1:

retrieve (x) from x in (El - E2):<T into E

200 E= ARR_APPLYT,El

the elements is preserved:

define type e2_elt : <type(elt(E2))>

define e2_elt function £ ()
returns <type(El(elt(E2)))>

(
<El>

)

retrieve (x.f) from x in E2:T into E

(E2). This also has the same translation as its set-based counterpart, but the order of

21) E = DEREF (El). Note that objects explicitly mentioned in the target list are implicitly dereferenced by the

"retrieve" command:

retrieve (E1) into E

22) E =REF (E1). In this case, the "<>" syntax is part of the EXCESS language, not part of the meta-language as

in Case 20 and others. It is the target list constructor syntax for the "ref" type constructor:

retrieve (<El>) into E

23)

177

E= COMPP (E1). We prove this case by induction on the number (n) of propositional logic connectives in P.
Base Case: n=0. Then P is of the form E2 <op> E3. The translation is as follows:
retrieve (El) into E where E2 <EXCESS_op> E3
where <EXCESS_op> is determined from <op> as in Figure B.1.
Inductive Case: Assume that predicates with n-1 connectives can be expressed. Then there are 2 cases for

proving that a predicate with n connectives can be expressed:

i) P is of the form P1 A P2. Then, by the induction hypothesis, we have retrieve (E1) into E
where <Pl> and retrieve (El) into E where <P2>, where <P1> and <P2> represent the
EXCESS forms of the predicates P1 and P2. Thus we can construct the following:

retrieve (El) into E where <Pl> and <P2>

ii) P is of the form — P1. Then by the induction hypothesis we have retrieve (El) into E where
<P1>, where <P1> is as in Case 1 above. Then we can construct:

retrieve (El) into E where not <Pl>

This proves the inductive case. Since the base and inductive cases hold, we see that any COMP query expres-

sible in the algebra is expressible in EXCESS, concluding Case 23 of the main proof. [J

24)

E = G (E1), where G is some previously defined generic set/array function (which must have EXTRA types as
input and output). This has a simple translation:

retrieve (G (El)) into E

<op> <EXCESS_op>
= is when comparing OIDs
= otherwise
€ in
(o <=
C <<=
< <=

Figure B.1: Comparison operators

178

This concludes the inductive case, completing the proof that any query of the algebra can be expressed in

EXCESS. O

B.2. Reduction of EXCESS to algebra

The syntax of an EXCESS retrieval query is as follows:

retrieve [unique] *(’ <final_res> ')’ [into <object>]

[<from_clause>] [where <where_claunse>]
<from_clause> ::= from (<from> ’)* <from>
<from> ::= <var> in <target> [<set_op> <target>] [<type-spec>]
<type-spec> ::= (: | :<) <type>
<set_op> ::= +
I *
| -
<target> ::= (<t_component> .)* <t_component>
<t_component> ::= <object> ('[’ <int_const> [: <int_const>] Bk)*
<final_res> ::= <res_list>
7’ <res_list>"}’
[’[" <res_list> ']’
[’< <res_list> ">’
|’ <res_list> ')’
<res_list> ::= (<result> ,)* <result>
<result> ::= (<r_component> .)* <r_component>
| <aggregate>
<aggregate> ::= <agg-op> '(’ <attr_list> [over <attr_list>] [by <attr_list>]

[<from>] [where <where_clause>]} ')’

179

<r_component> ::

(<object> | <var>) ([’ <int_const> [: <int_const>]’]")

<where_clause> ;1= <where_clause> (and | or) <where_clause>
| not <where_clause>
| <univ_clause>
| <ex_clause>
| <compare_clause>

|’C <where_clause> ")’
<univ_clause> ::= ’(’ forall <var> in <result> : <where_clause>
<ex_clause> := ’(’ forsome <var> in <result> : <where_clause>
<compare_clause> ::= <result> <comp_op> (<result> | <const>)

The proof will proceed bottom-up. First we prove that any target can be expressed in the algebra. We use this
in the proofs that any result list and any "from" component can also be expressed in the algebra. We then construc-
tively prove that every where clause can be expressed as a predicate to the algebra’s COMP operator. Finally, we
use these results to prove that an entire retrieve statement is expressible in the algebra. When they are obvious from

the context, we omit subscripts from the algebraic operators.

We first direct our attention to the "from" clause, and prove lemmas concerning t_components, targets, and

then entire from clauses.
LEMMA 1: A t_component has a corresponding algebra expression.
PROOF: By induction on the number of array subscripting operations appearing in the component.

Base Case: t_component = C (no array subscripts). In this case the component is an identifier and must be the

name of a top-level EXTRA object. Thus the algebra query to retrieve this object is simply C.

Inductive Case: (i) t_component = C [..] ... [..] [xiy]l. By the inductive assumption, everything in
t_component preceding the last subscript can be expressed in the algebra by some expression CE. If CE is a refer-
ence, it should be replaced by DEREF(CE). The query for t_component then becomes SUBARRX,y (CE). (ii)
t_component = C [...] ... [...] [x]. By the inductive assumption, everything in t_component preceding the last sub-
script can be expressed in the algebra by some expression CE. If CE is a reference, it should be replaced by

DEREF(CE). The query for t_component then becomes ARR_EXTRACTX(CE), O

189

LEMMA 2: A target whose last component has no subscripts has a corresponding algebra expression.
PROOF: By induction on the number of components in the target.
Base Case: target = C (C is a component). An expression exists for this, by Lemma 1.

Inductive Case: target = Cl....Cn . C. By the induction hypothesis and Lemma 1, let E1 be the algebra expres-

sion corresponding to Cl....Cn. There are six cases, dependent on the type of El:
(i) El is a tuple. Query is TUP_EXTRACTC(EI)
(ii) El is a reference to a tuple. Query is TUPMEX’FRACTC(DEREF(EI))

(ii) El is a set of tuples. If C is a set-valued attribute, then the query is

SET_COLLAPSE(SET_APPLY (E1)). Otherwise, the query is SET_APPLY (El).

TUP_EXTRACT TUP_EXTRACT~

(iv) El is a set of references to tuples. If C is a set-valued attribute, then the query is

SET_COLLAPSE(SET__APPLYTUP_EXTR ACT (DEREP)

(E1).

(ED)). Otherwise, the query is

SET"APPLYTUP_EXTRACT (DEREF)

(v), El is an array of tuples. If C is an array-valued attribute, then the query is

ARR__COLLAPSE(ARR__APPLYTUPJ_:XTR ACTC(El)). Otherwise, the query is ARR_APPLY.

TUP_EXTRACT C(E D.
(vi) El is an array of references to tuples. If C is an array-valued attribute, then the query is

ARR_COLLAPSE(ARR_APPLY,

TUP__EXTRACTC(DEREF)(EI))' Otherwise, the query is

ARR*-APPLYTUP,EXTR ACT, (DEREF)(E n.O

LEMMA 3: A target has a corresponding algebra expression.

PROOF: The only case not covered by Lemma 2 is that in which the last component of a target has array sub-
scripts. Thus the proof here is similar to the proof of the inductive case of Lemma 1. (i) Assume that target =
Cl....Cn . C [x:y]. Then, by Lemma 2, we know that some expression El corresponds to Cl""Cn .C. IfElisa
reference, it should be replaced by DEREF(E1). Thus the query becomes SUBARRX’y (E1). (ii) Assume that tar-
get = Cl....Cn . C [x]. Then, by Lemma 2, we know that some expression El corresponds to C 1....Cn .C. IfElisa

reference, it should be replaced by DEREF(E1). Thus the query becomes ARR_EXTRACTXCEI). O

LEMMA 4: A variable declared in the "from" clause has a corresponding algebra expression.

181

PROOF: In the following, T, T1, and T2 represent targets, with corresponding algebra queries E, El, and E2.

There are five cases:
(i) variable = T. Then by Lemma 3 we have an expression for this.

In cases (ii)-(v), if E, El, or E2 is a reference, it should be replaced by DEREF(E), DEREF(E!), or

DEREF(E2) respectively.

(ii) variable = T1 + T2. Then if either T1 or T2 represents a set, the query is El & E2. Otherwise the query is

ARR_CAT (ELE2).

(iii) variable = T1 * T2. Then if either T1 or T2 represents a set, the query is E1 - (El - E2). Otherwise the query

is ARR_DIFF (E1, ARR_DIFF (El, E2)).

(iv) variable = T1 - T2. Then if either T1 or T2 represents a set, the query is El - E2. Otherwise the query is

ARR_DIFF (El, E2).

(v) variable = T <type-spec>. Then if T represents a set, the query is SET"APPLYqype-spec>,INPUT(E)‘ Otherwise

the query is ARR_APPLY (B). O

<type-spec>,INPUT

LEMMA 5: Anr_component has a corresponding algebra expression.
PROOF: By induction on the number of array subscripting operations appearing in the component.

Base Case: r_component = C (no array subscripts). In this case the component is either the name of a top-
level EXTRA object, in which case the query is C, or is the name of a variable from the from clause, in which case

an expression exists by Lemma 4.

Inductive Case: (i) r._component = C [..] .. [..] [xiy]l. By the inductive assumption, everything in
r_component preceding the last subscript can be expressed in the algebra by some expression CE. If CE is a refer-
ence, it should be replaced by DEREF(CE). The query for r_component then becomes SUBARRX,y (CE). (i)
r_component = C [...] ... [...] [x]. By the inductive assumption, everything in t_component preceding the last sub-
script can be expressed in the algebra by some expression CE. If CE is a reference, it should be replaced by

DEREF(CE). The query for r_component then becomes ARRMEXTRACTX(CE). 0O

LEMMA 6: A result whose last component has no subscripts has a corresponding algebra expression.

182

PROOF: By induction on the number of components in the result.
Base Case: result = C (C is a component). An expression exists for this, by Lemma 5.

Inductive Case: result = Cl....Cn . C. By the induction hypothesis and Lemma 5, let E1 be the algebra expres-

sion corresponding to Cl""Cn' There are six cases, dependent on the type of E1:
(1) Elisatuple. Query is TUP“EXTRACTC(EI)
(ii) E1is areference to a tuple. Query is TUP_EXTRACT C(DEREF(EI))

(iii) E1 is a set of tuples. The query is SET_APPLY

TUP_EXTRACTC(E D.

(iv) El is a set of references to tuples. The query is SET_APPLY (E1).

TUPMEXTRACTC(DEREF)

(v) El is an array of tuples. The query is ARR_APPLY,

TUP__EXTRACTC(E D.

(vi) El is an array of references to tuples. The query is ARR_APPLYTUP_EXTRA cT, (DEREF)(EI)' 1
LEMMA 7: A result has a corresponding algebra expression.

PROOF: The only case not covered by Lemma 6 is that in which the last component of a result has array subscripts.
Thus the proof here is similar to the proof of the inductive case of Lemma 1. (i) Assume that result = Cl....Cn .C
{x:y]. Then, by Lemma 6, we know that some expression E1 corresponds to C l""Cn . C. If El is a reference, it
should be replaced by DEREF(E1). Thus the query becomes SUBARRX'y (E1). (ii) Assume that result = Cl....Cn .
C [x]. Then, by Lemma 6, we know that some expression El corresponds to Cl....Cn . C. If El is a reference, it

should be replaced by DEREF(E1). Thus the query becomes ARR__EXTRACTX(EI).]
LEMMA 8: A result list has a corresponding algebra expression.

PROOF: Letres list=R,R,, .., Rn and let E, be the algebraic expression corresponding to R, (by Lemma 7).

There are three cases to consider.
(i) If none of the Ri represent sets or arrays, then the query is TUP_CAT (TUP (El)’ TUP_CAT (TUP (E2),
TUP_CAT (TUP (En_l), TUP (En)))).

(ii) If at least one of the Ri represents a set, then the query is E1 X (E2 X (E3 WX (En_1 X En))). If any of the Ei isa

reference to a set, it should be replaced by DEREF (Ei)'

(iii) Otherwise, the query is ARR_CROSS (El’ ARR_CROSS (E2, ... ARR_CROSS (En-l’ E)). If any of the E, is

a reference to an array, it should be replaced by DEREF (Ei)' O

183

LEMMA 9: A final result has a corresponding algebra expression.

PROOF: Assume (using Lemma 8) that the algebraic expression corresponding to the result list R is E. There are

- four cases:

(i) final_res = {R}. Then the query is SET (E).

(ii) final_res = [R]. Then the query is ARR (E).

(iii) final_res = (R). Then the query is TUP (E).
(iv) final_res = <R>. Then the query is REF (E). [J

LEMMA 10: A where clause can be translated into a predicate in the predicate sublanguage of the algebra’s

COMP operator.
PROOF: By induction on the number of predicate calculus constructs appearing in the where clause.

Base Case: A simple compare clause, T1 <op> T2. By Lemmas 4 and 7, T1 and T2 have corresponding alge-

bra expressions E1 and E2. There are five cases (the other comparators are redundant):
(1) T1is T2. Then the predicate is E1 = E2.

(i) T1 =T2. Then the predicate is DEREF(E1) = DEREF(E2) if T1 and T2 represent references and E1 = E2 oth-

erwise.

(iii) T1in T2. Then the predicate is E1 € E2 if T2 represents a set and E1 [E2 otherwise. If E2 is a reference to
a set or an array, it is replaced by DEREF (E2). If El is a reference, it is replaced by DEREF (E1) only if the type

of the members of E2 is not a reference type.

(iv) T1 <= T2. Then the predicate is E1 ¢ E2 if T2 represents a set and E1 E2 otherwise. If either E1 or E2 is a

reference, it is to be replaced by DEREF (E1) or DEREF (E2), respectively.

(v) T1 <<=T2. Then the predicate is E1 [E2. If either E1 or E2 is a reference, it is to be replaced by DEREF

(E1) or DEREF (E2), respectively.
Inductive Case: The "forsome" syntax and disjunction are redundant, so we have three cases to consider:

(i) forall x in S1: S2. Then by Lemma 7 and the inductive hypothesis we have expressions E1 and E2 correspond-

ing to S1 and S2. The predicate is SET_APPLY (E1). If El is a reference, it is replaced by DEREF (E1).

COMPg,

184

(ii) St and S2. By the inductive hypothesis we have expressions El and E2 corresponding to S1 and S2. Thus the

predicate is E1 A E2.
(ili) notS. By the inductive hypothesis we have expression E corresponding to S. The predicate is — El. [J

LEMMA 11: An EXCESS retrieval query without a "unique" clause or aggregation has a corresponding algebra

expression.

PROOF: The final query result is obtained by applying the predicate of the where clause to the result built up from
the appropriate range variables, and then extracting from this the desired data. This turns out to be much more com-
plicated than the equivalent process for a relational query processor because of the extended "." notation permitted
in the result list. It becomes necessary to relate elements of the result list whose data comes from the same source.

The details of this are described below.

By the preceding lemmas, we know that each variable Vi in the "from" clause has a corresponding query, call it

QVi. We also know that every result Ri in the result list has a corresponding query, call it QRi'

Now, in order to ensure that the results in the result list are appropriately correlated, we need an extended
notion of "range variable". We will treat every component of every result in the result list as a range variable and
will designate one of the components as the primary component. As an example of the necessity of this notion, con-
sider the following result list: "(Emps.kids.name, Emps.kids.age)". Clearly the desired result is to return a set of
pairs, one for each child. Thus the primary component (or range variable) for each of the results in the result list
should be "Emps.kids". If it were "Emps", the query would return, for each employee, a set of names and a set of

ages, but the relationships between the kids and their ages would be lost.

For two results R1 and R2, let the greatest common component (GCC) be the greatest common prefix of the

results. We identify the primary component of each result in the result list using the following algorithm:

FOR EACH result R1 IN result list DO
FOR EACH result R2 IN result list DO
G=GCC(R1,R2)
IF (G > primary_component (R1))
THEN primary_component (R1) :=G

Note that a result list with n results may have fewer than n unique primary components. Next we correlate the data
retrieved by all results that have the same primary component. For each unique primary component, PCi, in the

result list, we do the following:

185

(i) Suppose PCi is the primary component of results Rr) ey Rr .
1 n

(ii) Since each of the Rr has the same primary component, each of them shares a common algebraic subexpression
i

corresponding to this primary component. If we remove this common subexpression from each of the QRl , we are
i
left with the partial algebraic expressions PQR, , each of which is distinct and takes as input the result of the com-
i

mon algebraic subexpression.

(iii) Construct a partial algebraic expression APCEi as follows: If n=1, the partial expression is simply PQR] . Ifn
1

> 1, the partial expression is TUP_CAT (TUP(PQR]l), .. TUP_CAT (TUP(PQR] 1), TUP(PQR] M.

We now have an expression that can be applied to each element of the range of a primary component to
retrieve the appropriate data from that component. Before doing this, however, the predicate of the "where" clause
must be applied. By Lemma 10, we can construct such a predicate in the algebra. We will apply this predicate to an
algebraic expression PE constructed using the primary components of the result list as follows (recall that Lemma 7

tells us that every primary component PC has a comresponding algebra expression PCE):
(i) If the result list has only one primary component, then PE = PCE.

(i) Else if none of the PCi is set- or array-valued, PE = TUP_CAT (TUP(PCE]), ... TUP_CAT (TUP(PCEm_l),

TUP(PCEm))) (assuming that there are m unique primary components).

(iii) Else if at least one of the PCi is set-valued, PE = PCE1 X (PCE2 X .. X (PCEm_ X PCEm)). If any of the PCEi

1
is a reference, it must be replaced by DEREF (PCEi).
(iv) Else PE = ARR_CROSS (PCE, ARR_CROSS (PCEZ, ... ARR_CROSS (PCEmmp PCEm))). If any of the PCE,

is a reference, it must be replaced by DEREF (PCEi).

Now we are ready to apply the predicate P of the "where" clause to PE. Note that some data used in P may not
come from PE, but by Lemma 10 this does not matter. There are three cases to consider in constructing PQ, the

expression corresponding to the where clause applied to PE:
(i) PE represents a value, a tuple or a reference. Then PQ = COMPP(PE).

(il) PE represents a set. Then PQ = SET_APPLY (PE), where P1 is P embellished with the appropriate
1

COMPp

TUP_EXTRACT operations to retrieve data from the Cartesian product of the primary components.

186

(iii) PE represents an array. Then PQ = ARR_APPLY (PE), where P1 is P embellished with the appropriate

COMP
Pl
TUP_EXTRACT operations to retrieve data from the array product (ARR_CROSS) of the primary components.
At this point we are ready to apply the APCE, to PQ to arrive at the final result of the query. There are three

cases to consider:

(i) PQ represents a value, a tuple or a reference. Then there is only one primary component, and all of its

corresponding results are single-valued. The final query is then APCEI(PQ).

(ii) PQ represents a set. Then each element of the set has a portion that corresponds to data from each primary
component. The final query is then SET__APPLYE(PQ), where E is an expression that applies each APCEi(PQ) to
its corresponding component using TUP_EXTRACT (if necessary) and concatenates the results into a tuple using

TUP and TUP_CAT (the specifics are trivial and omitted).

(iii) PQ represents an array. Then each element of the array has a portion that corresponds to data from each pri-
mary component. The final query is then ARR_APPLYE(PQ), where E is an expression that applies each
APCEi(PQ) to its corresponding component using TUP_EXTRACT (if necessary) and concatenates the results into

a tuple using TUP and TUP_CAT (the specifics are trivial and omitted). []
LEMMA 12: An EXCESS retrieval query without a "unique" clause has a corresponding algebra expression.

PROOF: If the query has no aggregation, Lemma 11 applies, and we are done. Recall that each generic set opera-
tor G (such as "min", "max", etc.) implicitly defines a new algebraic operator. The primary component of an aggre-
gate result is defined to be the variable in its from clause (if it has one) or the primary component of the required
attribute list specified inside the aggregate. If this attribute list has more than one primary component, the primary
component of the aggregate result becomes the Cartesian product (or ARR_CROSS if all are arrays) of the primary
components of the attribute list. By preceding lemmas, let PCE be the algebra expression corresponding to the pri-
mary component of the aggregate result. In the remainder of the proof of this lemma, note that if either E or the ele-
ments of the collection it represents are references, they must be dereferenced before the discussion in the following
paragraphs can apply.

If no "over" or "by" clause is present, the expression inside the aggregate is a simple retrieval query, thus by

Lemma 11 we have a comresponding algebra expression E that can be applied to the primary component of the

aggregate result to obtain the data to which the aggregate function G itself is applied. Since G is also an algebra

187

operator, G(E) is an expression, and can be used as one of the PQR, in Lemma 11, QED.
i

If an "over" clause is present, the construction is similar to that of the previous paragraph, except that the
expression E is replaced by DE (SET__APPLYR (E)), where ! is the list of attributes in the "over" clause. If the pri-
1

mary component of the aggregate result is an array, then we use ARR_APPLY instead of SET_APPLY.

If a "by" clause is present, we need to use the algebra’s GRP operator. Here the PQR] becomes SET_APPLYG
i
(GRP1tb (E)), where "by" is the list of attributes specified in the "by" clause and E is the appropriate expression from

y
one of the two preceding paragraphs. []

LEMMA 13: An EXCESS retrieval query has a corresponding algebra expression.

PROOQOF: 1f the query has no "unique" clause, Lemma 12 applies. If the query U is "retrieve unique Q", by Lemma
11 we have some algebra expression E that represents Q. If the type of the result of E is a tuple, a reference, or a
simple value, then the expression for the entire query U is E. If the type of E is "set”, then the algebra expression is

DE (E). Otherwise the algebra expression is ARR_DE (E). [0

In all of the proofs of these lemmas we have made the assumption that appropriate use of the INPUT symbol is
made in the SET_APPLY, ARR_APPLY, GRP, and COMP operators to achieve the correct variable bindings. This
is clearly always possible. We have omitted this detail to make the proof more accessible. This concludes the

reduction of EXCESS to the algebra. [J

Since we have now proved that the algebra reduces to EXCESS and that EXCESS reduces to the algebra, we

have proved that the algebra and EXCESS are equivalent in expressive power. [1

138

REFERENCES

[Abit88a] S. Abiteboul and C. Beeri, "On the Power of Languages for the Manipulation of Complex Objects,"
Tech. Report No. 846, INRIA, May 1988,

[Abit86] S. Abiteboul and N. Bidoit, "Non First Normal Form Relations: An Algebra Allowing Data Restructur-
ing," J. Computer and System Sciences 33, 1986.

[Abit88b] S. Abiteboul and R. Hull, "Update Propagation in a Formal Semantic Model," IEEE Data Eng. Bulletin
11(2), June 1988.

[Abit89] S. Abiteboul and P. Kanellakis, "Object Identity as a Query Language Primitive", Proc. ACM SIGMOD
Conf., Portland, Oregon, June, 1989.

[ADit90] S. Abiteboul, E. Simon, and V. Vianu, "Non-deterministic languages to express deterministic transforma-
tions", Proc. ACM PODS ConffR, Nashville, TN, April 1990.

[Agra87] R. Agrawal, "Alpha: An Extension of Relational Algebra to Express a Class of Recursive Queries”, Proc.
IEEE Intl. Conf. on Data Engineering, Los Angeles, CA, 1987.

[Aho79] A. Aho and J. Ullman, "Universality of Data Retrieval Languages", Proc. ACM Conf. on Principles of
Programming Languages, San Antonio, Texax, 1979.

[Alba91] A. Albano, G. Ghelli, and R. Orsini, "Objects for a Database Programming Language”, in Bulk Types &
Persistent Data: The Third International Workshop on Database Programming Languages, ed. P. Kanellakis and J.
Schmidt, Nafplion, Greece, Morgan Kaufmann, August 1991.

[Andr87] T. Andrews and C. Harris, "Combining Language and Database Advances in an Object-Oriented
Development Environment," Proc. 2nd OOPSLA Conf., Orlando, FL, 1987.

[Aris83] H. Arisawa, K. Moriya, and T. Miura, "Operations and the Properties on Non-First-Normal-Form Rela-
tional Databases," Proc. VLDB Conf., Florence, Italy, October, 1983.

[Astr76] M. Astrahan, M. Blasgen, D. Chamberlin, K. Eswaran, J. Gray, P. Griffiths, W. King, R. Lorie, P.
McJones, J. Mehl, G. Putzolu, I. Traiger, B. Wade, and V. Watson, "System R: A Relational Approach to Database
Management”, ACM TODS 1(2), June 1976.

[Atki91] M. Atkinson, C. Lecluse, P. Philbrow, and P. Richard, "Design Issues in a Map Language", in Bulk Types
& Persistent Data: The Third International Workshop on Database Programming Languages, ed. P. Kanellakis and
J. Schmidt, Nafplion, Greece, Morgan Kaufmann, August 1991.

[Banc88] F.Bancilhon, G. Barbedette, V. Benzaken, C. Delobel, S. Gamerman, C. Lecluse, P. Pfeffer, P. Richard,
and F. Velez, "The Design and Implementation of O2 an Object-Oriented Database System,” Tech. Report 20-88,
Altair, April 1988.

[Banc87] F. Bancithon, T. Briggs, S. Khoshafian, and P. Valduriez, "FAD, a Powerful and Simple Database
Language," Proc. VLDB Conf., Brighton, England, 1987.

[Banc86] F. Bancilhon and S. Khoshafian, "A Calculus for Complex Objects," Proc. ACM PODS Conf., Cam-
bridge, MA, March 1986.

[Bane87] J. Banerjee, H.-T. Chou, J. Garza, W. Kim, D. Woelk, N. Ballou, and H.-J. Kim, "Data Model Issues for
Object-Oriented Applications," ACM Trans. Office Info. Sys. 5(1), Jan. 1987.

[Bato87] D. Batory, "Principles of Database Management System Extensibility," IEEE Database Eng. Bulletin 10,
June 1987.

[Beer90] C. Beeri and Y. Kornatzky, "Algebraic Optimization of Object-Oriented Query Languages", Proc. Intl.
Conf. Database Theory, Paris, France, December 1990.

[Bloo87] Bloom, T., and Zdonik, S., "Issues in the Design of Object-Oriented Database Programming Languages,”
Proc. 2nd OOPSLA Conf., Orlando, FL, 1987.

[Bune91] P. Buneman and A. Ohori, "A Type System that Reconciles Classes and Extents", in Bulk Types & Per-
sistent Data: The Third International Workshop on Database Programming Languages, ed. P. Kanellakis and J.

189

Schmidt, Nafplion, Greece, Morgan Kaufmann, August 1991.

[Care88a] M. Carey, D. DeWitt, G. Graefe, D. Haight, J. Richardson, D. Schuh, E. Shekita, and S. Vandenberg,
"The EXODUS Extensible DBMS Project: An Overview", in Readings in Object-Oriented Database Systems, ed.
S. Zdonik and D. Maier, Morgan Kaufmann, San Mateo, CA, 1990.

[Care88b] M. Carey, D. DeWitt, and S. Vandenberg, "A Data Model and Query Language for EXODUS," Proc.
ACM SIGMOD Conf., Chicago, lllinois, 1988.

[Ceri87] S. Ceri, S. Crespi-Reghizzi, L. Lavazza, and R. Zicari, "ALGRES: A System for the Specification and
Prototyping of Complex Databases," Tech. Report 87-018, Dipartimento di Elettronica, Politecnico di Milano, 1987.

[Cham75] D. Chamberlin, J. Gray, and 1. Traiger, "Views, Authorization, and Locking in a Relational Database
System," Proc. Nat'l. Computer Conf., Anaheim, CA, 1975.

[Chan88] A. Chandra, "Theory of Database Queries", Proc. ACM PODS Conf., 1988.

[Chen76] P. Chen, "The Entity-Relationship Model — Toward a Unified View of Data," ACM TODS 1(1), March
1976.

[Chen84] P. Chen, "An Algebra for a Directional Binary Entity-Relationship Model", Proc. IEEE Intl. Conf. on
Data Engineering, Los Angeles, CA, April 1984.

[Clif85] J. Clifford and A. Tansel, "On an Algebra for Historical Relational Databases: Two Views", Proc. ACM
SIGMOD Conf., Austin, TX, 1985.

[Codd70] E. Codd, "A Relational Model of Data for Large Shared Data Banks,” CACM 13(6), June 1970.
[Codd79] E. Codd, "Extending the Relational Model to Capture More Meaning," ACM TODS 4(4), Dec. 1979.

[Codd80] E. Codd, "Data Models in Database Management," Proc. Workshop on Data Abstraction, Databases, and
Conceptual Modeling", Pingree Park, Colorado, 1980.

[Colb89] L. Colby, "A Recursive Algebra and Query Optimization for Nested Relations", Proc. ACM SIGMOD
Conf., Portland, Oregon, 1989.

[Cope84] G. Copeland and D. Maier, "Making Smalltalk a Database System,"” Proc. ACM SIGMOD Conf., Boston,
MA, 1984.
[Dada86] P. Dadam, K. Kuespert, F. Andersen, H. Blanken, R. Erbe, J. Guenauer, V. Lum, P. Pistor, and G.

Walch, "A DBMS Prototype to Support Extended NF’ Relations: An Integrated View of Flat Tables and Hierar-
chies,” Proc. ACM SIGMOD Conf., Washington, DC, 1986.

[Dani91] S. Daniels, G. Graefe, T. Keller, D. Maier, D. Schmidt, and B. Vance, "Query Optimization in Revela-
tion, an Overview", IEEE Data Engineering Bulletin, 14(2), June 1991.

[Daya87] U. Dayal, M. DeWitt, D. Goldhirsch, J. Orenstein, "PROBE Final Report", Tech. Report CCA-87-02,
Computer Corporation of America, Cambridge, MA, 1987.

[Daya82] U. Dayal, N. Goodman, and R. Katz, "An Extended Relational Algebra with Control Over Duplicate
Elimination", Proc. ACM PODS Conf., 1982.

[Desh88] A. Deshpande and D. Van Gucht, "An Implementation for Nested Relational Databases," Proc. VLDB
Conf., Los Angeles, CA, 1988.

[Desh87] V. Deshpande and P.-A. Larson, "An Algebra for Nested Relations," Research Report CS-87-65, Univer-
sity of Waterloo, Dec. 1987.

[Ditt86] K. Dittrich, "Object-Oriented Database Systems: The Notion and the Issues," Proc. Int’l. Workshop on
Object-Oriented Database Systems, Pacific Grove, CA, Sept. 1986.

[Done70] J. Doner, "Tree Acceptors and Some of their Applications", J. Computer and System Sciences 4, 1970.
[Dorn78] L. L. Dornhoff and F. E. Hohn, Applied Modern Algebra, Macmillan, New York, 1978.

[Fisc83] P. C. Fischer and S. J. Thomas, "Operators for Non-First-Normal-Form Relations," Proc. IEEE COMP-
SAC, 1983.

[Fish89] D. Fishman, J. Annevelink, E. Chow, T. Connors, J. Davis, W. Hasan, C. Hoch, W. Kent, S. Leichner, P.
Lyngbaek, B. Mahbod, M. Neimat, T. Risch, M. Shan, and W. Wilkinson, "Qverview of the Iris DBMS", in
Object-Oriented Concepts, Databases, and Applications, ed. W. Kim and F. Lochovsky, Addison-Wesley, Reading,
MA, 1989.

160

{Fish87] D. Fishman, D. Beech, H. Cate, E. Chow, T. Connors, J. Davis, N. Derrett, C. Hoch, W. Kent, P. Lyng-
baeck, B. Mahbod, M. Neimat, T. Ryan, and M. Shan, "Iris: An Object-Oriented Database Management System,"
ACM Trans. Office Info. Sys. 5(1), Jan. 1987.

[Fren90] J. French, A. Jones, and J. Pfaltz, "Summary of the Final Report of the NSF Workshop on Scientific Data-
base Management", SIGMOD Record 19, 1990.

[Fren91] K. Frenkel, "The Human Genome Project and Informatics", CACM 34, 1991.

(Gold83] A. Goldberg and D. Robson, Smalltalk-80: The Language and its Implementation, Addison-Wesley,
Reading, MA, 1983.

[Gott88] G. Gottlob and R. Zicari, "Closed World Databases Opened Through Null Values", Proc. VLDB Conf.,
Los Angeles, CA, 1988.

[Graec89] G. Graefe, ed., Workshop on Database Query Optimization, CSE Tech. Report 89-005, Oregon Graduate
Center, Portland, Oregon, May 30, 1989.

[Grae87] G. Graefe and D. DeWitt, "The EXODUS Optimizer Generator," Proc. ACM SIGMOD Conf., San Fran-
cisco, CA, May 1987.

[Grae88] G. Graefe and D. Maier, "Query Optimization in Object-Oriented Database Systems: The REVELA-
TION Project”, Tech. Report CS/E 88-025, Dept. of Computer Science and Engineering, Oregon Graduate Center,
1988.

[Gray84] P. Gray, Logic, Algebra, and Databases, Ellis Horwood Ltd., West Sussex, England, 1984.

[Guti89] R. Guting, R. Zicari, and D. Choy, "An Algebra for Structured Office Documents", ACM Trans. Office
Info. Sys. 7(2), April 1989.

[Gutt85] J. Guttag, J. Horning, and J. Wing, "The Larch Family of Specification Languages", IEEE Software, 2(5),
September 1985.

[Gyss89] M. Gyssens, J. Paredaens, and D. Van Gucht, "A Grammar-Based Approach Towards Unifying Hierarch-
ical Data Models", Proc. ACM SIGMOD Conf., Portland, Oregon, 1989.

[Gyss88] M. Gyssens and D. Van Gucht, "The Powerset Algebra as a Result of Adding Programming Constructs to
the Nested Relational Algebra," Proc. ACM SIGMOD Conf., Chicago, Illinois, June 1988.

[Hoff82] C. Hoffmann and M. O’Donnell, "Pattern Matching in Trees", JACM 29(1), Januvary 1982,

[Horn87] M. Hornick and S. Zdonik, "A Shared, Segmented Memory System for an Object-Oriented Database,"
ACM Trans. Office Info. Sys. 5(1), Jan. 1987.

{Houb87] G. J. Houben and J. Paredaens, "The Rz-Algebra: An Extension of an Algebra for Nested Relations,"
Tech. Report 87/20, Dept. of Math. and Computing Sci., Computing Sci. Section, Eindhoven Univ. of Tech,,
December 1987.

[Hull87] R. Hull, "A Survey of Theoretical Research on Typed Complex Database Objects", in Databases, ed. J.
Paredaens, Academic Press, L.ondon, 1987.

[Hull88] R. Hull, "Four Views of Complex Objects: A Sophisticate’s Introduction”, draft, Dept. of Computer Sci-
ence, Univ. of Southern California, Los Angeles, California, May 1988.

{Hull89a] R. Hull and J. Su, "On Accessing Object-Oriented Databases: Expressive Power, Complexity, and Res-
trictions", Proc. ACM SIGMOD Conf., Portland, Oregon, 1989.

[Hull89b] R. Hull and J. Su, "Untyped Sets, Invention, and Computable Queries", Proc. ACM PODS Conf., 1989.

[Hull90] R. Hull and M. Yoshikawa, "ILOG: Declarative creation and manipulation of object identifiers”, Proc.
VLDB Conf., Brisbane, Australia, August 1990.

[IDM500] IDM 500 Software Reference Manual, version 1.4, Britton-Lee Inc., Los Gatos, CA.

[Jaes82a] G. Jaeschke, "An Algebra of Power Set Type Relations," Tech. Report 82.12.002, IBM Heidelberg
Scientific Center, Dec. 1982.

[Jaes85a] G. Jaeschke, "Recursive Algebra for Relations with Relation Valued Attributes," Tech. Report 85.03.002,
IBM Heidelberg Scientific Center, March 1985.

[Jaes85b] G. Jaeschke, "Nonrecursive Algebra for Relations with Relation Valued Attributes," Tech. Report
85.03.001, IBM Heidelberg Scientific Center, March 1935.

191

[Jaes82b] G. Jaeschke and H.-J. Schek, "Remarks on the Algebra of Non First Normal Form Relations,"” Proc. ACM
PODS Conf., Los Angeles, CA, 1982.

[Jark84] M. Jarke and J. Koch, "Query Optimization in Database Systems,” ACM Comp. Surveys 16(2), June 1984,

[Karp72] R. Karp, R. Miller, and A. Rosenberg, "Rapid Identification of Repeated Patterns in Strings, Trees, and
Arrays", Proc. 4th Annual ACM Symp. on Theory of Comp., Denver, CO, 1972.

[Kemp87] A. Kemper and M. Wallrath, "An Analysis of Geometric Modeling in Database Systems," ACM Comp.
Surveys 19(1), March 1987.

[Kent79] W. Kent, "Limitations of Record-Based Information Models," ACM TODS 4(1), March 1979.

[Kern78] B. Kernighan and D. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1978.

[Khos86] S. Khoshafian and G. Copeland, "Object Identity," Proc. 1st OOPSLA Conf., Portland, OR, Sept. 1986.

[Khos87] S. Khoshafian and P. Valduriez, "Sharing, Persistence, and Object Orientation: A Database Perspective,”
Tech. Report DB-106-87, MCC, April 1987.

[Kim88] W. Kim, "A Model of Queries for Object-Oriented Databases”, Tech. Report ACA-ST-365-88, MCC,
Austin, TX, November 1988.

[Kim87] W. Kim, J. Banerjee, H.-T. Chou, J. Garza, and D. Woelk, "Composite Object Support in an Object-
Oriented Database System," Proc. 2nd OOPSLA Conf., Orlando, FL., 1987.

[King81] J. King, "QUIST: A System for Semantic Query Optimization in Relational Databases", Proc. VLDB
Conf., Cannes, France, August 1981.

[Klau85] A. Klausner and N. Goodman, "Multirelations — Semantics and Languages,” Proc. VLDB Conf., Stock-
holm, Sweden, 1985.

[Klug82] A. Klug, "Equivalence of Relational Algebra and Relational Calculus Query Languages Having Aggre-
gate Functions," JACM 29(3), July 1982.

[Kort88] H. Korth, "Optimization of Object-Retrieval Queries (extended abstract),” Dept. of Computer Sciences,
Univ. of Texas, Austin, Texas, April 1988.

[Kort91] H. Korth and A. Silberschatz, Database System Concepts, second edition, McGraw-Hill, New York, 1991.

[Knut81] D. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 2nd edition,
Addison-Wesley, Reading, Massachusetts, 1981.

[Kupe85] G. M. Kuper, "The Logical Data Model: A New Approach to Database Logic," PhD. Thesis, Dept. of
Computer Science, Stanford University, Stanford, CA, Sept. 1985.

[Land91] E. Lander, R. Langridge, and D. Saccocio, "Mapping and Interpreting Biological Information", CACM
34, 1991.

[Lecl87] C. Lecluse, P. Richard, and F. Velez, “02, an Object-Oriented Data Model," Proc. ACM SIGMOD Conf.,
Chicago, IL, 1988.

[Leun93] T. Leung, G. Mitchell, B. Subramanian, B. Vance, S. Vandenberg, and S. Zdonik, "The AQUA Data
Model and Algebra", Fourth International Workshop on Database Programming Languages, New York, New
York, 1993, to appear.

{Liu77] C.L. Liu, Elements of Discrete Mathematics, McGraw-Hill, New York, 1977.

[Lohm83] G. Lohman, J. Stoltzfus, A. Benson, M. Martin, and A. Cardenas, "Remotely-Sensed Geophysical Data-
bases: Experience and Implications for Generalized DBMS," Proc. ACM SIGMOD Conf., San Jose, CA, 1983.

[Maie86a] D. Maier, "A Logic for Objects,” Tech. Report CS/E-86-012, Oregon Grad. Center, Beaverton, Oregon,
Nov. 1986.

[Maie86b] D. Maier and J. Stein, "Indexing in an Object-Oriented DBMS," Tech. Report CS/E-86-006, Oregon
Grad. Center, Beaverton, Oregon, May 1986.

[Maie86c] D. Maier, J. Stein, A. Otis, and A. Purdy, "Development of an Object-Oriented DBMS," Proc. Ist
OOPSLA Conf., Portland, OR, 1986.

[Maki77] A.Makinouchi, "A Consideration on Normal Form of Not-Necessarily-Normalized Relations in the Rela-
tional Data Model", Proc. VLDB Conf., Tokyo, Japan, 1977.

[Mano86] F. Manola and U. Dayal, "PDM: An Object-Oriented Data Model," Proc. Int’l. Workshop on Object-
Oriented Database Sys., Asilomar, CA, Sept. 1986.

[Mits89] B. Mitschang, "Extending the Relational Algebra to Capture Complex Objects”, Proc. VLDB Conf.,
Amsterdam, The Netherlands, 1989.

[Mylo80] J. Mylopoulos, P. Bernstein, and H. Wong, "A Language Facility for Designing Database-Intensive
Applications", ACM TODS 5(2), June 1980.

[Nixo87] B. Nixon, L. Chung, D. Lauzon, A. Borgida, J. Mylopoulos, and M. Stanley, "Implementation of a Com-
piler for a Semantic Data Model: Experiences with TAXIS," Proc. ACM SIGMOD Conf., San Francisco, CA, 1987.

[Ong84] J. Ong, D. Fogg, and M. Stonebraker, "Implementation of Data Abstraction in the Relational Database
System INGRES," SIGMOD Record 14(1), March 1984.

[Osbo88] S. Osborn, "Identity, Equality, and Query Optimization", in Advances in Object-Oriented Database Sys-
tems, ed. K. Dittrich, Lecture Notes in Computer Science no. 334, Springer-Verlag, Berlin, Germany, 1988.

[0zs087] G. Ozsoyoglu, Z. Ozsoyoglu, and V. Matos, "Extending Relational Algebra and Relational Calculus with
Set-Valued Attributes and Aggregate Functions," ACM TODS 12(4), Dec. 1987.

[Ozs083] Z. Ozsoyoglu and M. Ozsoyoglu, "An Extension of Relational Algebra for Summary Tables," Proc. 2nd
Intl. Workshop on Statistical Database Mgmt., Lawrence Berkeley Labs., Univ. of California, Berkeley, 1983.

[Pare88] J. Paredaens and D. Van Gucht, "Possibilities and Limitations of Using Flat Operators in Nested Algebra
Expressions," Proc. ACM PODS Conf., 1988.

[Pare85] C. Parent and S. Spaccapietra, "An Algebra for a General Entity-Relationship Model," IEEE Trans.
Software Eng. 11(7), July 1985.

[Pist86] P. Pistor and F. Andersen, "Designing a Generalized NF2 Model with an SQL-Type Language Interface,"
Proc. VLDB Conf., Kyoto, Japan, Aug. 1986.

[Rich92] J. Richardson, "Supporting Lists in a Data Model (A Timely Approach)”, Proc. VLDB Conf., Vancouver,
Canada, 1992.

[Rich87] J. Richardson and M. Carey, "Programming Constructs for Database System Implementation in
EXODUS," Proc. ACM SIGMOD Conf., San Francisco, CA, May 1987.

[Rich91] J. Richardson and P. Schwarz, "MDM: An object-oriented data model", in Bulk Types & Persistent Data:
The Third International Workshop on Database Programming Languages, ed. P. Kanellakis and J. Schmidt, Naf-
plion, Greece, Morgan Kaufmann, August 1991.

[Ritt87] G. X. Ritter and J. N. Wilson, "Image Algebra: A Unified Approach to Image Processing", Proc. SPIE
Medical Imaging Conf., Newport Beach, CA, February 1987.

[Ross92] P. Ross, "Bulk Data Types: A Theoretical Approach", MSc Thesis, Computer Science Department,
Hebrew University, Jerusalem, Israel, September 1992.

[Roth87] M. Roth, H. Korth, and D. Batory, "SQL/NF: A Query Language for —INF Relational Databases,"
Inform. Systems 12(1), 1987.

[Roth88] M. Roth, H. Korth, and A. Silberschatz, "Extended Algebra and Calculus for —1NF Relational Data-
bases," ACM TODS, 13(4), December 1988.

[Rowe87] L. Rowe and M. Stonebraker, "The POSTGRES Data Model," Proc. VLDB Conf., Brighton, England,
1987.

[Scha86] C. Schaffert, T. Cooper, B. Bullis, M. Kilian, and C. Wilpot, "An Introduction to Trellis/fOwl," Proc. Ist
OOPSLA Conf., Portland, OR, Sept. 1986.

[Sche85] H.-J. Schek, "Towards a Basic Relational NF? Algebra Processor," Proc. Int. Conf. on FODO, Kyoto,
Japan, 1985.

[Sche86] H.-J. Schek and M. Scholl, "The Relational Model with Relation-Valued Attributes,” Inform. Sys. 11(2),
1986.

193

[Scho86] M. H. Scholl, "Theoretical Foundations of Algebraic Optimization Utilizing Unnormalized Relations,"
Proc. Intl. Conf. Database Theory, Rome, 1986.

[Scho87a] M. H. Scholl, H.-B. Paul, and H.-J. Schek, "Supporting Flat Relations by a Nested Relational Kernel,"
Proc. VLDB Conf, Brighton, England, Sept. 1987.

[Scho87b] M. H. Scholl and H.-J. Schek, eds., Theory and Applications of Nested Relations and Complex Objects:
An International Workshop, Darmstadt, Germany, April 1987.

{Schw86} P. Schwarz, W. Chang, J. Freytag, G. Lohman, J. McPherson, C. Mohan, and H. Pirahesh, "Extensibility
in the Starburst Database System,” Proc. Intl. Workshop on Object-Oriented Database Sys., Pacific Grove, CA, Sep-
tember 1986.

[Seth89] R. Sethi, Programming Languages Concepts and Constructs, Addison-Wesley, Reading, MA, 1989.

{Shaw90] G. Shaw and S. Zdonik, "A query algebra for object-oriented databases", Proc. IEEE Intl. Conf. on Data
Engineering, Los Angeles, CA, Feb. 1990.

[Shek89] E. Shekita and M. Carey, "Performance Enhancement Through Replication in an Object-Oriented
DBMS", Proc. ACM SIGMOD Conf., Portland, Oregon, 1989.

[Shen87] S. Shenoy and Z. Ozsoyoglu, "A System for Semantic Query Optimization", Proc. ACM SIGMOD Conf.,
San Francisco, California, May 1987.

[Ship81] D. Shipman, "The Functional Data Model and the Data Language DAPLEX", ACM TODS 6(1), March
1981.

[Ston76] M. Stonebraker, E. Wong, P. Kreps, and G. Held, "The Design and Implementation of INGRES", ACM
TODS 1(3), Sept. 1976.

[Ston87a] M. Stonebraker, J. Anton, and E. Hanson, "Extending a Database System with Procedures,” ACM TODS
12(3), Sept. 1987.

[Ston87b] M. Stonebraker, J. Anton, and M. Hirohama, "Extendability in POSTGRES," IEEE Database Eng. Bul-
letin 10, June 1987.

[Ston86] M. Stonebraker, "Inclusion of New Types in Relational Database Systems," Proc. IEEE Intl. Conf. on
Data Engineering, Los Angeles, CA, Feb. 1986.

[Stra90] D. Straube and M. Ozsu, "Queries and query processsing in object-oriented database systems", ACM
Trans. Office Info. Sys., 8(4), Oct 1990.

[Stro86] B. Stroustrup, The C++ Programming Language, Addison-Wesley, Reading, MA, 1986.

[Subr93] B. Subramanian, S. Zdonik, T. Leung, and S. Vandenberg, "Ordered Types in the AQUA Data Model",
Fourth International Workshop on Database Programming Languages, New York, New York, 1993, to appear.

[Tans89] A. Tansel and L. Garnett, "Nested Historical Relations", Proc. ACM SIGMOD Conf., Portland, Oregon,
1989.

[That68] J. Thatcher and J. Wright, "Generalized Finite Automata Theory with an Application to a Decision Prob-
lem of Second-Order Logic", Math. Sys. Theory 2(1), 1968.

{Tsur86] S. Tsur and C. Zaniolo, "LDL: A Logic-Based Data Language", Proc. VLDB Conf., Kyoto, Japan, August
1986.

[Ullm87] J. Ullman, "Database Theory — Past and Future," Proc. ACM PODS Conf., San Diego, CA, March 1987.
[Ullm82] J. Ullman, Principles of Database Systems, Computer Science Press, Rockville, Maryland, 1982.

[Ulim89] J. Ullman, Principles of Database and Knowledge-Base Systems, 2 vols., Computer Science Press, Rock-
ville, Maryland, 1989.

[Vanc92] B. Vance, "Towards an object-oriented query algebra”, Tech. Report CS/E91-008, Dept. of Computer
Science and Eng., Oregon Graduate Institute, Beaverton, OR, January 1992.

[Vand88a] S. Vandenberg, "The EXTRA/EXCESS Data Dictionary,” EXODUS working document, Univ. of
Wisconsin-Madison, 1988.

[Vand88b] S. Vandenberg, "EXTRA/EXCESS User Manual," EXODUS working document, Univ. of Wisconsin-
Madison, 1988.

154

[Vand89] S. Vandenberg, "Practical Complex Object Algebras,” in [Grae89].

[Vand90] S. Vandenberg and D. DeWitt, "An Algebra for Complex Objects with Arrays and Identity", Tech.
Report #918, Computer Sciences Dept., Univ. of Wisconsin-Madison, March 1990.

[Vand91] S. Vandenberg and D. DeWitt, "Algebraic Support for Complex Objects with Arrays, Identity, and Inher-
itance", Proc. ACM SIGMOD Conf., Denver, CO, May 1991.

[VanG87] D. Van Gucht, "On the Expressive Power of the Extended Relational Algebra for the Unnormalized
Relational Model," Proc. ACM PODS Conf., 1987.

[VanG86] D. Van Gucht and P. Fischer, "Some Classes of Multilevel Relational Structures," Proc. ACM PODS
Conf., 1986.

[Webe78] H. Weber, "A Software Engineering View of Database Systems," Proc. VLDB Conf., 1978.

[Yu91] L. Yu and S. Osborn, "An Evaluation Framework for Algebraic Object-Oriented Query Models", Proc.
IEEE Intl. Conf. on Data Engineering, Kobe, Japan, April 1991.

[Zani83] C. Zaniolo, "The Database Language GEM," Proc. ACM SIGMOD Conf., San Jose, CA, 1983.

